Added AHCI driver

This commit is contained in:
Alex 2022-11-01 04:35:59 +02:00
parent 4969e1fee0
commit d162ea1398
Signed by untrusted user who does not match committer: enderice2
GPG Key ID: EACC3AD603BAB4DD

View File

@ -31,6 +31,145 @@ KernelAPI *KAPI;
/* --------------------------------------------------------------------------------------------------------- */
#define ATA_DEV_BUSY 0x80
#define ATA_DEV_DRQ 0x08
#define ATA_CMD_WRITE_DMA_EX 0x35
#define ATA_CMD_READ_DMA_EX 0x25
#define HBA_PxIS_TFES (1 << 30)
#define HBA_PORT_DEV_PRESENT 0x3
#define HBA_PORT_IPM_ACTIVE 0x1
#define SATA_SIG_ATAPI 0xEB140101
#define SATA_SIG_ATA 0x00000101
#define SATA_SIG_SEMB 0xC33C0101
#define SATA_SIG_PM 0x96690101
#define HBA_PxCMD_CR 0x8000
#define HBA_PxCMD_FRE 0x0010
#define HBA_PxCMD_ST 0x0001
#define HBA_PxCMD_FR 0x4000
enum PortType
{
None = 0,
SATA = 1,
SEMB = 2,
PM = 3,
SATAPI = 4,
};
enum FIS_TYPE
{
FIS_TYPE_REG_H2D = 0x27,
FIS_TYPE_REG_D2H = 0x34,
FIS_TYPE_DMA_ACT = 0x39,
FIS_TYPE_DMA_SETUP = 0x41,
FIS_TYPE_DATA = 0x46,
FIS_TYPE_BIST = 0x58,
FIS_TYPE_PIO_SETUP = 0x5F,
FIS_TYPE_DEV_BITS = 0xA1,
};
struct HBAPort
{
uint32_t CommandListBase;
uint32_t CommandListBaseUpper;
uint32_t FISBaseAddress;
uint32_t FISBaseAddressUpper;
uint32_t InterruptStatus;
uint32_t InterruptEnable;
uint32_t CommandStatus;
uint32_t Reserved0;
uint32_t TaskFileData;
uint32_t Signature;
uint32_t SataStatus;
uint32_t SataControl;
uint32_t SataError;
uint32_t SataActive;
uint32_t CommandIssue;
uint32_t SataNotification;
uint32_t FISSwitchControl;
uint32_t Reserved1[11];
uint32_t Vendor[4];
};
struct HBAMemory
{
uint32_t HostCapability;
uint32_t GlobalHostControl;
uint32_t InterruptStatus;
uint32_t PortsImplemented;
uint32_t Version;
uint32_t CCCControl;
uint32_t CCCPorts;
uint32_t EnclosureManagementLocation;
uint32_t EnclosureManagementControl;
uint32_t HostCapabilitiesExtended;
uint32_t BIOSHandoffControlStatus;
uint8_t Reserved0[0x74];
uint8_t Vendor[0x60];
HBAPort Ports[1];
};
struct HBACommandHeader
{
uint8_t CommandFISLength : 5;
uint8_t ATAPI : 1;
uint8_t Write : 1;
uint8_t Prefetchable : 1;
uint8_t Reset : 1;
uint8_t BIST : 1;
uint8_t ClearBusy : 1;
uint8_t Reserved0 : 1;
uint8_t PortMultiplier : 4;
uint16_t PRDTLength;
uint32_t PRDBCount;
uint32_t CommandTableBaseAddress;
uint32_t CommandTableBaseAddressUpper;
uint32_t Reserved1[4];
};
struct HBAPRDTEntry
{
uint32_t DataBaseAddress;
uint32_t DataBaseAddressUpper;
uint32_t Reserved0;
uint32_t ByteCount : 22;
uint32_t Reserved1 : 9;
uint32_t InterruptOnCompletion : 1;
};
struct HBACommandTable
{
uint8_t CommandFIS[64];
uint8_t ATAPICommand[16];
uint8_t Reserved[48];
HBAPRDTEntry PRDTEntry[];
};
struct FIS_REG_H2D
{
uint8_t FISType;
uint8_t PortMultiplier : 4;
uint8_t Reserved0 : 3;
uint8_t CommandControl : 1;
uint8_t Command;
uint8_t FeatureLow;
uint8_t LBA0;
uint8_t LBA1;
uint8_t LBA2;
uint8_t DeviceRegister;
uint8_t LBA3;
uint8_t LBA4;
uint8_t LBA5;
uint8_t FeatureHigh;
uint8_t CountLow;
uint8_t CountHigh;
uint8_t ISOCommandCompletion;
uint8_t Control;
uint8_t Reserved1[4];
};
struct BARData
{
uint8_t Type;
@ -38,8 +177,194 @@ struct BARData
uint64_t MemoryBase;
};
void *operator new(size_t Size) { return KAPI->Memory.RequestPage(Size / KAPI->Memory.PageSize + 1); }
class Port
{
public:
HBAPort *HBAPortPtr;
PortType AHCIPortType;
