Kernel/multiboot2_64

This commit is contained in:
EnderIce2
2024-11-20 05:16:57 +02:00
parent b4c0a78c6c
commit c4e458fcc6
189 changed files with 0 additions and 37283 deletions

View File

@ -1,274 +0,0 @@
#include <cpu.hpp>
#include <memory.hpp>
#include <convert.h>
#include <debug.h>
#include "../kernel.h"
namespace CPU
{
char *Vendor()
{
static char Vendor[13];
#if defined(__amd64__)
uint32_t rax, rbx, rcx, rdx;
x64::cpuid(0x0, &rax, &rbx, &rcx, &rdx);
memcpy(Vendor + 0, &rbx, 4);
memcpy(Vendor + 4, &rdx, 4);
memcpy(Vendor + 8, &rcx, 4);
#elif defined(__i386__)
uint32_t rax, rbx, rcx, rdx;
x32::cpuid(0x0, &rax, &rbx, &rcx, &rdx);
memcpy(Vendor + 0, &rbx, 4);
memcpy(Vendor + 4, &rdx, 4);
memcpy(Vendor + 8, &rcx, 4);
#elif defined(__aarch64__)
asmv("mrs %0, MIDR_EL1"
: "=r"(Vendor[0]));
#endif
return Vendor;
}
char *Name()
{
static char Name[49];
#if defined(__amd64__)
uint32_t rax, rbx, rcx, rdx;
x64::cpuid(0x80000002, &rax, &rbx, &rcx, &rdx);
memcpy(Name + 0, &rax, 4);
memcpy(Name + 4, &rbx, 4);
memcpy(Name + 8, &rcx, 4);
memcpy(Name + 12, &rdx, 4);
x64::cpuid(0x80000003, &rax, &rbx, &rcx, &rdx);
memcpy(Name + 16, &rax, 4);
memcpy(Name + 20, &rbx, 4);
memcpy(Name + 24, &rcx, 4);
memcpy(Name + 28, &rdx, 4);
x64::cpuid(0x80000004, &rax, &rbx, &rcx, &rdx);
memcpy(Name + 32, &rax, 4);
memcpy(Name + 36, &rbx, 4);
memcpy(Name + 40, &rcx, 4);
memcpy(Name + 44, &rdx, 4);
#elif defined(__i386__)
uint32_t rax, rbx, rcx, rdx;
x32::cpuid(0x80000002, &rax, &rbx, &rcx, &rdx);
memcpy(Name + 0, &rax, 4);
memcpy(Name + 4, &rbx, 4);
memcpy(Name + 8, &rcx, 4);
memcpy(Name + 12, &rdx, 4);
x32::cpuid(0x80000003, &rax, &rbx, &rcx, &rdx);
memcpy(Name + 16, &rax, 4);
memcpy(Name + 20, &rbx, 4);
memcpy(Name + 24, &rcx, 4);
memcpy(Name + 28, &rdx, 4);
x32::cpuid(0x80000004, &rax, &rbx, &rcx, &rdx);
memcpy(Name + 32, &rax, 4);
memcpy(Name + 36, &rbx, 4);
memcpy(Name + 40, &rcx, 4);
memcpy(Name + 44, &rdx, 4);
#elif defined(__aarch64__)
asmv("mrs %0, MIDR_EL1"
: "=r"(Name[0]));
#endif
return Name;
}
char *Hypervisor()
{
static char Hypervisor[13];
#if defined(__amd64__)
uint32_t rax, rbx, rcx, rdx;
x64::cpuid(0x40000000, &rax, &rbx, &rcx, &rdx);
memcpy(Hypervisor + 0, &rbx, 4);
memcpy(Hypervisor + 4, &rcx, 4);
memcpy(Hypervisor + 8, &rdx, 4);
#elif defined(__i386__)
uint32_t rax, rbx, rcx, rdx;
x64::cpuid(0x40000000, &rax, &rbx, &rcx, &rdx);
memcpy(Hypervisor + 0, &rbx, 4);
memcpy(Hypervisor + 4, &rcx, 4);
memcpy(Hypervisor + 8, &rdx, 4);
#elif defined(__aarch64__)
asmv("mrs %0, MIDR_EL1"
: "=r"(Hypervisor[0]));
#endif
return Hypervisor;
}
bool Interrupts(InterruptsType Type)
{
switch (Type)
{
case Check:
{
#if defined(__amd64__)
uint64_t rflags;
asmv("pushfq");
asmv("popq %0"
: "=r"(rflags));
return rflags & (1 << 9);
#elif defined(__i386__)
uint32_t rflags;
asmv("pushfl");
asmv("popl %0"
: "=r"(rflags));
return rflags & (1 << 9);
#elif defined(__aarch64__)
uint64_t daif;
asmv("mrs %0, daif"
: "=r"(daif));
return !(daif & (1 << 2));
#endif
}
case Enable:
{
#if defined(__amd64__) || defined(__i386__)
asmv("sti");
#elif defined(__aarch64__)
asmv("msr daifclr, #2");
#endif
return true;
}
case Disable:
{
#if defined(__amd64__) || defined(__i386__)
asmv("cli");
#elif defined(__aarch64__)
asmv("msr daifset, #2");
#endif
return true;
}
}
return false;
}
void *PageTable(void *PT)
{
#if defined(__amd64__)
if (PT)
asmv("movq %0, %%cr3"
:
: "r"(PT));
else
asmv("movq %%cr3, %0"
: "=r"(PT));
#elif defined(__i386__)
if (PT)
asmv("movl %0, %%cr3"
:
: "r"(PT));
else
asmv("movl %%cr3, %0"
: "=r"(PT));
#elif defined(__aarch64__)
if (PT)
asmv("msr ttbr0_el1, %0"
:
: "r"(PT));
else
asmv("mrs %0, ttbr0_el1"
: "=r"(PT));
#endif
return PT;
}
void InitializeFeatures()
{
#if defined(__amd64__)
static int BSP = 0;
x64::CR0 cr0 = x64::readcr0();
x64::CR4 cr4 = x64::readcr4();
uint32_t rax, rbx, rcx, rdx;
x64::cpuid(0x1, &rax, &rbx, &rcx, &rdx);
if (rdx & x64::CPUID_FEAT_RDX_PGE)
{
debug("Enabling global pages support...");
if (!BSP)
KPrint("Global Pages is supported.");
cr4.PGE = 1;
}
if (rdx & x64::CPUID_FEAT_RDX_SSE)
{
debug("Enabling SSE support...");
if (!BSP)
KPrint("SSE is supported.");
cr0.EM = 0;
cr0.MP = 1;
cr4.OSFXSR = 1;
cr4.OSXMMEXCPT = 1;
}
if (!BSP)
KPrint("Enabling CPU cache.");
cr0.NW = 0;
cr0.CD = 0;
cr0.WP = 1;
x64::writecr0(cr0);
debug("Enabling UMIP, SMEP & SMAP support...");
x64::cpuid(0x1, &rax, &rbx, &rcx, &rdx);
if (rdx & x64::CPUID_FEAT_RDX_UMIP)
{
if (!BSP)
KPrint("UMIP is supported.");
fixme("Not going to enable UMIP.");
// cr4.UMIP = 1;
}
if (rdx & x64::CPUID_FEAT_RDX_SMEP)
{
if (!BSP)
KPrint("SMEP is supported.");
fixme("Not going to enable SMEP.");
// cr4.SMEP = 1;
}
if (rdx & x64::CPUID_FEAT_RDX_SMAP)
{
if (!BSP)
KPrint("SMAP is supported.");
fixme("Not going to enable SMAP.");
// cr4.SMAP = 1;
}
if (strcmp(Hypervisor(), x86_CPUID_VENDOR_VIRTUALBOX) != 0 &&
strcmp(Hypervisor(), x86_CPUID_VENDOR_TCG) != 0)
x64::writecr4(cr4);
else
{
if (!BSP)
{
if (strcmp(Hypervisor(), x86_CPUID_VENDOR_VIRTUALBOX) != 0)
KPrint("VirtualBox detected. Not using UMIP, SMEP & SMAP");
else if (strcmp(Hypervisor(), x86_CPUID_VENDOR_TCG) != 0)
KPrint("QEMU (TCG) detected. Not using UMIP, SMEP & SMAP");
}
}
debug("Enabling PAT support...");
x64::wrmsr(x64::MSR_CR_PAT, 0x6 | (0x0 << 8) | (0x1 << 16));
if (!BSP++)
trace("Features for BSP initialized.");
#elif defined(__i386__)
#elif defined(__aarch64__)
#endif
}
uint64_t Counter()
{
// TODO: Get the counter from the x2APIC or any other timer that is available. (TSC is not available on all CPUs)
#if defined(__amd64__)
uint64_t counter;
asmv("rdtsc"
: "=A"(counter));
return counter;
#elif defined(__i386__)
return 0;
#elif defined(__aarch64__)
uint64_t counter;
asmv("mrs %0, cntvct_el0"
: "=r"(counter));
return counter;
#endif
}
}

View File

@ -1,129 +0,0 @@
#include "../crashhandler.hpp"
#include "chfcts.hpp"
#include <display.hpp>
#include <printf.h>
#include <debug.h>
#include <smp.hpp>
#include <cpu.hpp>
#if defined(__amd64__)
#include "../../Architecture/amd64/cpu/gdt.hpp"
#elif defined(__i386__)
#elif defined(__aarch64__)
#endif
#include "../../kernel.h"
static const char *PagefaultDescriptions[8] = {
"Supervisory process tried to read a non-present page entry\n",
"Supervisory process tried to read a page and caused a protection fault\n",
"Supervisory process tried to write to a non-present page entry\n",
"Supervisory process tried to write a page and caused a protection fault\n",
"User process tried to read a non-present page entry\n",
"User process tried to read a page and caused a protection fault\n",
"User process tried to write to a non-present page entry\n",
"User process tried to write a page and caused a protection fault\n"};
SafeFunction void DivideByZeroExceptionHandler(CHArchTrapFrame *Frame)
{
fixme("Divide by zero exception\n");
}
SafeFunction void DebugExceptionHandler(CHArchTrapFrame *Frame)
{
CrashHandler::EHPrint("\eDD2920System crashed!\n");
CrashHandler::EHPrint("Kernel triggered debug exception.\n");
}
SafeFunction void NonMaskableInterruptExceptionHandler(CHArchTrapFrame *Frame) { fixme("NMI exception"); }
SafeFunction void BreakpointExceptionHandler(CHArchTrapFrame *Frame) { fixme("Breakpoint exception"); }
SafeFunction void OverflowExceptionHandler(CHArchTrapFrame *Frame) { fixme("Overflow exception"); }
SafeFunction void BoundRangeExceptionHandler(CHArchTrapFrame *Frame) { fixme("Bound range exception"); }
SafeFunction void InvalidOpcodeExceptionHandler(CHArchTrapFrame *Frame)
{
CrashHandler::EHPrint("\eDD2920System crashed!\n");
CrashHandler::EHPrint("Kernel tried to execute an invalid opcode.\n");
}
SafeFunction void DeviceNotAvailableExceptionHandler(CHArchTrapFrame *Frame) { fixme("Device not available exception"); }
SafeFunction void DoubleFaultExceptionHandler(CHArchTrapFrame *Frame) { fixme("Double fault exception"); }
SafeFunction void CoprocessorSegmentOverrunExceptionHandler(CHArchTrapFrame *Frame) { fixme("Coprocessor segment overrun exception"); }
SafeFunction void InvalidTSSExceptionHandler(CHArchTrapFrame *Frame) { fixme("Invalid TSS exception"); }
SafeFunction void SegmentNotPresentExceptionHandler(CHArchTrapFrame *Frame) { fixme("Segment not present exception"); }
SafeFunction void StackFaultExceptionHandler(CHArchTrapFrame *Frame)
{
CPU::x64::SelectorErrorCode SelCode = {.raw = Frame->ErrorCode};
CrashHandler::EHPrint("\eDD2920System crashed!\n");
CrashHandler::EHPrint("More info about the exception:\n");
#if defined(__amd64__)
CrashHandler::EHPrint("Stack segment fault at address %#lx\n", Frame->rip);
#elif defined(__i386__)
CrashHandler::EHPrint("Stack segment fault at address %#lx\n", Frame->eip);
#elif defined(__aarch64__)
#endif
CrashHandler::EHPrint("External: %d\n", SelCode.External);
CrashHandler::EHPrint("Table: %d\n", SelCode.Table);
CrashHandler::EHPrint("Index: %#x\n", SelCode.Idx);
CrashHandler::EHPrint("Error code: %#lx\n", Frame->ErrorCode);
}
SafeFunction void GeneralProtectionExceptionHandler(CHArchTrapFrame *Frame)
{
// staticbuffer(descbuf);
// staticbuffer(desc_ext);
// staticbuffer(desc_table);
// staticbuffer(desc_idx);
// staticbuffer(desc_tmp);
CPU::x64::SelectorErrorCode SelCode = {.raw = Frame->ErrorCode};
// switch (SelCode.Table)
// {
// case CPU::x64::0b00:
// memcpy(desc_tmp, "GDT", 3);
// break;
// case CPU::x64::0b01:
// memcpy(desc_tmp, "IDT", 3);
// break;
// case CPU::x64::0b10:
// memcpy(desc_tmp, "LDT", 3);
// break;
// case CPU::x64::0b11:
// memcpy(desc_tmp, "IDT", 3);
// break;
// default:
// memcpy(desc_tmp, "Unknown", 7);
// break;
// }
CrashHandler::EHPrint("\eDD2920System crashed!\n");
CrashHandler::EHPrint("Kernel performed an illegal operation.\n");
CrashHandler::EHPrint("More info about the exception:\n");
CrashHandler::EHPrint("External: %d\n", SelCode.External);
CrashHandler::EHPrint("Table: %d\n", SelCode.Table);
CrashHandler::EHPrint("Index: %#x\n", SelCode.Idx);
}
SafeFunction void PageFaultExceptionHandler(CHArchTrapFrame *Frame)
{
CPU::x64::PageFaultErrorCode params = {.raw = (uint32_t)Frame->ErrorCode};
CrashHandler::EHPrint("\eDD2920System crashed!\n\eFFFFFF");
#if defined(__amd64__)
CrashHandler::EHPrint("An exception occurred at %#lx by %#lx\n", CPU::x64::readcr2().PFLA, Frame->rip);
#elif defined(__i386__)
CrashHandler::EHPrint("An exception occurred at %#lx by %#lx\n", CPU::x64::readcr2().PFLA, Frame->eip);
#elif defined(__aarch64__)
#endif
CrashHandler::EHPrint("Page: %s\n", params.P ? "Present" : "Not Present");
CrashHandler::EHPrint("Write Operation: %s\n", params.W ? "Read-Only" : "Read-Write");
CrashHandler::EHPrint("Processor Mode: %s\n", params.U ? "User-Mode" : "Kernel-Mode");
CrashHandler::EHPrint("CPU Reserved Bits: %s\n", params.R ? "Reserved" : "Unreserved");
CrashHandler::EHPrint("Caused By An Instruction Fetch: %s\n", params.I ? "Yes" : "No");
CrashHandler::EHPrint("Caused By A Protection-Key Violation: %s\n", params.PK ? "Yes" : "No");
CrashHandler::EHPrint("Caused By A Shadow Stack Access: %s\n", params.SS ? "Yes" : "No");
CrashHandler::EHPrint("Caused By An SGX Violation: %s\n", params.SGX ? "Yes" : "No");
if (Frame->ErrorCode & 0x00000008)
CrashHandler::EHPrint("One or more page directory entries contain reserved bits which are set to 1.\n");
else
CrashHandler::EHPrint(PagefaultDescriptions[Frame->ErrorCode & 0b111]);
}
SafeFunction void x87FloatingPointExceptionHandler(CHArchTrapFrame *Frame) { fixme("x87 floating point exception"); }
SafeFunction void AlignmentCheckExceptionHandler(CHArchTrapFrame *Frame) { fixme("Alignment check exception"); }
SafeFunction void MachineCheckExceptionHandler(CHArchTrapFrame *Frame) { fixme("Machine check exception"); }
SafeFunction void SIMDFloatingPointExceptionHandler(CHArchTrapFrame *Frame) { fixme("SIMD floating point exception"); }
SafeFunction void VirtualizationExceptionHandler(CHArchTrapFrame *Frame) { fixme("Virtualization exception"); }
SafeFunction void SecurityExceptionHandler(CHArchTrapFrame *Frame) { fixme("Security exception"); }
SafeFunction void UnknownExceptionHandler(CHArchTrapFrame *Frame) { fixme("Unknown exception"); }

View File

@ -1,691 +0,0 @@
#include "../crashhandler.hpp"
#include "chfcts.hpp"
#include <display.hpp>
#include <bitmap.hpp>
#include <convert.h>
#include <printf.h>
#include <lock.hpp>
#include <debug.h>
#include <smp.hpp>
#include <cpu.hpp>
#include <io.h>
#if defined(__amd64__)
#include "../../Architecture/amd64/cpu/gdt.hpp"
#elif defined(__i386__)
#elif defined(__aarch64__)
#endif
#include "../../kernel.h"
NewLock(UserInputLock);
#define TRACE_PAGE_TABLE(x, itr, depth) \
EHPrint("\e888888#%s\eAABBCC%03d\e4500F5: P:%s RW:%s US:%s PWT:%s PCB:%s A:%s D:%s PS:%s G:%s Address:\e888888%#lx\n", \
depth, \
itr, \
x.Present ? "\e00AA00Yes\e4500F5" : "\eAA0000No \e4500F5", \
x.ReadWrite ? "\e00AA00Yes\e4500F5" : "\eAA0000No \e4500F5", \
x.UserSupervisor ? "\e00AA00Yes\e4500F5" : "\eAA0000No \e4500F5", \
x.WriteThrough ? "\e00AA00Yes\e4500F5" : "\eAA0000No \e4500F5", \
x.CacheDisable ? "\e00AA00Yes\e4500F5" : "\eAA0000No \e4500F5", \
x.Accessed ? "\e00AA00Yes\e4500F5" : "\eAA0000No \e4500F5", \
x.Dirty ? "\e00AA00Yes\e4500F5" : "\eAA0000No \e4500F5", \
x.PageSize ? "\e00AA00Yes\e4500F5" : "\eAA0000No \e4500F5", \
x.Global ? "\e00AA00Yes\e4500F5" : "\eAA0000No \e4500F5", \
x.GetAddress() << 12); \
Display->SetBuffer(SBIdx);
namespace CrashHandler
{
void *EHIntFrames[INT_FRAMES_MAX];
static bool ExceptionOccurred = false;
int SBIdx = 255;
SafeFunction void printfWrapper(char c, void *unused)
{
Display->Print(c, SBIdx, true);
UNUSED(unused);
}
SafeFunction void EHPrint(const char *Format, ...)
{
va_list args;
va_start(args, Format);
vfctprintf(printfWrapper, NULL, Format, args);
va_end(args);
}
SafeFunction char *TrimWhiteSpace(char *str)
{
char *end;
while (*str == ' ')
str++;
if (*str == 0)
return str;
end = str + strlen(str) - 1;
while (end > str && *end == ' ')
end--;
*(end + 1) = 0;
return str;
}
CRData crashdata = {};
SafeFunction void DisplayTopOverlay()
{
Video::ScreenBuffer *sb = Display->GetBuffer(SBIdx);
Video::Font *f = Display->GetCurrentFont();
Video::FontInfo fi = f->GetInfo();
for (uint32_t i = 0; i < sb->Width; i++)
for (uint32_t j = 0; j < fi.Height + 8; j++)
Display->SetPixel(i, j, 0x282828, SBIdx);
Display->SetBufferCursor(SBIdx, 8, (fi.Height + 8) / 6);
switch (SBIdx)
{
case 255:
{
EHPrint("\eAAAAAAMAIN \e606060DETAILS \e606060FRAMES \e606060TASKS \e606060CONSOLE");
break;
}
case 254:
{
EHPrint("\e606060MAIN \eAAAAAADETAILS \e606060FRAMES \e606060TASKS \e606060CONSOLE");
break;
}
case 253:
{
EHPrint("\e606060MAIN \e606060DETAILS \eAAAAAAFRAMES \e606060TASKS \e606060CONSOLE");
break;
}
case 252:
{
EHPrint("\e606060MAIN \e606060DETAILS \e606060FRAMES \eAAAAAATASKS \e606060CONSOLE");
break;
}
case 251:
{
EHPrint("\e606060MAIN \e606060DETAILS \e606060FRAMES \e606060TASKS \eAAAAAACONSOLE");
break;
}
default:
{
EHPrint("\e606060MAIN \e606060DETAILS \e606060FRAMES \e606060TASKS \e606060CONSOLE");
break;
}
}
EHPrint(" \e00AAFF%ldMB / %ldMB (%ldMB Reserved)",
TO_MB(KernelAllocator.GetUsedMemory()),
TO_MB(KernelAllocator.GetTotalMemory()),
TO_MB(KernelAllocator.GetReservedMemory()));
EHPrint(" \eAA0F0F%s", CPU::Hypervisor());
EHPrint(" \eAAF00F%s", CPU::Vendor());
EHPrint(" \eAA00FF%s", CPU::Name());
Display->SetBufferCursor(SBIdx, 0, fi.Height + 10);
}
SafeFunction void DisplayBottomOverlay()
{
Video::ScreenBuffer *sb = Display->GetBuffer(SBIdx);
Video::Font *f = Display->GetCurrentFont();
Video::FontInfo fi = f->GetInfo();
for (uint32_t i = 0; i < sb->Width; i++)
for (uint32_t j = sb->Height - fi.Height - 8; j < sb->Height; j++)
Display->SetPixel(i, j, 0x282828, SBIdx);
Display->SetBufferCursor(SBIdx, 8, sb->Height - fi.Height - 4);
EHPrint("\eAAAAAA> \eFAFAFA");
}
SafeFunction void ArrowInput(uint8_t key)
{
switch (key)
{
case KEY_D_UP:
if (SBIdx < 255)
SBIdx++;
else
return;
break;
case KEY_D_LEFT:
if (SBIdx < 255)
SBIdx++;
else
return;
break;
case KEY_D_RIGHT:
if (SBIdx > 251)
SBIdx--;
else
return;
break;
case KEY_D_DOWN:
if (SBIdx > 251)
SBIdx--;
else
return;
break;
default:
break;
}
Display->ClearBuffer(SBIdx);
DisplayTopOverlay();
EHPrint("\eFAFAFA");
switch (SBIdx)
{
case 255:
{
DisplayMainScreen(crashdata);
break;
}
case 254:
{
DisplayDetailsScreen(crashdata);
break;
}
case 253:
{
DisplayStackFrameScreen(crashdata);
break;
}
case 252:
{
DisplayTasksScreen(crashdata);
break;
}
case 251:
{
DisplayConsoleScreen(crashdata);
break;
}
default:
{
break;
}
}
DisplayBottomOverlay();
Display->SetBuffer(SBIdx);
}
SafeFunction void UserInput(char *Input)
{
SmartCriticalSection(UserInputLock);
Display->ClearBuffer(SBIdx);
DisplayTopOverlay();
EHPrint("\eFAFAFA");
if (strcmp(Input, "help") == 0)
{
EHPrint("Available commands are:\n");
EHPrint("exit - Shutdown the OS.\n");
EHPrint("reboot - Reboot the OS.\n");
EHPrint("help - Display this help message.\n");
EHPrint("showbuf <INDEX> - Display the contents of a screen buffer.\n");
EHPrint(" - A sleep timer will be enabled. This will cause the OS to sleep for an unknown amount of time.\n");
EHPrint(" - \eFF4400WARNING: This can crash the system if a wrong buffer is selected.\eFAFAFA\n");
EHPrint("ifr <COUNT> - Show interrupt frames.\n");
EHPrint("tlb <ADDRESS> - Print the page table entries\n");
EHPrint("bitmap - Print the memory bitmap\n");
EHPrint("main - Show the main screen.\n");
EHPrint("details - Show the details screen.\n");
EHPrint("frames - Show the stack frame screen.\n");
EHPrint("tasks - Show the tasks screen.\n");
EHPrint("console - Show the console screen.\n");
EHPrint("Also, you can use the arrow keys to navigate the menu.\n");
EHPrint("=========================================================================\n");
EHPrint("Kernel Compiled at: %s %s with C++ Standard: %d\n", __DATE__, __TIME__, CPP_LANGUAGE_STANDARD);
EHPrint("C++ Language Version (__cplusplus): %ld\n", __cplusplus);
}
else if (strcmp(Input, "exit") == 0)
{
PowerManager->Shutdown();
EHPrint("\eFFFFFFNow it's safe to turn off your computer.");
Display->SetBuffer(SBIdx);
CPU::Stop();
}
else if (strcmp(Input, "reboot") == 0)
{
PowerManager->Reboot();
EHPrint("\eFFFFFFNow it's safe to reboot your computer.");
Display->SetBuffer(SBIdx);
CPU::Stop();
}
else if (strncmp(Input, "showbuf", 7) == 0)
{
char *arg = TrimWhiteSpace(Input + 7);
int tmpidx = SBIdx;
SBIdx = atoi(arg);
Display->SetBuffer(SBIdx);
for (int i = 0; i < 5000000; i++)
inb(0x80);
SBIdx = tmpidx;
Display->SetBuffer(SBIdx);
}
else if (strncmp(Input, "ifr", 3) == 0)
{
char *arg = TrimWhiteSpace(Input + 3);
uint64_t CountI = atoi(arg);
uint64_t TotalCount = sizeof(EHIntFrames) / sizeof(EHIntFrames[0]);
debug("Printing %ld interrupt frames.", CountI);
if (CountI > TotalCount)
{
EHPrint("eFF4400Count too big! Maximum allowed is %ld\eFAFAFA\n", TotalCount);
Display->SetBuffer(SBIdx);
}
else
{
for (uint64_t i = 0; i < CountI; i++)
{
if (EHIntFrames[i])
{
if (!Memory::Virtual().Check(EHIntFrames[i]))
continue;
EHPrint("\n\e2565CC%p", EHIntFrames[i]);
EHPrint("\e7925CC-");
#if defined(__amd64__)
if ((uint64_t)EHIntFrames[i] >= 0xFFFFFFFF80000000 && (uint64_t)EHIntFrames[i] <= (uint64_t)&_kernel_end)
#elif defined(__i386__)
if ((uint64_t)EHIntFrames[i] >= 0xC0000000 && (uint64_t)EHIntFrames[i] <= (uint64_t)&_kernel_end)
#elif defined(__aarch64__)
#endif
EHPrint("\e25CCC9%s", KernelSymbolTable->GetSymbolFromAddress((uint64_t)EHIntFrames[i]));
else
EHPrint("\eFF4CA9Outside Kernel");
for (int i = 0; i < 20000; i++)
inb(0x80);
Display->SetBuffer(SBIdx);
}
}
}
}
else if (strncmp(Input, "tlb", 3) == 0)
{
char *arg = TrimWhiteSpace(Input + 3);
uint64_t Address = NULL;
Address = strtol(arg, NULL, 16);
debug("Converted %s to %#lx", arg, Address);
Memory::PageTable4 *BasePageTable = (Memory::PageTable4 *)Address;
if (Memory::Virtual().Check(BasePageTable))
for (int Index = 0; Index < 512; Index++)
{
if (BasePageTable->Entries[Index].raw == 0)
continue;
// TRACE_PAGE_TABLE(BasePageTable->Entries[Index], Index, "");
// for (int i = 0; i < 10000; i++)
// inb(0x80);
// if (BasePageTable->Entries[Index].GetFlag(Memory::PTFlag::P))
// {
// Memory::PageTable4 *PDP = (Memory::PageTable4 *)((uint64_t)BasePageTable->Entries[Index].GetAddress() << 12);
// for (int PMLIndex = 0; PMLIndex < 512; PMLIndex++)
// {
// if (PDP->Entries[PMLIndex].raw == 0)
// continue;
// TRACE_PAGE_TABLE(PDP->Entries[PMLIndex], PMLIndex, " ");
// for (int i = 0; i < 10000; i++)
// inb(0x80);
// if (PDP->Entries[PMLIndex].GetFlag(Memory::PTFlag::P))
// {
// Memory::PageTable4 *PD = (Memory::PageTable4 *)((uint64_t)PDP->Entries[PMLIndex].GetAddress() << 12);
// for (int PDPTEIndex = 0; PDPTEIndex < 512; PDPTEIndex++)
// {
// if (PD->Entries[PDPTEIndex].raw == 0)
// continue;
// TRACE_PAGE_TABLE(PD->Entries[PDPTEIndex], PDPTEIndex, " ");
// for (int i = 0; i < 10000; i++)
// inb(0x80);
// if (PD->Entries[PDPTEIndex].GetFlag(Memory::PTFlag::P))
// {
// Memory::PageTable4 *PT = (Memory::PageTable4 *)((uint64_t)PD->Entries[PDPTEIndex].GetAddress() << 12);
// for (int PTEIndex = 0; PTEIndex < 512; PTEIndex++)
// {
// if (PT->Entries[PTEIndex].raw == 0)
// continue;
// TRACE_PAGE_TABLE(PT->Entries[PTEIndex], PTEIndex, " ");
// for (int i = 0; i < 10000; i++)
// inb(0x80);
// }
// }
// }
// }
// }
// }
}
}
else if (strncmp(Input, "bitmap", 6) == 0)
{
Bitmap bm = KernelAllocator.GetPageBitmap();
EHPrint("\n\eFAFAFA%08ld: ", 0);
for (uint64_t i = 0; i < bm.Size; i++)
{
if (bm.Get(i))
EHPrint("\eFF00001");
else
EHPrint("\e00FF000");
if (i % 128 == 127)
{
EHPrint("\n\eFAFAFA%08ld: ", i);
Display->SetBuffer(SBIdx);
}
}
EHPrint("\n\e22AA44--- END OF BITMAP ---\nBitmap size: %ld\n", bm.Size);
Display->SetBuffer(SBIdx);
}
else if (strcmp(Input, "main") == 0)
{
SBIdx = 255;
DisplayTopOverlay();
DisplayMainScreen(crashdata);
Display->SetBuffer(SBIdx);
}
else if (strcmp(Input, "details") == 0)
{
SBIdx = 254;
DisplayTopOverlay();
DisplayDetailsScreen(crashdata);
Display->SetBuffer(SBIdx);
}
else if (strcmp(Input, "frames") == 0)
{
SBIdx = 253;
DisplayTopOverlay();
DisplayStackFrameScreen(crashdata);
Display->SetBuffer(SBIdx);
}
else if (strcmp(Input, "tasks") == 0)
{
SBIdx = 252;
DisplayTopOverlay();
DisplayTasksScreen(crashdata);
Display->SetBuffer(SBIdx);
}
else if (strcmp(Input, "console") == 0)
{
SBIdx = 251;
DisplayTopOverlay();
DisplayConsoleScreen(crashdata);
Display->SetBuffer(SBIdx);
}
else
{
if (strlen(Input) > 0)
EHPrint("Unknown command: %s", Input);
}
DisplayBottomOverlay();
Display->SetBuffer(SBIdx);
}
SafeFunction void Handle(void *Data)
{
// TODO: SUPPORT SMP
CPU::Interrupts(CPU::Disable);
error("An exception occurred!");
for (size_t i = 0; i < INT_FRAMES_MAX; i++)
EHIntFrames[i] = Interrupts::InterruptFrames[i];
SBIdx = 255;
CHArchTrapFrame *Frame = (CHArchTrapFrame *)Data;
#if defined(__amd64__)
error("Exception: %#llx", Frame->InterruptNumber);
if (Frame->cs != GDT_USER_CODE && Frame->cs != GDT_USER_DATA)
{
debug("Exception in kernel mode");
if (TaskManager)
TaskManager->Panic();
debug("ePanicSchedStop");
Display->CreateBuffer(0, 0, SBIdx);
debug("e0");
}
else
{
debug("Exception in user mode");
CPUData *data = GetCurrentCPU();
if (!data)
{
Display->CreateBuffer(0, 0, SBIdx);
EHPrint("\eFF0000Cannot get CPU data! This results in a kernel crash!");
error("Cannot get CPU data! This results in a kernel crash!");
error("This should never happen!");
}
else
{
debug("CPU %ld data is valid", data->ID);
if (data->CurrentThread)
{
debug("Current thread is valid %#lx", data->CurrentThread);
UserModeExceptionHandler(Frame);
return;
}
}
}
if (ExceptionOccurred)
{
SBIdx = 255;
Display->ClearBuffer(SBIdx);
debug("e0-1");
Display->SetBufferCursor(SBIdx, 0, 0);
debug("e0-2");
CPU::x64::CR0 cr0 = CPU::x64::readcr0();
CPU::x64::CR2 cr2 = CPU::x64::readcr2();
CPU::x64::CR3 cr3 = CPU::x64::readcr3();
CPU::x64::CR4 cr4 = CPU::x64::readcr4();
CPU::x64::CR8 cr8 = CPU::x64::readcr8();
CPU::x64::EFER efer;
efer.raw = CPU::x64::rdmsr(CPU::x64::MSR_EFER);
uint64_t ds;
asmv("mov %%ds, %0"
: "=r"(ds));
EHPrint("\eFF0000FS=%#llx GS=%#llx SS=%#llx CS=%#llx DS=%#llx\n",
CPU::x64::rdmsr(CPU::x64::MSR_FS_BASE), CPU::x64::rdmsr(CPU::x64::MSR_GS_BASE),
Frame->ss, Frame->cs, ds);
EHPrint("R8=%#llx R9=%#llx R10=%#llx R11=%#llx\n", Frame->r8, Frame->r9, Frame->r10, Frame->r11);
EHPrint("R12=%#llx R13=%#llx R14=%#llx R15=%#llx\n", Frame->r12, Frame->r13, Frame->r14, Frame->r15);
EHPrint("RAX=%#llx RBX=%#llx RCX=%#llx RDX=%#llx\n", Frame->rax, Frame->rbx, Frame->rcx, Frame->rdx);
EHPrint("RSI=%#llx RDI=%#llx RBP=%#llx RSP=%#llx\n", Frame->rsi, Frame->rdi, Frame->rbp, Frame->rsp);
EHPrint("RIP=%#llx RFL=%#llx INT=%#llx ERR=%#llx EFER=%#llx\n", Frame->rip, Frame->rflags.raw, Frame->InterruptNumber, Frame->ErrorCode, efer.raw);
EHPrint("CR0=%#llx CR2=%#llx CR3=%#llx CR4=%#llx CR8=%#llx\n", cr0.raw, cr2.raw, cr3.raw, cr4.raw, cr8.raw);
EHPrint("CR0: PE:%s MP:%s EM:%s TS:%s\n ET:%s NE:%s WP:%s AM:%s\n NW:%s CD:%s PG:%s\n R0:%#x R1:%#x R2:%#x\n",
cr0.PE ? "True " : "False", cr0.MP ? "True " : "False", cr0.EM ? "True " : "False", cr0.TS ? "True " : "False",
cr0.ET ? "True " : "False", cr0.NE ? "True " : "False", cr0.WP ? "True " : "False", cr0.AM ? "True " : "False",
cr0.NW ? "True " : "False", cr0.CD ? "True " : "False", cr0.PG ? "True " : "False",
cr0.Reserved0, cr0.Reserved1, cr0.Reserved2);
EHPrint("CR2: PFLA: %#llx\n",
cr2.PFLA);
EHPrint("CR3: PWT:%s PCD:%s PDBR:%#llx\n",
cr3.PWT ? "True " : "False", cr3.PCD ? "True " : "False", cr3.PDBR);
EHPrint("CR4: VME:%s PVI:%s TSD:%s DE:%s\n PSE:%s PAE:%s MCE:%s PGE:%s\n PCE:%s UMIP:%s OSFXSR:%s OSXMMEXCPT:%s\n LA57:%s VMXE:%s SMXE:%s PCIDE:%s\n OSXSAVE:%s SMEP:%s SMAP:%s PKE:%s\n R0:%#x R1:%#x R2:%#x\n",
cr4.VME ? "True " : "False", cr4.PVI ? "True " : "False", cr4.TSD ? "True " : "False", cr4.DE ? "True " : "False",
cr4.PSE ? "True " : "False", cr4.PAE ? "True " : "False", cr4.MCE ? "True " : "False", cr4.PGE ? "True " : "False",
cr4.PCE ? "True " : "False", cr4.UMIP ? "True " : "False", cr4.OSFXSR ? "True " : "False", cr4.OSXMMEXCPT ? "True " : "False",
cr4.LA57 ? "True " : "False", cr4.VMXE ? "True " : "False", cr4.SMXE ? "True " : "False", cr4.PCIDE ? "True " : "False",
cr4.OSXSAVE ? "True " : "False", cr4.SMEP ? "True " : "False", cr4.SMAP ? "True " : "False", cr4.PKE ? "True " : "False",
cr4.Reserved0, cr4.Reserved1, cr4.Reserved2);
EHPrint("CR8: TPL:%d\n", cr8.TPL);
EHPrint("RFL: CF:%s PF:%s AF:%s ZF:%s\n SF:%s TF:%s IF:%s DF:%s\n OF:%s IOPL:%s NT:%s RF:%s\n VM:%s AC:%s VIF:%s VIP:%s\n ID:%s AlwaysOne:%d\n R0:%#x R1:%#x R2:%#x R3:%#x\n",
Frame->rflags.CF ? "True " : "False", Frame->rflags.PF ? "True " : "False", Frame->rflags.AF ? "True " : "False", Frame->rflags.ZF ? "True " : "False",
Frame->rflags.SF ? "True " : "False", Frame->rflags.TF ? "True " : "False", Frame->rflags.IF ? "True " : "False", Frame->rflags.DF ? "True " : "False",
Frame->rflags.OF ? "True " : "False", Frame->rflags.IOPL ? "True " : "False", Frame->rflags.NT ? "True " : "False", Frame->rflags.RF ? "True " : "False",
Frame->rflags.VM ? "True " : "False", Frame->rflags.AC ? "True " : "False", Frame->rflags.VIF ? "True " : "False", Frame->rflags.VIP ? "True " : "False",
Frame->rflags.ID ? "True " : "False", Frame->rflags.AlwaysOne,
Frame->rflags.Reserved0, Frame->rflags.Reserved1, Frame->rflags.Reserved2, Frame->rflags.Reserved3);
EHPrint("EFER: SCE:%s LME:%s LMA:%s NXE:%s\n SVME:%s LMSLE:%s FFXSR:%s TCE:%s\n R0:%#x R1:%#x R2:%#x\n",
efer.SCE ? "True " : "False", efer.LME ? "True " : "False", efer.LMA ? "True " : "False", efer.NXE ? "True " : "False",
efer.SVME ? "True " : "False", efer.LMSLE ? "True " : "False", efer.FFXSR ? "True " : "False", efer.TCE ? "True " : "False",
efer.Reserved0, efer.Reserved1, efer.Reserved2);
EHPrint("\nException occurred while handling exception! HALTED!");
Display->SetBuffer(SBIdx);
CPU::Stop();
}
ExceptionOccurred = true;
Interrupts::RemoveAll();
debug("Reading control registers...");
crashdata.Frame = Frame;
crashdata.cr0 = CPU::x64::readcr0();
crashdata.cr2 = CPU::x64::readcr2();
crashdata.cr3 = CPU::x64::readcr3();
crashdata.cr4 = CPU::x64::readcr4();
crashdata.cr8 = CPU::x64::readcr8();
crashdata.efer.raw = CPU::x64::rdmsr(CPU::x64::MSR_EFER);
uint64_t ds;
asmv("mov %%ds, %0"
: "=r"(ds));
// Get debug registers
asmv("movq %%dr0, %0"
: "=r"(crashdata.dr0));
asmv("movq %%dr1, %0"
: "=r"(crashdata.dr1));
asmv("movq %%dr2, %0"
: "=r"(crashdata.dr2));
asmv("movq %%dr3, %0"
: "=r"(crashdata.dr3));
asmv("movq %%dr6, %0"
: "=r"(crashdata.dr6));
asmv("movq %%dr7, %0"
: "=r"(crashdata.dr7));
CPUData *cpudata = GetCurrentCPU();
if (cpudata == nullptr)
{
EHPrint("\eFFA500Invalid CPU data!\n");
for (long i = 0; i < MAX_CPU; i++)
{
cpudata = GetCPU(i);
if (cpudata != nullptr)
break;
if (i == MAX_CPU - 1)
{
EHPrint("\eFF0000No CPU data found!\n");
cpudata = nullptr;
}
}
debug("CPU ptr %#lx", cpudata);
}
if (cpudata != nullptr)
{
crashdata.ID = cpudata->ID;
crashdata.CPUData = cpudata;
error("Technical Informations on CPU %lld:", cpudata->ID);
}
if (TaskManager && cpudata != nullptr)
{
crashdata.Process = cpudata->CurrentProcess;
crashdata.Thread = cpudata->CurrentThread;
error("Current Process: %s(%ld)",
cpudata->CurrentProcess->Name,
cpudata->CurrentProcess->ID);
error("Current Thread: %s(%ld)",
cpudata->CurrentThread->Name,
cpudata->CurrentThread->ID);
}
{
error("FS=%#llx GS=%#llx SS=%#llx CS=%#llx DS=%#llx",
CPU::x64::rdmsr(CPU::x64::MSR_FS_BASE), CPU::x64::rdmsr(CPU::x64::MSR_GS_BASE),
Frame->ss, Frame->cs, ds);
error("R8=%#llx R9=%#llx R10=%#llx R11=%#llx", Frame->r8, Frame->r9, Frame->r10, Frame->r11);
error("R12=%#llx R13=%#llx R14=%#llx R15=%#llx", Frame->r12, Frame->r13, Frame->r14, Frame->r15);
error("RAX=%#llx RBX=%#llx RCX=%#llx RDX=%#llx", Frame->rax, Frame->rbx, Frame->rcx, Frame->rdx);
error("RSI=%#llx RDI=%#llx RBP=%#llx RSP=%#llx", Frame->rsi, Frame->rdi, Frame->rbp, Frame->rsp);
error("RIP=%#llx RFL=%#llx INT=%#llx ERR=%#llx EFER=%#llx", Frame->rip, Frame->rflags.raw, Frame->InterruptNumber, Frame->ErrorCode, crashdata.efer.raw);
error("CR0=%#llx CR2=%#llx CR3=%#llx CR4=%#llx CR8=%#llx", crashdata.cr0.raw, crashdata.cr2.raw, crashdata.cr3.raw, crashdata.cr4.raw, crashdata.cr8.raw);
error("DR0=%#llx DR1=%#llx DR2=%#llx DR3=%#llx DR6=%#llx DR7=%#llx", crashdata.dr0, crashdata.dr1, crashdata.dr2, crashdata.dr3, crashdata.dr6, crashdata.dr7.raw);
error("CR0: PE:%s MP:%s EM:%s TS:%s ET:%s NE:%s WP:%s AM:%s NW:%s CD:%s PG:%s R0:%#x R1:%#x R2:%#x",
crashdata.cr0.PE ? "True " : "False", crashdata.cr0.MP ? "True " : "False", crashdata.cr0.EM ? "True " : "False", crashdata.cr0.TS ? "True " : "False",
crashdata.cr0.ET ? "True " : "False", crashdata.cr0.NE ? "True " : "False", crashdata.cr0.WP ? "True " : "False", crashdata.cr0.AM ? "True " : "False",
crashdata.cr0.NW ? "True " : "False", crashdata.cr0.CD ? "True " : "False", crashdata.cr0.PG ? "True " : "False",
crashdata.cr0.Reserved0, crashdata.cr0.Reserved1, crashdata.cr0.Reserved2);
error("CR2: PFLA: %#llx",
crashdata.cr2.PFLA);
error("CR3: PWT:%s PCD:%s PDBR:%#llx",
crashdata.cr3.PWT ? "True " : "False", crashdata.cr3.PCD ? "True " : "False", crashdata.cr3.PDBR);
error("CR4: VME:%s PVI:%s TSD:%s DE:%s PSE:%s PAE:%s MCE:%s PGE:%s PCE:%s UMIP:%s OSFXSR:%s OSXMMEXCPT:%s LA57:%s VMXE:%s SMXE:%s PCIDE:%s OSXSAVE:%s SMEP:%s SMAP:%s PKE:%s R0:%#x R1:%#x R2:%#x",
crashdata.cr4.VME ? "True " : "False", crashdata.cr4.PVI ? "True " : "False", crashdata.cr4.TSD ? "True " : "False", crashdata.cr4.DE ? "True " : "False",
crashdata.cr4.PSE ? "True " : "False", crashdata.cr4.PAE ? "True " : "False", crashdata.cr4.MCE ? "True " : "False", crashdata.cr4.PGE ? "True " : "False",
crashdata.cr4.PCE ? "True " : "False", crashdata.cr4.UMIP ? "True " : "False", crashdata.cr4.OSFXSR ? "True " : "False", crashdata.cr4.OSXMMEXCPT ? "True " : "False",
crashdata.cr4.LA57 ? "True " : "False", crashdata.cr4.VMXE ? "True " : "False", crashdata.cr4.SMXE ? "True " : "False", crashdata.cr4.PCIDE ? "True " : "False",
crashdata.cr4.OSXSAVE ? "True " : "False", crashdata.cr4.SMEP ? "True " : "False", crashdata.cr4.SMAP ? "True " : "False", crashdata.cr4.PKE ? "True " : "False",
crashdata.cr4.Reserved0, crashdata.cr4.Reserved1, crashdata.cr4.Reserved2);
error("CR8: TPL:%d", crashdata.cr8.TPL);
error("RFL: CF:%s PF:%s AF:%s ZF:%s SF:%s TF:%s IF:%s DF:%s OF:%s IOPL:%s NT:%s RF:%s VM:%s AC:%s VIF:%s VIP:%s ID:%s AlwaysOne:%d R0:%#x R1:%#x R2:%#x R3:%#x",
Frame->rflags.CF ? "True " : "False", Frame->rflags.PF ? "True " : "False", Frame->rflags.AF ? "True " : "False", Frame->rflags.ZF ? "True " : "False",
Frame->rflags.SF ? "True " : "False", Frame->rflags.TF ? "True " : "False", Frame->rflags.IF ? "True " : "False", Frame->rflags.DF ? "True " : "False",
Frame->rflags.OF ? "True " : "False", Frame->rflags.IOPL ? "True " : "False", Frame->rflags.NT ? "True " : "False", Frame->rflags.RF ? "True " : "False",
Frame->rflags.VM ? "True " : "False", Frame->rflags.AC ? "True " : "False", Frame->rflags.VIF ? "True " : "False", Frame->rflags.VIP ? "True " : "False",
Frame->rflags.ID ? "True " : "False", Frame->rflags.AlwaysOne,
Frame->rflags.Reserved0, Frame->rflags.Reserved1, Frame->rflags.Reserved2, Frame->rflags.Reserved3);
error("DR7: LDR0:%s GDR0:%s LDR1:%s GDR1:%s LDR2:%s GDR2:%s LDR3:%s GDR3:%s CDR0:%s SDR0:%s CDR1:%s SDR1:%s CDR2:%s SDR2:%s CDR3:%s SDR3:%s R:%#x",
crashdata.dr7.LocalDR0 ? "True " : "False", crashdata.dr7.GlobalDR0 ? "True " : "False", crashdata.dr7.LocalDR1 ? "True " : "False", crashdata.dr7.GlobalDR1 ? "True " : "False",
crashdata.dr7.LocalDR2 ? "True " : "False", crashdata.dr7.GlobalDR2 ? "True " : "False", crashdata.dr7.LocalDR3 ? "True " : "False", crashdata.dr7.GlobalDR3 ? "True " : "False",
crashdata.dr7.ConditionsDR0 ? "True " : "False", crashdata.dr7.SizeDR0 ? "True " : "False", crashdata.dr7.ConditionsDR1 ? "True " : "False", crashdata.dr7.SizeDR1 ? "True " : "False",
crashdata.dr7.ConditionsDR2 ? "True " : "False", crashdata.dr7.SizeDR2 ? "True " : "False", crashdata.dr7.ConditionsDR3 ? "True " : "False", crashdata.dr7.SizeDR3 ? "True " : "False",
crashdata.dr7.Reserved);
error("EFER: SCE:%s LME:%s LMA:%s NXE:%s SVME:%s LMSLE:%s FFXSR:%s TCE:%s R0:%#x R1:%#x R2:%#x",
crashdata.efer.SCE ? "True " : "False", crashdata.efer.LME ? "True " : "False", crashdata.efer.LMA ? "True " : "False", crashdata.efer.NXE ? "True " : "False",
crashdata.efer.SVME ? "True " : "False", crashdata.efer.LMSLE ? "True " : "False", crashdata.efer.FFXSR ? "True " : "False", crashdata.efer.TCE ? "True " : "False",
crashdata.efer.Reserved0, crashdata.efer.Reserved1, crashdata.efer.Reserved2);
}
goto CrashEnd;
#elif defined(__i386__)
#elif defined(__aarch64__)
#endif
CrashEnd:
if (Config.InterruptsOnCrash)
{
// 255 // Main
Display->CreateBuffer(0, 0, 254); // Details
Display->CreateBuffer(0, 0, 253); // Frames
Display->CreateBuffer(0, 0, 252); // Tasks
Display->CreateBuffer(0, 0, 251); // Console
Display->CreateBuffer(0, 0, 250); // Empty
DisplayTopOverlay();
DisplayMainScreen(crashdata);
DisplayBottomOverlay();
Display->SetBuffer(255);
debug("Interrupts are enabled, waiting for user input");
CPU::Interrupts(CPU::Enable);
HookKeyboard();
}
else
{
/*
TODO: Stuff that should be done when IOC is disabled.
*/
Display->SetBuffer(255);
}
CPU::Halt(true);
}
}

View File

@ -1,164 +0,0 @@
#include "../crashhandler.hpp"
#include "chfcts.hpp"
#include <display.hpp>
#include <convert.h>
#include <printf.h>
#include <debug.h>
#include <smp.hpp>
#include <cpu.hpp>
#include <io.h>
#if defined(__amd64__)
#include "../../Architecture/amd64/cpu/gdt.hpp"
#elif defined(__i386__)
#elif defined(__aarch64__)
#endif
#include "../../kernel.h"
const char sc_ascii_low[] = {'?', '?', '1', '2', '3', '4', '5', '6',
'7', '8', '9', '0', '-', '=', '?', '?', 'q', 'w', 'e', 'r', 't', 'y',
'u', 'i', 'o', 'p', '[', ']', '?', '?', 'a', 's', 'd', 'f', 'g',
'h', 'j', 'k', 'l', ';', '\'', '`', '?', '\\', 'z', 'x', 'c', 'v',
'b', 'n', 'm', ',', '.', '/', '?', '?', '?', ' '};
const char sc_ascii_high[] = {'?', '?', '!', '@', '#', '$', '%', '^',
'&', '*', '(', ')', '_', '+', '?', '?', 'Q', 'W', 'E', 'R', 'T', 'Y',
'U', 'I', 'O', 'P', '{', '}', '?', '?', 'A', 'S', 'D', 'F', 'G',
'H', 'J', 'K', 'L', ';', '\"', '~', '?', '|', 'Z', 'X', 'C', 'V',
'B', 'N', 'M', '<', '>', '?', '?', '?', '?', ' '};
static int LowerCase = true;
static inline int GetLetterFromScanCode(uint8_t ScanCode)
{
if (ScanCode & 0x80)
{
switch (ScanCode)
{
case KEY_U_LSHIFT:
LowerCase = true;
return KEY_INVALID;
case KEY_U_RSHIFT:
LowerCase = true;
return KEY_INVALID;
default:
return KEY_INVALID;
}
}
else
{
switch (ScanCode)
{
case KEY_D_RETURN:
return '\n';
case KEY_D_LSHIFT:
LowerCase = false;
return KEY_INVALID;
case KEY_D_RSHIFT:
LowerCase = false;
return KEY_INVALID;
case KEY_D_BACKSPACE:
return ScanCode;
default:
{
if (ScanCode > 0x39)
break;
if (LowerCase)
return sc_ascii_low[ScanCode];
else
return sc_ascii_high[ScanCode];
}
}
}
return KEY_INVALID;
}
namespace CrashHandler
{
CrashKeyboardDriver::CrashKeyboardDriver() : Interrupts::Handler(CPU::x64::IRQ1)
{
while (inb(0x64) & 0x1)
inb(0x60);
outb(0x64, 0xAE);
outb(0x64, 0x20);
uint8_t ret = (inb(0x60) | 1) & ~0x10;
outb(0x64, 0x60);
outb(0x60, ret);
outb(0x60, 0xF4);
outb(0x21, 0xFD);
outb(0xA1, 0xFF);
CPU::Interrupts(CPU::Enable); // Just to be sure.
}
CrashKeyboardDriver::~CrashKeyboardDriver()
{
error("CrashKeyboardDriver::~CrashKeyboardDriver() called!");
}
int BackSpaceLimit = 0;
static char UserInputBuffer[1024];
#if defined(__amd64__)
SafeFunction void CrashKeyboardDriver::OnInterruptReceived(CPU::x64::TrapFrame *Frame)
#elif defined(__i386__)
SafeFunction void CrashKeyboardDriver::OnInterruptReceived(void *Frame)
#elif defined(__aarch64__)
SafeFunction void CrashKeyboardDriver::OnInterruptReceived(void *Frame)
#endif
{
uint8_t scanCode = inb(0x60);
if (scanCode == KEY_D_TAB ||
scanCode == KEY_D_LCTRL ||
scanCode == KEY_D_LALT ||
scanCode == KEY_U_LCTRL ||
scanCode == KEY_U_LALT)
return;
switch (scanCode)
{
case KEY_D_UP:
case KEY_D_LEFT:
case KEY_D_RIGHT:
case KEY_D_DOWN:
ArrowInput(scanCode);
}
int key = GetLetterFromScanCode(scanCode);
if (key != KEY_INVALID)
{
if (key == KEY_D_BACKSPACE)
{
if (BackSpaceLimit > 0)
{
Display->Print('\b', SBIdx);
backspace(UserInputBuffer);
BackSpaceLimit--;
}
}
else if (key == '\n')
{
UserInput(UserInputBuffer);
BackSpaceLimit = 0;
UserInputBuffer[0] = '\0';
}
else
{
append(UserInputBuffer, key);
Display->Print(key, SBIdx);
BackSpaceLimit++;
}
Display->SetBuffer(SBIdx); // Update as we type.
}
}
SafeFunction void HookKeyboard()
{
CrashKeyboardDriver kbd; // We don't want to allocate memory.
asmv("KeyboardHookLoop: nop; jmp KeyboardHookLoop;");
// CPU::Halt(true); // This is an infinite loop.
}
}

View File

@ -1,96 +0,0 @@
#include "../crashhandler.hpp"
#include "chfcts.hpp"
#include <display.hpp>
#include <printf.h>
#include <debug.h>
#include <smp.hpp>
#include <cpu.hpp>
#if defined(__amd64__)
#include "../../Architecture/amd64/cpu/gdt.hpp"
#elif defined(__i386__)
#elif defined(__aarch64__)
#endif
#include "../../kernel.h"
namespace CrashHandler
{
struct StackFrame
{
struct StackFrame *rbp;
uint64_t rip;
};
SafeFunction void TraceFrames(CHArchTrapFrame *Frame, int Count)
{
#if defined(__amd64__)
struct StackFrame *frames = (struct StackFrame *)Frame->rbp; // (struct StackFrame *)__builtin_frame_address(0);
#elif defined(__i386__)
struct StackFrame *frames = (struct StackFrame *)Frame->ebp; // (struct StackFrame *)__builtin_frame_address(0);
#elif defined(__aarch64__)
#endif
debug("Stack tracing...");
EHPrint("\e7981FC\nStack Trace:\n");
if (!frames || !frames->rip || !frames->rbp)
{
#if defined(__amd64__)
EHPrint("\e2565CC%p", (void *)Frame->rip);
#elif defined(__i386__)
EHPrint("\e2565CC%p", (void *)Frame->eip);
#elif defined(__aarch64__)
#endif
EHPrint("\e7925CC-");
#if defined(__amd64__)
EHPrint("\eAA25CC%s", KernelSymbolTable->GetSymbolFromAddress(Frame->rip));
#elif defined(__i386__)
EHPrint("\eAA25CC%s", KernelSymbolTable->GetSymbolFromAddress(Frame->eip));
#elif defined(__aarch64__)
#endif
EHPrint("\e7981FC <- Exception");
EHPrint("\eFF0000\n< No stack trace available. >\n");
}
else
{
#if defined(__amd64__)
EHPrint("\e2565CC%p", (void *)Frame->rip);
EHPrint("\e7925CC-");
if (Frame->rip >= 0xFFFFFFFF80000000 && Frame->rip <= (uint64_t)&_kernel_end)
EHPrint("\eAA25CC%s", KernelSymbolTable->GetSymbolFromAddress(Frame->rip));
else
EHPrint("Outside Kernel");
#elif defined(__i386__)
EHPrint("\e2565CC%p", (void *)Frame->eip);
EHPrint("\e7925CC-");
if (Frame->eip >= 0xC0000000 && Frame->eip <= (uint64_t)&_kernel_end)
EHPrint("\eAA25CC%s", KernelSymbolTable->GetSymbolFromAddress(Frame->eip));
else
EHPrint("Outside Kernel");
#elif defined(__aarch64__)
#endif
EHPrint("\e7981FC <- Exception");
for (int frame = 0; frame < Count; ++frame)
{
if (!frames->rip)
break;
EHPrint("\n\e2565CC%p", (void *)frames->rip);
EHPrint("\e7925CC-");
#if defined(__amd64__)
if (frames->rip >= 0xFFFFFFFF80000000 && frames->rip <= (uint64_t)&_kernel_end)
#elif defined(__i386__)
if (frames->rip >= 0xC0000000 && frames->rip <= (uint64_t)&_kernel_end)
#elif defined(__aarch64__)
#endif
EHPrint("\e25CCC9%s", KernelSymbolTable->GetSymbolFromAddress(frames->rip));
else
EHPrint("\eFF4CA9Outside Kernel");
if (!Memory::Virtual().Check(frames->rbp))
return;
frames = frames->rbp;
}
}
}
}

View File

@ -1,24 +0,0 @@
#include "../../crashhandler.hpp"
#include "../chfcts.hpp"
#include <display.hpp>
#include <printf.h>
#include <debug.h>
#include <smp.hpp>
#include <cpu.hpp>
#if defined(__amd64__)
#include "../../../Architecture/amd64/cpu/gdt.hpp"
#elif defined(__i386__)
#elif defined(__aarch64__)
#endif
#include "../../../kernel.h"
namespace CrashHandler
{
SafeFunction void DisplayConsoleScreen(CRData data)
{
EHPrint("TODO");
}
}

View File

@ -1,249 +0,0 @@
#include "../../crashhandler.hpp"
#include "../chfcts.hpp"
#include <display.hpp>
#include <printf.h>
#include <debug.h>
#include <smp.hpp>
#include <cpu.hpp>
#if defined(__amd64__)
#include "../../../Architecture/amd64/cpu/gdt.hpp"
#elif defined(__i386__)
#elif defined(__aarch64__)
#endif
#include "../../../kernel.h"
namespace CrashHandler
{
SafeFunction void DisplayDetailsScreen(CRData data)
{
if (data.Process)
EHPrint("\e7981FCCurrent Process: %s(%ld)\n",
data.Process->Name,
data.Process->ID);
if (data.Thread)
EHPrint("\e7981FCCurrent Thread: %s(%ld)\n",
data.Thread->Name,
data.Thread->ID);
EHPrint("\e7981FCTechnical Informations on CPU %lld:\n", data.ID);
#if defined(__amd64__)
CPUData *cpu = (CPUData *)data.CPUData;
if (cpu)
{
EHPrint("\eE46CEBCPU Data Address: %#lx\n", cpu);
EHPrint("Syscalls Stack: %#lx\n", cpu->SystemCallStack);
EHPrint("TempStack: %#lx\n", cpu->TempStack);
EHPrint("Core Stack: %#lx\n", cpu->Stack);
EHPrint("Core ID: %ld\n", cpu->ID);
EHPrint("Error Code: %ld\n", cpu->ErrorCode);
EHPrint("Is Active: %s\n", cpu->IsActive ? "true" : "false");
EHPrint("Current Process: %#lx\n", cpu->CurrentProcess);
EHPrint("Current Thread: %#lx\n", cpu->CurrentThread);
EHPrint("Arch Specific Data: %#lx\n", cpu->Data);
EHPrint("Checksum: 0x%X\n", cpu->Checksum);
}
uint64_t ds;
asmv("mov %%ds, %0"
: "=r"(ds));
#elif defined(__i386__)
uint32_t ds;
asmv("mov %%ds, %0"
: "=r"(ds));
#elif defined(__aarch64__)
#endif
EHPrint("\e7981FCFS=%#llx GS=%#llx SS=%#llx CS=%#llx DS=%#llx\n",
CPU::x64::rdmsr(CPU::x64::MSR_FS_BASE), CPU::x64::rdmsr(CPU::x64::MSR_GS_BASE),
data.Frame->ss, data.Frame->cs, ds);
#if defined(__amd64__)
EHPrint("R8=%#llx R9=%#llx R10=%#llx R11=%#llx\n", data.Frame->r8, data.Frame->r9, data.Frame->r10, data.Frame->r11);
EHPrint("R12=%#llx R13=%#llx R14=%#llx R15=%#llx\n", data.Frame->r12, data.Frame->r13, data.Frame->r14, data.Frame->r15);
EHPrint("RAX=%#llx RBX=%#llx RCX=%#llx RDX=%#llx\n", data.Frame->rax, data.Frame->rbx, data.Frame->rcx, data.Frame->rdx);
EHPrint("RSI=%#llx RDI=%#llx RBP=%#llx RSP=%#llx\n", data.Frame->rsi, data.Frame->rdi, data.Frame->rbp, data.Frame->rsp);
EHPrint("RIP=%#llx RFL=%#llx INT=%#llx ERR=%#llx EFER=%#llx\n", data.Frame->rip, data.Frame->rflags.raw, data.Frame->InterruptNumber, data.Frame->ErrorCode, data.efer.raw);
#elif defined(__i386__)
EHPrint("EAX=%#llx EBX=%#llx ECX=%#llx EDX=%#llx\n", data.Frame->eax, data.Frame->ebx, data.Frame->ecx, data.Frame->edx);
EHPrint("ESI=%#llx EDI=%#llx EBP=%#llx ESP=%#llx\n", data.Frame->esi, data.Frame->edi, data.Frame->ebp, data.Frame->esp);
EHPrint("EIP=%#llx EFL=%#llx INT=%#llx ERR=%#llx EFER=%#llx\n", data.Frame->eip, data.Frame->eflags.raw, data.Frame->InterruptNumber, data.Frame->ErrorCode, data.efer.raw);
#elif defined(__aarch64__)
#endif
EHPrint("CR0=%#llx CR2=%#llx CR3=%#llx CR4=%#llx CR8=%#llx\n", data.cr0.raw, data.cr2.raw, data.cr3.raw, data.cr4.raw, data.cr8.raw);
EHPrint("DR0=%#llx DR1=%#llx DR2=%#llx DR3=%#llx DR6=%#llx DR7=%#llx\n", data.dr0, data.dr1, data.dr2, data.dr3, data.dr6, data.dr7.raw);
EHPrint("\eFC797BCR0: PE:%s MP:%s EM:%s TS:%s\n ET:%s NE:%s WP:%s AM:%s\n NW:%s CD:%s PG:%s\n R0:%#x R1:%#x R2:%#x\n",
data.cr0.PE ? "True " : "False", data.cr0.MP ? "True " : "False", data.cr0.EM ? "True " : "False", data.cr0.TS ? "True " : "False",
data.cr0.ET ? "True " : "False", data.cr0.NE ? "True " : "False", data.cr0.WP ? "True " : "False", data.cr0.AM ? "True " : "False",
data.cr0.NW ? "True " : "False", data.cr0.CD ? "True " : "False", data.cr0.PG ? "True " : "False",
data.cr0.Reserved0, data.cr0.Reserved1, data.cr0.Reserved2);
EHPrint("\eFCBD79CR2: PFLA: %#llx\n",
data.cr2.PFLA);
EHPrint("\e79FC84CR3: PWT:%s PCD:%s PDBR:%#llx\n",
data.cr3.PWT ? "True " : "False", data.cr3.PCD ? "True " : "False", data.cr3.PDBR);
EHPrint("\eBD79FCCR4: VME:%s PVI:%s TSD:%s DE:%s\n PSE:%s PAE:%s MCE:%s PGE:%s\n PCE:%s UMIP:%s OSFXSR:%s OSXMMEXCPT:%s\n LA57:%s VMXE:%s SMXE:%s PCIDE:%s\n OSXSAVE:%s SMEP:%s SMAP:%s PKE:%s\n R0:%#x R1:%#x R2:%#x\n",
data.cr4.VME ? "True " : "False", data.cr4.PVI ? "True " : "False", data.cr4.TSD ? "True " : "False", data.cr4.DE ? "True " : "False",
data.cr4.PSE ? "True " : "False", data.cr4.PAE ? "True " : "False", data.cr4.MCE ? "True " : "False", data.cr4.PGE ? "True " : "False",
data.cr4.PCE ? "True " : "False", data.cr4.UMIP ? "True " : "False", data.cr4.OSFXSR ? "True " : "False", data.cr4.OSXMMEXCPT ? "True " : "False",
data.cr4.LA57 ? "True " : "False", data.cr4.VMXE ? "True " : "False", data.cr4.SMXE ? "True " : "False", data.cr4.PCIDE ? "True " : "False",
data.cr4.OSXSAVE ? "True " : "False", data.cr4.SMEP ? "True " : "False", data.cr4.SMAP ? "True " : "False", data.cr4.PKE ? "True " : "False",
#if defined(__amd64__)
data.cr4.Reserved0, data.cr4.Reserved1, data.cr4.Reserved2);
#elif defined(__i386__)
data.cr4.Reserved0, data.cr4.Reserved1, 0);
#elif defined(__aarch64__)
#endif
EHPrint("\e79FCF5CR8: TPL:%d\n", data.cr8.TPL);
#if defined(__amd64__)
EHPrint("\eFCFC02RFL: CF:%s PF:%s AF:%s ZF:%s\n SF:%s TF:%s IF:%s DF:%s\n OF:%s IOPL:%s NT:%s RF:%s\n VM:%s AC:%s VIF:%s VIP:%s\n ID:%s AlwaysOne:%d\n R0:%#x R1:%#x R2:%#x R3:%#x\n",
data.Frame->rflags.CF ? "True " : "False", data.Frame->rflags.PF ? "True " : "False", data.Frame->rflags.AF ? "True " : "False", data.Frame->rflags.ZF ? "True " : "False",
data.Frame->rflags.SF ? "True " : "False", data.Frame->rflags.TF ? "True " : "False", data.Frame->rflags.IF ? "True " : "False", data.Frame->rflags.DF ? "True " : "False",
data.Frame->rflags.OF ? "True " : "False", data.Frame->rflags.IOPL ? "True " : "False", data.Frame->rflags.NT ? "True " : "False", data.Frame->rflags.RF ? "True " : "False",
data.Frame->rflags.VM ? "True " : "False", data.Frame->rflags.AC ? "True " : "False", data.Frame->rflags.VIF ? "True " : "False", data.Frame->rflags.VIP ? "True " : "False",
data.Frame->rflags.ID ? "True " : "False", data.Frame->rflags.AlwaysOne,
data.Frame->rflags.Reserved0, data.Frame->rflags.Reserved1, data.Frame->rflags.Reserved2, data.Frame->rflags.Reserved3);
#elif defined(__i386__)
EHPrint("\eFCFC02EFL: CF:%s PF:%s AF:%s ZF:%s\n SF:%s TF:%s IF:%s DF:%s\n OF:%s IOPL:%s NT:%s RF:%s\n VM:%s AC:%s VIF:%s VIP:%s\n ID:%s AlwaysOne:%d\n R0:%#x R1:%#x R2:%#x\n",
data.Frame->eflags.CF ? "True " : "False", data.Frame->eflags.PF ? "True " : "False", data.Frame->eflags.AF ? "True " : "False", data.Frame->eflags.ZF ? "True " : "False",
data.Frame->eflags.SF ? "True " : "False", data.Frame->eflags.TF ? "True " : "False", data.Frame->eflags.IF ? "True " : "False", data.Frame->eflags.DF ? "True " : "False",
data.Frame->eflags.OF ? "True " : "False", data.Frame->eflags.IOPL ? "True " : "False", data.Frame->eflags.NT ? "True " : "False", data.Frame->eflags.RF ? "True " : "False",
data.Frame->eflags.VM ? "True " : "False", data.Frame->eflags.AC ? "True " : "False", data.Frame->eflags.VIF ? "True " : "False", data.Frame->eflags.VIP ? "True " : "False",
data.Frame->eflags.ID ? "True " : "False", data.Frame->eflags.AlwaysOne,
data.Frame->eflags.Reserved0, data.Frame->eflags.Reserved1, data.Frame->eflags.Reserved2);
#elif defined(__aarch64__)
#endif
EHPrint("\eA0F0F0DR7: LDR0:%s GDR0:%s LDR1:%s GDR1:%s\n LDR2:%s GDR2:%s LDR3:%s GDR3:%s\n CDR0:%s SDR0:%s CDR1:%s SDR1:%s\n CDR2:%s SDR2:%s CDR3:%s SDR3:%s\n R:%#x\n",
data.dr7.LocalDR0 ? "True " : "False", data.dr7.GlobalDR0 ? "True " : "False", data.dr7.LocalDR1 ? "True " : "False", data.dr7.GlobalDR1 ? "True " : "False",
data.dr7.LocalDR2 ? "True " : "False", data.dr7.GlobalDR2 ? "True " : "False", data.dr7.LocalDR3 ? "True " : "False", data.dr7.GlobalDR3 ? "True " : "False",
data.dr7.ConditionsDR0 ? "True " : "False", data.dr7.SizeDR0 ? "True " : "False", data.dr7.ConditionsDR1 ? "True " : "False", data.dr7.SizeDR1 ? "True " : "False",
data.dr7.ConditionsDR2 ? "True " : "False", data.dr7.SizeDR2 ? "True " : "False", data.dr7.ConditionsDR3 ? "True " : "False", data.dr7.SizeDR3 ? "True " : "False",
data.dr7.Reserved);
EHPrint("\e009FF0EFER: SCE:%s LME:%s LMA:%s NXE:%s\n SVME:%s LMSLE:%s FFXSR:%s TCE:%s\n R0:%#x R1:%#x R2:%#x\n",
data.efer.SCE ? "True " : "False", data.efer.LME ? "True " : "False", data.efer.LMA ? "True " : "False", data.efer.NXE ? "True " : "False",
data.efer.SVME ? "True " : "False", data.efer.LMSLE ? "True " : "False", data.efer.FFXSR ? "True " : "False", data.efer.TCE ? "True " : "False",
data.efer.Reserved0, data.efer.Reserved1, data.efer.Reserved2);
switch (data.Frame->InterruptNumber)
{
case CPU::x64::DivideByZero:
{
DivideByZeroExceptionHandler(data.Frame);
break;
}
case CPU::x64::Debug:
{
DebugExceptionHandler(data.Frame);
break;
}
case CPU::x64::NonMaskableInterrupt:
{
NonMaskableInterruptExceptionHandler(data.Frame);
break;
}
case CPU::x64::Breakpoint:
{
BreakpointExceptionHandler(data.Frame);
break;
}
case CPU::x64::Overflow:
{
OverflowExceptionHandler(data.Frame);
break;
}
case CPU::x64::BoundRange:
{
BoundRangeExceptionHandler(data.Frame);
break;
}
case CPU::x64::InvalidOpcode:
{
InvalidOpcodeExceptionHandler(data.Frame);
break;
}
case CPU::x64::DeviceNotAvailable:
{
DeviceNotAvailableExceptionHandler(data.Frame);
break;
}
case CPU::x64::DoubleFault:
{
DoubleFaultExceptionHandler(data.Frame);
break;
}
case CPU::x64::CoprocessorSegmentOverrun:
{
CoprocessorSegmentOverrunExceptionHandler(data.Frame);
break;
}
case CPU::x64::InvalidTSS:
{
InvalidTSSExceptionHandler(data.Frame);
break;
}
case CPU::x64::SegmentNotPresent:
{
SegmentNotPresentExceptionHandler(data.Frame);
break;
}
case CPU::x64::StackSegmentFault:
{
StackFaultExceptionHandler(data.Frame);
break;
}
case CPU::x64::GeneralProtectionFault:
{
GeneralProtectionExceptionHandler(data.Frame);
break;
}
case CPU::x64::PageFault:
{
PageFaultExceptionHandler(data.Frame);
break;
}
case CPU::x64::x87FloatingPoint:
{
x87FloatingPointExceptionHandler(data.Frame);
break;
}
case CPU::x64::AlignmentCheck:
{
AlignmentCheckExceptionHandler(data.Frame);
break;
}
case CPU::x64::MachineCheck:
{
MachineCheckExceptionHandler(data.Frame);
break;
}
case CPU::x64::SIMDFloatingPoint:
{
SIMDFloatingPointExceptionHandler(data.Frame);
break;
}
case CPU::x64::Virtualization:
{
VirtualizationExceptionHandler(data.Frame);
break;
}
case CPU::x64::Security:
{
SecurityExceptionHandler(data.Frame);
break;
}
default:
{
UnknownExceptionHandler(data.Frame);
break;
}
}
}
}

View File

@ -1,345 +0,0 @@
#include "../../crashhandler.hpp"
#include "../chfcts.hpp"
#include <display.hpp>
#include <printf.h>
#include <debug.h>
#include <smp.hpp>
#include <cpu.hpp>
#if defined(__amd64__)
#include "../../../Architecture/amd64/cpu/gdt.hpp"
#elif defined(__i386__)
#elif defined(__aarch64__)
#endif
#include "../../../kernel.h"
static const char *PagefaultDescriptions[8] = {
"Supervisory process tried to read a non-present page entry\n",
"Supervisory process tried to read a page and caused a protection fault\n",
"Supervisory process tried to write to a non-present page entry\n",
"Supervisory process tried to write a page and caused a protection fault\n",
"User process tried to read a non-present page entry\n",
"User process tried to read a page and caused a protection fault\n",
"User process tried to write to a non-present page entry\n",
"User process tried to write a page and caused a protection fault\n"};
namespace CrashHandler
{
SafeFunction void DisplayMainScreen(CRData data)
{
CHArchTrapFrame *Frame = data.Frame;
/*
_______ ___ ___ _______ _______ _______ _______ ______ ______ _______ _______ _______ _______ _____
| __| | | __|_ _| ___| | | | | __ \ _ | __| | | ___| \
|__ |\ /|__ | | | | ___| | | ---| < |__ | | ___| -- |
|_______| |___| |_______| |___| |_______|__|_|__| |______|___|__|___|___|_______|___|___|_______|_____/
*/
EHPrint("\eFF5500 _______ ___ ___ _______ _______ _______ _______ ______ ______ _______ _______ _______ _______ _____ \n");
EHPrint("| __| | | __|_ _| ___| | | | | __ \\ _ | __| | | ___| \\ \n");
EHPrint("|__ |\\ /|__ | | | | ___| | | ---| < |__ | | ___| -- |\n");
EHPrint("|_______| |___| |_______| |___| |_______|__|_|__| |______|___|__|___|___|_______|___|___|_______|_____/ \n\eFAFAFA");
switch (Frame->InterruptNumber)
{
case CPU::x64::DivideByZero:
{
EHPrint("Exception: Divide By Zero\n");
EHPrint("The processor attempted to divide a number by zero.\n");
break;
}
case CPU::x64::Debug:
{
EHPrint("Exception: Debug\n");
EHPrint("A debug exception has occurred.\n");
break;
}
case CPU::x64::NonMaskableInterrupt:
{
EHPrint("Exception: Non-Maskable Interrupt\n");
EHPrint("A non-maskable interrupt was received.\n");
break;
}
case CPU::x64::Breakpoint:
{
EHPrint("Exception: Breakpoint\n");
EHPrint("The processor encountered a breakpoint.\n");
break;
}
case CPU::x64::Overflow:
{
EHPrint("Exception: Overflow\n");
EHPrint("The processor attempted to add a number to a number that was too large.\n");
break;
}
case CPU::x64::BoundRange:
{
EHPrint("Exception: Bound Range\n");
EHPrint("The processor attempted to access an array element that is out of bounds.\n");
break;
}
case CPU::x64::InvalidOpcode:
{
EHPrint("Exception: Invalid Opcode\n");
EHPrint("The processor attempted to execute an invalid opcode.\n");
break;
}
case CPU::x64::DeviceNotAvailable:
{
EHPrint("Exception: Device Not Available\n");
EHPrint("The processor attempted to use a device that is not available.\n");
break;
}
case CPU::x64::DoubleFault:
{
EHPrint("Exception: Double Fault\n");
EHPrint("The processor encountered a double fault.\n");
break;
}
case CPU::x64::CoprocessorSegmentOverrun:
{
EHPrint("Exception: Coprocessor Segment Overrun\n");
EHPrint("The processor attempted to access a segment that is not available.\n");
break;
}
case CPU::x64::InvalidTSS:
{
EHPrint("Exception: Invalid TSS\n");
EHPrint("The processor attempted to access a task state segment that is not available or valid.\n");
CPU::x64::SelectorErrorCode SelCode = {.raw = Frame->ErrorCode};
EHPrint("External? %s\n", SelCode.External ? "Yes" : "No");
EHPrint("GDT IDT LDT IDT\n");
switch (SelCode.Table)
{
case 0b00:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b01:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b10:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b11:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
}
break;
}
case CPU::x64::SegmentNotPresent:
{
EHPrint("Exception: Segment Not Present\n");
EHPrint("The processor attempted to access a segment that is not present.\n");
CPU::x64::SelectorErrorCode SelCode = {.raw = Frame->ErrorCode};
EHPrint("External? %s\n", SelCode.External ? "Yes" : "No");
EHPrint("GDT IDT LDT IDT\n");
switch (SelCode.Table)
{
case 0b00:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b01:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b10:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b11:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
}
break;
}
case CPU::x64::StackSegmentFault:
{
EHPrint("Exception: Stack Segment Fault\n");
CPU::x64::SelectorErrorCode SelCode = {.raw = Frame->ErrorCode};
EHPrint("External? %s\n", SelCode.External ? "Yes" : "No");
EHPrint("GDT IDT LDT IDT\n");
switch (SelCode.Table)
{
case 0b00:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b01:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b10:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b11:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
}
break;
}
case CPU::x64::GeneralProtectionFault:
{
EHPrint("Exception: General Protection Fault\n");
EHPrint("Kernel performed an illegal operation.\n");
CPU::x64::SelectorErrorCode SelCode = {.raw = Frame->ErrorCode};
EHPrint("External? %s\n", SelCode.External ? "Yes" : "No");
EHPrint("GDT IDT LDT IDT\n");
switch (SelCode.Table)
{
case 0b00:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b01:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b10:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b11:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
}
break;
}
case CPU::x64::PageFault:
{
EHPrint("Exception: Page Fault\n");
EHPrint("The processor attempted to access a page that is not present.\n");
CPU::x64::PageFaultErrorCode params = {.raw = (uint32_t)Frame->ErrorCode};
#if defined(__amd64__)
EHPrint("At \e8888FF%#lx \eFAFAFAby \e8888FF%#lx\eFAFAFA\n", CPU::x64::readcr2().PFLA, Frame->rip);
#elif defined(__i386__)
EHPrint("At \e8888FF%#lx \eFAFAFAby \e8888FF%#lx\eFAFAFA\n", CPU::x64::readcr2().PFLA, Frame->eip);
#elif defined(__aarch64__)
#endif
EHPrint("Page: %s\eFAFAFA\n", params.P ? "\e058C19Present" : "\eE85230Not Present");
EHPrint("Write Operation: \e8888FF%s\eFAFAFA\n", params.W ? "Read-Only" : "Read-Write");
EHPrint("Processor Mode: \e8888FF%s\eFAFAFA\n", params.U ? "User-Mode" : "Kernel-Mode");
EHPrint("CPU Reserved Bits: %s\eFAFAFA\n", params.R ? "\eE85230Reserved" : "\e058C19Unreserved");
EHPrint("Caused By An Instruction Fetch: %s\eFAFAFA\n", params.I ? "\eE85230Yes" : "\e058C19No");
EHPrint("Caused By A Protection-Key Violation: %s\eFAFAFA\n", params.PK ? "\eE85230Yes" : "\e058C19No");
EHPrint("Caused By A Shadow Stack Access: %s\eFAFAFA\n", params.SS ? "\eE85230Yes" : "\e058C19No");
EHPrint("Caused By An SGX Violation: %s\eFAFAFA\n", params.SGX ? "\eE85230Yes" : "\e058C19No");
EHPrint("More Info: \e8888FF");
if (Frame->ErrorCode & 0x00000008)
EHPrint("One or more page directory entries contain reserved bits which are set to 1.\n");
else
EHPrint(PagefaultDescriptions[Frame->ErrorCode & 0b111]);
EHPrint("\eFAFAFA");
break;
}
case CPU::x64::x87FloatingPoint:
{
EHPrint("Exception: x87 Floating Point\n");
EHPrint("The x87 FPU generated an error.\n");
break;
}
case CPU::x64::AlignmentCheck:
{
EHPrint("Exception: Alignment Check\n");
EHPrint("The CPU detected an unaligned memory access.\n");
break;
}
case CPU::x64::MachineCheck:
{
EHPrint("Exception: Machine Check\n");
EHPrint("The CPU detected a hardware error.\n");
break;
}
case CPU::x64::SIMDFloatingPoint:
{
EHPrint("Exception: SIMD Floating Point\n");
EHPrint("The CPU detected an error in the SIMD unit.\n");
break;
}
case CPU::x64::Virtualization:
{
EHPrint("Exception: Virtualization\n");
EHPrint("The CPU detected a virtualization error.\n");
break;
}
case CPU::x64::Security:
{
EHPrint("Exception: Security\n");
EHPrint("The CPU detected a security violation.\n");
break;
}
default:
{
EHPrint("Exception: Unknown\n");
EHPrint("The CPU generated an unknown exception.\n");
break;
}
}
#if defined(__amd64__)
EHPrint("The exception happened at \e8888FF%#lx\eFAFAFA\n", Frame->rip);
#elif defined(__i386__)
EHPrint("The exception happened at \e8888FF%#lx\eFAFAFA\n", Frame->eip);
#elif defined(__aarch64__)
#endif
}
}

View File

@ -1,46 +0,0 @@
#include "../../crashhandler.hpp"
#include "../chfcts.hpp"
#include <interrupts.hpp>
#include <display.hpp>
#include <printf.h>
#include <debug.h>
#include <smp.hpp>
#include <cpu.hpp>
#if defined(__amd64__)
#include "../../../Architecture/amd64/cpu/gdt.hpp"
#elif defined(__i386__)
#elif defined(__aarch64__)
#endif
#include "../../../kernel.h"
namespace CrashHandler
{
SafeFunction void DisplayStackFrameScreen(CRData data)
{
EHPrint("\eFAFAFATracing 40 frames...\n");
TraceFrames(data.Frame, 40);
EHPrint("\n\n\eFAFAFATracing interrupt frames...\n");
for (uint64_t i = 0; i < 8; i++)
{
if (EHIntFrames[i])
{
if (!Memory::Virtual().Check(EHIntFrames[i]))
continue;
EHPrint("\n\e2565CC%p", EHIntFrames[i]);
EHPrint("\e7925CC-");
#if defined(__amd64__)
if ((uint64_t)EHIntFrames[i] >= 0xFFFFFFFF80000000 && (uint64_t)EHIntFrames[i] <= (uint64_t)&_kernel_end)
#elif defined(__i386__)
if ((uint64_t)EHIntFrames[i] >= 0xC0000000 && (uint64_t)EHIntFrames[i] <= (uint64_t)&_kernel_end)
#elif defined(__aarch64__)
#endif
EHPrint("\e25CCC9%s", KernelSymbolTable->GetSymbolFromAddress((uint64_t)EHIntFrames[i]));
else
EHPrint("\eFF4CA9Outside Kernel");
}
}
}
}

View File

@ -1,70 +0,0 @@
#include "../../crashhandler.hpp"
#include "../chfcts.hpp"
#include <display.hpp>
#include <printf.h>
#include <debug.h>
#include <smp.hpp>
#include <cpu.hpp>
#if defined(__amd64__)
#include "../../../Architecture/amd64/cpu/gdt.hpp"
#elif defined(__i386__)
#elif defined(__aarch64__)
#endif
#include "../../../kernel.h"
namespace CrashHandler
{
SafeFunction void DisplayTasksScreen(CRData data)
{
const char *StatusColor[7] = {
"FF0000", // Unknown
"AAFF00", // Ready
"00AA00", // Running
"FFAA00", // Sleeping
"FFAA00", // Waiting
"FF0088", // Stopped
"FF0000", // Terminated
};
const char *StatusString[7] = {
"Unknown", // Unknown
"Ready", // Ready
"Running", // Running
"Sleeping", // Sleeping
"Waiting", // Waiting
"Stopped", // Stopped
"Terminated", // Terminated
};
Vector<Tasking::PCB *> Plist = TaskManager->GetProcessList();
if (TaskManager)
{
if (data.Thread)
#if defined(__amd64__)
EHPrint("\eFAFAFACrash occured in thread \eAA0F0F%s\eFAFAFA(%ld) at \e00AAAA%#lx\n", data.Thread->Name, data.Thread->ID, data.Frame->rip);
#elif defined(__i386__)
EHPrint("\eFAFAFACrash occured in thread \eAA0F0F%s\eFAFAFA(%ld) at \e00AAAA%#lx\n", data.Thread->Name, data.Thread->ID, data.Frame->eip);
#elif defined(__aarch64__)
#endif
EHPrint("\eFAFAFAProcess list (%ld):\n", Plist.size());
foreach (auto Process in Plist)
{
EHPrint("\e%s-> \eFAFAFA%s\eCCCCCC(%ld) \e00AAAA%s\eFAFAFA PT:\e00AAAA%#lx\n",
StatusColor[Process->Status], Process->Name, Process->ID, StatusString[Process->Status],
Process->PageTable);
foreach (auto Thread in Process->Threads)
EHPrint("\e%s -> \eFAFAFA%s\eCCCCCC(%ld) \e00AAAA%s\eFAFAFA Stack:\e00AAAA%#lx\n",
StatusColor[Thread->Status], Thread->Name, Thread->ID, StatusString[Thread->Status],
Thread->Stack);
}
}
else
EHPrint("\eFAFAFATaskManager is not initialized!\n");
}
}

View File

@ -1,278 +0,0 @@
#include "../crashhandler.hpp"
#include "chfcts.hpp"
#include <display.hpp>
#include <printf.h>
#include <debug.h>
#include <smp.hpp>
#include <cpu.hpp>
#if defined(__amd64__)
#include "../../Architecture/amd64/cpu/gdt.hpp"
#elif defined(__i386__)
#elif defined(__aarch64__)
#endif
#include "../../kernel.h"
static const char *PageFaultDescriptions[8] = {
"Supervisory process tried to read a non-present page entry\n",
"Supervisory process tried to read a page and caused a protection fault\n",
"Supervisory process tried to write to a non-present page entry\n",
"Supervisory process tried to write a page and caused a protection fault\n",
"User process tried to read a non-present page entry\n",
"User process tried to read a page and caused a protection fault\n",
"User process tried to write to a non-present page entry\n",
"User process tried to write a page and caused a protection fault\n"};
SafeFunction void UserModeExceptionHandler(CHArchTrapFrame *Frame)
{
CriticalSection cs;
debug("Interrupts? %s.", cs.IsInterruptsEnabled() ? "Yes" : "No");
fixme("Handling user mode exception");
TaskManager->GetCurrentThread()->Status = Tasking::TaskStatus::Stopped;
CPUData *CurCPU = GetCurrentCPU();
{
CPU::x64::CR0 cr0 = CPU::x64::readcr0();
CPU::x64::CR2 cr2 = CPU::x64::readcr2();
CPU::x64::CR3 cr3 = CPU::x64::readcr3();
CPU::x64::CR4 cr4 = CPU::x64::readcr4();
CPU::x64::CR8 cr8 = CPU::x64::readcr8();
CPU::x64::EFER efer;
efer.raw = CPU::x64::rdmsr(CPU::x64::MSR_EFER);
error("Technical Informations on CPU %lld:", CurCPU->ID);
#if defined(__amd64__)
uint64_t ds;
asmv("mov %%ds, %0"
: "=r"(ds));
#elif defined(__i386__)
uint32_t ds;
asmv("mov %%ds, %0"
: "=r"(ds));
#elif defined(__aarch64__)
#endif
error("FS=%#llx GS=%#llx SS=%#llx CS=%#llx DS=%#llx",
CPU::x64::rdmsr(CPU::x64::MSR_FS_BASE), CPU::x64::rdmsr(CPU::x64::MSR_GS_BASE),
Frame->ss, Frame->cs, ds);
#if defined(__amd64__)
error("R8=%#llx R9=%#llx R10=%#llx R11=%#llx", Frame->r8, Frame->r9, Frame->r10, Frame->r11);
error("R12=%#llx R13=%#llx R14=%#llx R15=%#llx", Frame->r12, Frame->r13, Frame->r14, Frame->r15);
error("RAX=%#llx RBX=%#llx RCX=%#llx RDX=%#llx", Frame->rax, Frame->rbx, Frame->rcx, Frame->rdx);
error("RSI=%#llx RDI=%#llx RBP=%#llx RSP=%#llx", Frame->rsi, Frame->rdi, Frame->rbp, Frame->rsp);
error("RIP=%#llx RFL=%#llx INT=%#llx ERR=%#llx EFER=%#llx", Frame->rip, Frame->rflags.raw, Frame->InterruptNumber, Frame->ErrorCode, efer.raw);
#elif defined(__i386__)
error("EAX=%#llx EBX=%#llx ECX=%#llx EDX=%#llx", Frame->eax, Frame->ebx, Frame->ecx, Frame->edx);
error("ESI=%#llx EDI=%#llx EBP=%#llx ESP=%#llx", Frame->esi, Frame->edi, Frame->ebp, Frame->esp);
error("EIP=%#llx EFL=%#llx INT=%#llx ERR=%#llx EFER=%#llx", Frame->eip, Frame->eflags.raw, Frame->InterruptNumber, Frame->ErrorCode, efer.raw);
#elif defined(__aarch64__)
#endif
error("CR0=%#llx CR2=%#llx CR3=%#llx CR4=%#llx CR8=%#llx", cr0.raw, cr2.raw, cr3.raw, cr4.raw, cr8.raw);
error("CR0: PE:%s MP:%s EM:%s TS:%s ET:%s NE:%s WP:%s AM:%s NW:%s CD:%s PG:%s R0:%#x R1:%#x R2:%#x",
cr0.PE ? "True " : "False", cr0.MP ? "True " : "False", cr0.EM ? "True " : "False", cr0.TS ? "True " : "False",
cr0.ET ? "True " : "False", cr0.NE ? "True " : "False", cr0.WP ? "True " : "False", cr0.AM ? "True " : "False",
cr0.NW ? "True " : "False", cr0.CD ? "True " : "False", cr0.PG ? "True " : "False",
cr0.Reserved0, cr0.Reserved1, cr0.Reserved2);
error("CR2: PFLA: %#llx",
cr2.PFLA);
error("CR3: PWT:%s PCD:%s PDBR:%#llx",
cr3.PWT ? "True " : "False", cr3.PCD ? "True " : "False", cr3.PDBR);
error("CR4: VME:%s PVI:%s TSD:%s DE:%s PSE:%s PAE:%s MCE:%s PGE:%s PCE:%s UMIP:%s OSFXSR:%s OSXMMEXCPT:%s LA57:%s VMXE:%s SMXE:%s PCIDE:%s OSXSAVE:%s SMEP:%s SMAP:%s PKE:%s R0:%#x R1:%#x R2:%#x",
cr4.VME ? "True " : "False", cr4.PVI ? "True " : "False", cr4.TSD ? "True " : "False", cr4.DE ? "True " : "False",
cr4.PSE ? "True " : "False", cr4.PAE ? "True " : "False", cr4.MCE ? "True " : "False", cr4.PGE ? "True " : "False",
cr4.PCE ? "True " : "False", cr4.UMIP ? "True " : "False", cr4.OSFXSR ? "True " : "False", cr4.OSXMMEXCPT ? "True " : "False",
cr4.LA57 ? "True " : "False", cr4.VMXE ? "True " : "False", cr4.SMXE ? "True " : "False", cr4.PCIDE ? "True " : "False",
cr4.OSXSAVE ? "True " : "False", cr4.SMEP ? "True " : "False", cr4.SMAP ? "True " : "False", cr4.PKE ? "True " : "False",
cr4.Reserved0, cr4.Reserved1, cr4.Reserved2);
error("CR8: TPL:%d", cr8.TPL);
#if defined(__amd64__)
error("RFL: CF:%s PF:%s AF:%s ZF:%s SF:%s TF:%s IF:%s DF:%s OF:%s IOPL:%s NT:%s RF:%s VM:%s AC:%s VIF:%s VIP:%s ID:%s AlwaysOne:%d R0:%#x R1:%#x R2:%#x R3:%#x",
Frame->rflags.CF ? "True " : "False", Frame->rflags.PF ? "True " : "False", Frame->rflags.AF ? "True " : "False", Frame->rflags.ZF ? "True " : "False",
Frame->rflags.SF ? "True " : "False", Frame->rflags.TF ? "True " : "False", Frame->rflags.IF ? "True " : "False", Frame->rflags.DF ? "True " : "False",
Frame->rflags.OF ? "True " : "False", Frame->rflags.IOPL ? "True " : "False", Frame->rflags.NT ? "True " : "False", Frame->rflags.RF ? "True " : "False",
Frame->rflags.VM ? "True " : "False", Frame->rflags.AC ? "True " : "False", Frame->rflags.VIF ? "True " : "False", Frame->rflags.VIP ? "True " : "False",
Frame->rflags.ID ? "True " : "False", Frame->rflags.AlwaysOne,
Frame->rflags.Reserved0, Frame->rflags.Reserved1, Frame->rflags.Reserved2, Frame->rflags.Reserved3);
#elif defined(__i386__)
error("EFL: CF:%s PF:%s AF:%s ZF:%s SF:%s TF:%s IF:%s DF:%s OF:%s IOPL:%s NT:%s RF:%s VM:%s AC:%s VIF:%s VIP:%s ID:%s AlwaysOne:%d R0:%#x R1:%#x R2:%#x",
Frame->eflags.CF ? "True " : "False", Frame->eflags.PF ? "True " : "False", Frame->eflags.AF ? "True " : "False", Frame->eflags.ZF ? "True " : "False",
Frame->eflags.SF ? "True " : "False", Frame->eflags.TF ? "True " : "False", Frame->eflags.IF ? "True " : "False", Frame->eflags.DF ? "True " : "False",
Frame->eflags.OF ? "True " : "False", Frame->eflags.IOPL ? "True " : "False", Frame->eflags.NT ? "True " : "False", Frame->eflags.RF ? "True " : "False",
Frame->eflags.VM ? "True " : "False", Frame->eflags.AC ? "True " : "False", Frame->eflags.VIF ? "True " : "False", Frame->eflags.VIP ? "True " : "False",
Frame->eflags.ID ? "True " : "False", Frame->eflags.AlwaysOne,
Frame->eflags.Reserved0, Frame->eflags.Reserved1, Frame->eflags.Reserved2);
#elif defined(__aarch64__)
#endif
error("EFER: SCE:%s LME:%s LMA:%s NXE:%s SVME:%s LMSLE:%s FFXSR:%s TCE:%s R0:%#x R1:%#x R2:%#x",
efer.SCE ? "True " : "False", efer.LME ? "True " : "False", efer.LMA ? "True " : "False", efer.NXE ? "True " : "False",
efer.SVME ? "True " : "False", efer.LMSLE ? "True " : "False", efer.FFXSR ? "True " : "False", efer.TCE ? "True " : "False",
efer.Reserved0, efer.Reserved1, efer.Reserved2);
}
switch (Frame->InterruptNumber)
{
case CPU::x64::DivideByZero:
{
break;
}
case CPU::x64::Debug:
{
break;
}
case CPU::x64::NonMaskableInterrupt:
{
break;
}
case CPU::x64::Breakpoint:
{
break;
}
case CPU::x64::Overflow:
{
break;
}
case CPU::x64::BoundRange:
{
break;
}
case CPU::x64::InvalidOpcode:
{
break;
}
case CPU::x64::DeviceNotAvailable:
{
break;
}
case CPU::x64::DoubleFault:
{
break;
}
case CPU::x64::CoprocessorSegmentOverrun:
{
break;
}
case CPU::x64::InvalidTSS:
{
break;
}
case CPU::x64::SegmentNotPresent:
{
break;
}
case CPU::x64::StackSegmentFault:
{
break;
}
case CPU::x64::GeneralProtectionFault:
{
break;
}
case CPU::x64::PageFault:
{
CPU::x64::PageFaultErrorCode params = {.raw = (uint32_t)Frame->ErrorCode};
#if defined(__amd64__)
error("An exception occurred at %#lx by %#lx", CPU::x64::readcr2().PFLA, Frame->rip);
#elif defined(__i386__)
error("An exception occurred at %#lx by %#lx", CPU::x64::readcr2().PFLA, Frame->eip);
#elif defined(__aarch64__)
#endif
error("Page: %s", params.P ? "Present" : "Not Present");
error("Write Operation: %s", params.W ? "Read-Only" : "Read-Write");
error("Processor Mode: %s", params.U ? "User-Mode" : "Kernel-Mode");
error("CPU Reserved Bits: %s", params.R ? "Reserved" : "Unreserved");
error("Caused By An Instruction Fetch: %s", params.I ? "Yes" : "No");
error("Caused By A Protection-Key Violation: %s", params.PK ? "Yes" : "No");
error("Caused By A Shadow Stack Access: %s", params.SS ? "Yes" : "No");
error("Caused By An SGX Violation: %s", params.SGX ? "Yes" : "No");
if (Frame->ErrorCode & 0x00000008)
error("One or more page directory entries contain reserved bits which are set to 1.");
else
error(PageFaultDescriptions[Frame->ErrorCode & 0b111]);
#ifdef DEBUG
if (CurCPU)
{
Memory::Virtual vma = Memory::Virtual(CurCPU->CurrentProcess->PageTable);
bool PageAvailable = vma.Check((void *)CPU::x64::readcr2().PFLA);
debug("Page available (Check(...)): %s. %s",
PageAvailable ? "Yes" : "No",
(params.P && !PageAvailable) ? "CR2 == Present; Check() != Present??????" : "CR2 confirms Check() result.");
if (PageAvailable)
{
bool Present = vma.Check((void *)CPU::x64::readcr2().PFLA);
bool ReadWrite = vma.Check((void *)CPU::x64::readcr2().PFLA, Memory::PTFlag::RW);
bool User = vma.Check((void *)CPU::x64::readcr2().PFLA, Memory::PTFlag::US);
bool WriteThrough = vma.Check((void *)CPU::x64::readcr2().PFLA, Memory::PTFlag::PWT);
bool CacheDisabled = vma.Check((void *)CPU::x64::readcr2().PFLA, Memory::PTFlag::PCD);
bool Accessed = vma.Check((void *)CPU::x64::readcr2().PFLA, Memory::PTFlag::A);
bool Dirty = vma.Check((void *)CPU::x64::readcr2().PFLA, Memory::PTFlag::D);
bool Global = vma.Check((void *)CPU::x64::readcr2().PFLA, Memory::PTFlag::G);
/* ... */
debug("Page available: %s", Present ? "Yes" : "No");
debug("Page read/write: %s", ReadWrite ? "Yes" : "No");
debug("Page user/kernel: %s", User ? "User" : "Kernel");
debug("Page write-through: %s", WriteThrough ? "Yes" : "No");
debug("Page cache disabled: %s", CacheDisabled ? "Yes" : "No");
debug("Page accessed: %s", Accessed ? "Yes" : "No");
debug("Page dirty: %s", Dirty ? "Yes" : "No");
debug("Page global: %s", Global ? "Yes" : "No");
}
}
#endif
if (CurCPU)
if (CurCPU->CurrentThread->Stack->Expand(CPU::x64::readcr2().raw))
{
debug("Stack expanded");
TaskManager->GetCurrentThread()->Status = Tasking::TaskStatus::Ready;
return;
}
break;
}
case CPU::x64::x87FloatingPoint:
{
break;
}
case CPU::x64::AlignmentCheck:
{
break;
}
case CPU::x64::MachineCheck:
{
break;
}
case CPU::x64::SIMDFloatingPoint:
{
break;
}
case CPU::x64::Virtualization:
{
break;
}
case CPU::x64::Security:
{
break;
}
default:
{
break;
}
}
TaskManager->GetCurrentThread()->Status = Tasking::TaskStatus::Terminated;
__sync_synchronize();
error("End of report.");
CPU::Interrupts(CPU::Enable);
debug("Interrupts enabled back.");
return;
}

View File

@ -1,296 +0,0 @@
#ifndef __FENNIX_KERNEL_CRASH_HANDLERS_FUNCTIONS_H__
#define __FENNIX_KERNEL_CRASH_HANDLERS_FUNCTIONS_H__
#include <types.h>
#include <interrupts.hpp>
#include <task.hpp>
#include <cpu.hpp>
#if defined(__amd64__)
typedef struct CPU::x64::TrapFrame CHArchTrapFrame;
struct CRData
{
CHArchTrapFrame *Frame;
CPU::x64::CR0 cr0;
CPU::x64::CR2 cr2;
CPU::x64::CR3 cr3;
CPU::x64::CR4 cr4;
CPU::x64::CR8 cr8;
CPU::x64::EFER efer;
uint64_t dr0, dr1, dr2, dr3, dr6;
CPU::x64::DR7 dr7;
long ID;
void *CPUData;
Tasking::PCB *Process;
Tasking::TCB *Thread;
};
#elif defined(__i386__)
typedef struct CPU::x32::TrapFrame CHArchTrapFrame;
struct CRData
{
CHArchTrapFrame *Frame;
CPU::x32::CR0 cr0;
CPU::x32::CR2 cr2;
CPU::x32::CR3 cr3;
CPU::x32::CR4 cr4;
CPU::x32::CR8 cr8;
CPU::x32::EFER efer;
uint64_t dr0, dr1, dr2, dr3, dr6;
CPU::x32::DR7 dr7;
long ID;
Tasking::PCB *Process;
Tasking::TCB *Thread;
};
#elif defined(__aarch64__)
typedef struct CPU::aarch64::TrapFrame CHArchTrapFrame;
#endif
enum Keys
{
KEY_INVALID = 0x0,
KEY_D_ESCAPE = 0x1,
KEY_D_1 = 0x2,
KEY_D_2 = 0x3,
KEY_D_3 = 0x4,
KEY_D_4 = 0x5,
KEY_D_5 = 0x6,
KEY_D_6 = 0x7,
KEY_D_7 = 0x8,
KEY_D_8 = 0x9,
KEY_D_9 = 0xa,
KEY_D_0 = 0xb,
KEY_D_MINUS = 0xc,
KEY_D_EQUALS = 0xd,
KEY_D_BACKSPACE = 0xe,
KEY_D_TAB = 0xf,
KEY_D_Q = 0x10,
KEY_D_W = 0x11,
KEY_D_E = 0x12,
KEY_D_R = 0x13,
KEY_D_T = 0x14,
KEY_D_Y = 0x15,
KEY_D_U = 0x16,
KEY_D_I = 0x17,
KEY_D_O = 0x18,
KEY_D_P = 0x19,
KEY_D_LBRACKET = 0x1a,
KEY_D_RBRACKET = 0x1b,
KEY_D_RETURN = 0x1c,
KEY_D_LCTRL = 0x1d,
KEY_D_A = 0x1e,
KEY_D_S = 0x1f,
KEY_D_D = 0x20,
KEY_D_F = 0x21,
KEY_D_G = 0x22,
KEY_D_H = 0x23,
KEY_D_J = 0x24,
KEY_D_K = 0x25,
KEY_D_L = 0x26,
KEY_D_SEMICOLON = 0x27,
KEY_D_APOSTROPHE = 0x28,
KEY_D_GRAVE = 0x29,
KEY_D_LSHIFT = 0x2a,
KEY_D_BACKSLASH = 0x2b,
KEY_D_Z = 0x2c,
KEY_D_X = 0x2d,
KEY_D_C = 0x2e,
KEY_D_V = 0x2f,
KEY_D_B = 0x30,
KEY_D_N = 0x31,
KEY_D_M = 0x32,
KEY_D_COMMA = 0x33,
KEY_D_PERIOD = 0x34,
KEY_D_SLASH = 0x35,
KEY_D_RSHIFT = 0x36,
KEY_D_PRTSC = 0x37,
KEY_D_LALT = 0x38,
KEY_D_SPACE = 0x39,
KEY_D_CAPSLOCK = 0x3a,
KEY_D_NUMLOCK = 0x45,
KEY_D_SCROLLLOCK = 0x46,
KEY_D_KP_MULTIPLY = 0x37,
KEY_D_KP_7 = 0x47,
KEY_D_KP_8 = 0x48,
KEY_D_KP_9 = 0x49,
KEY_D_KP_MINUS = 0x4a,
KEY_D_KP_4 = 0x4b,
KEY_D_KP_5 = 0x4c,
KEY_D_KP_6 = 0x4d,
KEY_D_KP_PLUS = 0x4e,
KEY_D_KP_1 = 0x4f,
KEY_D_KP_2 = 0x50,
KEY_D_KP_3 = 0x51,
KEY_D_KP_0 = 0x52,
KEY_D_KP_PERIOD = 0x53,
KEY_D_F1 = 0x3b,
KEY_D_F2 = 0x3c,
KEY_D_F3 = 0x3d,
KEY_D_F4 = 0x3e,
KEY_D_F5 = 0x3f,
KEY_D_F6 = 0x40,
KEY_D_F7 = 0x41,
KEY_D_F8 = 0x42,
KEY_D_F9 = 0x43,
KEY_D_F10 = 0x44,
KEY_D_F11 = 0x57,
KEY_D_F12 = 0x58,
KEY_D_UP = 0x48,
KEY_D_LEFT = 0x4b,
KEY_D_RIGHT = 0x4d,
KEY_D_DOWN = 0x50,
KEY_U_ESCAPE = 0x81,
KEY_U_1 = 0x82,
KEY_U_2 = 0x83,
KEY_U_3 = 0x84,
KEY_U_4 = 0x85,
KEY_U_5 = 0x86,
KEY_U_6 = 0x87,
KEY_U_7 = 0x88,
KEY_U_8 = 0x89,
KEY_U_9 = 0x8a,
KEY_U_0 = 0x8b,
KEY_U_MINUS = 0x8c,
KEY_U_EQUALS = 0x8d,
KEY_U_BACKSPACE = 0x8e,
KEY_U_TAB = 0x8f,
KEY_U_Q = 0x90,
KEY_U_W = 0x91,
KEY_U_E = 0x92,
KEY_U_R = 0x93,
KEY_U_T = 0x94,
KEY_U_Y = 0x95,
KEY_U_U = 0x96,
KEY_U_I = 0x97,
KEY_U_O = 0x98,
KEY_U_P = 0x99,
KEY_U_LBRACKET = 0x9a,
KEY_U_RBRACKET = 0x9b,
KEY_U_RETURN = 0x9c,
KEY_U_LCTRL = 0x9d,
KEY_U_A = 0x9e,
KEY_U_S = 0x9f,
KEY_U_D = 0xa0,
KEY_U_F = 0xa1,
KEY_U_G = 0xa2,
KEY_U_H = 0xa3,
KEY_U_J = 0xa4,
KEY_U_K = 0xa5,
KEY_U_L = 0xa6,
KEY_U_SEMICOLON = 0xa7,
KEY_U_APOSTROPHE = 0xa8,
KEY_U_GRAVE = 0xa9,
KEY_U_LSHIFT = 0xaa,
KEY_U_BACKSLASH = 0xab,
KEY_U_Z = 0xac,
KEY_U_X = 0xad,
KEY_U_C = 0xae,
KEY_U_V = 0xaf,
KEY_U_B = 0xb0,
KEY_U_N = 0xb1,
KEY_U_M = 0xb2,
KEY_U_COMMA = 0xb3,
KEY_U_PERIOD = 0xb4,
KEY_U_SLASH = 0xb5,
KEY_U_RSHIFT = 0xb6,
KEY_U_KP_MULTIPLY = 0xb7,
KEY_U_LALT = 0xb8,
KEY_U_SPACE = 0xb9,
KEY_U_CAPSLOCK = 0xba,
KEY_U_F1 = 0xbb,
KEY_U_F2 = 0xbc,
KEY_U_F3 = 0xbd,
KEY_U_F4 = 0xbe,
KEY_U_F5 = 0xbf,
KEY_U_F6 = 0xc0,
KEY_U_F7 = 0xc1,
KEY_U_F8 = 0xc2,
KEY_U_F9 = 0xc3,
KEY_U_F10 = 0xc4,
KEY_U_NUMLOCK = 0xc5,
KEY_U_SCROLLLOCK = 0xc6,
KEY_U_KP_7 = 0xc7,
KEY_U_KP_8 = 0xc8,
KEY_U_KP_9 = 0xc9,
KEY_U_KP_MINUS = 0xca,
KEY_U_KP_4 = 0xcb,
KEY_U_KP_5 = 0xcc,
KEY_U_KP_6 = 0xcd,
KEY_U_KP_PLUS = 0xce,
KEY_U_KP_1 = 0xcf,
KEY_U_KP_2 = 0xd0,
KEY_U_KP_3 = 0xd1,
KEY_U_KP_0 = 0xd2,
KEY_U_KP_PERIOD = 0xd3,
KEY_U_F11 = 0xd7,
KEY_U_F12 = 0xd8,
};
namespace CrashHandler
{
extern int SBIdx;
class CrashKeyboardDriver : public Interrupts::Handler
{
private:
#if defined(__amd64__)
void OnInterruptReceived(CPU::x64::TrapFrame *Frame);
#elif defined(__i386__)
void OnInterruptReceived(void *Frame);
#elif defined(__aarch64__)
void OnInterruptReceived(void *Frame);
#endif
public:
CrashKeyboardDriver();
~CrashKeyboardDriver();
};
void TraceFrames(CHArchTrapFrame *Frame, int Count);
void ArrowInput(uint8_t key);
void UserInput(char *Input);
void HookKeyboard();
void DisplayMainScreen(CRData data);
void DisplayDetailsScreen(CRData data);
void DisplayStackFrameScreen(CRData data);
void DisplayTasksScreen(CRData data);
void DisplayConsoleScreen(CRData data);
}
void DivideByZeroExceptionHandler(CHArchTrapFrame *Frame);
void DebugExceptionHandler(CHArchTrapFrame *Frame);
void NonMaskableInterruptExceptionHandler(CHArchTrapFrame *Frame);
void BreakpointExceptionHandler(CHArchTrapFrame *Frame);
void OverflowExceptionHandler(CHArchTrapFrame *Frame);
void BoundRangeExceptionHandler(CHArchTrapFrame *Frame);
void InvalidOpcodeExceptionHandler(CHArchTrapFrame *Frame);
void DeviceNotAvailableExceptionHandler(CHArchTrapFrame *Frame);
void DoubleFaultExceptionHandler(CHArchTrapFrame *Frame);
void CoprocessorSegmentOverrunExceptionHandler(CHArchTrapFrame *Frame);
void InvalidTSSExceptionHandler(CHArchTrapFrame *Frame);
void SegmentNotPresentExceptionHandler(CHArchTrapFrame *Frame);
void StackFaultExceptionHandler(CHArchTrapFrame *Frame);
void GeneralProtectionExceptionHandler(CHArchTrapFrame *Frame);
void PageFaultExceptionHandler(CHArchTrapFrame *Frame);
void x87FloatingPointExceptionHandler(CHArchTrapFrame *Frame);
void AlignmentCheckExceptionHandler(CHArchTrapFrame *Frame);
void MachineCheckExceptionHandler(CHArchTrapFrame *Frame);
void SIMDFloatingPointExceptionHandler(CHArchTrapFrame *Frame);
void VirtualizationExceptionHandler(CHArchTrapFrame *Frame);
void SecurityExceptionHandler(CHArchTrapFrame *Frame);
void UnknownExceptionHandler(CHArchTrapFrame *Frame);
void UserModeExceptionHandler(CHArchTrapFrame *Frame);
#endif // !__FENNIX_KERNEL_CRASH_HANDLERS_FUNCTIONS_H__

View File

@ -1,95 +0,0 @@
#include <debug.h>
#include <uart.hpp>
#include <printf.h>
#include <lock.hpp>
NewLock(DebuggerLock);
using namespace UniversalAsynchronousReceiverTransmitter;
static inline __no_instrument_function void uart_wrapper(char c, void *unused)
{
UART(COM1).Write(c);
(void)unused;
}
static inline __no_instrument_function void WritePrefix(DebugLevel Level, const char *File, int Line, const char *Function)
{
const char *DbgLvlString;
switch (Level)
{
case DebugLevelError:
DbgLvlString = "ERROR";
break;
case DebugLevelWarning:
DbgLvlString = "WARN ";
break;
case DebugLevelInfo:
DbgLvlString = "INFO ";
break;
case DebugLevelDebug:
DbgLvlString = "DEBUG";
break;
case DebugLevelTrace:
DbgLvlString = "TRACE";
break;
case DebugLevelFixme:
DbgLvlString = "FIXME";
break;
case DebugLevelUbsan:
{
DbgLvlString = "UBSAN";
fctprintf(uart_wrapper, nullptr, "%s|%s: ", DbgLvlString, Function);
return;
}
default:
DbgLvlString = "UNKNW";
break;
}
fctprintf(uart_wrapper, nullptr, "%s|%s->%s:%d: ", DbgLvlString, File, Function, Line);
}
namespace SysDbg
{
__no_instrument_function void Write(DebugLevel Level, const char *File, int Line, const char *Function, const char *Format, ...)
{
WritePrefix(Level, File, Line, Function);
va_list args;
va_start(args, Format);
vfctprintf(uart_wrapper, nullptr, Format, args);
va_end(args);
}
__no_instrument_function void WriteLine(DebugLevel Level, const char *File, int Line, const char *Function, const char *Format, ...)
{
// SmartLock(DebuggerLock);
WritePrefix(Level, File, Line, Function);
va_list args;
va_start(args, Format);
vfctprintf(uart_wrapper, nullptr, Format, args);
va_end(args);
uart_wrapper('\n', nullptr);
}
}
// C compatibility
extern "C" __no_instrument_function void SysDbgWrite(enum DebugLevel Level, const char *File, int Line, const char *Function, const char *Format, ...)
{
WritePrefix(Level, File, Line, Function);
va_list args;
va_start(args, Format);
vfctprintf(uart_wrapper, nullptr, Format, args);
va_end(args);
}
// C compatibility
extern "C" __no_instrument_function void SysDbgWriteLine(enum DebugLevel Level, const char *File, int Line, const char *Function, const char *Format, ...)
{
WritePrefix(Level, File, Line, Function);
va_list args;
va_start(args, Format);
vfctprintf(uart_wrapper, nullptr, Format, args);
va_end(args);
uart_wrapper('\n', nullptr);
}

View File

@ -1,157 +0,0 @@
#include <disk.hpp>
#include <memory.hpp>
#include <printf.h>
#include "../kernel.h"
#include "../DAPI.hpp"
#include "../Fex.hpp"
namespace Disk
{
void Manager::FetchDisks(unsigned long DriverUID)
{
KernelCallback *callback = (KernelCallback *)KernelAllocator.RequestPages(TO_PAGES(sizeof(KernelCallback)));
memset(callback, 0, sizeof(KernelCallback));
callback->Reason = FetchReason;
DriverManager->IOCB(DriverUID, (void *)callback);
this->AvailablePorts = callback->DiskCallback.Fetch.Ports;
this->BytesPerSector = callback->DiskCallback.Fetch.BytesPerSector;
debug("AvailablePorts:%ld BytesPerSector:%ld", this->AvailablePorts, this->BytesPerSector);
if (this->AvailablePorts <= 0)
{
KernelAllocator.FreePages((void *)callback, TO_PAGES(sizeof(KernelCallback)));
return;
}
uint8_t *RWBuffer = (uint8_t *)KernelAllocator.RequestPages(TO_PAGES(this->BytesPerSector));
for (unsigned char ItrPort = 0; ItrPort < this->AvailablePorts; ItrPort++)
{
Drive *drive = new Drive;
sprintf_(drive->Name, "sd%ld-%d", DriverUID, this->AvailablePorts);
debug("Drive Name: %s", drive->Name);
// TODO: Implement disk type detection. Very useful in the future.
drive->MechanicalDisk = true;
memset(RWBuffer, 0, this->BytesPerSector);
memset(callback, 0, sizeof(KernelCallback));
callback->Reason = ReceiveReason;
callback->DiskCallback.RW = {
.Sector = 0,
.SectorCount = 2,
.Port = ItrPort,
.Buffer = RWBuffer,
.Write = false,
};
DriverManager->IOCB(DriverUID, (void *)callback);
memcpy(&drive->Table, RWBuffer, sizeof(PartitionTable));
/*
----> Add to devfs the disk
*/
if (drive->Table.GPT.Signature == GPT_MAGIC)
{
drive->Style = GPT;
uint32_t Entries = 512 / drive->Table.GPT.EntrySize;
uint32_t Sectors = drive->Table.GPT.PartCount / Entries;
for (uint32_t Block = 0; Block < Sectors; Block++)
{
memset(RWBuffer, 0, this->BytesPerSector);
memset(callback, 0, sizeof(KernelCallback));
callback->Reason = ReceiveReason;
callback->DiskCallback.RW = {
.Sector = 2 + Block,
.SectorCount = 1,
.Port = ItrPort,
.Buffer = RWBuffer,
.Write = false,
};
DriverManager->IOCB(DriverUID, (void *)callback);
for (uint32_t e = 0; e < Entries; e++)
{
GUIDPartitionTablePartition GPTPartition = reinterpret_cast<GUIDPartitionTablePartition *>(RWBuffer)[e];
if (GPTPartition.TypeLow || GPTPartition.TypeHigh)
{
Partition *partition = new Partition;
memcpy(partition->Label, GPTPartition.Label, sizeof(partition->Label));
partition->StartLBA = GPTPartition.StartLBA;
partition->EndLBA = GPTPartition.EndLBA;
partition->Sectors = partition->EndLBA - partition->StartLBA;
partition->Port = ItrPort;
partition->Flags = Present;
partition->Style = GPT;
if (GPTPartition.Attributes & 1)
partition->Flags |= EFISystemPartition;
partition->Index = drive->Partitions.size();
// why there is NUL (\0) between every char?????
char PartName[72];
memcpy(PartName, GPTPartition.Label, 72);
for (int i = 0; i < 72; i++)
if (PartName[i] == '\0')
PartName[i] = ' ';
PartName[71] = '\0';
trace("GPT partition \"%s\" found with %lld sectors", PartName, partition->Sectors);
drive->Partitions.push_back(partition);
char *PartitionName = new char[64];
sprintf_(PartitionName, "sd%ldp%ld", drives.size() - 1, partition->Index);
/*
----> Add to devfs the disk
*/
delete[] PartitionName;
}
}
}
trace("%d GPT partitions found.", drive->Partitions.size());
}
else if (drive->Table.MBR.Signature[0] == MBR_MAGIC0 && drive->Table.MBR.Signature[1] == MBR_MAGIC1)
{
drive->Style = MBR;
for (size_t p = 0; p < 4; p++)
if (drive->Table.MBR.Partitions[p].LBAFirst != 0)
{
Partition *partition = new Partition;
partition->StartLBA = drive->Table.MBR.Partitions[p].LBAFirst;
partition->EndLBA = drive->Table.MBR.Partitions[p].LBAFirst + drive->Table.MBR.Partitions[p].Sectors;
partition->Sectors = drive->Table.MBR.Partitions[p].Sectors;
partition->Port = ItrPort;
partition->Flags = Present;
partition->Style = MBR;
partition->Index = drive->Partitions.size();
trace("Partition \"%#llx\" found with %lld sectors.", drive->Table.MBR.UniqueID, partition->Sectors);
drive->Partitions.push_back(partition);
char *PartitionName = new char[64];
sprintf_(PartitionName, "sd%ldp%ld", drives.size() - 1, partition->Index);
/*
----> Add to devfs the disk
*/
delete[] PartitionName;
}
trace("%d MBR partitions found.", drive->Partitions.size());
}
else
warn("No partition table found on port %d!", ItrPort);
drives.push_back(drive);
}
KernelAllocator.FreePages((void *)callback, TO_PAGES(sizeof(KernelCallback)));
}
Manager::Manager()
{
}
Manager::~Manager()
{
}
}

View File

@ -1,472 +0,0 @@
#include <driver.hpp>
#include <interrupts.hpp>
#include <memory.hpp>
#include <task.hpp>
#include <lock.hpp>
#include <printf.h>
#include <cwalk.h>
#include <md5.h>
#include "../../kernel.h"
#include "../../DAPI.hpp"
#include "../../Fex.hpp"
#include "api.hpp"
NewLock(DriverInitLock);
NewLock(DriverInterruptLock);
namespace Driver
{
const char *DriverTypesName[] = {
"Unknown",
"Generic",
"Display",
"Network",
"Storage",
"FileSystem",
"Input",
"Audio"};
int Driver::IOCB(unsigned long DUID, void *KCB)
{
foreach (auto var in Drivers)
if (var->DriverUID == DUID)
{
FexExtended *DrvExtHdr = (FexExtended *)((uint64_t)var->Address + EXTENDED_SECTION_ADDRESS);
return ((int (*)(void *))((uint64_t)DrvExtHdr->Driver.Callback + (uint64_t)var->Address))(KCB);
}
return -1;
}
DriverCode Driver::CallDriverEntryPoint(void *fex)
{
KernelAPI *API = (KernelAPI *)KernelAllocator.RequestPages(TO_PAGES(sizeof(KernelAPI)));
memcpy(API, &KAPI, sizeof(KernelAPI));
API->Info.Offset = (unsigned long)fex;
API->Info.DriverUID = DriverUIDs++;
int ret = ((int (*)(KernelAPI *))((uint64_t)((Fex *)fex)->Pointer + (uint64_t)fex))(API);
if (DriverReturnCode::OK != ret)
return DriverCode::DRIVER_RETURNED_ERROR;
return DriverCode::OK;
}
DriverCode Driver::LoadDriver(uint64_t DriverAddress, uint64_t Size)
{
Fex *DrvHdr = (Fex *)DriverAddress;
if (DrvHdr->Magic[0] != 'F' || DrvHdr->Magic[1] != 'E' || DrvHdr->Magic[2] != 'X' || DrvHdr->Magic[3] != '\0')
return DriverCode::INVALID_FEX_HEADER;
debug("Fex Magic: \"%s\"; Type: %d; OS: %d; Pointer: %#lx", DrvHdr->Magic, DrvHdr->Type, DrvHdr->OS, DrvHdr->Pointer);
if (DrvHdr->Type == FexFormatType::FexFormatType_Driver)
{
FexExtended *DrvExtHdr = (FexExtended *)((uint64_t)DrvHdr + EXTENDED_SECTION_ADDRESS);
debug("Name: \"%s\"; Type: %d; Callback: %#lx", DrvExtHdr->Driver.Name, DrvExtHdr->Driver.Type, DrvExtHdr->Driver.Callback);
if (DrvExtHdr->Driver.Bind.Type == DriverBindType::BIND_PCI)
{
for (unsigned long Vidx = 0; Vidx < sizeof(DrvExtHdr->Driver.Bind.PCI.VendorID) / sizeof(DrvExtHdr->Driver.Bind.PCI.VendorID[0]); Vidx++)
for (unsigned long Didx = 0; Didx < sizeof(DrvExtHdr->Driver.Bind.PCI.DeviceID) / sizeof(DrvExtHdr->Driver.Bind.PCI.DeviceID[0]); Didx++)
{
if (Vidx >= sizeof(DrvExtHdr->Driver.Bind.PCI.VendorID) && Didx >= sizeof(DrvExtHdr->Driver.Bind.PCI.DeviceID))
break;
if (DrvExtHdr->Driver.Bind.PCI.VendorID[Vidx] == 0 || DrvExtHdr->Driver.Bind.PCI.DeviceID[Didx] == 0)
continue;
Vector<PCI::PCIDeviceHeader *> devices = PCIManager->FindPCIDevice(DrvExtHdr->Driver.Bind.PCI.VendorID[Vidx], DrvExtHdr->Driver.Bind.PCI.DeviceID[Didx]);
if (devices.size() == 0)
continue;
foreach (auto PCIDevice in devices)
{
debug("[%ld] VendorID: %#x; DeviceID: %#x", devices.size(), PCIDevice->VendorID, PCIDevice->DeviceID);
Fex *fex = (Fex *)KernelAllocator.RequestPages(TO_PAGES(Size));
memcpy(fex, (void *)DriverAddress, Size);
FexExtended *fexExtended = (FexExtended *)((uint64_t)fex + EXTENDED_SECTION_ADDRESS);
#ifdef DEBUG
uint8_t *result = md5File((uint8_t *)fex, Size);
debug("MD5: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x",
result[0], result[1], result[2], result[3], result[4], result[5], result[6], result[7],
result[8], result[9], result[10], result[11], result[12], result[13], result[14], result[15]);
kfree(result);
#endif
if (CallDriverEntryPoint(fex) != DriverCode::OK)
{
KernelAllocator.FreePages(fex, TO_PAGES(Size));
return DriverCode::DRIVER_RETURNED_ERROR;
}
debug("Starting driver %s", fexExtended->Driver.Name);
KernelCallback *KCallback = (KernelCallback *)KernelAllocator.RequestPages(TO_PAGES(sizeof(KernelCallback)));
switch (fexExtended->Driver.Type)
{
case FexDriverType::FexDriverType_Generic:
{
fixme("Generic driver: %s", fexExtended->Driver.Name);
break;
}
case FexDriverType::FexDriverType_Display:
{
fixme("Display driver: %s", fexExtended->Driver.Name);
break;
}
case FexDriverType::FexDriverType_Network:
{
DriverInterruptHook *InterruptHook = new DriverInterruptHook(((int)((PCI::PCIHeader0 *)devices[0])->InterruptLine) + 32, // x86
(void *)((uint64_t)fexExtended->Driver.Callback + (uint64_t)fex),
KCallback);
KCallback->RawPtr = PCIDevice;
KCallback->Reason = CallbackReason::ConfigurationReason;
int callbackret = ((int (*)(KernelCallback *))((uint64_t)fexExtended->Driver.Callback + (uint64_t)fex))(KCallback);
if (callbackret == DriverReturnCode::NOT_IMPLEMENTED)
{
KernelAllocator.FreePages(fex, TO_PAGES(Size));
KernelAllocator.FreePages(KCallback, TO_PAGES(sizeof(KernelCallback)));
delete InterruptHook;
error("Driver %s does not implement the configuration callback", fexExtended->Driver.Name);
continue;
}
else if (callbackret == DriverReturnCode::OK)
trace("Device found for driver: %s", fexExtended->Driver.Name);
else
{
KernelAllocator.FreePages(fex, TO_PAGES(Size));
KernelAllocator.FreePages(KCallback, TO_PAGES(sizeof(KernelCallback)));
delete InterruptHook;
error("Driver %s returned error %d", fexExtended->Driver.Name, callbackret);
continue;
}
memset(KCallback, 0, sizeof(KernelCallback));
KCallback->Reason = CallbackReason::InterruptReason;
DriverFile *drvfile = new DriverFile;
drvfile->DriverUID = KAPI.Info.DriverUID;
drvfile->Address = (void *)fex;
drvfile->InterruptHook[0] = InterruptHook;
Drivers.push_back(drvfile);
break;
}
case FexDriverType::FexDriverType_Storage:
{
KCallback->RawPtr = PCIDevice;
KCallback->Reason = CallbackReason::ConfigurationReason;
int callbackret = ((int (*)(KernelCallback *))((uint64_t)fexExtended->Driver.Callback + (uint64_t)fex))(KCallback);
if (callbackret == DriverReturnCode::NOT_IMPLEMENTED)
{
KernelAllocator.FreePages(fex, TO_PAGES(Size));
KernelAllocator.FreePages(KCallback, TO_PAGES(sizeof(KernelCallback)));
error("Driver %s does not implement the configuration callback", fexExtended->Driver.Name);
continue;
}
else if (callbackret == DriverReturnCode::OK)
trace("Device found for driver: %s", fexExtended->Driver.Name);
else
{
KernelAllocator.FreePages(fex, TO_PAGES(Size));
KernelAllocator.FreePages(KCallback, TO_PAGES(sizeof(KernelCallback)));
error("Driver %s returned error %d", fexExtended->Driver.Name, callbackret);
continue;
}
DriverFile *drvfile = new DriverFile;
drvfile->DriverUID = KAPI.Info.DriverUID;
drvfile->Address = (void *)fex;
drvfile->InterruptHook[0] = nullptr;
Drivers.push_back(drvfile);
break;
}
case FexDriverType::FexDriverType_FileSystem:
{
fixme("Filesystem driver: %s", fexExtended->Driver.Name);
break;
}
case FexDriverType::FexDriverType_Input:
{
fixme("Input driver: %s", fexExtended->Driver.Name);
break;
}
case FexDriverType::FexDriverType_Audio:
{
fixme("Audio driver: %s", fexExtended->Driver.Name);
break;
}
default:
{
warn("Unknown driver type: %d", fexExtended->Driver.Type);
break;
}
}
}
}
}
else if (DrvExtHdr->Driver.Bind.Type == DriverBindType::BIND_INTERRUPT)
{
Fex *fex = (Fex *)KernelAllocator.RequestPages(TO_PAGES(Size));
memcpy(fex, (void *)DriverAddress, Size);
FexExtended *fexExtended = (FexExtended *)((uint64_t)fex + EXTENDED_SECTION_ADDRESS);
#ifdef DEBUG
uint8_t *result = md5File((uint8_t *)fex, Size);
debug("MD5: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x",
result[0], result[1], result[2], result[3], result[4], result[5], result[6], result[7],
result[8], result[9], result[10], result[11], result[12], result[13], result[14], result[15]);
kfree(result);
#endif
if (CallDriverEntryPoint(fex) != DriverCode::OK)
{
KernelAllocator.FreePages(fex, TO_PAGES(Size));
return DriverCode::DRIVER_RETURNED_ERROR;
}
debug("Starting driver %s (offset: %#lx)", fexExtended->Driver.Name, fex);
KernelCallback *KCallback = (KernelCallback *)KernelAllocator.RequestPages(TO_PAGES(sizeof(KernelCallback)));
switch (fexExtended->Driver.Type)
{
case FexDriverType::FexDriverType_Generic:
{
fixme("Generic driver: %s", fexExtended->Driver.Name);
break;
}
case FexDriverType::FexDriverType_Display:
{
fixme("Display driver: %s", fexExtended->Driver.Name);
break;
}
case FexDriverType::FexDriverType_Network:
{
fixme("Network driver: %s", fexExtended->Driver.Name);
break;
}
case FexDriverType::FexDriverType_Storage:
{
for (unsigned long i = 0; i < sizeof(DrvExtHdr->Driver.Bind.Interrupt.Vector) / sizeof(DrvExtHdr->Driver.Bind.Interrupt.Vector[0]); i++)
{
if (DrvExtHdr->Driver.Bind.Interrupt.Vector[i] == 0)
break;
fixme("TODO: MULTIPLE BIND INTERRUPT VECTORS %d", DrvExtHdr->Driver.Bind.Interrupt.Vector[i]);
}
fixme("Not implemented");
KernelAllocator.FreePages(fex, TO_PAGES(Size));
KernelAllocator.FreePages(KCallback, TO_PAGES(sizeof(KernelCallback)));
break;
KCallback->RawPtr = nullptr;
KCallback->Reason = CallbackReason::ConfigurationReason;
int callbackret = ((int (*)(KernelCallback *))((uint64_t)fexExtended->Driver.Callback + (uint64_t)fex))(KCallback);
if (callbackret == DriverReturnCode::NOT_IMPLEMENTED)
{
KernelAllocator.FreePages(fex, TO_PAGES(Size));
KernelAllocator.FreePages(KCallback, TO_PAGES(sizeof(KernelCallback)));
error("Driver %s does not implement the configuration callback", fexExtended->Driver.Name);
break;
}
else if (callbackret != DriverReturnCode::OK)
{
KernelAllocator.FreePages(fex, TO_PAGES(Size));
KernelAllocator.FreePages(KCallback, TO_PAGES(sizeof(KernelCallback)));
error("Driver %s returned error %d", fexExtended->Driver.Name, callbackret);
break;
}
KernelAllocator.FreePages(fex, TO_PAGES(Size));
KernelAllocator.FreePages(KCallback, TO_PAGES(sizeof(KernelCallback)));
// DriverFile *drvfile = new DriverFile;
// Drivers.push_back(drvfile);
break;
}
case FexDriverType::FexDriverType_FileSystem:
{
fixme("Filesystem driver: %s", fexExtended->Driver.Name);
break;
}
case FexDriverType::FexDriverType_Input:
{
DriverInterruptHook *InterruptHook = nullptr;
if (DrvExtHdr->Driver.Bind.Interrupt.Vector[0] != 0)
InterruptHook = new DriverInterruptHook(DrvExtHdr->Driver.Bind.Interrupt.Vector[0] + 32, // x86
(void *)((uint64_t)fexExtended->Driver.Callback + (uint64_t)fex),
KCallback);
for (unsigned long i = 0; i < sizeof(DrvExtHdr->Driver.Bind.Interrupt.Vector) / sizeof(DrvExtHdr->Driver.Bind.Interrupt.Vector[0]); i++)
{
if (DrvExtHdr->Driver.Bind.Interrupt.Vector[i] == 0)
break;
// InterruptHook = new DriverInterruptHook(DrvExtHdr->Driver.Bind.Interrupt.Vector[i] + 32, // x86
// (void *)((uint64_t)fexExtended->Driver.Callback + (uint64_t)fex),
// KCallback);
fixme("TODO: MULTIPLE BIND INTERRUPT VECTORS %d", DrvExtHdr->Driver.Bind.Interrupt.Vector[i]);
}
KCallback->RawPtr = nullptr;
KCallback->Reason = CallbackReason::ConfigurationReason;
int callbackret = ((int (*)(KernelCallback *))((uint64_t)fexExtended->Driver.Callback + (uint64_t)fex))(KCallback);
if (callbackret == DriverReturnCode::NOT_IMPLEMENTED)
{
KernelAllocator.FreePages(fex, TO_PAGES(Size));
KernelAllocator.FreePages(KCallback, TO_PAGES(sizeof(KernelCallback)));
error("Driver %s does not implement the configuration callback", fexExtended->Driver.Name);
break;
}
else if (callbackret != DriverReturnCode::OK)
{
KernelAllocator.FreePages(fex, TO_PAGES(Size));
KernelAllocator.FreePages(KCallback, TO_PAGES(sizeof(KernelCallback)));
error("Driver %s returned error %d", fexExtended->Driver.Name, callbackret);
break;
}
memset(KCallback, 0, sizeof(KernelCallback));
KCallback->Reason = CallbackReason::InterruptReason;
DriverFile *drvfile = new DriverFile;
drvfile->DriverUID = KAPI.Info.DriverUID;
drvfile->Address = (void *)fex;
drvfile->InterruptHook[0] = InterruptHook;
Drivers.push_back(drvfile);
break;
}
case FexDriverType::FexDriverType_Audio:
{
fixme("Audio driver: %s", fexExtended->Driver.Name);
break;
}
default:
{
warn("Unknown driver type: %d", fexExtended->Driver.Type);
break;
}
}
}
else if (DrvExtHdr->Driver.Bind.Type == DriverBindType::BIND_PROCESS)
{
fixme("Process driver: %s", DrvExtHdr->Driver.Name);
}
else if (DrvExtHdr->Driver.Bind.Type == DriverBindType::BIND_INPUT)
{
Fex *fex = (Fex *)KernelAllocator.RequestPages(TO_PAGES(Size));
memcpy(fex, (void *)DriverAddress, Size);
FexExtended *fexExtended = (FexExtended *)((uint64_t)fex + EXTENDED_SECTION_ADDRESS);
#ifdef DEBUG
uint8_t *result = md5File((uint8_t *)fex, Size);
debug("MD5: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x",
result[0], result[1], result[2], result[3], result[4], result[5], result[6], result[7],
result[8], result[9], result[10], result[11], result[12], result[13], result[14], result[15]);
kfree(result);
#endif
if (CallDriverEntryPoint(fex) != DriverCode::OK)
{
KernelAllocator.FreePages(fex, TO_PAGES(Size));
return DriverCode::DRIVER_RETURNED_ERROR;
}
debug("Starting driver %s (offset: %#lx)", fexExtended->Driver.Name, fex);
KernelCallback *KCallback = (KernelCallback *)KernelAllocator.RequestPages(TO_PAGES(sizeof(KernelCallback)));
switch (fexExtended->Driver.Type)
{
case FexDriverType::FexDriverType_Input:
{
fixme("Input driver: %s", fexExtended->Driver.Name);
KCallback->RawPtr = nullptr;
break;
KCallback->Reason = CallbackReason::ConfigurationReason;
int callbackret = ((int (*)(KernelCallback *))((uint64_t)fexExtended->Driver.Callback + (uint64_t)fex))(KCallback);
if (callbackret == DriverReturnCode::NOT_IMPLEMENTED)
{
KernelAllocator.FreePages(fex, TO_PAGES(Size));
KernelAllocator.FreePages(KCallback, TO_PAGES(sizeof(KernelCallback)));
error("Driver %s does not implement the configuration callback", fexExtended->Driver.Name);
break;
}
else if (callbackret != DriverReturnCode::OK)
{
KernelAllocator.FreePages(fex, TO_PAGES(Size));
KernelAllocator.FreePages(KCallback, TO_PAGES(sizeof(KernelCallback)));
error("Driver %s returned error %d", fexExtended->Driver.Name, callbackret);
break;
}
KernelAllocator.FreePages(fex, TO_PAGES(Size));
KernelAllocator.FreePages(KCallback, TO_PAGES(sizeof(KernelCallback)));
DriverFile *drvfile = new DriverFile;
drvfile->DriverUID = KAPI.Info.DriverUID;
drvfile->Address = (void *)fex;
drvfile->InterruptHook[0] = nullptr;
Drivers.push_back(drvfile);
break;
}
default:
{
warn("Unknown driver type: %d", fexExtended->Driver.Type);
break;
}
}
}
else
{
error("Unknown driver bind type: %d", DrvExtHdr->Driver.Bind.Type);
}
}
else
return DriverCode::NOT_DRIVER;
return DriverCode::OK;
}
Driver::Driver()
{
SmartCriticalSection(DriverInitLock);
FileSystem::FILE *DriverDirectory = vfs->Open(Config.DriverDirectory);
if (DriverDirectory->Status == FileSystem::FileStatus::OK)
foreach (auto driver in DriverDirectory->Node->Children)
if (driver->Flags == FileSystem::NodeFlags::FS_FILE)
if (cwk_path_has_extension(driver->Name))
{
const char *extension;
cwk_path_get_extension(driver->Name, &extension, nullptr);
if (!strcmp(extension, ".fex"))
{
uint64_t ret = this->LoadDriver(driver->Address, driver->Length);
char retstring[128];
if (ret == DriverCode::OK)
strncpy(retstring, "\e058C19OK", 64);
else
sprintf_(retstring, "\eE85230FAILED (%#lx)", ret);
KPrint("%s %s", driver->Name, retstring);
}
}
vfs->Close(DriverDirectory);
}
Driver::~Driver()
{
}
#if defined(__amd64__)
void DriverInterruptHook::OnInterruptReceived(CPU::x64::TrapFrame *Frame)
#elif defined(__i386__)
void DriverInterruptHook::OnInterruptReceived(void *Frame)
#elif defined(__aarch64__)
void DriverInterruptHook::OnInterruptReceived(void *Frame)
#endif
{
SmartCriticalSection(DriverInterruptLock);
((int (*)(void *))(Handle))(Data);
}
DriverInterruptHook::DriverInterruptHook(int Interrupt, void *Address, void *ParamData) : Interrupts::Handler(Interrupt)
{
trace("Interrupt %d Hooked", Interrupt - 32); // x86
Handle = Address;
Data = ParamData;
}
}

View File

@ -1,131 +0,0 @@
#include <driver.hpp>
#include <dumper.hpp>
#include <lock.hpp>
#include "../../kernel.h"
#include "../../Fex.hpp"
#include "api.hpp"
NewLock(DriverDisplayPrintLock);
void DriverDebugPrint(char *String, unsigned long DriverUID)
{
SmartLock(DriverDisplayPrintLock);
trace("[%ld] %s", DriverUID, String);
}
void DriverDisplayPrint(char *String)
{
SmartLock(DriverDisplayPrintLock);
for (unsigned long i = 0; i < strlen(String); i++)
Display->Print(String[i], 0, true);
}
void *RequestPage(unsigned long Size)
{
SmartLock(DriverDisplayPrintLock);
// debug("Requesting %ld pages from the kernel...", Size);
void *ret = KernelAllocator.RequestPages(Size);
// debug("Got %#lx", ret);
return ret;
}
void FreePage(void *Page, unsigned long Size)
{
SmartLock(DriverDisplayPrintLock);
debug("Freeing %ld pages from the address %#lx...", Size, (unsigned long)Page);
KernelAllocator.FreePages(Page, Size);
}
void MapMemory(void *VirtualAddress, void *PhysicalAddress, unsigned long Flags)
{
SmartLock(DriverDisplayPrintLock);
debug("Mapping %#lx to %#lx with flags %#lx...", (unsigned long)VirtualAddress, (unsigned long)PhysicalAddress, Flags);
Memory::Virtual().Map(VirtualAddress, PhysicalAddress, Flags);
}
void UnmapMemory(void *VirtualAddress)
{
SmartLock(DriverDisplayPrintLock);
debug("Unmapping %#lx...", (unsigned long)VirtualAddress);
Memory::Virtual().Unmap(VirtualAddress);
}
void *Drivermemcpy(void *Destination, void *Source, unsigned long Size)
{
SmartLock(DriverDisplayPrintLock);
// debug("Copying %ld bytes from %#lx to %#lx...", Size, (unsigned long)Source, (unsigned long)Destination);
return memcpy(Destination, Source, Size);
}
void *Drivermemset(void *Destination, int Value, unsigned long Size)
{
SmartLock(DriverDisplayPrintLock);
// debug("Setting %ld bytes from %#lx to %#x...", Size, (unsigned long)Destination, Value);
return memset(Destination, Value, Size);
}
void DriverNetSend(unsigned int DriverID, unsigned char *Data, unsigned short Size)
{
DumpData("DriverNetSend", Data, Size);
}
void DriverNetReceive(unsigned int DriverID, unsigned char *Data, unsigned short Size)
{
DumpData("DriverNetReceive", Data, Size);
}
void DriverAHCIDiskRead(unsigned int DriverID, unsigned long Sector, unsigned char *Data, unsigned int SectorCount, unsigned char Port)
{
DumpData("DriverDiskRead", Data, SectorCount * 512);
}
void DriverAHCIDiskWrite(unsigned int DriverID, unsigned long Sector, unsigned char *Data, unsigned int SectorCount, unsigned char Port)
{
DumpData("DriverDiskWrite", Data, SectorCount * 512);
}
char *DriverPCIGetDeviceName(unsigned int VendorID, unsigned int DeviceID)
{
return (char *)"Unknown";
}
KernelAPI KAPI = {
.Version = {
.Major = 0,
.Minor = 0,
.Patch = 1},
.Info = {
.Offset = 0,
.DriverUID = 0,
},
.Memory = {
.PageSize = PAGE_SIZE,
.RequestPage = RequestPage,
.FreePage = FreePage,
.Map = MapMemory,
.Unmap = UnmapMemory,
},
.PCI = {
.GetDeviceName = DriverPCIGetDeviceName,
},
.Util = {
.DebugPrint = DriverDebugPrint,
.DisplayPrint = DriverDisplayPrint,
.memcpy = Drivermemcpy,
.memset = Drivermemset,
},
.Command = {
.Network = {
.SendPacket = DriverNetSend,
.ReceivePacket = DriverNetReceive,
},
.Disk = {
.AHCI = {
.ReadSector = DriverAHCIDiskRead,
.WriteSector = DriverAHCIDiskWrite,
},
},
},
};

View File

@ -1,10 +0,0 @@
#ifndef __FENNIX_KERNEL_DRIVER_API_H__
#define __FENNIX_KERNEL_DRIVER_API_H__
#include <types.h>
#include "../../DAPI.hpp"
extern KernelAPI KAPI;
#endif // !__FENNIX_KERNEL_DRIVER_API_H__

View File

@ -1,186 +0,0 @@
#include <interrupts.hpp>
#include <syscalls.hpp>
#include <hashmap.hpp>
#include <smp.hpp>
#include <io.h>
#if defined(__amd64__)
#include "../Architecture/amd64/cpu/gdt.hpp"
#include "../Architecture/amd64/cpu/idt.hpp"
#include "../Architecture/amd64/acpi.hpp"
#include "../Architecture/amd64/cpu/apic.hpp"
#elif defined(__i386__)
#include "../Architecture/i686/cpu/gdt.hpp"
#include "../Architecture/i686/cpu/idt.hpp"
#elif defined(__aarch64__)
#endif
#include "../crashhandler.hpp"
#include "../kernel.h"
extern "C" SafeFunction void ExceptionHandler(void *Data) { CrashHandler::Handle(Data); }
namespace Interrupts
{
HashMap<int, uint64_t> *RegisteredEvents;
#if defined(__amd64__)
/* APIC::APIC */ void *apic[MAX_CPU];
/* APIC::Timer */ void *apicTimer[MAX_CPU];
#elif defined(__i386__)
/* APIC::APIC */ void *apic[MAX_CPU];
#elif defined(__aarch64__)
#endif
void *InterruptFrames[INT_FRAMES_MAX];
void Initialize(int Core)
{
static int once = 0;
if (!once++)
RegisteredEvents = new HashMap<int, uint64_t>;
#if defined(__amd64__)
GlobalDescriptorTable::Init(Core);
InterruptDescriptorTable::Init(Core);
CPUData *CoreData = GetCPU(Core);
CoreData->Checksum = CPU_DATA_CHECKSUM;
CPU::x64::wrmsr(CPU::x64::MSR_GS_BASE, (uint64_t)CoreData);
CPU::x64::wrmsr(CPU::x64::MSR_SHADOW_GS_BASE, (uint64_t)CoreData);
CoreData->ID = Core;
CoreData->IsActive = true;
CoreData->SystemCallStack = (uint8_t *)((uint64_t)KernelAllocator.RequestPages(TO_PAGES(STACK_SIZE)) + STACK_SIZE);
CoreData->Stack = (uint64_t)KernelAllocator.RequestPages(TO_PAGES(STACK_SIZE)) + STACK_SIZE;
if (CoreData->Checksum != CPU_DATA_CHECKSUM)
{
KPrint("CPU %d checksum mismatch! %x != %x", Core, CoreData->Checksum, CPU_DATA_CHECKSUM);
CPU::Stop();
}
debug("Stack for core %d is %#lx (Address: %#lx)", Core, CoreData->Stack, CoreData->Stack - STACK_SIZE);
asmv("movq %0, %%rsp" ::"r"(CoreData->Stack));
InitializeSystemCalls();
#elif defined(__i386__)
warn("i386 is not supported yet");
#elif defined(__aarch64__)
warn("aarch64 is not supported yet");
#endif
}
void Enable(int Core)
{
#if defined(__amd64__)
if (((ACPI::MADT *)PowerManager->GetMADT())->LAPICAddress != nullptr)
{
// TODO: This function is called by SMP too. Do not initialize timers that doesn't support multiple cores.
apic[Core] = new APIC::APIC(Core);
((APIC::APIC *)apic[Core])->RedirectIRQs(Core);
}
else
{
error("LAPIC not found");
// TODO: PIC
}
#elif defined(__i386__)
warn("i386 is not supported yet");
#elif defined(__aarch64__)
warn("aarch64 is not supported yet");
#endif
}
void InitializeTimer(int Core)
{
// TODO: This function is called by SMP too. Do not initialize timers that doesn't support multiple cores.
#if defined(__amd64__)
if (apic[Core] != nullptr)
apicTimer[Core] = new APIC::Timer((APIC::APIC *)apic[Core]);
else
{
fixme("apic not found");
}
#elif defined(__i386__)
warn("i386 is not supported yet");
#elif defined(__aarch64__)
warn("aarch64 is not supported yet");
#endif
}
void RemoveAll()
{
for (int i = 0; i < CPU::x64::IRQ223; i++)
RegisteredEvents->DeleteNode(i);
}
extern "C" SafeFunction void MainInterruptHandler(void *Data)
{
#if defined(__amd64__)
CPU::x64::TrapFrame *Frame = (CPU::x64::TrapFrame *)Data;
memmove(InterruptFrames + 1, InterruptFrames, sizeof(InterruptFrames) - sizeof(InterruptFrames[0]));
InterruptFrames[0] = (void *)Frame->rip;
CPUData *CoreData = GetCurrentCPU();
int Core = 0;
if (likely(CoreData != nullptr))
Core = CoreData->ID;
// If this is false, we have a big problem.
if (likely(Frame->InterruptNumber < CPU::x64::IRQ223 && Frame->InterruptNumber > CPU::x64::ISR0))
{
Handler *handler = (Handler *)RegisteredEvents->Get(Frame->InterruptNumber);
if (likely(handler != (Handler *)0xdeadbeef))
handler->OnInterruptReceived(Frame);
else
error("Unhandled IRQ%ld on CPU %d.", Frame->InterruptNumber - 32, Core);
if (likely(apic[Core]))
{
((APIC::APIC *)Interrupts::apic[Core])->EOI();
// TODO: Handle PIC too
return;
}
// TODO: PIC
}
#elif defined(__i386__)
void *Frame = Data;
#elif defined(__aarch64__)
void *Frame = Data;
#endif
error("HALT HALT HALT HALT HALT HALT HALT HALT HALT");
CPU::Stop();
}
Handler::Handler(int InterruptNumber)
{
if (RegisteredEvents->Get(InterruptNumber) != (uint64_t)0xdeadbeef)
{
warn("IRQ%d is already registered.", InterruptNumber - 32);
return;
}
debug("Registering interrupt handler for IRQ%d.", InterruptNumber - 32);
this->InterruptNumber = InterruptNumber;
RegisteredEvents->AddNode(InterruptNumber, (uint64_t)this);
}
Handler::~Handler()
{
debug("Unregistering interrupt handler for IRQ%d.", InterruptNumber - 32);
if (RegisteredEvents->DeleteNode(InterruptNumber) == 0xdeadbeef)
warn("Node %d not found.", InterruptNumber);
}
#if defined(__amd64__)
void Handler::OnInterruptReceived(CPU::x64::TrapFrame *Frame)
{
trace("Unhandled interrupt IRQ%d", Frame->InterruptNumber - 32);
#elif defined(__i386__)
void Handler::OnInterruptReceived(void *Frame)
{
trace("Unhandled interrupt received");
#elif defined(__aarch64__)
void Handler::OnInterruptReceived(void *Frame)
{
trace("Unhandled interrupt received");
#endif
}
}

View File

@ -1,87 +0,0 @@
#include <lock.hpp>
#include <debug.h>
#include <smp.hpp>
#include "../kernel.h"
void LockClass::DeadLock(SpinLockData Lock)
{
CPUData *CoreData = GetCurrentCPU();
long CCore = 0xdead;
if (CoreData != nullptr)
CCore = CoreData->ID;
warn("Potential deadlock in lock '%s' held by '%s'! %ld locks in queue. Core %ld is being held by %ld. (%ld times happened)",
Lock.AttemptingToGet, Lock.CurrentHolder,
Lock.Count, CCore, Lock.Core,
this->DeadLocks);
// TODO: Print on screen too.
this->DeadLocks++;
if (Config.UnlockDeadLock && this->DeadLocks > 10)
{
warn("Unlocking lock '%s' held by '%s'! %ld locks in queue. Core %ld is being held by %ld.",
Lock.AttemptingToGet, Lock.CurrentHolder,
Lock.Count, CCore, Lock.Core);
this->DeadLocks = 0;
this->Unlock();
}
if (TaskManager)
TaskManager->Schedule();
}
int LockClass::Lock(const char *FunctionName)
{
// LockData.AttemptingToGet = FunctionName;
// SpinLock_Lock(&LockData.LockData);
// LockData.Count++;
// LockData.CurrentHolder = FunctionName;
// CPUData *CoreData = GetCurrentCPU();
// if (CoreData != nullptr)
// LockData.Core = CoreData->ID;
// __sync_synchronize();
// while (!__sync_bool_compare_and_swap(&IsLocked, false, true))
// CPU::Pause();
// __sync_synchronize();
LockData.AttemptingToGet = FunctionName;
Retry:
unsigned int i = 0;
while (__atomic_exchange_n(&IsLocked, true, __ATOMIC_ACQUIRE) && ++i < 0x10000000)
CPU::Pause();
if (i >= 0x10000000)
{
DeadLock(LockData);
goto Retry;
}
LockData.Count++;
LockData.CurrentHolder = FunctionName;
CPUData *CoreData = GetCurrentCPU();
if (CoreData != nullptr)
LockData.Core = CoreData->ID;
__sync_synchronize();
return 0;
}
int LockClass::Unlock()
{
// SpinLock_Unlock(&LockData.LockData);
// LockData.Count--;
// __sync_synchronize();
// __sync_synchronize();
// __atomic_store_n(&IsLocked, false, __ATOMIC_SEQ_CST);
// IsLocked = false;
__sync_synchronize();
__atomic_store_n(&IsLocked, false, __ATOMIC_RELEASE);
LockData.Count--;
IsLocked = false;
return 0;
}

View File

@ -1,285 +0,0 @@
#include "Xalloc.hpp"
namespace Xalloc
{
class XLockClass
{
struct SpinLockData
{
uint64_t LockData = 0x0;
const char *CurrentHolder = "(nul)";
const char *AttemptingToGet = "(nul)";
uint64_t Count = 0;
};
void DeadLock(SpinLockData Lock)
{
Xalloc_warn("Potential deadlock in lock '%s' held by '%s'! %ld locks in queue.", Lock.AttemptingToGet, Lock.CurrentHolder, Lock.Count);
}
private:
SpinLockData LockData;
bool IsLocked = false;
public:
int Lock(const char *FunctionName)
{
LockData.AttemptingToGet = FunctionName;
Retry:
unsigned int i = 0;
while (__atomic_exchange_n(&IsLocked, true, __ATOMIC_ACQUIRE) && ++i < 0x10000000)
;
if (i >= 0x10000000)
{
DeadLock(LockData);
goto Retry;
}
LockData.Count++;
LockData.CurrentHolder = FunctionName;
__sync_synchronize();
return 0;
}
int Unlock()
{
__sync_synchronize();
__atomic_store_n(&IsLocked, false, __ATOMIC_RELEASE);
LockData.Count--;
IsLocked = false;
return 0;
}
};
class XSmartLock
{
private:
XLockClass *LockPointer = nullptr;
public:
XSmartLock(XLockClass &Lock, const char *FunctionName)
{
this->LockPointer = &Lock;
this->LockPointer->Lock(FunctionName);
}
~XSmartLock() { this->LockPointer->Unlock(); }
};
XLockClass XLock;
#define XSL XSmartLock CONCAT(lock##_, __COUNTER__)(XLock, __FUNCTION__)
class SmartSMAPClass
{
private:
AllocatorV1 *allocator = nullptr;
public:
SmartSMAPClass(AllocatorV1 *allocator)
{
this->allocator = allocator;
this->allocator->Xstac();
}
~SmartSMAPClass() { this->allocator->Xclac(); }
};
#define SmartSMAP SmartSMAPClass XALLOC_CONCAT(SmartSMAP##_, __COUNTER__)(this)
AllocatorV1::AllocatorV1(void *Address, bool UserMode, bool SMAPEnabled)
{
SmartSMAP;
XSL;
void *Position = Address;
UserMapping = UserMode;
SMAPUsed = SMAPEnabled;
for (Xuint64_t i = 0; i < 0x20; i++)
{
void *Page = Xalloc_REQUEST_PAGE();
if (UserMapping)
Xalloc_MAP_MEMORY(Position, Page, Xalloc_MAP_MEMORY_READ_WRITE | Xalloc_MAP_MEMORY_USER);
else
Xalloc_MAP_MEMORY(Position, Page, Xalloc_MAP_MEMORY_READ_WRITE);
Xalloc_trace("Preallocate Heap Memory (%#llx-%#llx [%#llx])...", Position, (Xuint64_t)Position + Xalloc_PAGE_SIZE, Page);
Position = (void *)((Xuint64_t)Position + Xalloc_PAGE_SIZE);
}
Xuint64_t HeapLength = 16 * Xalloc_PAGE_SIZE;
this->HeapStart = Address;
this->HeapEnd = (void *)((Xuint64_t)this->HeapStart + HeapLength);
HeapSegment *StartSegment = (HeapSegment *)Address;
StartSegment->Length = HeapLength - sizeof(HeapSegment);
StartSegment->Next = nullptr;
StartSegment->Last = nullptr;
StartSegment->IsFree = true;
this->LastSegment = StartSegment;
}
AllocatorV1::~AllocatorV1()
{
SmartSMAP;
XSL;
Xalloc_trace("Destructor not implemented yet.");
}
void AllocatorV1::ExpandHeap(Xuint64_t Length)
{
if (Length % Xalloc_PAGE_SIZE)
{
Length -= Length % Xalloc_PAGE_SIZE;
Length += Xalloc_PAGE_SIZE;
}
Xuint64_t PageCount = Length / Xalloc_PAGE_SIZE;
HeapSegment *NewSegment = (HeapSegment *)this->HeapEnd;
for (Xuint64_t i = 0; i < PageCount; i++)
{
void *Page = Xalloc_REQUEST_PAGE();
if (UserMapping)
Xalloc_MAP_MEMORY(this->HeapEnd, Page, Xalloc_MAP_MEMORY_READ_WRITE | Xalloc_MAP_MEMORY_USER);
else
Xalloc_MAP_MEMORY(this->HeapEnd, Page, Xalloc_MAP_MEMORY_READ_WRITE);
// Xalloc_trace("Expanding Heap Memory (%#llx-%#llx [%#llx])...", this->HeapEnd, (Xuint64_t)this->HeapEnd + Xalloc_PAGE_SIZE, Page);
this->HeapEnd = (void *)((Xuint64_t)this->HeapEnd + Xalloc_PAGE_SIZE);
}
NewSegment->IsFree = true;
NewSegment->Last = this->LastSegment;
this->LastSegment->Next = NewSegment;
this->LastSegment = NewSegment;
NewSegment->Next = nullptr;
NewSegment->Length = Length - sizeof(HeapSegment);
NewSegment->CombineBackward(this->LastSegment);
}
void *AllocatorV1::Malloc(Xuint64_t Size)
{
SmartSMAP;
XSL;
if (this->HeapStart == nullptr)
{
Xalloc_err("Memory allocation not initialized yet!");
return 0;
}
if (Size < 0x10)
{
// Xalloc_warn("Allocation size is too small, using 0x10 instead!");
Size = 0x10;
}
// #ifdef DEBUG
// if (Size < 1024)
// debug("Allocating %dB", Size);
// else if (TO_KB(Size) < 1024)
// debug("Allocating %dKB", TO_KB(Size));
// else if (TO_MB(Size) < 1024)
// debug("Allocating %dMB", TO_MB(Size));
// else if (TO_GB(Size) < 1024)
// debug("Allocating %dGB", TO_GB(Size));
// #endif
if (Size % 0x10 > 0) // it is not a multiple of 0x10
{
Size -= (Size % 0x10);
Size += 0x10;
}
if (Size == 0)
{
return nullptr;
}
HeapSegment *CurrentSegment = (HeapSegment *)this->HeapStart;
while (true)
{
if (CurrentSegment->IsFree)
{
if (CurrentSegment->Length > Size)
{
CurrentSegment->Split(Size, this->LastSegment);
CurrentSegment->IsFree = false;
return (void *)((Xuint64_t)CurrentSegment + sizeof(HeapSegment));
}
if (CurrentSegment->Length == Size)
{
CurrentSegment->IsFree = false;
return (void *)((Xuint64_t)CurrentSegment + sizeof(HeapSegment));
}
}
if (CurrentSegment->Next == nullptr)
break;
CurrentSegment = CurrentSegment->Next;
}
ExpandHeap(Size);
XLock.Unlock();
return this->Malloc(Size);
}
void AllocatorV1::Free(void *Address)
{
SmartSMAP;
XSL;
if (this->HeapStart == nullptr)
{
Xalloc_err("Memory allocation not initialized yet!");
return;
}
HeapSegment *Segment = (HeapSegment *)Address - 1;
Segment->IsFree = true;
Segment->CombineForward(this->LastSegment);
Segment->CombineBackward(this->LastSegment);
}
void *AllocatorV1::Calloc(Xuint64_t NumberOfBlocks, Xuint64_t Size)
{
SmartSMAP;
XSL;
if (this->HeapStart == nullptr)
{
Xalloc_err("Memory allocation not initialized yet!");
return 0;
}
if (Size < 0x10)
{
// Xalloc_warn("Allocation size is too small, using 0x10 instead!");
Size = 0x10;
}
XLock.Unlock();
void *Block = this->Malloc(NumberOfBlocks * Size);
XLock.Lock(__FUNCTION__);
if (Block)
Xmemset(Block, 0, NumberOfBlocks * Size);
return Block;
}
void *AllocatorV1::Realloc(void *Address, Xuint64_t Size)
{
SmartSMAP;
XSL;
if (this->HeapStart == nullptr)
{
Xalloc_err("Memory allocation not initialized yet!");
return 0;
}
if (!Address && Size == 0)
{
XLock.Unlock();
this->Free(Address);
return nullptr;
}
else if (!Address)
{
XLock.Unlock();
return this->Calloc(Size, sizeof(char));
}
if (Size < 0x10)
{
// Xalloc_warn("Allocation size is too small, using 0x10 instead!");
Size = 0x10;
}
XLock.Unlock();
void *newAddress = this->Calloc(Size, sizeof(char));
XLock.Lock(__FUNCTION__);
Xmemcpy(newAddress, Address, Size);
return newAddress;
}
}

View File

@ -1,180 +0,0 @@
#pragma once
#include <memory.hpp>
#include <debug.h>
// Functions defines
// Page allocation functions
#define Xalloc_REQUEST_PAGE() KernelAllocator.RequestPage()
#define Xalloc_REQUEST_PAGES(Pages) KernelAllocator.RequestPages(Pages)
#define Xalloc_FREE_PAGE(Address) KernelAllocator.FreePage(Address)
#define Xalloc_FREE_PAGES(Address, Pages) KernelAllocator.FreePages(Address, Pages)
#define Xalloc_MAP_MEMORY(VirtualAddress, PhysicalAddress, Flags) Memory::Virtual(KernelPageTable).Map(VirtualAddress, PhysicalAddress, Flags)
#define Xalloc_UNMAP_MEMORY(VirtualAddress) Memory::Virtual(KernelPageTable).Unmap(VirtualAddress)
#define Xalloc_MAP_MEMORY_READ_WRITE Memory::PTFlag::RW
#define Xalloc_MAP_MEMORY_USER Memory::PTFlag::US
#define Xalloc_PAGE_SIZE PAGE_SIZE
#define Xalloc_trace(m, ...) trace(m, ##__VA_ARGS__)
#define Xalloc_warn(m, ...) warn(m, ##__VA_ARGS__)
#define Xalloc_err(m, ...) error(m, ##__VA_ARGS__)
#define XALLOC_CONCAT(x, y) x##y
typedef long unsigned Xuint64_t;
namespace Xalloc
{
class AllocatorV1
{
private:
struct HeapSegment
{
Xuint64_t Length;
HeapSegment *Next;
HeapSegment *Last;
bool IsFree;
HeapSegment *Split(Xuint64_t SplitLength, HeapSegment *LastSegment)
{
if (SplitLength < 0x10)
return nullptr;
int64_t SplitSegmentLength = Length - SplitLength - (sizeof(HeapSegment));
if (SplitSegmentLength < 0x10)
return nullptr;
HeapSegment *NewSplitHdr = (HeapSegment *)((Xuint64_t)this + SplitLength + sizeof(HeapSegment));
Next->Last = NewSplitHdr;
NewSplitHdr->Next = Next;
Next = NewSplitHdr;
NewSplitHdr->Last = this;
NewSplitHdr->Length = SplitSegmentLength;
NewSplitHdr->IsFree = IsFree;
Length = SplitLength;
if (LastSegment == this)
LastSegment = NewSplitHdr;
return NewSplitHdr;
}
void CombineForward(HeapSegment *LastSegment)
{
if (Next == nullptr)
return;
if (Next->IsFree == false)
return;
if (Next == LastSegment)
LastSegment = this;
if (Next->Next != nullptr)
Next->Next->Last = this;
Length = Length + Next->Length + sizeof(HeapSegment);
Next = Next->Next;
}
void CombineBackward(HeapSegment *LastSegment)
{
if (Last != nullptr && Last->IsFree)
Last->CombineForward(LastSegment);
}
} __attribute__((aligned(16)));
void *HeapStart = nullptr;
void *HeapEnd = nullptr;
HeapSegment *LastSegment = nullptr;
bool UserMapping = false;
bool SMAPUsed = false;
void ExpandHeap(Xuint64_t Length);
// TODO: Change memcpy with an optimized version
static inline void *Xmemcpy(void *__restrict__ Destination, const void *__restrict__ Source, Xuint64_t Length)
{
unsigned char *dst = (unsigned char *)Destination;
const unsigned char *src = (const unsigned char *)Source;
for (Xuint64_t i = 0; i < Length; i++)
dst[i] = src[i];
return Destination;
}
// TODO: Change memset with an optimized version
static inline void *Xmemset(void *__restrict__ Destination, int Data, Xuint64_t Length)
{
unsigned char *Buffer = (unsigned char *)Destination;
for (Xuint64_t i = 0; i < Length; i++)
Buffer[i] = (unsigned char)Data;
return Destination;
}
public:
inline void Xstac()
{
if (this->SMAPUsed)
{
#if defined(__amd64__) || defined(__i386__)
asm volatile("stac" ::
: "cc");
#endif
}
}
inline void Xclac()
{
if (this->SMAPUsed)
{
#if defined(__amd64__) || defined(__i386__)
asm volatile("clac" ::
: "cc");
#endif
}
}
/**
* @brief Construct a new Allocator V1 object
*
* @param Address Virtual address to allocate.
* @param UserMode Map the new pages with USER flag?
* @param SMAPEnabled Does the kernel has Supervisor Mode Access Prevention enabled?
*/
AllocatorV1(void *Address, bool UserMode, bool SMAPEnabled);
/**
* @brief Destroy the Allocator V 1 object
*
*/
~AllocatorV1();
/**
* @brief Allocate a new memory block
*
* @param Size Size of the block to allocate.
* @return void* Pointer to the allocated block.
*/
void *Malloc(Xuint64_t Size);
/**
* @brief Free a previously allocated block
*
* @param Address Address of the block to free.
*/
void Free(void *Address);
/**
* @brief Allocate a new memory block
*
* @param NumberOfBlocks Number of blocks to allocate.
* @param Size Size of the block to allocate.
* @return void* Pointer to the allocated block.
*/
void *Calloc(Xuint64_t NumberOfBlocks, Xuint64_t Size);
/**
* @brief Reallocate a previously allocated block
*
* @param Address Address of the block to reallocate.
* @param Size New size of the block.
* @return void* Pointer to the reallocated block.
*/
void *Realloc(void *Address, Xuint64_t Size);
};
}

View File

@ -1,340 +0,0 @@
#include <memory.hpp>
#include <convert.h>
#include <debug.h>
#include "HeapAllocators/Xalloc.hpp"
#include "../Library/liballoc_1_1.h"
using namespace Memory;
Physical KernelAllocator;
PageTable4 *KernelPageTable = nullptr;
PageTable4 *UserspaceKernelOnlyPageTable = nullptr;
static MemoryAllocatorType AllocatorType = MemoryAllocatorType::None;
Xalloc::AllocatorV1 *XallocV1Allocator = nullptr;
#ifdef DEBUG
__no_instrument_function void tracepagetable(PageTable4 *pt)
{
for (int i = 0; i < 512; i++)
{
#if defined(__amd64__)
if (pt->Entries[i].Present)
debug("Entry %03d: %x %x %x %x %x %x %x %p-%#llx", i,
pt->Entries[i].Present, pt->Entries[i].ReadWrite,
pt->Entries[i].UserSupervisor, pt->Entries[i].WriteThrough,
pt->Entries[i].CacheDisable, pt->Entries[i].Accessed,
pt->Entries[i].ExecuteDisable, pt->Entries[i].Address << 12,
pt->Entries[i]);
#elif defined(__i386__)
#elif defined(__aarch64__)
#endif
}
}
#endif
__no_instrument_function void MapFromZero(PageTable4 *PT, BootInfo *Info)
{
Virtual va = Virtual(PT);
uint64_t VirtualOffsetNormalVMA = NORMAL_VMA_OFFSET;
uint64_t MemSize = Info->Memory.Size;
for (uint64_t t = 0; t < MemSize; t += PAGE_SIZE)
{
va.Map((void *)t, (void *)t, PTFlag::RW /* | PTFlag::US */);
va.Map((void *)VirtualOffsetNormalVMA, (void *)t, PTFlag::RW /* | PTFlag::US */);
VirtualOffsetNormalVMA += PAGE_SIZE;
}
}
__no_instrument_function void MapFramebuffer(PageTable4 *PT, BootInfo *Info)
{
Virtual va = Virtual(PT);
int itrfb = 0;
while (1)
{
if (!Info->Framebuffer[itrfb].BaseAddress)
break;
for (uint64_t fb_base = (uint64_t)Info->Framebuffer[itrfb].BaseAddress;
fb_base < ((uint64_t)Info->Framebuffer[itrfb].BaseAddress + ((Info->Framebuffer[itrfb].Pitch * Info->Framebuffer[itrfb].Height) + PAGE_SIZE));
fb_base += PAGE_SIZE)
va.Map((void *)(fb_base + NORMAL_VMA_OFFSET), (void *)fb_base, PTFlag::RW | PTFlag::US | PTFlag::G);
itrfb++;
}
}
__no_instrument_function void MapKernel(PageTable4 *PT, BootInfo *Info)
{
/* KernelStart KernelTextEnd KernelRoDataEnd KernelEnd
Kernel Start & Text Start ------ Text End ------ Kernel Rodata End ------ Kernel Data End & Kernel End
*/
Virtual va = Virtual(PT);
uint64_t KernelStart = (uint64_t)&_kernel_start;
uint64_t KernelTextEnd = (uint64_t)&_kernel_text_end;
uint64_t KernelDataEnd = (uint64_t)&_kernel_data_end;
uint64_t KernelRoDataEnd = (uint64_t)&_kernel_rodata_end;
uint64_t KernelEnd = (uint64_t)&_kernel_end;
uint64_t BaseKernelMapAddress = (uint64_t)Info->Kernel.PhysicalBase;
uint64_t k;
for (k = KernelStart; k < KernelTextEnd; k += PAGE_SIZE)
{
va.Map((void *)k, (void *)BaseKernelMapAddress, PTFlag::RW);
KernelAllocator.LockPage((void *)BaseKernelMapAddress);
BaseKernelMapAddress += PAGE_SIZE;
}
for (k = KernelTextEnd; k < KernelDataEnd; k += PAGE_SIZE)
{
va.Map((void *)k, (void *)BaseKernelMapAddress, PTFlag::RW | PTFlag::G);
KernelAllocator.LockPage((void *)BaseKernelMapAddress);
BaseKernelMapAddress += PAGE_SIZE;
}
for (k = KernelDataEnd; k < KernelRoDataEnd; k += PAGE_SIZE)
{
va.Map((void *)k, (void *)BaseKernelMapAddress, PTFlag::P | PTFlag::G);
KernelAllocator.LockPage((void *)BaseKernelMapAddress);
BaseKernelMapAddress += PAGE_SIZE;
}
for (k = KernelRoDataEnd; k < KernelEnd; k += PAGE_SIZE)
{
va.Map((void *)k, (void *)BaseKernelMapAddress, PTFlag::RW | PTFlag::G);
KernelAllocator.LockPage((void *)BaseKernelMapAddress);
BaseKernelMapAddress += PAGE_SIZE;
}
debug("\nStart: %#llx - Text End: %#llx - RoEnd: %#llx - End: %#llx\nStart Physical: %#llx - End Physical: %#llx",
KernelStart, KernelTextEnd, KernelRoDataEnd, KernelEnd, Info->Kernel.PhysicalBase, BaseKernelMapAddress - PAGE_SIZE);
}
__no_instrument_function void InitializeMemoryManagement(BootInfo *Info)
{
#ifdef DEBUG
for (uint64_t i = 0; i < Info->Memory.Entries; i++)
{
uint64_t Base = reinterpret_cast<uint64_t>(Info->Memory.Entry[i].BaseAddress);
uint64_t Length = Info->Memory.Entry[i].Length;
uint64_t End = Base + Length;
const char *Type = "Unknown";
switch (Info->Memory.Entry[i].Type)
{
case likely(Usable):
Type = "Usable";
break;
case Reserved:
Type = "Reserved";
break;
case ACPIReclaimable:
Type = "ACPI Reclaimable";
break;
case ACPINVS:
Type = "ACPI NVS";
break;
case BadMemory:
Type = "Bad Memory";
break;
case BootloaderReclaimable:
Type = "Bootloader Reclaimable";
break;
case KernelAndModules:
Type = "Kernel and Modules";
break;
case Framebuffer:
Type = "Framebuffer";
break;
default:
break;
}
debug("%lld: %#016llx-%#016llx %s",
i,
Base,
End,
Type);
}
#endif
trace("Initializing Physical Memory Manager");
KernelAllocator = Physical();
KernelAllocator.Init(Info);
debug("Memory Info: %lldMB / %lldMB (%lldMB reserved)",
TO_MB(KernelAllocator.GetUsedMemory()),
TO_MB(KernelAllocator.GetTotalMemory()),
TO_MB(KernelAllocator.GetReservedMemory()));
AllocatorType = MemoryAllocatorType::Pages;
trace("Initializing Virtual Memory Manager");
KernelPageTable = (PageTable4 *)KernelAllocator.RequestPages(TO_PAGES(PAGE_SIZE));
memset(KernelPageTable, 0, PAGE_SIZE);
UserspaceKernelOnlyPageTable = (PageTable4 *)KernelAllocator.RequestPages(TO_PAGES(PAGE_SIZE));
memset(UserspaceKernelOnlyPageTable, 0, PAGE_SIZE);
debug("Mapping from 0x0 to %#llx", Info->Memory.Size);
MapFromZero(KernelPageTable, Info);
debug("Mapping from 0x0 %#llx for Userspace Page Table", Info->Memory.Size);
UserspaceKernelOnlyPageTable[0] = KernelPageTable[0]; // TODO: This is a hack to speed up the boot process
// MapFromZero(UserspaceKernelOnlyPageTable, Info);
/* Mapping Framebuffer address */
debug("Mapping Framebuffer");
MapFramebuffer(KernelPageTable, Info);
debug("Mapping Framebuffer for Userspace Page Table");
MapFramebuffer(UserspaceKernelOnlyPageTable, Info);
/* Kernel mapping */
debug("Mapping Kernel");
MapKernel(KernelPageTable, Info);
debug("Mapping Kernel for Userspace Page Table");
MapKernel(UserspaceKernelOnlyPageTable, Info);
trace("Applying new page table from address %p", KernelPageTable);
#ifdef DEBUG
debug("Kernel:");
tracepagetable(KernelPageTable);
debug("Userspace:");
tracepagetable(UserspaceKernelOnlyPageTable);
#endif
#if defined(__amd64__) || defined(__i386__)
asmv("mov %0, %%cr3" ::"r"(KernelPageTable));
#elif defined(__aarch64__)
asmv("msr ttbr0_el1, %0" ::"r"(KernelPageTable));
#endif
debug("Page table updated.");
if (strstr(Info->Kernel.CommandLine, "xallocv1"))
{
XallocV1Allocator = new Xalloc::AllocatorV1((void *)KERNEL_HEAP_BASE, false, false);
AllocatorType = MemoryAllocatorType::XallocV1;
trace("XallocV1 Allocator initialized (%p)", XallocV1Allocator);
}
else if (strstr(Info->Kernel.CommandLine, "liballoc11"))
{
AllocatorType = MemoryAllocatorType::liballoc11;
}
}
void *HeapMalloc(uint64_t Size)
{
switch (AllocatorType)
{
case unlikely(MemoryAllocatorType::Pages):
return KernelAllocator.RequestPages(TO_PAGES(Size));
case MemoryAllocatorType::XallocV1:
{
void *ret = XallocV1Allocator->Malloc(Size);
memset(ret, 0, Size);
return ret;
}
case MemoryAllocatorType::liballoc11:
{
void *ret = PREFIX(malloc)(Size);
memset(ret, 0, Size);
return ret;
}
default:
throw;
}
}
void *HeapCalloc(uint64_t n, uint64_t Size)
{
switch (AllocatorType)
{
case unlikely(MemoryAllocatorType::Pages):
return KernelAllocator.RequestPages(TO_PAGES(n * Size));
case MemoryAllocatorType::XallocV1:
{
void *ret = XallocV1Allocator->Calloc(n, Size);
memset(ret, 0, n * Size);
return ret;
}
case MemoryAllocatorType::liballoc11:
{
void *ret = PREFIX(calloc)(n, Size);
memset(ret, 0, Size);
return ret;
}
default:
throw;
}
}
void *HeapRealloc(void *Address, uint64_t Size)
{
switch (AllocatorType)
{
case unlikely(MemoryAllocatorType::Pages):
return KernelAllocator.RequestPages(TO_PAGES(Size)); // WARNING: Potential memory leak
case MemoryAllocatorType::XallocV1:
{
void *ret = XallocV1Allocator->Realloc(Address, Size);
memset(ret, 0, Size);
return ret;
}
case MemoryAllocatorType::liballoc11:
{
void *ret = PREFIX(realloc)(Address, Size);
memset(ret, 0, Size);
return ret;
}
default:
throw;
}
}
void HeapFree(void *Address)
{
switch (AllocatorType)
{
case unlikely(MemoryAllocatorType::Pages):
KernelAllocator.FreePage(Address); // WARNING: Potential memory leak
break;
case MemoryAllocatorType::XallocV1:
if (XallocV1Allocator)
XallocV1Allocator->Free(Address);
break;
case MemoryAllocatorType::liballoc11:
PREFIX(free)
(Address);
break;
default:
throw;
}
}
void *operator new(size_t Size)
{
return HeapMalloc(Size);
}
void *operator new[](size_t Size)
{
return HeapMalloc(Size);
}
void *operator new(unsigned long Size, std::align_val_t Alignment)
{
fixme("operator new with alignment(%#lx) is not implemented", Alignment);
return HeapMalloc(Size);
}
void operator delete(void *Pointer)
{
HeapFree(Pointer);
}
void operator delete[](void *Pointer)
{
HeapFree(Pointer);
}
void operator delete(void *Pointer, long unsigned int Size)
{
HeapFree(Pointer);
}
void operator delete[](void *Pointer, long unsigned int Size)
{
HeapFree(Pointer);
}

View File

@ -1,28 +0,0 @@
#include <memory.hpp>
namespace Memory
{
Virtual::PageMapIndexer::PageMapIndexer(uint64_t VirtualAddress)
{
#if defined(__amd64__)
uint64_t Address = VirtualAddress;
Address >>= 12;
this->PTEIndex = Address & 0x1FF;
Address >>= 9;
this->PDEIndex = Address & 0x1FF;
Address >>= 9;
this->PDPTEIndex = Address & 0x1FF;
Address >>= 9;
this->PMLIndex = Address & 0x1FF;
#elif defined(__i386__)
uint64_t Address = VirtualAddress;
Address >>= 12;
this->PTEIndex = Address & 0x3FF;
Address >>= 10;
this->PDEIndex = Address & 0x3FF;
Address >>= 10;
this->PDPTEIndex = Address & 0x3FF;
#elif defined(__aarch64__)
#endif
}
}

View File

@ -1,277 +0,0 @@
#include <memory.hpp>
#include <debug.h>
namespace Memory
{
uint64_t Physical::GetTotalMemory()
{
SmartLock(this->MemoryLock);
return this->TotalMemory;
}
uint64_t Physical::GetFreeMemory()
{
SmartLock(this->MemoryLock);
return this->FreeMemory;
}
uint64_t Physical::GetReservedMemory()
{
SmartLock(this->MemoryLock);
return this->ReservedMemory;
}
uint64_t Physical::GetUsedMemory()
{
SmartLock(this->MemoryLock);
return this->UsedMemory;
}
bool Physical::SwapPage(void *Address)
{
fixme("%p", Address);
return false;
}
bool Physical::SwapPages(void *Address, uint64_t PageCount)
{
for (uint64_t i = 0; i < PageCount; i++)
if (!this->SwapPage((void *)((uint64_t)Address + (i * PAGE_SIZE))))
return false;
return false;
}
bool Physical::UnswapPage(void *Address)
{
fixme("%p", Address);
return false;
}
bool Physical::UnswapPages(void *Address, uint64_t PageCount)
{
for (uint64_t i = 0; i < PageCount; i++)
if (!this->UnswapPage((void *)((uint64_t)Address + (i * PAGE_SIZE))))
return false;
return false;
}
void *Physical::RequestPage()
{
SmartLock(this->MemoryLock);
for (; PageBitmapIndex < PageBitmap.Size * 8; PageBitmapIndex++)
{
if (PageBitmap[PageBitmapIndex] == true)
continue;
this->LockPage((void *)(PageBitmapIndex * PAGE_SIZE));
return (void *)(PageBitmapIndex * PAGE_SIZE);
}
if (this->SwapPage((void *)(PageBitmapIndex * PAGE_SIZE)))
{
this->LockPage((void *)(PageBitmapIndex * PAGE_SIZE));
return (void *)(PageBitmapIndex * PAGE_SIZE);
}
error("Out of memory! (Free: %ldMB; Used: %ldMB; Reserved: %ldMB)", TO_MB(FreeMemory), TO_MB(UsedMemory), TO_MB(ReservedMemory));
CPU::Halt(true);
return nullptr;
}
void *Physical::RequestPages(uint64_t Count)
{
SmartLock(this->MemoryLock);
for (; PageBitmapIndex < PageBitmap.Size * 8; PageBitmapIndex++)
{
if (PageBitmap[PageBitmapIndex] == true)
continue;
for (uint64_t Index = PageBitmapIndex; Index < PageBitmap.Size * 8; Index++)
{
if (PageBitmap[Index] == true)
continue;
for (uint64_t i = 0; i < Count; i++)
if (PageBitmap[Index + i] == true)
goto NextPage;
this->LockPages((void *)(Index * PAGE_SIZE), Count);
return (void *)(Index * PAGE_SIZE);
NextPage:
Index += Count;
continue;
}
}
if (this->SwapPages((void *)(PageBitmapIndex * PAGE_SIZE), Count))
{
this->LockPages((void *)(PageBitmapIndex * PAGE_SIZE), Count);
return (void *)(PageBitmapIndex * PAGE_SIZE);
}
error("Out of memory! (Free: %ldMB; Used: %ldMB; Reserved: %ldMB)", TO_MB(FreeMemory), TO_MB(UsedMemory), TO_MB(ReservedMemory));
CPU::Halt(true);
return nullptr;
}
void Physical::FreePage(void *Address)
{
SmartLock(this->MemoryLock);
if (unlikely(Address == nullptr))
{
warn("Null pointer passed to FreePage.");
return;
}
uint64_t Index = (uint64_t)Address / PAGE_SIZE;
if (unlikely(PageBitmap[Index] == false))
return;
if (PageBitmap.Set(Index, false))
{
FreeMemory += PAGE_SIZE;
UsedMemory -= PAGE_SIZE;
if (PageBitmapIndex > Index)
PageBitmapIndex = Index;
}
}
void Physical::FreePages(void *Address, uint64_t Count)
{
if (unlikely(Address == nullptr || Count == 0))
{
warn("%s%s passed to FreePages.", Address == nullptr ? "Null pointer" : "", Count == 0 ? "Zero count" : "");
return;
}
for (uint64_t t = 0; t < Count; t++)
this->FreePage((void *)((uint64_t)Address + (t * PAGE_SIZE)));
}
void Physical::LockPage(void *Address)
{
if (unlikely(Address == nullptr))
warn("Trying to lock null address.");
uint64_t Index = (uint64_t)Address / PAGE_SIZE;
if (unlikely(PageBitmap[Index] == true))
return;
if (PageBitmap.Set(Index, true))
{
FreeMemory -= PAGE_SIZE;
UsedMemory += PAGE_SIZE;
}
}
void Physical::LockPages(void *Address, uint64_t PageCount)
{
if (unlikely(Address == nullptr || PageCount == 0))
warn("Trying to lock %s%s.", Address ? "null address" : "", PageCount ? "0 pages" : "");
for (uint64_t i = 0; i < PageCount; i++)
this->LockPage((void *)((uint64_t)Address + (i * PAGE_SIZE)));
}
void Physical::ReservePage(void *Address)
{
if (unlikely(Address == nullptr))
warn("Trying to reserve null address.");
uint64_t Index = (uint64_t)Address / PAGE_SIZE;
if (unlikely(PageBitmap[Index] == true))
return;
if (PageBitmap.Set(Index, true))
{
FreeMemory -= PAGE_SIZE;
ReservedMemory += PAGE_SIZE;
}
}
void Physical::ReservePages(void *Address, uint64_t PageCount)
{
if (unlikely(Address == nullptr || PageCount == 0))
warn("Trying to reserve %s%s.", Address ? "null address" : "", PageCount ? "0 pages" : "");
for (uint64_t t = 0; t < PageCount; t++)
this->ReservePage((void *)((uint64_t)Address + (t * PAGE_SIZE)));
}
void Physical::UnreservePage(void *Address)
{
if (unlikely(Address == nullptr))
warn("Trying to unreserve null address.");
uint64_t Index = (uint64_t)Address / PAGE_SIZE;
if (unlikely(PageBitmap[Index] == false))
return;
if (PageBitmap.Set(Index, false))
{
FreeMemory += PAGE_SIZE;
ReservedMemory -= PAGE_SIZE;
if (PageBitmapIndex > Index)
PageBitmapIndex = Index;
}
}
void Physical::UnreservePages(void *Address, uint64_t PageCount)
{
if (unlikely(Address == nullptr || PageCount == 0))
warn("Trying to unreserve %s%s.", Address ? "null address" : "", PageCount ? "0 pages" : "");
for (uint64_t t = 0; t < PageCount; t++)
this->UnreservePage((void *)((uint64_t)Address + (t * PAGE_SIZE)));
}
void Physical::Init(BootInfo *Info)
{
SmartLock(this->MemoryLock);
void *LargestFreeMemorySegment = nullptr;
uint64_t LargestFreeMemorySegmentSize = 0;
uint64_t MemorySize = Info->Memory.Size;
for (uint64_t i = 0; i < Info->Memory.Entries; i++)
if (Info->Memory.Entry[i].Type == Usable)
if (Info->Memory.Entry[i].Length > LargestFreeMemorySegmentSize)
{
// We don't want to use 0 as a memory address.
if (Info->Memory.Entry[i].BaseAddress == nullptr)
continue;
LargestFreeMemorySegment = (void *)Info->Memory.Entry[i].BaseAddress;
LargestFreeMemorySegmentSize = Info->Memory.Entry[i].Length;
debug("Largest free memory segment: %llp (%lldMB)",
(void *)Info->Memory.Entry[i].BaseAddress,
TO_MB(Info->Memory.Entry[i].Length));
}
TotalMemory = MemorySize;
FreeMemory = MemorySize;
if (LargestFreeMemorySegment == nullptr)
{
error("No free memory found!");
CPU::Stop();
}
uint64_t BitmapSize = (MemorySize / PAGE_SIZE) / 8 + 1;
trace("Initializing Bitmap at %llp-%llp (%lld Bytes)",
LargestFreeMemorySegment,
(void *)((uint64_t)LargestFreeMemorySegment + BitmapSize),
BitmapSize);
PageBitmap.Size = BitmapSize;
PageBitmap.Buffer = (uint8_t *)LargestFreeMemorySegment;
for (uint64_t i = 0; i < BitmapSize; i++)
*(uint8_t *)(PageBitmap.Buffer + i) = 0;
trace("Reserving pages...");
for (uint64_t i = 0; i < Info->Memory.Entries; i++)
if (Info->Memory.Entry[i].Type != Usable)
this->ReservePages((void *)Info->Memory.Entry[i].BaseAddress, Info->Memory.Entry[i].Length / PAGE_SIZE + 1);
trace("Locking bitmap pages...");
this->ReservePages(0, 0x100);
this->LockPages(PageBitmap.Buffer, PageBitmap.Size / PAGE_SIZE + 1);
}
Physical::Physical() {}
Physical::~Physical() {}
}

View File

@ -1,74 +0,0 @@
#include <memory.hpp>
#include <debug.h>
namespace Memory
{
StackGuard::StackGuard(bool User, PageTable4 *Table)
{
this->UserMode = User;
this->Table = Table;
if (this->UserMode)
{
void *AllocatedStack = KernelAllocator.RequestPages(TO_PAGES(USER_STACK_SIZE));
debug("AllocatedStack: %p", AllocatedStack);
memset(AllocatedStack, 0, USER_STACK_SIZE);
for (uint64_t i = 0; i < TO_PAGES(USER_STACK_SIZE); i++)
{
Virtual(Table).Map((void *)((uint64_t)AllocatedStack + (i * PAGE_SIZE)),
(void *)(USER_STACK_BASE + (i * PAGE_SIZE)),
PTFlag::RW | PTFlag::US);
}
this->StackBottom = (void *)USER_STACK_BASE;
this->StackTop = (void *)(USER_STACK_BASE + USER_STACK_SIZE);
this->Size = USER_STACK_SIZE;
}
else
{
this->StackBottom = KernelAllocator.RequestPages(TO_PAGES(STACK_SIZE));
debug("StackBottom: %p", this->StackBottom);
memset(this->StackBottom, 0, STACK_SIZE);
this->StackTop = (void *)((uint64_t)this->StackBottom + STACK_SIZE);
this->Size = STACK_SIZE;
}
trace("Allocated stack at %p", this->StackBottom);
}
StackGuard::~StackGuard()
{
fixme("Temporarily disabled stack guard deallocation");
// KernelAllocator.FreePages(this->StackBottom, TO_PAGES(this->Size));
// debug("Freed stack at %p", this->StackBottom);
}
bool StackGuard::Expand(uint64_t FaultAddress)
{
if (this->UserMode)
{
if (FaultAddress < (uint64_t)this->StackBottom - USER_STACK_SIZE ||
FaultAddress > (uint64_t)this->StackTop)
{
return false; // It's not about the stack.
}
else
{
void *AllocatedStack = KernelAllocator.RequestPages(TO_PAGES(USER_STACK_SIZE));
debug("AllocatedStack: %p", AllocatedStack);
memset(AllocatedStack, 0, USER_STACK_SIZE);
for (uint64_t i = 0; i < TO_PAGES(USER_STACK_SIZE); i++)
Virtual(this->Table).Map((void *)((uint64_t)AllocatedStack + (i * PAGE_SIZE)), (void *)((uint64_t)this->StackBottom - (i * PAGE_SIZE)), PTFlag::RW | PTFlag::US);
this->StackBottom = (void *)((uint64_t)this->StackBottom - USER_STACK_SIZE);
this->Size += USER_STACK_SIZE;
info("Stack expanded to %p", this->StackBottom);
return true;
}
}
else
{
fixme("Not implemented and probably not needed");
return false;
}
error("Reached end of function! How?");
return false;
}
}

View File

@ -1,217 +0,0 @@
#include <memory.hpp>
#include <convert.h>
#include <debug.h>
namespace Memory
{
bool Virtual::Check(void *VirtualAddress, PTFlag Flag)
{
// 0x1000 aligned
uint64_t Address = (uint64_t)VirtualAddress;
Address &= 0xFFFFFFFFFFFFF000;
PageMapIndexer Index = PageMapIndexer((uint64_t)Address);
PageMapLevel4 PML4 = this->Table->Entries[Index.PMLIndex];
PageDirectoryPointerTableEntryPtr *PDPTE = nullptr;
PageDirectoryEntryPtr *PDE = nullptr;
PageTableEntryPtr *PTE = nullptr;
if ((PML4.raw & Flag) > 0)
{
PDPTE = (PageDirectoryPointerTableEntryPtr *)((uint64_t)PML4.GetAddress() << 12);
if (PDPTE)
if ((PDPTE->Entries[Index.PDPTEIndex].Present))
{
PDE = (PageDirectoryEntryPtr *)((uint64_t)PDPTE->Entries[Index.PDPTEIndex].GetAddress() << 12);
if (PDE)
if ((PDE->Entries[Index.PDEIndex].Present))
{
PTE = (PageTableEntryPtr *)((uint64_t)PDE->Entries[Index.PDEIndex].GetAddress() << 12);
if (PTE)
if ((PTE->Entries[Index.PTEIndex].Present))
{
return true;
}
}
}
}
return false;
}
void Virtual::Map(void *VirtualAddress, void *PhysicalAddress, uint64_t Flags)
{
SmartLock(this->MemoryLock);
if (unlikely(!this->Table))
{
error("No page table");
return;
}
PageMapIndexer Index = PageMapIndexer((uint64_t)VirtualAddress);
PageMapLevel4 PML4 = this->Table->Entries[Index.PMLIndex];
PageDirectoryPointerTableEntryPtr *PDPTEPtr = nullptr;
if (!PML4.Present)
{
PDPTEPtr = (PageDirectoryPointerTableEntryPtr *)KernelAllocator.RequestPage();
memset(PDPTEPtr, 0, PAGE_SIZE);
PML4.Present = true;
PML4.raw |= Flags;
PML4.SetAddress((uint64_t)PDPTEPtr >> 12);
this->Table->Entries[Index.PMLIndex] = PML4;
}
else
PDPTEPtr = (PageDirectoryPointerTableEntryPtr *)((uint64_t)PML4.GetAddress() << 12);
PageDirectoryPointerTableEntry PDPTE = PDPTEPtr->Entries[Index.PDPTEIndex];
PageDirectoryEntryPtr *PDEPtr = nullptr;
if (!PDPTE.Present)
{
PDEPtr = (PageDirectoryEntryPtr *)KernelAllocator.RequestPage();
memset(PDEPtr, 0, PAGE_SIZE);
PDPTE.Present = true;
PDPTE.raw |= Flags;
PDPTE.SetAddress((uint64_t)PDEPtr >> 12);
PDPTEPtr->Entries[Index.PDPTEIndex] = PDPTE;
}
else
PDEPtr = (PageDirectoryEntryPtr *)((uint64_t)PDPTE.GetAddress() << 12);
PageDirectoryEntry PDE = PDEPtr->Entries[Index.PDEIndex];
PageTableEntryPtr *PTEPtr = nullptr;
if (!PDE.Present)
{
PTEPtr = (PageTableEntryPtr *)KernelAllocator.RequestPage();
memset(PTEPtr, 0, PAGE_SIZE);
PDE.Present = true;
PDE.raw |= Flags;
PDE.SetAddress((uint64_t)PTEPtr >> 12);
PDEPtr->Entries[Index.PDEIndex] = PDE;
}
else
PTEPtr = (PageTableEntryPtr *)((uint64_t)PDE.GetAddress() << 12);
PageTableEntry PTE = PTEPtr->Entries[Index.PTEIndex];
PTE.Present = true;
PTE.raw |= Flags;
PTE.SetAddress((uint64_t)PhysicalAddress >> 12);
PTEPtr->Entries[Index.PTEIndex] = PTE;
#if defined(__amd64__)
CPU::x64::invlpg(VirtualAddress);
#elif defined(__i386__)
CPU::x32::invlpg(VirtualAddress);
#elif defined(__aarch64__)
asmv("dsb sy");
asmv("tlbi vae1is, %0"
:
: "r"(VirtualAddress)
: "memory");
asmv("dsb sy");
asmv("isb");
#endif
#ifdef DEBUG
/* https://stackoverflow.com/a/3208376/9352057 */
#define BYTE_TO_BINARY_PATTERN "%c%c%c%c%c%c%c%c"
#define BYTE_TO_BINARY(byte) \
(byte & 0x80 ? '1' : '0'), \
(byte & 0x40 ? '1' : '0'), \
(byte & 0x20 ? '1' : '0'), \
(byte & 0x10 ? '1' : '0'), \
(byte & 0x08 ? '1' : '0'), \
(byte & 0x04 ? '1' : '0'), \
(byte & 0x02 ? '1' : '0'), \
(byte & 0x01 ? '1' : '0')
if (!this->Check(VirtualAddress, (PTFlag)Flags)) // quick workaround just to see where it fails
warn("Failed to map %#lx - %#lx with flags: " BYTE_TO_BINARY_PATTERN, VirtualAddress, PhysicalAddress, BYTE_TO_BINARY(Flags));
#endif
}
void Virtual::Map(void *VirtualAddress, void *PhysicalAddress, uint64_t PageCount, uint64_t Flags)
{
for (uint64_t i = 0; i < PageCount; i++)
this->Map((void *)((uint64_t)VirtualAddress + (i * PAGE_SIZE)), (void *)((uint64_t)PhysicalAddress + (i * PAGE_SIZE)), Flags);
}
void Virtual::Unmap(void *VirtualAddress)
{
SmartLock(this->MemoryLock);
if (!this->Table)
{
error("No page table");
return;
}
PageMapIndexer Index = PageMapIndexer((uint64_t)VirtualAddress);
PageMapLevel4 PML4 = this->Table->Entries[Index.PMLIndex];
if (!PML4.Present)
{
error("Page not present");
return;
}
PageDirectoryPointerTableEntryPtr *PDPTEPtr = (PageDirectoryPointerTableEntryPtr *)((uint64_t)PML4.Address << 12);
PageDirectoryPointerTableEntry PDPTE = PDPTEPtr->Entries[Index.PDPTEIndex];
if (!PDPTE.Present)
{
error("Page not present");
return;
}
PageDirectoryEntryPtr *PDEPtr = (PageDirectoryEntryPtr *)((uint64_t)PDPTE.Address << 12);
PageDirectoryEntry PDE = PDEPtr->Entries[Index.PDEIndex];
if (!PDE.Present)
{
error("Page not present");
return;
}
PageTableEntryPtr *PTEPtr = (PageTableEntryPtr *)((uint64_t)PDE.Address << 12);
PageTableEntry PTE = PTEPtr->Entries[Index.PTEIndex];
if (!PTE.Present)
{
error("Page not present");
return;
}
PTE.Present = false;
PTEPtr->Entries[Index.PTEIndex] = PTE;
#if defined(__amd64__)
CPU::x64::invlpg(VirtualAddress);
#elif defined(__i386__)
CPU::x32::invlpg(VirtualAddress);
#elif defined(__aarch64__)
asmv("dsb sy");
asmv("tlbi vae1is, %0"
:
: "r"(VirtualAddress)
: "memory");
asmv("dsb sy");
asmv("isb");
#endif
}
void Virtual::Unmap(void *VirtualAddress, uint64_t PageCount)
{
for (uint64_t i = 0; i < PageCount; i++)
this->Unmap((void *)((uint64_t)VirtualAddress + (i * PAGE_SIZE)));
}
void Virtual::Remap(void *VirtualAddress, void *PhysicalAddress, uint64_t Flags)
{
this->Unmap(VirtualAddress);
this->Map(VirtualAddress, PhysicalAddress, Flags);
}
Virtual::Virtual(PageTable4 *Table)
{
if (Table)
this->Table = Table;
else
this->Table = (PageTable4 *)CPU::PageTable();
}
Virtual::~Virtual() {}
}

View File

@ -1,868 +0,0 @@
#include <pci.hpp>
#include <memory.hpp>
#include <power.hpp>
#if defined(__amd64__)
#include "../Architecture/amd64/acpi.hpp"
#elif defined(__i386__)
#elif defined(__aarch64__)
#endif
#include "../kernel.h"
namespace PCI
{
namespace Descriptors
{
char HexToStringOutput8[128];
const char *u8ToHexString(uint8_t Value)
{
uint8_t *ValuePtr = &Value;
uint8_t *Ptr;
uint8_t Temp;
uint8_t Size = 1 * 2 - 1;
for (uint8_t i = 0; i < Size; i++)
{
Ptr = ((uint8_t *)ValuePtr + i);
Temp = ((*Ptr & 0xF0) >> 4);
HexToStringOutput8[Size - (i * 2 + 1)] = Temp + (Temp > 9 ? 55 : '0');
Temp = ((*Ptr & 0x0F));
HexToStringOutput8[Size - (i * 2)] = Temp + (Temp > 9 ? 55 : '0');
}
HexToStringOutput8[Size + 1] = 0;
return HexToStringOutput8;
}
char HexToStringOutput32[128];
const char *u32ToHexString(uint32_t Value)
{
uint32_t *ValuePtr = &Value;
uint8_t *Ptr;
uint8_t Temp;
uint8_t Size = 4 * 2 - 1;
for (uint8_t i = 0; i < Size; i++)
{
Ptr = ((uint8_t *)ValuePtr + i);
Temp = ((*Ptr & 0xF0) >> 4);
HexToStringOutput32[Size - (i * 2 + 1)] = Temp + (Temp > 9 ? 55 : '0');
Temp = ((*Ptr & 0x0F));
HexToStringOutput32[Size - (i * 2)] = Temp + (Temp > 9 ? 55 : '0');
}
HexToStringOutput32[Size + 1] = 0;
return HexToStringOutput32;
}
const char *MassStorageControllerSubclassName(uint8_t SubclassCode)
{
switch (SubclassCode)
{
case 0x00:
return "SCSI Bus Controller";
case 0x01:
return "IDE Controller";
case 0x02:
return "Floppy Disk Controller";
case 0x03:
return "IPI Bus Controller";
case 0x04:
return "RAID Controller";
case 0x05:
return "ATA Controller";
case 0x06:
return "Serial ATA";
case 0x07:
return "Serial Attached SCSI Controller";
case 0x08:
return "Non-Volatile Memory Controller";
case 0x80:
return "Mass Storage Controller";
default:
break;
}
fixme("Unknown mass storage controller %02x", SubclassCode);
return u8ToHexString(SubclassCode);
}
const char *NetworkControllerSubclassName(uint8_t SubclassCode)
{
switch (SubclassCode)
{
case 0x00:
return "Ethernet Controller";
case 0x01:
return "Token Ring Controller";
case 0x02:
return "FDDI Controller";
case 0x03:
return "ATM Controller";
case 0x04:
return "ISDN Controller";
case 0x05:
return "WorldFip Controller";
case 0x06:
return "PICMG HyperCard Controller";
case 0x07:
return "Infiniband Controller";
case 0x08:
return "Fabric Controller";
case 0x80:
return "Network Controller";
default:
break;
}
fixme("Unknown network controller %02x", SubclassCode);
return u8ToHexString(SubclassCode);
}
const char *DisplayControllerSubclassName(uint8_t SubclassCode)
{
switch (SubclassCode)
{
case 0x00:
return "VGA Compatible Controller";
case 0x01:
return "XGA Controller";
case 0x02:
return "3D Controller";
case 0x80:
return "Display Controller";
default:
break;
}
fixme("Unknown display controller %02x", SubclassCode);
return u8ToHexString(SubclassCode);
}
const char *CommunicationControllerSubclassName(uint8_t SubclassCode)
{
switch (SubclassCode)
{
case 0x00:
return "Serial Controller";
case 0x01:
return "Parallel Controller";
case 0x02:
return "Multi-Serial Controller";
case 0x03:
return "IEEE-1284 Controller";
case 0x04:
return "ATM Controller";
case 0x05:
return "Object Storage Controller";
case 0x80:
return "Communication controller";
default:
break;
}
fixme("Unknown communication controller %02x", SubclassCode);
return u8ToHexString(SubclassCode);
}
const char *BaseSystemPeripheralSubclassName(uint8_t SubclassCode)
{
// not sure if it's right
switch (SubclassCode)
{
case 0x00:
return "Unclassified";
case 0x01:
return "Keyboard";
case 0x02:
return "Pointing Device";
case 0x03:
return "Mouse";
case 0x04:
return "Scanner";
case 0x05:
return "Gameport";
case 0x80:
return "Unclassified";
default:
break;
}
fixme("Unknown base system peripheral %02x", SubclassCode);
return u8ToHexString(SubclassCode);
}
const char *SerialBusControllerSubclassName(uint8_t SubclassCode)
{
switch (SubclassCode)
{
case 0x00:
return "FireWire (IEEE 1394) Controller";
case 0x01:
return "ACCESS Bus Controller";
case 0x02:
return "SSA Controller";
case 0x03:
return "USB Controller";
case 0x04:
return "Fibre Channel Controller";
case 0x05:
return "SMBus Controller";
case 0x06:
return "Infiniband Controller";
case 0x07:
return "IPMI Interface Controller";
case 0x08:
return "SERCOS Interface (IEC 61491) Controller";
case 0x09:
return "CANbus Controller";
case 0x80:
return "Serial Bus Controller";
default:
break;
}
fixme("Unknown serial bus controller %02x", SubclassCode);
return u8ToHexString(SubclassCode);
}
const char *BridgeDeviceSubclassName(uint8_t SubclassCode)
{
switch (SubclassCode)
{
case 0x00:
return "Host Bridge";
case 0x01:
return "ISA Bridge";
case 0x02:
return "EISA Bridge";
case 0x03:
return "MCA Bridge";
case 0x04:
return "PCI-to-PCI Bridge";
case 0x05:
return "PCMCIA Bridge";
case 0x06:
return "NuBus Bridge";
case 0x07:
return "CardBus Bridge";
case 0x08:
return "RACEway Bridge";
case 0x09:
return "PCI-to-PCI Bridge";
case 0x0A:
return "InfiniBand-to-PCI Host Bridge";
case 0x80:
return "Bridge Device";
default:
break;
}
fixme("Unknown bridge device %02x", SubclassCode);
return u8ToHexString(SubclassCode);
}
const char *WirelessControllerSubclassName(uint8_t SubclassCode)
{
switch (SubclassCode)
{
case 0x11:
return "Bluetooth";
case 0x20:
return "802.1a controller";
case 0x21:
return "802.1b controller";
case 0x80:
return "Wireless controller";
default:
break;
}
fixme("Unknown wireless controller %02x", SubclassCode);
return u8ToHexString(SubclassCode);
}
const char *GetVendorName(uint32_t VendorID)
{
switch (VendorID)
{
case 0x1000:
return "Symbios Logic";
case 0x1B36:
case 0x1AF4:
return "Red Hat, Inc.";
case 0x10EC:
return "Realtek Semiconductor Co., Ltd.";
case 0x80EE:
return "VirtualBox";
case 0x1274:
return "Ensoniq";
case 0x1234:
return "QEMU";
case 0x15AD:
return "VMware";
case 0x8086:
return "Intel Corporation";
case 0x1022:
return "Advanced Micro Devices, Inc.";
case 0x10DE:
return "NVIDIA Corporation";
case 0x1AE0:
return "Google, Inc.";
case 0x1a58:
return "Razer USA Ltd.";
case 0x1414:
return "Microsoft Corporation";
default:
break;
}
fixme("Unknown vendor %04x", VendorID);
return u32ToHexString(VendorID);
}
const char *GetDeviceName(uint32_t VendorID, uint32_t DeviceID)
{
switch (VendorID)
{
case SymbiosLogic:
{
switch (DeviceID)
{
case 0x30:
return "53c1030 PCI-X Fusion-MPT Dual Ultra320 SCSI";
case 0x1000:
return "63C815";
default:
break;
}
break;
}
case RedHat:
{
switch (DeviceID)
{
case 0x1000:
case 0x1041:
return "Virtio network device";
case 0x1001:
case 0x1042:
return "Virtio block device";
case 0x1002:
case 0x1045:
return "Virtio memory balloon";
case 0x1003:
case 0x1043:
return "Virtio console";
case 0x1004:
case 0x1048:
return "Virtio SCSI";
case 0x1005:
case 0x1044:
return "Virtio RNG";
case 0x1009:
case 0x1049:
case 0x105a:
return "Virtio filesystem";
case 0x1050:
return "Virtio GPU";
case 0x1052:
return "Virtio input";
case 0x1053:
return "Virtio socket";
case 1110:
return "Inter-VM shared memory";
case 0x1af41100:
return "QEMU Virtual Machine";
default:
break;
}
break;
}
case REDHat2:
{
switch (DeviceID)
{
case 0x0001:
return "QEMU PCI-PCI bridge";
case 0x0002:
return "QEMU PCI 16550A Adapter";
case 0x0003:
return "QEMU PCI Dual-port 16550A Adapter";
case 0x0004:
return "QEMU PCI Quad-port 16550A Adapter";
case 0x0005:
return "QEMU PCI Test Device";
case 0x0006:
return "PCI Rocker Ethernet switch device";
case 0x0007:
return "PCI SD Card Host Controller Interface";
case 0x0008:
return "QEMU PCIe Host bridge";
case 0x0009:
return "QEMU PCI Expander bridge";
case 0x000A:
return "PCI-PCI bridge (multiseat)";
case 0x000B:
return "QEMU PCIe Expander bridge";
case 0x000C:
return "QEMU PCIe Root port";
case 0x000D:
return "QEMU XHCI Host Controller";
case 0x0010:
return "QEMU NVM Express Controller";
case 0x0100:
return "QXL paravirtual graphic card";
case 0x1AF41100:
return "QEMU Virtual Machine";
default:
break;
}
break;
}
case Realtek:
{
switch (DeviceID)
{
case 0x8029:
return "RTL-8029(AS)";
case 0x8139:
return "RTL-8139/8139C/8139C+ Ethernet Controller";
default:
break;
}
break;
}
case VirtualBox:
{
switch (DeviceID)
{
case 0xCAFE:
return "VirtualBox Guest Service";
case 0xBEEF:
return "VirtualBox Graphics Adapter";
case 0x0021:
return "USB Tablet";
case 0x0022:
return "Multitouch tablet";
case 0x4E56:
return "NVM Express";
default:
break;
}
break;
}
case Ensoniq:
{
switch (DeviceID)
{
case 0x1371:
return "ES1371/ES1373 / Creative Labs CT2518";
case 0x5000:
return "ES1370 [AudioPCI]";
default:
break;
}
break;
}
case QEMU:
{
switch (DeviceID)
{
case 0x1111:
return "QEMU Display";
default:
break;
}
break;
}
case VMware:
{
switch (DeviceID)
{
case 0x0740:
return "Virtual Machine Communication Interface";
case 0x0405:
return "SVGA II Adapter";
case 0x0790:
return "PCI bridge";
case 0x07A0:
return "PCI Express Root Port";
case 0x0774:
return "USB1.1 UHCI Controller";
case 0x0770:
return "USB2 EHCI Controller";
case 0x0779:
return "USB3 xHCI 1.0 Controller";
case 0x07E0:
return "SATA AHCI controller";
case 0x07F0:
return "NVM Express";
default:
break;
}
break;
}
case IntelCorporation:
{
switch (DeviceID)
{
case 0x1229:
return "82557/8/9/0/1 Ethernet Pro 100";
case 0x1209:
return "8255xER/82551IT Fast Ethernet Controller";
case 0x100E:
return "82540EM Gigabit Ethernet Controller";
case 0x7190:
return "440BX/ZX/DX - 82443BX/ZX/DX Host bridge";
case 0x7191:
return "440BX/ZX/DX - 82443BX/ZX/DX AGP bridge";
case 0x7110:
return "82371AB/EB/MB PIIX4 ISA";
case 0x7111:
return "82371AB/EB/MB PIIX4 IDE";
case 0x7113:
return "82371AB/EB/MB PIIX4 ACPI";
case 0x1e31:
return "7 Series/C210 Series Chipset Family USB xHCI Host Controller";
case 0x100F:
return "82545EM Gigabit Ethernet Controller (Copper)";
case 0x1371:
return "ES1371/ES1373 / Creative Labs CT2518";
case 0x27b9:
return "82801GBM (ICH7-M) LPC Interface Bridge";
case 0x07E0:
return "SATA AHCI controller";
case 0x293E:
return "82801I (ICH9 Family) HD Audio Controller";
case 0x2935:
return "82801I (ICH9 Family) USB UHCI Controller #2";
case 0x2936:
return "82801I (ICH9 Family) USB UHCI Controller #3";
case 0x293A:
return "82801I (ICH9 Family) USB2 EHCI Controller #1";
case 0x2934:
return "82801I (ICH9 Family) USB UHCI Controller #1";
case 0x2668:
return "82801FB/FBM/FR/FW/FRW (ICH6 Family) High Definition Audio Controller";
case 0x2415:
return "82801AA AC'97 Audio Controller";
case 0x10D3:
return "82574L Gigabit Network Connection";
case 0x29C0:
return "82G33/G31/P35/P31 Express DRAM Controller";
case 0x2918:
return "82801IB (ICH9) LPC Interface Controller";
case 0x2829:
return "82801HM/HEM (ICH8M/ICH8M-E) SATA Controller [AHCI mode]";
case 0x2922:
return "82801IR/IO/IH (ICH9R/DO/DH) 6 port SATA Controller [AHCI mode]";
case 0x2930:
return "82801I (ICH9 Family) SMBus Controller";
default:
break;
}
break;
}
case AdvancedMicroDevices:
{
switch (DeviceID)
{
case 0x2000:
return "79C970 [PCnet32 LANCE]";
default:
break;
}
break;
}
}
fixme("Unknown device %04x:%04x", VendorID, DeviceID);
return u32ToHexString(DeviceID);
}
const char *GetSubclassName(uint8_t ClassCode, uint8_t SubclassCode)
{
switch (ClassCode)
{
case 0x00:
return "Unclassified";
case 0x01:
return MassStorageControllerSubclassName(SubclassCode);
case 0x02:
return NetworkControllerSubclassName(SubclassCode);
case 0x03:
return DisplayControllerSubclassName(SubclassCode);
case 0x04:
return "Multimedia controller";
case 0x05:
return "Memory Controller";
case 0x06:
return BridgeDeviceSubclassName(SubclassCode);
case 0x07:
return CommunicationControllerSubclassName(SubclassCode);
case 0x08:
return BaseSystemPeripheralSubclassName(SubclassCode);
case 0x09:
return "Input device controller";
case 0x0A:
return "Docking station";
case 0x0B:
return "Processor";
case 0x0C:
return SerialBusControllerSubclassName(SubclassCode);
case 0x0D:
return WirelessControllerSubclassName(SubclassCode);
case 0x0E:
return "Intelligent controller";
case 0x0F:
return "Satellite communication controller";
case 0x10:
return "Encryption controller";
case 0x11:
return "Signal processing accelerators";
case 0x12:
return "Processing accelerators";
case 0x13:
return "Non-Essential Instrumentation";
case 0x40:
return "Coprocessor";
default:
break;
}
fixme("Unknown subclass name %02x:%02x", ClassCode, SubclassCode);
return u8ToHexString(SubclassCode);
}
const char *GetProgIFName(uint8_t ClassCode, uint8_t SubclassCode, uint8_t ProgIF)
{
switch (ClassCode)
{
case 0x01:
{
switch (SubclassCode)
{
case 0x06:
{
switch (ProgIF)
{
case 0:
return "Vendor Specific SATA Controller";
case 1:
return "AHCI SATA Controller";
case 2:
return "Serial Storage Bus SATA Controller";
default:
return "SATA controller";
}
break;
}
case 0x08:
{
switch (ProgIF)
{
case 0x01:
return "NVMHCI Controller";
case 0x02:
return "NVM Express Controller";
default:
return "Non-Volatile Memory Controller";
}
break;
}
}
break;
}
case 0x03:
{
switch (SubclassCode)
{
case 0x00:
switch (ProgIF)
{
case 0x00:
return "VGA Controller";
case 0x01:
return "8514-Compatible Controller";
default:
return "VGA Compatible Controller";
}
break;
}
break;
}
case 0x07:
{
switch (SubclassCode)
{
case 0x00:
{
switch (ProgIF)
{
case 0x00:
return "Serial controller <8250>";
case 0x01:
return "Serial controller <16450>";
case 0x02:
return "Serial controller <16550>";
case 0x03:
return "Serial controller <16650>";
case 0x04:
return "Serial controller <16750>";
case 0x05:
return "Serial controller <16850>";
case 0x06:
return "Serial controller <16950";
default:
return "Serial controller";
}
break;
}
default:
break;
}
break;
}
case 0x0C:
{
switch (SubclassCode)
{
case 0x00:
{
switch (ProgIF)
{
case 0x00:
return "Generic FireWire (IEEE 1394) Controller";
case 0x10:
return "OHCI FireWire (IEEE 1394) Controller";
default:
break;
}
break;
}
case 0x03:
{
switch (ProgIF)
{
case 0x00:
return "UHCI (USB1) Controller";
case 0x10:
return "OHCI (USB1) Controller";
case 0x20:
return "EHCI (USB2) Controller";
case 0x30:
return "XHCI (USB3) Controller";
case 0x80:
return "Unspecified";
case 0xFE:
return "USB Device";
default:
break;
}
break;
}
default:
break;
}
break;
}
}
// not really a fixme
// fixme("Unknown prog IF name %02x:%02x:%02x", ClassCode, SubclassCode, ProgIF);
return u8ToHexString(ProgIF);
}
}
#ifdef DEBUG
void e(PCIDeviceHeader *hdr)
{
debug("%s / %s / %s / %s / %s",
Descriptors::GetVendorName(hdr->VendorID),
Descriptors::GetDeviceName(hdr->VendorID, hdr->DeviceID),
Descriptors::DeviceClasses[hdr->Class],
Descriptors::GetSubclassName(hdr->Class, hdr->Subclass),
Descriptors::GetProgIFName(hdr->Class, hdr->Subclass, hdr->ProgIF));
}
#endif
void PCI::EnumerateFunction(uint64_t DeviceAddress, uint64_t Function)
{
uint64_t Offset = Function << 12;
uint64_t FunctionAddress = DeviceAddress + Offset;
Memory::Virtual().Map((void *)FunctionAddress, (void *)FunctionAddress, Memory::PTFlag::RW);
PCIDeviceHeader *PCIDeviceHdr = (PCIDeviceHeader *)FunctionAddress;
if (PCIDeviceHdr->DeviceID == 0)
return;
if (PCIDeviceHdr->DeviceID == 0xFFFF)
return;
Devices.push_back(PCIDeviceHdr);
#ifdef DEBUG
e(PCIDeviceHdr);
#endif
}
void PCI::EnumerateDevice(uint64_t BusAddress, uint64_t Device)
{
uint64_t Offset = Device << 15;
uint64_t DeviceAddress = BusAddress + Offset;
Memory::Virtual().Map((void *)DeviceAddress, (void *)DeviceAddress, Memory::PTFlag::RW);
PCIDeviceHeader *PCIDeviceHdr = (PCIDeviceHeader *)DeviceAddress;
if (PCIDeviceHdr->DeviceID == 0)
return;
if (PCIDeviceHdr->DeviceID == 0xFFFF)
return;
for (uint64_t Function = 0; Function < 8; Function++)
EnumerateFunction(DeviceAddress, Function);
}
void PCI::EnumerateBus(uint64_t BaseAddress, uint64_t Bus)
{
uint64_t Offset = Bus << 20;
uint64_t BusAddress = BaseAddress + Offset;
Memory::Virtual().Map((void *)BusAddress, (void *)BusAddress, Memory::PTFlag::RW);
PCIDeviceHeader *PCIDeviceHdr = (PCIDeviceHeader *)BusAddress;
if (Bus != 0) // TODO: VirtualBox workaround (UNTESTED ON REAL HARDWARE!)
{
if (PCIDeviceHdr->DeviceID == 0)
return;
if (PCIDeviceHdr->DeviceID == 0xFFFF)
return;
}
trace("PCI Bus DeviceID:%#llx VendorID:%#llx BIST:%#llx Cache:%#llx Class:%#llx Cmd:%#llx HdrType:%#llx LatencyTimer:%#llx ProgIF:%#llx RevID:%#llx Status:%#llx SubClass:%#llx ",
PCIDeviceHdr->DeviceID, PCIDeviceHdr->VendorID, PCIDeviceHdr->BIST,
PCIDeviceHdr->CacheLineSize, PCIDeviceHdr->Class, PCIDeviceHdr->Command,
PCIDeviceHdr->HeaderType, PCIDeviceHdr->LatencyTimer, PCIDeviceHdr->ProgIF,
PCIDeviceHdr->RevisionID, PCIDeviceHdr->Status, PCIDeviceHdr->Subclass);
for (uint64_t Device = 0; Device < 32; Device++)
EnumerateDevice(BusAddress, Device);
}
Vector<PCIDeviceHeader *> PCI::FindPCIDevice(uint8_t Class, uint8_t Subclass, uint8_t ProgIF)
{
Vector<PCIDeviceHeader *> DeviceFound;
for (auto var : Devices)
if (var->Class == Class && var->Subclass == Subclass && var->ProgIF == ProgIF)
DeviceFound.push_back(var);
return DeviceFound;
}
Vector<PCIDeviceHeader *> PCI::FindPCIDevice(int VendorID, int DeviceID)
{
Vector<PCIDeviceHeader *> DeviceFound;
for (auto var : Devices)
if (var->VendorID == VendorID && var->DeviceID == DeviceID)
DeviceFound.push_back(var);
return DeviceFound;
}
PCI::PCI()
{
#if defined(__amd64__)
int Entries = ((((ACPI::ACPI *)PowerManager->GetACPI())->MCFG->Header.Length) - sizeof(ACPI::ACPI::MCFGHeader)) / sizeof(DeviceConfig);
for (int t = 0; t < Entries; t++)
{
DeviceConfig *NewDeviceConfig = (DeviceConfig *)((uint64_t)((ACPI::ACPI *)PowerManager->GetACPI())->MCFG + sizeof(ACPI::ACPI::MCFGHeader) + (sizeof(DeviceConfig) * t));
Memory::Virtual().Map((void *)NewDeviceConfig->BaseAddress, (void *)NewDeviceConfig->BaseAddress, Memory::PTFlag::RW);
trace("PCI Entry %d Address:%#llx BUS:%#llx-%#llx", t, NewDeviceConfig->BaseAddress,
NewDeviceConfig->StartBus, NewDeviceConfig->EndBus);
for (uint64_t Bus = NewDeviceConfig->StartBus; Bus < NewDeviceConfig->EndBus; Bus++)
EnumerateBus(NewDeviceConfig->BaseAddress, Bus);
}
#elif defined(__i386__)
error("PCI not implemented on i386");
#elif defined(__aarch64__)
error("PCI not implemented on aarch64");
#endif
}
PCI::~PCI()
{
}
}

View File

@ -1,125 +0,0 @@
#include <power.hpp>
#include <memory.hpp>
#include <debug.h>
#include "../kernel.h"
#if defined(__amd64__)
#include <io.h>
#include "../Architecture/amd64/acpi.hpp"
namespace Power
{
void Power::Reboot()
{
BeforeShutdown();
if (((ACPI::ACPI *)this->acpi)->FADT)
if (((ACPI::DSDT *)this->dsdt)->ACPIShutdownSupported)
((ACPI::DSDT *)this->dsdt)->Reboot();
uint8_t val = 0x02;
while (val & 0x02)
val = inb(0x64);
outb(0x64, 0xFE);
warn("Executing the second attempt to reboot...");
// second attempt to reboot
// https://wiki.osdev.org/Reboot
uint8_t temp;
asmv("cli");
do
{
temp = inb(0x64);
if (((temp) & (1 << (0))) != 0)
inb(0x60);
} while (((temp) & (1 << (1))) != 0);
outb(0x64, 0xFE);
CPU::Stop();
}
void Power::Shutdown()
{
BeforeShutdown();
if (((ACPI::ACPI *)this->acpi)->FADT)
if (((ACPI::DSDT *)this->dsdt)->ACPIShutdownSupported)
((ACPI::DSDT *)this->dsdt)->Shutdown();
outl(0xB004, 0x2000); // for qemu
outl(0x604, 0x2000); // if qemu not working, bochs and older versions of qemu
outl(0x4004, 0x3400); // virtual box
CPU::Stop();
}
void Power::InitDSDT()
{
if (((ACPI::ACPI *)this->acpi)->FADT)
this->dsdt = new ACPI::DSDT((ACPI::ACPI *)acpi);
}
Power::Power()
{
this->acpi = new ACPI::ACPI(bInfo);
this->madt = new ACPI::MADT(((ACPI::ACPI *)acpi)->MADT);
trace("Power manager initialized");
}
Power::~Power()
{
}
}
#elif defined(__i386__)
namespace Power
{
void Power::Reboot()
{
warn("Reboot not implemented for i386");
}
void Power::Shutdown()
{
warn("Shutdown not implemented for i386");
}
Power::Power()
{
error("Power not implemented for i386");
}
Power::~Power()
{
}
}
#elif defined(__aarch64__)
namespace Power
{
void Power::Reboot()
{
warn("Reboot not implemented for aarch64");
}
void Power::Shutdown()
{
warn("Shutdown not implemented for aarch64");
}
Power::Power()
{
error("Power not implemented for aarch64");
}
Power::~Power()
{
}
}
#endif

View File

@ -1,22 +0,0 @@
# Core components
This directory contains the core components of the project. These components are used by the kernel to provide the basic functionality of the operating system.
---
## 💾 Memory
Contains the memory management code.
It is responsible for allocating and freeing memory.
It also provides the `kmalloc`, `kcalloc`, `krealloc` and `kfree` functions that are used by the rest of the kernel.
## 📺 Video
Contains the video management code.
It is responsible for printing text to the screen.
## 🖥 CPU
Contains the CPU management code.
It is responsible for initializing the GDT and IDT.
More code related is in the `Architecture` directory.

View File

@ -1,27 +0,0 @@
#include <rand.hpp>
namespace Random
{
static uint64_t Seed = 0xdeadbeef;
uint16_t rand16()
{
Seed = Seed * 1103515245 + 12345;
return (uint16_t)(Seed / 65536) % __UINT16_MAX__;
}
uint32_t rand32()
{
Seed = Seed * 1103515245 + 12345;
return (uint32_t)(Seed / 65536) % __UINT32_MAX__;
}
uint64_t rand64()
{
Seed = Seed * 1103515245 + 12345;
return (uint64_t)(Seed / 65536) % __UINT64_MAX__;
}
void changeseed(uint64_t CustomSeed) { Seed = CustomSeed; }
}

View File

@ -1,56 +0,0 @@
#include <types.h>
#include <debug.h>
#include "../kernel.h"
#ifndef STACK_CHK_GUARD_VALUE
#if UINTPTR_MAX == UINT32_MAX
#define STACK_CHK_GUARD_VALUE 0xDEAD57AC
#else
#define STACK_CHK_GUARD_VALUE 0xDEAD57AC00000000
#endif
#endif
__attribute__((weak)) uintptr_t __stack_chk_guard = 0;
__attribute__((weak, no_stack_protector)) uintptr_t __stack_chk_guard_init(void)
{
return STACK_CHK_GUARD_VALUE;
}
extern __attribute__((constructor, no_stack_protector)) void __guard_setup(void)
{
debug("StackGuard: __guard_setup");
if (__stack_chk_guard == 0)
__stack_chk_guard = __stack_chk_guard_init();
}
__attribute__((weak, noreturn, no_stack_protector)) void __stack_chk_fail(void)
{
TaskingPanic();
for (short i = 0; i < 10; i++)
error("Stack smashing detected!");
debug("%#lx", __stack_chk_guard);
KPrint("\eFF0000Stack smashing detected!");
#if defined(__amd64__) || defined(__i386__)
while (1)
asmv("cli; hlt");
#elif defined(__aarch64__)
asmv("wfe");
#endif
}
// https://github.com/gcc-mirror/gcc/blob/master/libssp/ssp.c
__attribute__((weak, noreturn, no_stack_protector)) void __chk_fail(void)
{
TaskingPanic();
for (short i = 0; i < 10; i++)
error("Buffer overflow detected!");
KPrint("\eFF0000Buffer overflow detected!");
#if defined(__amd64__) || defined(__i386__)
while (1)
asmv("cli; hlt");
#elif defined(__aarch64__)
asmv("wfe");
#endif
}

View File

@ -1,134 +0,0 @@
#include <symbols.hpp>
#include <memory.hpp>
#include <convert.h>
#include <debug.h>
// #pragma GCC diagnostic ignored "-Wignored-qualifiers"
typedef struct
{
unsigned char e_ident[16];
uint16_t e_type;
uint16_t e_machine;
uint32_t e_version;
uint64_t e_entry;
uint64_t e_phoff;
uint64_t e_shoff;
uint32_t e_flags;
uint16_t e_ehsize;
uint16_t e_phentsize;
uint16_t e_phnum;
uint16_t e_shentsize;
uint16_t e_shnum;
uint16_t e_shstrndx;
} Elf64_Ehdr;
typedef struct
{
uint32_t sh_name;
uint32_t sh_type;
uint64_t sh_flags;
uint64_t sh_addr;
uint64_t sh_offset;
uint64_t sh_size;
uint32_t sh_link;
uint32_t sh_info;
uint64_t sh_addralign;
uint64_t sh_entsize;
} Elf64_Shdr;
typedef struct
{
uint32_t st_name;
unsigned char st_info;
unsigned char st_other;
uint16_t st_shndx;
uint64_t st_value;
uint64_t st_size;
} Elf64_Sym;
#define SHT_SYMTAB 2
#define SHT_STRTAB 3
namespace SymbolResolver
{
Symbols::SymbolTable SymTable[0x10000];
uint64_t TotalEntries = 0;
Symbols::Symbols(uint64_t Address)
{
debug("Solving symbols for address: %#llx", Address);
Elf64_Ehdr *Header = (Elf64_Ehdr *)Address;
if (Header->e_ident[0] != 0x7F &&
Header->e_ident[1] != 'E' &&
Header->e_ident[2] != 'L' &&
Header->e_ident[3] != 'F')
{
error("Invalid ELF header");
return;
}
Elf64_Shdr *ElfSections = (Elf64_Shdr *)(Address + Header->e_shoff);
Elf64_Sym *ElfSymbols = nullptr;
char *strtab = nullptr;
for (uint64_t i = 0; i < Header->e_shnum; i++)
switch (ElfSections[i].sh_type)
{
case SHT_SYMTAB:
ElfSymbols = (Elf64_Sym *)(Address + ElfSections[i].sh_offset);
TotalEntries = ElfSections[i].sh_size / sizeof(Elf64_Sym);
debug("Symbol table found, %d entries", TotalEntries);
break;
case SHT_STRTAB:
if (Header->e_shstrndx == i)
{
debug("String table found, %d entries", ElfSections[i].sh_size);
}
else
{
strtab = (char *)Address + ElfSections[i].sh_offset;
debug("String table found, %d entries", ElfSections[i].sh_size);
}
break;
}
if (ElfSymbols != nullptr && strtab != nullptr)
{
size_t Index, MinimumIndex;
for (size_t i = 0; i < TotalEntries - 1; i++)
{
MinimumIndex = i;
for (Index = i + 1; Index < TotalEntries; Index++)
if (ElfSymbols[Index].st_value < ElfSymbols[MinimumIndex].st_value)
MinimumIndex = Index;
Elf64_Sym tmp = ElfSymbols[MinimumIndex];
ElfSymbols[MinimumIndex] = ElfSymbols[i];
ElfSymbols[i] = tmp;
}
while (ElfSymbols[0].st_value == 0)
{
ElfSymbols++;
TotalEntries--;
}
trace("Symbol table loaded, %d entries (%ldKB)", TotalEntries, TO_KB(TotalEntries * sizeof(SymbolTable)));
for (size_t i = 0, g = TotalEntries; i < g; i++)
{
SymTable[i].Address = ElfSymbols[i].st_value;
SymTable[i].FunctionName = &strtab[ElfSymbols[i].st_name];
}
}
}
Symbols::~Symbols() {}
const __no_instrument_function char *Symbols::GetSymbolFromAddress(uint64_t Address)
{
Symbols::SymbolTable Result{0, (char *)"<unknown>"};
for (size_t i = 0; i < TotalEntries; i++)
if (SymTable[i].Address <= Address && SymTable[i].Address > Result.Address)
Result = SymTable[i];
return Result.FunctionName;
}
}

View File

@ -1,70 +0,0 @@
#include "smbios.hpp"
#include <debug.h>
#include "../kernel.h"
/* https://www.dmtf.org/sites/default/files/standards/documents/DSP0134_3.2.0.pdf */
namespace SMBIOS
{
bool CheckSMBIOS()
{
if (bInfo->SMBIOSPtr != nullptr && bInfo->SMBIOSPtr < (void *)0xffffffffffff0000)
{
debug("SMBIOS is available (%#lx).", bInfo->SMBIOSPtr);
return true;
}
debug("SMBIOS is not available. (%#lx)", bInfo->SMBIOSPtr);
return false;
}
SMBIOSEntryPoint *GetSMBIOSEntryPoint() { return (SMBIOSEntryPoint *)bInfo->SMBIOSPtr; }
static inline int SMBIOSTableLength(SMBIOSHeader *Hdr)
{
int i;
const char *strtab = (char *)Hdr + Hdr->Length;
for (i = 1; strtab[i - 1] != '\0' || strtab[i] != '\0'; i++)
;
return Hdr->Length + i + 1;
}
void *GetSMBIOSHeader(SMBIOSType Type)
{
if (!CheckSMBIOS())
return nullptr;
SMBIOSEntryPoint *Header = (SMBIOSEntryPoint *)bInfo->SMBIOSPtr;
debug("Getting SMBIOS header for type %d", Type);
struct SMBIOSHeader *hdr = (SMBIOSHeader *)(uint64_t)Header->TableAddress;
for (int i = 0; i <= 11; i++)
{
if (hdr < (void *)(uint64_t)(Header->TableAddress + Header->TableLength))
if (hdr->Type == Type)
{
debug("Found SMBIOS header for type %d at %#lx", Type, hdr);
return hdr;
}
hdr = (struct SMBIOSHeader *)((uint64_t)hdr + SMBIOSTableLength(hdr));
}
return nullptr;
}
SMBIOSBIOSInformation *GetBIOSInformation() { return (SMBIOSBIOSInformation *)GetSMBIOSHeader(SMBIOSTypeBIOSInformation); }
SMBIOSSystemInformation *GetSystemInformation() { return (SMBIOSSystemInformation *)GetSMBIOSHeader(SMBIOSTypeSystemInformation); }
SMBIOSBaseBoardInformation *GetBaseBoardInformation() { return (SMBIOSBaseBoardInformation *)GetSMBIOSHeader(SMBIOSTypeBaseBoardInformation); }
SMBIOSProcessorInformation *GetProcessorInformation() { return (SMBIOSProcessorInformation *)GetSMBIOSHeader(SMBIOSTypeProcessorInformation); }
SMBIOSMemoryArray *GetMemoryArray() { return (SMBIOSMemoryArray *)GetSMBIOSHeader(SMBIOSTypePhysicalMemoryArray); }
SMBIOSMemoryDevice *GetMemoryDevice() { return (SMBIOSMemoryDevice *)GetSMBIOSHeader(SMBIOSTypeMemoryDevice); }
SMBIOSMemoryArrayMappedAddress *GetMemoryArrayMappedAddress() { return (SMBIOSMemoryArrayMappedAddress *)GetSMBIOSHeader(SMBIOSTypeMemoryArrayMappedAddress); }
SMBIOSMemoryDeviceMappedAddress *GetMemoryDeviceMappedAddress() { return (SMBIOSMemoryDeviceMappedAddress *)GetSMBIOSHeader(SMBIOSTypeMemoryDeviceMappedAddress); }
}

View File

@ -1,41 +0,0 @@
#include <time.hpp>
#include <io.h>
namespace Time
{
Clock ReadClock()
{
Clock tm;
#if defined(__amd64__) || defined(__i386__)
uint32_t t = 0;
outb(0x70, 0x00);
t = inb(0x71);
tm.Second = ((t & 0x0F) + ((t >> 4) * 10));
outb(0x70, 0x02);
t = inb(0x71);
tm.Minute = ((t & 0x0F) + ((t >> 4) * 10));
outb(0x70, 0x04);
t = inb(0x71);
tm.Hour = ((t & 0x0F) + ((t >> 4) * 10));
outb(0x70, 0x07);
t = inb(0x71);
tm.Day = ((t & 0x0F) + ((t >> 4) * 10));
outb(0x70, 0x08);
t = inb(0x71);
tm.Month = ((t & 0x0F) + ((t >> 4) * 10));
outb(0x70, 0x09);
t = inb(0x71);
tm.Year = ((t & 0x0F) + ((t >> 4) * 10));
tm.Counter = 0;
#elif defined(__aarch64__)
tm.Year = 0;
tm.Month = 0;
tm.Day = 0;
tm.Hour = 0;
tm.Minute = 0;
tm.Second = 0;
tm.Counter = 0;
#endif
return tm;
}
}

View File

@ -1,58 +0,0 @@
#include <time.hpp>
#include <memory.hpp>
#include <debug.h>
#include <io.h>
#if defined(__amd64__)
#include "../Architecture/amd64/acpi.hpp"
#elif defined(__i386__)
#elif defined(__aarch64__)
#endif
namespace Time
{
void time::Sleep(uint64_t Milliseconds)
{
#if defined(__amd64__) || defined(__i386__)
uint64_t Target = mminq(&((HPET *)hpet)->MainCounterValue) + (Milliseconds * 1000000000) / clk;
while (mminq(&((HPET *)hpet)->MainCounterValue) < Target)
CPU::Pause();
#elif defined(__aarch64__)
#endif
}
time::time(void *_acpi)
{
if (_acpi)
{
#if defined(__amd64__)
this->acpi = _acpi;
ACPI::ACPI *acpi = (ACPI::ACPI *)this->acpi;
if (acpi->HPET)
{
Memory::Virtual().Map((void *)acpi->HPET->Address.Address,
(void *)acpi->HPET->Address.Address,
Memory::PTFlag::RW | Memory::PTFlag::PCD);
this->hpet = (void *)acpi->HPET->Address.Address;
HPET *hpet = (HPET *)this->hpet;
trace("%s timer is at address %016p", acpi->HPET->Header.OEMID, (void *)acpi->HPET->Address.Address);
clk = hpet->GeneralCapabilities >> 32;
mmoutq(&hpet->GeneralConfiguration, 0);
mmoutq(&hpet->MainCounterValue, 0);
mmoutq(&hpet->GeneralConfiguration, 1);
}
else
{
trace("HPET not found");
}
#elif defined(__i386__)
#elif defined(__aarch64__)
#endif
}
}
time::~time()
{
}
}

View File

@ -1,283 +0,0 @@
#include "ubsan.h"
#include <convert.h>
#include <debug.h>
// TODO: implement:
/*
__ubsan_handle_type_mismatch_v1_abort
__ubsan_handle_add_overflow_abort
__ubsan_handle_sub_overflow_abort
__ubsan_handle_mul_overflow_abort
__ubsan_handle_negate_overflow_abort
__ubsan_handle_divrem_overflow_abort
__ubsan_handle_shift_out_of_bounds_abort
__ubsan_handle_out_of_bounds_abort
__ubsan_handle_vla_bound_not_positive_abort
__ubsan_handle_float_cast_overflow
__ubsan_handle_float_cast_overflow_abort
__ubsan_handle_load_invalid_value_abort
__ubsan_handle_invalid_builtin_abort
__ubsan_handle_function_type_mismatch_abort
__ubsan_handle_nonnull_return_v1
__ubsan_handle_nonnull_return_v1_abort
__ubsan_handle_nullability_return_v1
__ubsan_handle_nullability_return_v1_abort
__ubsan_handle_nonnull_arg_abort
__ubsan_handle_nullability_arg
__ubsan_handle_nullability_arg_abort
__ubsan_handle_pointer_overflow_abort
__ubsan_handle_cfi_check_fail
*/
extern void __asan_report_load1(void *unknown) { ubsan("load1"); }
extern void __asan_report_load2(void *unknown) { ubsan("load2"); }
extern void __asan_report_load4(void *unknown) { ubsan("load4"); }
extern void __asan_report_load8(void *unknown) { ubsan("load8"); }
extern void __asan_report_load16(void *unknown) { ubsan("load16"); }
extern void __asan_report_load_n(void *unknown, uintptr_t size) { ubsan("loadn"); }
extern void __asan_report_store1(void *unknown) { ubsan("store1"); }
extern void __asan_report_store2(void *unknown) { ubsan("store2"); }
extern void __asan_report_store4(void *unknown) { ubsan("store4"); }
extern void __asan_report_store8(void *unknown) { ubsan("store8"); }
extern void __asan_report_store16(void *unknown) { ubsan("store16"); }
extern void __asan_report_store_n(void *unknown, uintptr_t size) { ubsan("storen"); }
extern void __asan_report_load1_noabort(void *unknown) { ubsan("load1"); }
extern void __asan_report_load2_noabort(void *unknown) { ubsan("load2"); }
extern void __asan_report_load4_noabort(void *unknown) { ubsan("load4"); }
extern void __asan_report_load8_noabort(void *unknown) { ubsan("load8"); }
extern void __asan_report_load16_noabort(void *unknown) { ubsan("load16"); }
extern void __asan_report_load_n_noabort(void *unknown, uintptr_t size) { ubsan("loadn"); }
extern void __asan_report_store1_noabort(void *unknown) { ubsan("store1"); }
extern void __asan_report_store2_noabort(void *unknown) { ubsan("store2"); }
extern void __asan_report_store4_noabort(void *unknown) { ubsan("store4"); }
extern void __asan_report_store8_noabort(void *unknown) { ubsan("store8"); }
extern void __asan_report_store16_noabort(void *unknown) { ubsan("store16"); }
extern void __asan_report_store_n_noabort(void *unknown, uintptr_t size) { ubsan("storen"); }
extern void __asan_stack_malloc_0(uintptr_t size) { ubsan("stack malloc 0"); }
extern void __asan_stack_malloc_1(uintptr_t size) { ubsan("stack malloc 1"); }
extern void __asan_stack_malloc_2(uintptr_t size) { ubsan("stack malloc 2"); }
extern void __asan_stack_malloc_3(uintptr_t size) { ubsan("stack malloc 3"); }
extern void __asan_stack_malloc_4(uintptr_t size) { ubsan("stack malloc 4"); }
extern void __asan_stack_malloc_5(uintptr_t size) { ubsan("stack malloc 5"); }
extern void __asan_stack_malloc_6(uintptr_t size) { ubsan("stack malloc 6"); }
extern void __asan_stack_malloc_7(uintptr_t size) { ubsan("stack malloc 7"); }
extern void __asan_stack_malloc_8(uintptr_t size) { ubsan("stack malloc 8"); }
extern void __asan_stack_malloc_9(uintptr_t size) { ubsan("stack malloc 9"); }
extern void __asan_stack_free_0(void *ptr, uintptr_t size) { ubsan("stack free 0"); }
extern void __asan_stack_free_1(void *ptr, uintptr_t size) { ubsan("stack free 1"); }
extern void __asan_stack_free_2(void *ptr, uintptr_t size) { ubsan("stack free 2"); }
extern void __asan_stack_free_3(void *ptr, uintptr_t size) { ubsan("stack free 3"); }
extern void __asan_stack_free_4(void *ptr, uintptr_t size) { ubsan("stack free 4"); }
extern void __asan_stack_free_5(void *ptr, uintptr_t size) { ubsan("stack free 5"); }
extern void __asan_stack_free_6(void *ptr, uintptr_t size) { ubsan("stack free 6"); }
extern void __asan_stack_free_7(void *ptr, uintptr_t size) { ubsan("stack free 7"); }
extern void __asan_stack_free_8(void *ptr, uintptr_t size) { ubsan("stack free 8"); }
extern void __asan_stack_free_9(void *ptr, uintptr_t size) { ubsan("stack free 9"); }
extern void __asan_poison_stack_memory(void *addr, uintptr_t size) { ubsan("poison stack memory"); }
extern void __asan_unpoison_stack_memory(void *addr, uintptr_t size) { ubsan("unpoison stack memory"); }
extern void __asan_before_dynamic_init(const char *module_name) { ubsan("before dynamic init"); }
extern void __asan_after_dynamic_init(void) { ubsan("after dynamic init"); }
extern void __asan_register_globals(void *unknown, size_t size) { ubsan("register_globals"); }
extern void __asan_unregister_globals(void) { ubsan("unregister_globals"); }
extern void __asan_init(void) { ubsan("init"); }
extern void __asan_version_mismatch_check_v8(void) { ubsan("version_mismatch_check_v8"); }
extern void __asan_option_detect_stack_use_after_return(void) { ubsan("stack use after return"); }
extern __noreturn void __asan_handle_no_return(void)
{
ubsan("no_return");
while (1)
;
}
#define is_aligned(value, alignment) !(value & (alignment - 1))
const char *Type_Check_Kinds[] = {
"Load of",
"Store to",
"Reference binding to",
"Member access within",
"Member call on",
"Constructor call on",
"Downcast of",
"Downcast of",
"Upcast of",
"Cast to virtual base of",
};
bool UBSANMsg(const char *file, uint32_t line, uint32_t column)
{
// blacklist
// if (strstr(file, "liballoc") ||
// strstr(file, "cwalk") ||
// strstr(file, "AdvancedConfigurationandPowerInterface") ||
// strstr(file, "SystemManagementBIOS"))
// return false;
if (strstr(file, "AdvancedConfigurationandPowerInterface.cpp") &&
(line == 17 && column == 47))
return false;
if (strstr(file, "SystemManagementBIOS.cpp") &&
((line == 30 && column == 21) ||
(line == 27 && column == 49) ||
(line == 45 && column == 26)))
return false;
if (strstr(file, "cwalk.c") &&
((line == 1047 && column == 15)))
return false;
if (strstr(file, "liballoc_1_1.c"))
return false;
if (strstr(file, "display.hpp") &&
((line == 113 && column == 43)))
return false;
if (strstr(file, "Xalloc.hpp") &&
(line == 48 && column == 28))
return false;
ubsan("\t\tIn File: %s:%i:%i", file, line, column);
return true;
}
void __ubsan_handle_type_mismatch_v1(struct type_mismatch_v1_data *type_mismatch, uintptr_t pointer)
{
struct source_location *location = &type_mismatch->location;
if (pointer == 0)
{
if (UBSANMsg(location->file, location->line, location->column))
ubsan("Null pointer access.");
}
else if (type_mismatch->alignment != 0 && is_aligned(pointer, type_mismatch->alignment))
{
if (UBSANMsg(location->file, location->line, location->column))
ubsan("Unaligned memory access %#llx.", pointer);
}
else
{
if (UBSANMsg(location->file, location->line, location->column))
ubsan("%s address %#llx with insufficient space for object of type %s",
Type_Check_Kinds[type_mismatch->type_check_kind], (void *)pointer, type_mismatch->type->name);
}
}
void __ubsan_handle_add_overflow(struct overflow_data *data)
{
if (UBSANMsg(data->location.file, data->location.line, data->location.column))
ubsan("Addition overflow.");
}
void __ubsan_handle_sub_overflow(struct overflow_data *data)
{
if (UBSANMsg(data->location.file, data->location.line, data->location.column))
ubsan("Subtraction overflow.");
}
void __ubsan_handle_mul_overflow(struct overflow_data *data)
{
if (UBSANMsg(data->location.file, data->location.line, data->location.column))
ubsan("Multiplication overflow.");
}
void __ubsan_handle_divrem_overflow(struct overflow_data *data)
{
if (UBSANMsg(data->location.file, data->location.line, data->location.column))
ubsan("Division overflow.");
}
void __ubsan_handle_negate_overflow(struct overflow_data *data)
{
if (UBSANMsg(data->location.file, data->location.line, data->location.column))
ubsan("Negation overflow.");
}
void __ubsan_handle_pointer_overflow(struct overflow_data *data)
{
if (UBSANMsg(data->location.file, data->location.line, data->location.column))
ubsan("Pointer overflow.");
}
void __ubsan_handle_shift_out_of_bounds(struct shift_out_of_bounds_data *data)
{
if (UBSANMsg(data->location.file, data->location.line, data->location.column))
ubsan("Shift out of bounds.");
}
void __ubsan_handle_load_invalid_value(struct invalid_value_data *data)
{
if (UBSANMsg(data->location.file, data->location.line, data->location.column))
ubsan("Invalid load value.");
}
void __ubsan_handle_out_of_bounds(struct array_out_of_bounds_data *data)
{
if (UBSANMsg(data->location.file, data->location.line, data->location.column))
ubsan("Array out of bounds.");
}
void __ubsan_handle_vla_bound_not_positive(struct negative_vla_data *data)
{
if (UBSANMsg(data->location.file, data->location.line, data->location.column))
ubsan("Variable-length argument is negative.");
}
void __ubsan_handle_nonnull_return(struct nonnull_return_data *data)
{
if (UBSANMsg(data->location.file, data->location.line, data->location.column))
ubsan("Non-null return is null.");
}
void __ubsan_handle_nonnull_return_v1(struct nonnull_return_data *data)
{
if (UBSANMsg(data->location.file, data->location.line, data->location.column))
ubsan("Non-null return is null.");
}
void __ubsan_handle_nonnull_arg(struct nonnull_arg_data *data)
{
if (UBSANMsg(data->location.file, data->location.line, data->location.column))
ubsan("Non-null argument is null.");
}
void __ubsan_handle_builtin_unreachable(struct unreachable_data *data)
{
if (UBSANMsg(data->location.file, data->location.line, data->location.column))
ubsan("Unreachable code reached.");
}
void __ubsan_handle_invalid_builtin(struct invalid_builtin_data *data)
{
if (UBSANMsg(data->location.file, data->location.line, data->location.column))
ubsan("Invalid builtin.");
}
void __ubsan_handle_missing_return(struct unreachable_data *data)
{
if (UBSANMsg(data->location.file, data->location.line, data->location.column))
ubsan("Missing return.");
}
void __ubsan_vptr_type_cache(uintptr_t *cache, uintptr_t ptr)
{
ubsan("Vptr type cache.");
*cache = ptr;
}
void __ubsan_handle_dynamic_type_cache_miss(struct dynamic_type_cache_miss_data *data, uintptr_t ptr)
{
if (UBSANMsg(data->location.file, data->location.line, data->location.column))
ubsan("Dynamic type cache miss.");
}

View File

@ -1,148 +0,0 @@
#include <uart.hpp>
#include <vector.hpp>
#include <debug.h>
volatile bool serialports[8] = {false, false, false, false, false, false, false, false};
Vector<UniversalAsynchronousReceiverTransmitter::Events *> RegisteredEvents;
#if defined(__amd64__) || defined(__i386__)
__no_instrument_function uint8_t NoProfiler_inportb(uint16_t Port)
{
uint8_t Result;
asm("in %%dx, %%al"
: "=a"(Result)
: "d"(Port));
return Result;
}
__no_instrument_function void NoProfiler_outportb(uint16_t Port, uint8_t Data)
{
asmv("out %%al, %%dx"
:
: "a"(Data), "d"(Port));
}
#endif
namespace UniversalAsynchronousReceiverTransmitter
{
#define SERIAL_ENABLE_DLAB 0x80
#define SERIAL_RATE_38400_LO 0x03
#define SERIAL_RATE_38400_HI 0x00
#define SERIAL_BUFFER_EMPTY 0x20
SafeFunction __no_instrument_function UART::UART(SerialPorts Port)
{
#if defined(__amd64__) || defined(__i386__)
if (Port == COMNULL)
return;
this->Port = Port;
int PortNumber = 0;
switch (Port)
{
case COM1:
PortNumber = 0;
break;
case COM2:
PortNumber = 1;
break;
case COM3:
PortNumber = 2;
break;
case COM4:
PortNumber = 3;
break;
case COM5:
PortNumber = 4;
break;
case COM6:
PortNumber = 5;
break;
case COM7:
PortNumber = 6;
break;
case COM8:
PortNumber = 7;
break;
default:
return;
}
if (serialports[PortNumber])
return;
// Initialize the serial port
NoProfiler_outportb(Port + 1, 0x00); // Disable all interrupts
NoProfiler_outportb(Port + 3, SERIAL_ENABLE_DLAB); // Enable DLAB (set baud rate divisor)
NoProfiler_outportb(Port + 0, SERIAL_RATE_38400_LO); // Set divisor to 3 (lo byte) 38400 baud
NoProfiler_outportb(Port + 1, SERIAL_RATE_38400_HI); // (hi byte)
NoProfiler_outportb(Port + 3, 0x03); // 8 bits, no parity, one stop bit
NoProfiler_outportb(Port + 2, 0xC7); // Enable FIFO, clear them, with 14-byte threshold
NoProfiler_outportb(Port + 4, 0x0B); // IRQs enabled, RTS/DSR set
// Check if the serial port is faulty.
if (NoProfiler_inportb(Port + 0) != 0xAE)
{
static int once = 0;
if (!once++)
warn("Serial port %#llx is faulty.", Port);
// serialports[Port] = false; // ignore for now
// return;
}
// Set to normal operation mode.
NoProfiler_outportb(Port + 4, 0x0F);
serialports[PortNumber] = true;
#endif
}
SafeFunction __no_instrument_function UART::~UART() {}
SafeFunction __no_instrument_function void UART::Write(uint8_t Char)
{
#if defined(__amd64__) || defined(__i386__)
while ((NoProfiler_inportb(Port + 5) & SERIAL_BUFFER_EMPTY) == 0)
;
NoProfiler_outportb(Port, Char);
#endif
foreach (auto e in RegisteredEvents)
if (e->GetRegisteredPort() == Port || e->GetRegisteredPort() == COMNULL)
e->OnSent(Char);
}
SafeFunction __no_instrument_function uint8_t UART::Read()
{
#if defined(__amd64__) || defined(__i386__)
while ((NoProfiler_inportb(Port + 5) & 1) == 0)
;
return NoProfiler_inportb(Port);
#endif
foreach (auto e in RegisteredEvents)
{
if (e->GetRegisteredPort() == Port || e->GetRegisteredPort() == COMNULL)
{
#if defined(__amd64__) || defined(__i386__)
e->OnReceived(NoProfiler_inportb(Port));
#endif
}
}
}
SafeFunction __no_instrument_function Events::Events(SerialPorts Port)
{
this->Port = Port;
RegisteredEvents.push_back(this);
}
SafeFunction __no_instrument_function Events::~Events()
{
for (uint64_t i = 0; i < RegisteredEvents.size(); i++)
if (RegisteredEvents[i] == this)
{
RegisteredEvents.remove(i);
return;
}
}
}

View File

@ -1,181 +0,0 @@
#include <display.hpp>
#include <lock.hpp>
#include <uart.hpp>
#include <debug.h>
extern uint64_t _binary_Files_ter_powerline_v12n_psf_start;
extern uint64_t _binary_Files_ter_powerline_v12n_psf_end;
extern uint64_t _binary_Files_ter_powerline_v12n_psf_size;
NewLock(PrintLock);
namespace Video
{
char Display::Print(char Char, int Index, bool WriteToUART)
{
// SmartLock(PrintLock);
if (this->ColorIteration)
{
// RRGGBB
if (Char >= '0' && Char <= '9')
this->Buffers[Index]->Color = (this->Buffers[Index]->Color << 4) | (Char - '0');
else if (Char >= 'a' && Char <= 'f')
this->Buffers[Index]->Color = (this->Buffers[Index]->Color << 4) | (Char - 'a' + 10);
else if (Char >= 'A' && Char <= 'F')
this->Buffers[Index]->Color = (this->Buffers[Index]->Color << 4) | (Char - 'A' + 10);
else
this->Buffers[Index]->Color = 0xFFFFFF;
if (WriteToUART)
UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM1).Write(Char);
this->ColorPickerIteration++;
if (this->ColorPickerIteration == 6)
{
this->ColorPickerIteration = 0;
if (WriteToUART)
UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM1).Write(']');
this->ColorIteration = false;
}
return Char;
}
if (WriteToUART)
UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM1).Write(Char);
switch (Char)
{
case '\e':
{
if (WriteToUART)
UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM1).Write('[');
this->ColorIteration = true;
return Char;
}
case '\b':
{
switch (this->CurrentFont->GetInfo().Type)
{
case FontType::PCScreenFont1:
{
fixme("PCScreenFont1");
break;
}
case FontType::PCScreenFont2:
{
uint32_t fonthdrWidth = this->CurrentFont->GetInfo().PSF2Font->Header->width;
uint32_t fonthdrHeight = this->CurrentFont->GetInfo().PSF2Font->Header->height;
for (unsigned long Y = this->Buffers[Index]->CursorY; Y < this->Buffers[Index]->CursorY + fonthdrHeight; Y++)
for (unsigned long X = this->Buffers[Index]->CursorX - fonthdrWidth; X < this->Buffers[Index]->CursorX; X++)
*(uint32_t *)((uint64_t)this->Buffers[Index]->Buffer +
(Y * this->Buffers[Index]->Width + X) * (this->framebuffer.BitsPerPixel / 8)) = 0;
break;
}
default:
warn("Unsupported font type");
break;
}
if (this->Buffers[Index]->CursorX > 0)
this->Buffers[Index]->CursorX -= this->GetCurrentFont()->GetInfo().Width;
return Char;
}
case '\t':
{
this->Buffers[Index]->CursorX = (this->Buffers[Index]->CursorX + 8) & ~(8 - 1);
return Char;
}
case '\r':
{
this->Buffers[Index]->CursorX = 0;
return Char;
}
case '\n':
{
this->Buffers[Index]->CursorX = 0;
this->Buffers[Index]->CursorY += this->GetCurrentFont()->GetInfo().Height;
return Char;
}
}
if (this->Buffers[Index]->CursorY + this->GetCurrentFont()->GetInfo().Height >= this->Buffers[Index]->Height)
{
this->Buffers[Index]->CursorY -= this->GetCurrentFont()->GetInfo().Height;
this->Scroll(Index, 1);
}
if (this->Buffers[Index]->CursorX + this->GetCurrentFont()->GetInfo().Width >= this->Buffers[Index]->Width)
{
this->Buffers[Index]->CursorX = 0;
this->Buffers[Index]->CursorY += this->GetCurrentFont()->GetInfo().Height;
}
switch (this->CurrentFont->GetInfo().Type)
{
case FontType::PCScreenFont1:
{
uint32_t *PixelPtr = (uint32_t *)this->Buffers[Index]->Buffer;
char *FontPtr = (char *)this->CurrentFont->GetInfo().PSF1Font->GlyphBuffer + (Char * this->CurrentFont->GetInfo().PSF1Font->Header->charsize);
for (uint64_t Y = this->Buffers[Index]->CursorY; Y < this->Buffers[Index]->CursorY + 16; Y++)
{
for (uint64_t X = this->Buffers[Index]->CursorX; X < this->Buffers[Index]->CursorX + 8; X++)
if ((*FontPtr & (0b10000000 >> (X - this->Buffers[Index]->CursorX))) > 0)
*(unsigned int *)(PixelPtr + X + (Y * this->Buffers[Index]->Width)) = this->Buffers[Index]->Color;
FontPtr++;
}
this->Buffers[Index]->CursorX += 8;
break;
}
case FontType::PCScreenFont2:
{
// if (this->CurrentFont->PSF2Font->GlyphBuffer == (uint16_t *)0x01) // HAS UNICODE TABLE
// Char = this->CurrentFont->PSF2Font->GlyphBuffer[Char];
int BytesPerLine = (this->CurrentFont->GetInfo().PSF2Font->Header->width + 7) / 8;
char *FontPtr = (char *)this->CurrentFont->GetInfo().StartAddress +
this->CurrentFont->GetInfo().PSF2Font->Header->headersize +
(Char > 0 && (unsigned char)Char < this->CurrentFont->GetInfo().PSF2Font->Header->length ? Char : 0) *
this->CurrentFont->GetInfo().PSF2Font->Header->charsize;
uint32_t fonthdrWidth = this->CurrentFont->GetInfo().PSF2Font->Header->width;
uint32_t fonthdrHeight = this->CurrentFont->GetInfo().PSF2Font->Header->height;
for (uint64_t Y = this->Buffers[Index]->CursorY; Y < this->Buffers[Index]->CursorY + fonthdrHeight; Y++)
{
for (uint64_t X = this->Buffers[Index]->CursorX; X < this->Buffers[Index]->CursorX + fonthdrWidth; X++)
if ((*FontPtr & (0b10000000 >> (X - this->Buffers[Index]->CursorX))) > 0)
*(uint32_t *)((uint64_t)this->Buffers[Index]->Buffer +
(Y * this->Buffers[Index]->Width + X) * (this->framebuffer.BitsPerPixel / 8)) = this->Buffers[Index]->Color;
FontPtr += BytesPerLine;
}
this->Buffers[Index]->CursorX += fonthdrWidth;
break;
}
default:
warn("Unsupported font type");
break;
}
return Char;
}
Display::Display(BootInfo::FramebufferInfo Info, bool LoadDefaultFont)
{
this->framebuffer = Info;
if (LoadDefaultFont)
{
this->CurrentFont = new Font(&_binary_Files_ter_powerline_v12n_psf_start, &_binary_Files_ter_powerline_v12n_psf_end, FontType::PCScreenFont2);
FontInfo Info = this->CurrentFont->GetInfo();
debug("Font loaded: %dx%d %s",
Info.Width, Info.Height, Info.Type == FontType::PCScreenFont1 ? "PSF1" : "PSF2");
}
this->CreateBuffer(Info.Width, Info.Height, 0);
}
Display::~Display()
{
for (int i = 0; i < 16; i++)
DeleteBuffer(i);
}
}

View File

@ -1,54 +0,0 @@
#include <display.hpp>
#include <debug.h>
#include <cstring>
namespace Video
{
Font::Font(uint64_t *Start, uint64_t *End, FontType Type)
{
trace("Initializing font with start %#llx and end %#llx Type: %d", Start, End, Type);
this->Info.StartAddress = Start;
this->Info.EndAddress = End;
this->Info.Type = Type;
if (Type == FontType::PCScreenFont2)
{
this->Info.PSF2Font = new PSF2_FONT;
uint64_t FontDataLength = End - Start;
PSF2_HEADER *font2 = (PSF2_HEADER *)KernelAllocator.RequestPages(FontDataLength / PAGE_SIZE + 1);
for (uint64_t i = 0; i < FontDataLength / PAGE_SIZE + 1; i++)
Memory::Virtual().Map((void *)(font2 + (i * PAGE_SIZE)), (void *)(font2 + (i * PAGE_SIZE)), Memory::PTFlag::RW);
memcpy((void *)font2, Start, FontDataLength);
this->Info.Width = font2->width;
this->Info.Height = font2->height;
if (font2->magic[0] != PSF2_MAGIC0 || font2->magic[1] != PSF2_MAGIC1 || font2->magic[2] != PSF2_MAGIC2 || font2->magic[3] != PSF2_MAGIC3)
error("Font2 magic mismatch.");
this->Info.PSF2Font->Header = font2;
this->Info.PSF2Font->GlyphBuffer = reinterpret_cast<void *>(reinterpret_cast<uint64_t>(Start) + sizeof(PSF2_HEADER));
}
else if (Type == FontType::PCScreenFont1)
{
this->Info.PSF1Font = new PSF1_FONT;
PSF1_HEADER *font1 = (PSF1_HEADER *)Start;
if (font1->magic[0] != PSF1_MAGIC0 || font1->magic[1] != PSF1_MAGIC1)
error("Font1 magic mismatch.");
uint32_t glyphBufferSize = font1->charsize * 256;
if (font1->mode == 1) // 512 glyph mode
glyphBufferSize = font1->charsize * 512;
void *glyphBuffer = reinterpret_cast<void *>(reinterpret_cast<uint64_t>(Start) + sizeof(PSF1_HEADER));
this->Info.PSF1Font->Header = font1;
this->Info.PSF1Font->GlyphBuffer = glyphBuffer;
UNUSED(glyphBufferSize); // TODO: Use this in the future?
// TODO: Get font size.
this->Info.Width = 16;
this->Info.Height = 8;
}
}
Font::~Font()
{
}
}

View File

@ -1,17 +0,0 @@
#ifndef __FENNIX_KERNEL_CRASH_HANDELR_H__
#define __FENNIX_KERNEL_CRASH_HANDELR_H__
#include <types.h>
#include <interrupts.hpp>
#include <cpu.hpp>
namespace CrashHandler
{
extern void *EHIntFrames[INT_FRAMES_MAX];
void EHPrint(const char *Format, ...);
void Handle(void *Data);
}
#endif // !__FENNIX_KERNEL_CRASH_HANDELR_H__

View File

@ -1,340 +0,0 @@
#ifndef __FENNIX_KERNEL_SMBIOS_H__
#define __FENNIX_KERNEL_SMBIOS_H__
#include <types.h>
namespace SMBIOS
{
enum SMBIOSType
{
SMBIOSTypeBIOSInformation = 0,
SMBIOSTypeSystemInformation = 1,
SMBIOSTypeBaseBoardInformation = 2,
SMBIOSTypeSystemEnclosure = 3,
SMBIOSTypeProcessorInformation = 4,
SMBIOSTypeMemoryControllerInformation = 5,
SMBIOSTypeMemoryModuleInformation = 6,
SMBIOSTypeCacheInformation = 7,
SMBIOSTypePortConnectorInformation = 8,
SMBIOSTypeSystemSlots = 9,
SMBIOSTypeOnBoardDevicesInformation = 10,
SMBIOSTypeOEMStrings = 11,
SMBIOSTypeSystemConfigurationOptions = 12,
SMBIOSTypeBIOSLanguageInformation = 13,
SMBIOSTypeGroupAssociations = 14,
SMBIOSTypeSystemEventLog = 15,
SMBIOSTypePhysicalMemoryArray = 16,
SMBIOSTypeMemoryDevice = 17,
SMBIOSType32BitMemoryErrorInformation = 18,
SMBIOSTypeMemoryArrayMappedAddress = 19,
SMBIOSTypeMemoryDeviceMappedAddress = 20,
SMBIOSTypeBuiltInPointingDevice = 21,
SMBIOSTypePortableBattery = 22,
SMBIOSTypeSystemReset = 23,
SMBIOSTypeHardwareSecurity = 24,
SMBIOSTypeSystemPowerControls = 25,
SMBIOSTypeVoltageProbe = 26,
SMBIOSTypeCoolingDevice = 27,
SMBIOSTypeTemperatureProbe = 28,
SMBIOSTypeElectricalCurrentProbe = 29,
SMBIOSTypeOutofBandRemoteAccess = 30,
SMBIOSTypeBootIntegrityServices = 31,
SMBIOSTypeSystemBoot = 32,
SMBIOSType64BitMemoryErrorInformation = 33,
SMBIOSTypeManagementDevice = 34,
SMBIOSTypeManagementDeviceComponent = 35,
SMBIOSTypeManagementDeviceThresholdData = 36,
SMBIOSTypeMemoryChannel = 37,
SMBIOSTypeIPMIDevice = 38,
SMBIOSTypePowerSupply = 39,
SMBIOSTypeAdditionalInformation = 40,
SMBIOSTypeOnboardDevicesExtendedInformation = 41,
SMBIOSTypeManagementControllerHostInterface = 42,
SMBIOSTypeTPMDevice = 43,
SMBIOSTypeProcessorAdditionalInformation = 44,
SMBIOSTypeInactive = 126,
SMBIOSTypeEndOfTable = 127
};
struct SMBIOSHeader
{
unsigned char Type;
unsigned char Length;
unsigned short Handle;
};
struct SMBIOSEntryPoint
{
char EntryPointString[4];
unsigned char Checksum;
unsigned char Length;
unsigned char MajorVersion;
unsigned char MinorVersion;
unsigned short MaxStructureSize;
unsigned char EntryPointRevision;
char FormattedArea[5];
char EntryPointString2[5];
unsigned char Checksum2;
unsigned short TableLength;
unsigned int TableAddress;
unsigned short NumberOfStructures;
unsigned char BCDRevision;
};
static inline char *SMBIOSNextString(char *Str)
{
while (*Str != '\0')
Str++;
return Str + 1;
}
struct SMBIOSBIOSInformation
{
SMBIOSHeader Header;
unsigned char Vendor;
unsigned char Version;
unsigned short StartingAddressSegment;
unsigned char ReleaseDate;
unsigned char ROMSize;
unsigned long Characteristics;
unsigned char CharacteristicsExtensionBytes[2];
unsigned char SystemBIOSMajorRelease;
unsigned char SystemBIOSMinorRelease;
unsigned char EmbeddedControllerFirmwareMajorRelease;
unsigned char EmbeddedControllerFirmwareMinorRelease;
const char *GetString(unsigned char Index)
{
char *Str = (char *)((unsigned long)this + this->Header.Length);
Index--;
if (Index == 0 || Index > 10)
return Str;
for (unsigned char i = 0; i < Index; i++)
Str = SMBIOSNextString(Str);
return Str;
}
};
struct SMBIOSSystemInformation
{
SMBIOSHeader Header;
unsigned char Manufacturer;
unsigned char ProductName;
unsigned char Version;
unsigned char SerialNumber;
unsigned char UUID[16];
unsigned char WakeUpType;
unsigned char SKU;
unsigned char Family;
const char *GetString(unsigned char Index)
{
char *Str = (char *)((unsigned long)this + this->Header.Length);
Index--;
if (Index == 0 || Index > 10)
return Str;
for (unsigned char i = 0; i < Index; i++)
Str = SMBIOSNextString(Str);
return Str;
}
};
struct SMBIOSBaseBoardInformation
{
SMBIOSHeader Header;
unsigned char Manufacturer;
unsigned char Product;
unsigned char Version;
unsigned char SerialNumber;
unsigned char AssetTag;
unsigned char FeatureFlags;
unsigned char LocationInChassis;
unsigned short ChassisHandle;
unsigned char BoardType;
unsigned char NumberOfContainedObjectHandles;
unsigned short ContainedObjectHandles[0];
const char *GetString(unsigned char Index)
{
char *Str = (char *)((unsigned long)this + this->Header.Length);
Index--;
if (Index == 0 || Index > 10)
return Str;
for (unsigned char i = 0; i < Index; i++)
Str = SMBIOSNextString(Str);
return Str;
}
};
struct SMBIOSProcessorInformation
{
SMBIOSHeader Header;
unsigned char SocketDesignation;
unsigned char ProcessorType;
unsigned char ProcessorFamily;
unsigned char ProcessorManufacturer;
unsigned long ProcessorID[2];
unsigned char ProcessorVersion;
unsigned char Voltage;
unsigned short ExternalClock;
unsigned short MaxSpeed;
unsigned short CurrentSpeed;
unsigned char Status;
unsigned char ProcessorUpgrade;
unsigned short L1CacheHandle;
unsigned short L2CacheHandle;
unsigned short L3CacheHandle;
unsigned char SerialNumber;
unsigned char AssetTag;
unsigned char PartNumber;
unsigned char CoreCount;
unsigned char CoreEnabled;
unsigned char ThreadCount;
unsigned short ProcessorCharacteristics;
unsigned short ProcessorFamily2;
unsigned short CoreCount2;
unsigned short CoreEnabled2;
unsigned short ThreadCount2;
const char *GetString(unsigned char Index)
{
char *Str = (char *)((unsigned long)this + this->Header.Length);
Index--;
if (Index == 0 || Index > 10)
return Str;
for (unsigned char i = 0; i < Index; i++)
Str = SMBIOSNextString(Str);
return Str;
}
};
struct SMBIOSMemoryDevice
{
SMBIOSHeader Header;
unsigned char PhysicalMemoryArrayHandle;
unsigned char MemoryErrorInformationHandle;
unsigned short TotalWidth;
unsigned short DataWidth;
unsigned short Size;
unsigned char FormFactor;
unsigned char DeviceSet;
unsigned char DeviceLocator;
unsigned char BankLocator;
unsigned char MemoryType;
unsigned short TypeDetail;
unsigned short Speed;
unsigned char Manufacturer;
unsigned char SerialNumber;
unsigned char AssetTag;
unsigned char PartNumber;
unsigned char Attributes;
unsigned short ExtendedSize;
unsigned short ConfiguredMemoryClockSpeed;
unsigned short MinimumVoltage;
unsigned short MaximumVoltage;
unsigned short ConfiguredVoltage;
unsigned char MemoryTechnology;
unsigned char OperatingModeCapability;
unsigned char FirmwareVersion;
unsigned char ModuleManufacturerID;
unsigned char ModuleProductID;
unsigned char MemorySubsystemControllerManufacturerID;
unsigned char MemorySubsystemControllerProductID;
unsigned short NonVolatileSize;
unsigned short VolatileSize;
unsigned short CacheSize;
unsigned short LogicalSize;
unsigned char ExtendedSpeed;
unsigned char ExtendedConfiguredMemorySpeed;
const char *GetString(unsigned char Index)
{
char *Str = (char *)((unsigned long)this + this->Header.Length);
Index--;
if (Index == 0 || Index > 10)
return Str;
for (unsigned char i = 0; i < Index; i++)
Str = SMBIOSNextString(Str);
return Str;
}
};
struct SMBIOSMemoryArrayMappedAddress
{
SMBIOSHeader Header;
unsigned int StartingAddress;
unsigned int EndingAddress;
unsigned short MemoryArrayHandle;
unsigned char PartitionWidth;
const char *GetString(unsigned char Index)
{
char *Str = (char *)((unsigned long)this + this->Header.Length);
Index--;
if (Index == 0 || Index > 10)
return Str;
for (unsigned char i = 0; i < Index; i++)
Str = SMBIOSNextString(Str);
return Str;
}
};
struct SMBIOSMemoryDeviceMappedAddress
{
SMBIOSHeader Header;
unsigned int StartingAddress;
unsigned int EndingAddress;
unsigned short MemoryDeviceHandle;
unsigned short MemoryArrayMappedAddressHandle;
unsigned char PartitionRowPosition;
unsigned char InterleavePosition;
unsigned char InterleavedDataDepth;
const char *GetString(unsigned char Index)
{
char *Str = (char *)((unsigned long)this + this->Header.Length);
Index--;
if (Index == 0 || Index > 10)
return Str;
for (unsigned char i = 0; i < Index; i++)
Str = SMBIOSNextString(Str);
return Str;
}
};
struct SMBIOSMemoryArray
{
SMBIOSHeader Header;
unsigned char Location;
unsigned char Use;
unsigned char MemoryErrorCorrection;
unsigned int MaximumCapacity;
unsigned short MemoryErrorInformationHandle;
unsigned short NumberOfMemoryDevices;
const char *GetString(unsigned char Index)
{
char *Str = (char *)((unsigned long)this + this->Header.Length);
Index--;
if (Index == 0 || Index > 10)
return Str;
for (unsigned char i = 0; i < Index; i++)
Str = SMBIOSNextString(Str);
return Str;
}
};
bool CheckSMBIOS();
SMBIOSEntryPoint *GetSMBIOSEntryPoint();
void *GetSMBIOSHeader(SMBIOSType Type);
SMBIOSBIOSInformation *GetBIOSInformation();
SMBIOSSystemInformation *GetSystemInformation();
SMBIOSBaseBoardInformation *GetBaseBoardInformation();
SMBIOSProcessorInformation *GetProcessorInformation();
SMBIOSMemoryArray *GetMemoryArray();
SMBIOSMemoryDevice *GetMemoryDevice();
SMBIOSMemoryArrayMappedAddress *GetMemoryArrayMappedAddress();
SMBIOSMemoryDeviceMappedAddress *GetMemoryDeviceMappedAddress();
}
#endif // !__FENNIX_KERNEL_SMBIOS_H__

View File

@ -1,94 +0,0 @@
#ifndef __FENNIX_KERNEL_UBSAN_H__
#define __FENNIX_KERNEL_UBSAN_H__
#include <types.h>
struct source_location
{
const char *file;
uint32_t line;
uint32_t column;
};
struct type_descriptor
{
uint16_t kind;
uint16_t info;
char name[];
};
struct type_mismatch_v1_data
{
struct source_location location;
struct type_descriptor *type;
uint8_t alignment;
uint8_t type_check_kind;
};
struct out_of_bounds_info
{
struct source_location location;
struct type_descriptor left_type;
struct type_descriptor right_type;
};
struct overflow_data
{
struct source_location location;
struct type_descriptor *type;
};
struct negative_vla_data
{
struct source_location location;
struct type_descriptor *type;
};
struct invalid_value_data
{
struct source_location location;
struct type_descriptor *type;
};
struct nonnull_return_data
{
struct source_location location;
};
struct nonnull_arg_data
{
struct source_location location;
};
struct unreachable_data
{
struct source_location location;
};
struct invalid_builtin_data
{
struct source_location location;
uint8_t kind;
};
struct array_out_of_bounds_data
{
struct source_location location;
struct type_descriptor *array_type;
struct type_descriptor *index_type;
};
struct shift_out_of_bounds_data
{
struct source_location location;
struct type_descriptor *left_type;
struct type_descriptor *right_type;
};
struct dynamic_type_cache_miss_data
{
struct source_location location;
struct type_descriptor *type;
};
#endif // !__FENNIX_KERNEL_UBSAN_H__