uint8_t *Buffer;
uint8_t PortNumber;
void StartCMD()
{
while (HBAPortPtr->CommandStatus & HBA_PxCMD_CR)
;
HBAPortPtr->CommandStatus |= HBA_PxCMD_FRE;
HBAPortPtr->CommandStatus |= HBA_PxCMD_ST;
}
void StopCMD()
{
HBAPortPtr->CommandStatus &= ~HBA_PxCMD_ST;
HBAPortPtr->CommandStatus &= ~HBA_PxCMD_FRE;
while (true)
{
if (HBAPortPtr->CommandStatus & HBA_PxCMD_FR)
continue;
if (HBAPortPtr->CommandStatus & HBA_PxCMD_CR)
continue;
break;
}
}
void Configure()
{
StopCMD();
void *NewBase = KAPI->Memory.RequestPage(1);
HBAPortPtr->CommandListBase = (uint32_t)(uint64_t)NewBase;
HBAPortPtr->CommandListBaseUpper = (uint32_t)((uint64_t)NewBase >> 32);
KAPI->Util.memset(reinterpret_cast<void *>(HBAPortPtr->CommandListBase), 0, 1024);
void *FISBase = KAPI->Memory.RequestPage(1);
HBAPortPtr->FISBaseAddress = (uint32_t)(uint64_t)FISBase;
HBAPortPtr->FISBaseAddressUpper = (uint32_t)((uint64_t)FISBase >> 32);
KAPI->Util.memset(FISBase, 0, 256);
HBACommandHeader *CommandHeader = (HBACommandHeader *)((uint64_t)HBAPortPtr->CommandListBase + ((uint64_t)HBAPortPtr->CommandListBaseUpper << 32));
for (int i = 0; i < 32; i++)
{
CommandHeader[i].PRDTLength = 8;
void *CommandTableAddress = KAPI->Memory.RequestPage(1);
uint64_t Address = (uint64_t)CommandTableAddress + (i << 8);
CommandHeader[i].CommandTableBaseAddress = (uint32_t)(uint64_t)Address;
CommandHeader[i].CommandTableBaseAddressUpper = (uint32_t)((uint64_t)Address >> 32);
KAPI->Util.memset(CommandTableAddress, 0, 256);
}
StartCMD();
}
bool ReadWrite(uint64_t Sector, uint32_t SectorCount, uint8_t *Buffer, bool Write)
{
if (this->PortNumber == PortType::SATAPI && Write)
{
// err("SATAPI port does not support write.");
KAPI->Util.DebugPrint(((char *)"SATAPI port does not support write." + KAPI->Info.Offset), KAPI->Info.DriverUID);
return false;
}
uint32_t SectorL = (uint32_t)Sector;
uint32_t SectorH = (uint32_t)(Sector >> 32);
HBAPortPtr->InterruptStatus = (uint32_t)-1; // Clear pending interrupt bits
HBACommandHeader *CommandHeader = reinterpret_cast<HBACommandHeader *>(HBAPortPtr->CommandListBase);
CommandHeader->CommandFISLength = sizeof(FIS_REG_H2D) / sizeof(uint32_t);
if (Write)
CommandHeader->Write = 1;
else
CommandHeader->Write = 0;
CommandHeader->PRDTLength = 1;
HBACommandTable *CommandTable = reinterpret_cast<HBACommandTable *>(CommandHeader->CommandTableBaseAddress);
KAPI->Util.memset(CommandTable, 0, sizeof(HBACommandTable) + (CommandHeader->PRDTLength - 1) * sizeof(HBAPRDTEntry));
CommandTable->PRDTEntry[0].DataBaseAddress = (uint32_t)(uint64_t)Buffer;
CommandTable->PRDTEntry[0].DataBaseAddressUpper = (uint32_t)((uint64_t)Buffer >> 32);
CommandTable->PRDTEntry[0].ByteCount = (SectorCount << 9) - 1; // 512 bytes per sector
CommandTable->PRDTEntry[0].InterruptOnCompletion = 1;
FIS_REG_H2D *CommandFIS = (FIS_REG_H2D *)(&CommandTable->CommandFIS);
CommandFIS->FISType = FIS_TYPE_REG_H2D;
CommandFIS->CommandControl = 1;
if (Write)
CommandFIS->Command = ATA_CMD_WRITE_DMA_EX;
else
CommandFIS->Command = ATA_CMD_READ_DMA_EX;
CommandFIS->LBA0 = (uint8_t)SectorL;
CommandFIS->LBA1 = (uint8_t)(SectorL >> 8);
CommandFIS->LBA2 = (uint8_t)(SectorL >> 16);
CommandFIS->LBA3 = (uint8_t)SectorH;
CommandFIS->LBA4 = (uint8_t)(SectorH >> 8);
CommandFIS->LBA5 = (uint8_t)(SectorH >> 16);
CommandFIS->DeviceRegister = 1 << 6; // LBA mode
CommandFIS->CountLow = SectorCount & 0xFF;
CommandFIS->CountHigh = (SectorCount >> 8) & 0xFF;
uint64_t Spin = 0;
while ((HBAPortPtr->TaskFileData & (ATA_DEV_BUSY | ATA_DEV_DRQ)) && Spin < 1000000)
Spin++;
if (Spin == 1000000)
{
// err("Port not responding.");
KAPI->Util.DebugPrint(((char *)"Port not responding." + KAPI->Info.Offset), KAPI->Info.DriverUID);
return false;
}
HBAPortPtr->CommandIssue = 1;
Spin = 0;
int TryCount = 0;
while (true)
{
if (Spin > 100000000)
{
// err("Port %d not responding. (%d)", this->PortNumber, TryCount);
KAPI->Util.DebugPrint(((char *)"Port not responding." + KAPI->Info.Offset), KAPI->Info.DriverUID);
Spin = 0;
TryCount++;
if (TryCount > 10)
return false;
}
if ((HBAPortPtr->CommandIssue == 0))
break;
Spin++;
if (HBAPortPtr->InterruptStatus & HBA_PxIS_TFES)
{
// err("Error reading/writing (%d).", Write);
KAPI->Util.DebugPrint(((char *)"Error reading/writing." + KAPI->Info.Offset), KAPI->Info.DriverUID);
return false;
}
}
return true;
}
};
HBAMemory *ABAR;
Port *Ports[32];
uint8_t PortCount = 0;
PCIDeviceHeader *PCIBaseAddress;
const char *PortTypeName[] = {"None",
"SATA",
"SEMB",
"PM",
"SATAPI"};
PortType CheckPortType(HBAPort *Port)
{
uint32_t SataStatus = Port->SataStatus;
uint8_t InterfacePowerManagement = (SataStatus >> 8) & 0b111;
uint8_t DeviceDetection = SataStatus & 0b111;
if (DeviceDetection != HBA_PORT_DEV_PRESENT)
return PortType::None;
if (InterfacePowerManagement != HBA_PORT_IPM_ACTIVE)
return PortType::None;
switch (Port->Signature)
{
case SATA_SIG_ATAPI:
return PortType::SATAPI;
case SATA_SIG_ATA:
return PortType::SATA;
case SATA_SIG_PM:
return PortType::PM;
case SATA_SIG_SEMB:
return PortType::SEMB;
default:
return PortType::None;
}
}
int DriverEntry(KernelAPI *Data)
{
if (!Data)
@ -63,14 +388,45 @@ int CallbackHandler(KernelCallback *Data)
{
KAPI->Util.DebugPrint(((char *)"Kernel received configuration data." + KAPI->Info.Offset), KAPI->Info.DriverUID);
PCIBaseAddress = reinterpret_cast<PCIDeviceHeader *>(Data->RawPtr);
break;
}
case InterruptReason:
{
ABAR = reinterpret_cast<HBAMemory *>(((PCIHeader0 *)PCIBaseAddress)->BAR5);
KAPI->Memory.Map((void *)ABAR, (void *)ABAR, (1 << 1));
uint32_t PortsImplemented = ABAR->PortsImplemented;
for (int i = 0; i < 32; i++)
{
if (PortsImplemented & (1 << i))
{
PortType portType = CheckPortType(&ABAR->Ports[i]);
if (portType == PortType::SATA || portType == PortType::SATAPI)
{
// trace("%s drive found at port %d", PortTypeName[portType], i);
KAPI->Util.DebugPrint(((char *)"SATA drive found." + KAPI->Info.Offset), KAPI->Info.DriverUID);
Ports[PortCount] = new Port;
Ports[PortCount]->AHCIPortType = portType;
Ports[PortCount]->HBAPortPtr = &ABAR->Ports[i];
Ports[PortCount]->PortNumber = PortCount;
Ports[PortCount]->Buffer = static_cast<uint8_t *>(KAPI->Memory.RequestPage(1));
PortCount++;
}
else
{
if (portType != PortType::None)
KAPI->Util.DebugPrint(((char *)"Unsupported port type found." + KAPI->Info.Offset), KAPI->Info.DriverUID);
// warn("Unsupported drive type %s found at port %d", PortTypeName[portType], i);
}
}
}
for (int i = 0; i < PortCount; i++)
Ports[i]->Configure();
break;
}
case SendReason:
{
Ports[Data->DiskCallback.Port]->ReadWrite(Data->DiskCallback.Sector,
Data->DiskCallback.SectorCount,
Data->DiskCallback.Buffer,
Data->DiskCallback.Write);
break;
}
default: