Add implementation for GDT & IDT on x32 and QoL fixes

This commit is contained in:
Alex 2023-05-17 03:28:57 +03:00
parent f3044ceb5f
commit d527121883
Signed by untrusted user who does not match committer: enderice2
GPG Key ID: EACC3AD603BAB4DD
23 changed files with 1529 additions and 457 deletions

View File

@ -22,14 +22,15 @@
#include "../../kernel.h" #include "../../kernel.h"
#pragma GCC diagnostic ignored "-Wint-to-pointer-cast"
namespace ACPI namespace ACPI
{ {
void *ACPI::FindTable(ACPI::ACPIHeader *ACPIHeader, char *Signature) __no_sanitize("alignment") void *ACPI::FindTable(ACPI::ACPIHeader *ACPIHeader, char *Signature)
{ {
for (uint64_t t = 0; t < ((ACPIHeader->Length - sizeof(ACPI::ACPIHeader)) / (XSDTSupported ? 8 : 4)); t++) for (uint64_t t = 0; t < ((ACPIHeader->Length - sizeof(ACPI::ACPIHeader)) / (XSDTSupported ? 8 : 4)); t++)
{ {
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wint-to-pointer-cast"
// TODO: Should I be concerned about unaligned memory access? // TODO: Should I be concerned about unaligned memory access?
ACPI::ACPIHeader *SDTHdr = nullptr; ACPI::ACPIHeader *SDTHdr = nullptr;
if (XSDTSupported) if (XSDTSupported)
@ -37,6 +38,8 @@ namespace ACPI
else else
SDTHdr = (ACPI::ACPIHeader *)(*(uint32_t *)((uint64_t)ACPIHeader + sizeof(ACPI::ACPIHeader) + (t * 4))); SDTHdr = (ACPI::ACPIHeader *)(*(uint32_t *)((uint64_t)ACPIHeader + sizeof(ACPI::ACPIHeader) + (t * 4)));
#pragma GCC diagnostic pop
for (int i = 0; i < 4; i++) for (int i = 0; i < 4; i++)
{ {
if (SDTHdr->Signature[i] != Signature[i]) if (SDTHdr->Signature[i] != Signature[i])

View File

@ -27,17 +27,18 @@ namespace GlobalDescriptorTable
static GlobalDescriptorTableEntries GDTEntriesTemplate = { static GlobalDescriptorTableEntries GDTEntriesTemplate = {
.Null = .Null =
{ {
.Length = 0x0, .Limit0 = 0x0,
.BaseLow = 0x0, .BaseLow = 0x0,
.BaseMiddle = 0x0, .BaseMiddle = 0x0,
.Access = {.Raw = 0x0}, .Access = {.Raw = 0x0},
// .Limit1 = 0x0,
.Flags = {.Raw = 0x0}, .Flags = {.Raw = 0x0},
.BaseHigh = 0x0, .BaseHigh = 0x0,
}, },
.Code = .Code =
{ {
.Length = 0x0, .Limit0 = 0xFFFF,
.BaseLow = 0x0, .BaseLow = 0x0,
.BaseMiddle = 0x0, .BaseMiddle = 0x0,
.Access = { .Access = {
@ -49,15 +50,20 @@ namespace GlobalDescriptorTable
.DPL = 0, .DPL = 0,
.P = 1, .P = 1,
}, },
// .Limit1 = 0xF,
.Flags = { .Flags = {
.Unknown = 0x0, .Reserved = 0xF, /* Workaround for Limit1 */
.AVL = 0,
.L = 1, .L = 1,
.DB = 0,
.G = 1,
}, },
.BaseHigh = 0x0, .BaseHigh = 0x0,
}, },
.Data = { .Data = {
.Length = 0x0, .Limit0 = 0xFFFF,
.BaseLow = 0x0, .BaseLow = 0x0,
.BaseMiddle = 0x0, .BaseMiddle = 0x0,
.Access = { .Access = {
@ -69,12 +75,20 @@ namespace GlobalDescriptorTable
.DPL = 0, .DPL = 0,
.P = 1, .P = 1,
}, },
.Flags = {.Raw = 0x0}, // .Limit1 = 0xF,
.Flags = {
.Reserved = 0xF, /* Workaround for Limit1 */
.AVL = 0,
.L = 0,
.DB = 1,
.G = 1,
},
.BaseHigh = 0x0, .BaseHigh = 0x0,
}, },
.UserData = { .UserData = {
.Length = 0x0, .Limit0 = 0xFFFF,
.BaseLow = 0x0, .BaseLow = 0x0,
.BaseMiddle = 0x0, .BaseMiddle = 0x0,
.Access = { .Access = {
@ -86,14 +100,20 @@ namespace GlobalDescriptorTable
.DPL = 3, .DPL = 3,
.P = 1, .P = 1,
}, },
// .Limit1 = 0xF,
.Flags = { .Flags = {
.Raw = 0x0, .Reserved = 0xF, /* Workaround for Limit1 */
.AVL = 0,
.L = 0,
.DB = 1,
.G = 1,
}, },
.BaseHigh = 0x0, .BaseHigh = 0x0,
}, },
.UserCode = { .UserCode = {
.Length = 0x0, .Limit0 = 0xFFFF,
.BaseLow = 0x0, .BaseLow = 0x0,
.BaseMiddle = 0x0, .BaseMiddle = 0x0,
.Access = { .Access = {
@ -105,9 +125,14 @@ namespace GlobalDescriptorTable
.DPL = 3, .DPL = 3,
.P = 1, .P = 1,
}, },
// .Limit1 = 0xF,
.Flags = { .Flags = {
.Unknown = 0x0, .Reserved = 0xF, /* Workaround for Limit1 */
.AVL = 0,
.L = 1, .L = 1,
.DB = 0,
.G = 1,
}, },
.BaseHigh = 0x0, .BaseHigh = 0x0,
}, },
@ -135,10 +160,47 @@ namespace GlobalDescriptorTable
memcpy(&GDTEntries[Core], &GDTEntriesTemplate, sizeof(GlobalDescriptorTableEntries)); memcpy(&GDTEntries[Core], &GDTEntriesTemplate, sizeof(GlobalDescriptorTableEntries));
gdt[Core] = {.Length = sizeof(GlobalDescriptorTableEntries) - 1, .Entries = &GDTEntries[Core]}; gdt[Core] = {.Length = sizeof(GlobalDescriptorTableEntries) - 1, .Entries = &GDTEntries[Core]};
debug("Kernel: Code Access: %ld; Data Access: %ld", GDTEntries[Core].Code.Access.Raw, GDTEntries[Core].Data.Access.Raw); debug("GDT: %#lx", &gdt[Core]);
debug("Kernel: Code Flags: %ld; Data Flags: %ld", GDTEntries[Core].Code.Flags.Raw, GDTEntries[Core].Data.Flags.Raw); debug("GDT KERNEL: CODE %#lx: Limit0: 0x%X, BaseLow: 0x%X, BaseMiddle: 0x%X, Access: 0x%X, Limit1: 0x%X, Flags: 0x%X, BaseHigh: 0x%X",
debug("User: Code Access: %ld; Data Access: %ld", GDTEntries[Core].UserCode.Access.Raw, GDTEntries[Core].UserData.Access.Raw); GDT_KERNEL_CODE,
debug("User: Code Flags: %ld; Data Flags: %ld", GDTEntries[Core].UserCode.Flags.Raw, GDTEntries[Core].UserData.Flags.Raw); GDTEntries[Core].Code.Limit0,
GDTEntries[Core].Code.BaseLow,
GDTEntries[Core].Code.BaseMiddle,
GDTEntries[Core].Code.Access.Raw,
GDTEntries[Core].Code.Flags.Reserved,
GDTEntries[Core].Code.Flags.Raw & ~0xF,
GDTEntries[Core].Code.BaseHigh);
debug("GDT KERNEL: DATA %#lx: Limit0: 0x%X, BaseLow: 0x%X, BaseMiddle: 0x%X, Access: 0x%X, Limit1: 0x%X, Flags: 0x%X, BaseHigh: 0x%X",
GDT_KERNEL_DATA,
GDTEntries[Core].Data.Limit0,
GDTEntries[Core].Data.BaseLow,
GDTEntries[Core].Data.BaseMiddle,
GDTEntries[Core].Data.Access.Raw,
GDTEntries[Core].Data.Flags.Reserved,
GDTEntries[Core].Data.Flags.Raw & ~0xF,
GDTEntries[Core].Data.BaseHigh);
debug("GDT USER: CODE %#lx: Limit0: 0x%X, BaseLow: 0x%X, BaseMiddle: 0x%X, Access: 0x%X, Limit1: 0x%X, Flags: 0x%X, BaseHigh: 0x%X",
GDT_USER_CODE,
GDTEntries[Core].UserCode.Limit0,
GDTEntries[Core].UserCode.BaseLow,
GDTEntries[Core].UserCode.BaseMiddle,
GDTEntries[Core].UserCode.Access.Raw,
GDTEntries[Core].UserCode.Flags.Reserved,
GDTEntries[Core].UserCode.Flags.Raw & ~0xF,
GDTEntries[Core].UserCode.BaseHigh);
debug("GDT USER: DATA %#lx: Limit0: 0x%X, BaseLow: 0x%X, BaseMiddle: 0x%X, Access: 0x%X, Limit1: 0x%X, Flags: 0x%X, BaseHigh: 0x%X",
GDT_USER_DATA,
GDTEntries[Core].UserData.Limit0,
GDTEntries[Core].UserData.BaseLow,
GDTEntries[Core].UserData.BaseMiddle,
GDTEntries[Core].UserData.Access.Raw,
GDTEntries[Core].UserData.Flags.Reserved,
GDTEntries[Core].UserData.Flags.Raw & ~0xF,
GDTEntries[Core].UserData.BaseHigh);
CPU::x64::lgdt(&gdt[Core]); CPU::x64::lgdt(&gdt[Core]);
asmv("movq %%rsp, %%rax\n" asmv("movq %%rsp, %%rax\n"
@ -162,16 +224,18 @@ namespace GlobalDescriptorTable
uintptr_t Base = (uintptr_t)&tss[Core]; uintptr_t Base = (uintptr_t)&tss[Core];
size_t Limit = Base + sizeof(TaskStateSegment); size_t Limit = Base + sizeof(TaskStateSegment);
gdt[Core].Entries->TaskStateSegment.Length = Limit & 0xFFFF; gdt[Core].Entries->TaskStateSegment.Limit = Limit & 0xFFFF;
gdt[Core].Entries->TaskStateSegment.BaseLow = Base & 0xFFFF; gdt[Core].Entries->TaskStateSegment.BaseLow = Base & 0xFFFF;
gdt[Core].Entries->TaskStateSegment.BaseMiddle = (Base >> 16) & 0xFF; gdt[Core].Entries->TaskStateSegment.BaseMiddle = (Base >> 16) & 0xFF;
gdt[Core].Entries->TaskStateSegment.BaseHigh = (Base >> 24) & 0xFF; gdt[Core].Entries->TaskStateSegment.BaseHigh = (Base >> 24) & 0xFF;
gdt[Core].Entries->TaskStateSegment.BaseUpper = s_cst(uint32_t, (Base >> 32) & 0xFFFFFFFF); gdt[Core].Entries->TaskStateSegment.BaseUpper = s_cst(uint32_t, (Base >> 32) & 0xFFFFFFFF);
gdt[Core].Entries->TaskStateSegment.Flags = {.A = 1, .RW = 0, .DC = 0, .E = 1, .S = 0, .DPL = 0, .P = 1}; gdt[Core].Entries->TaskStateSegment.Access = {.A = 1, .RW = 0, .DC = 0, .E = 1, .S = 0, .DPL = 0, .P = 1};
gdt[Core].Entries->TaskStateSegment.Granularity = (0 << 4) | ((Limit >> 16) & 0xF); gdt[Core].Entries->TaskStateSegment.Granularity = (0 << 4) | ((Limit >> 16) & 0xF);
tss[Core].IOMapBaseAddressOffset = sizeof(TaskStateSegment); tss[Core].IOMapBaseAddressOffset = sizeof(TaskStateSegment);
tss[Core].StackPointer[0] = (uint64_t)CPUStackPointer[Core] + STACK_SIZE; tss[Core].StackPointer[0] = (uint64_t)CPUStackPointer[Core] + STACK_SIZE;
tss[Core].StackPointer[1] = 0x0;
tss[Core].StackPointer[2] = 0x0;
for (size_t i = 0; i < sizeof(tss[Core].InterruptStackTable) / sizeof(tss[Core].InterruptStackTable[7]); i++) for (size_t i = 0; i < sizeof(tss[Core].InterruptStackTable) / sizeof(tss[Core].InterruptStackTable[7]); i++)
{ {
@ -183,12 +247,6 @@ namespace GlobalDescriptorTable
} }
CPU::x64::ltr(GDT_TSS); CPU::x64::ltr(GDT_TSS);
debug("GDT_KERNEL_CODE: %#lx", GDT_KERNEL_CODE);
debug("GDT_KERNEL_DATA: %#lx", GDT_KERNEL_DATA);
debug("GDT_USER_CODE: %#lx", GDT_USER_CODE);
debug("GDT_USER_DATA: %#lx", GDT_USER_DATA);
debug("GDT_TSS: %#lx", GDT_TSS);
debug("Global Descriptor Table initialized"); debug("Global Descriptor Table initialized");
} }

View File

@ -22,88 +22,66 @@
namespace GlobalDescriptorTable namespace GlobalDescriptorTable
{ {
/** @brief The GDT Access Table struct TaskStateSegmentEntry
* @details For more information, see https://wiki.osdev.org/Global_Descriptor_Table
*/
union GlobalDescriptorTableAccess
{
struct
{
/** @brief Access bit.
* @note The CPU sets this bit to 1 when the segment is accessed.
*/
uint64_t A : 1;
/** @brief Readable bit for code segments, writable bit for data segments.
* @details For code segments, this bit must be 1 for the segment to be readable.
* @details For data segments, this bit must be 1 for the segment to be writable.
*/
uint64_t RW : 1;
/** @brief Direction bit for data segments, conforming bit for code segments.
* @details For data segments, this bit must be 1 for the segment to grow up (higher addresses).
* @details For code segments, this bit must be 1 for code in the segment to be able to be executed from an equal or lower privilege level.
*/
uint64_t DC : 1;
/** @brief Executable bit.
* @details This bit must be 1 for code-segment descriptors.
* @details This bit must be 0 for data-segment and system descriptors.
*/
uint64_t E : 1;
/** @brief Descriptor type.
* @details This bit must be 0 for system descriptors.
* @details This bit must be 1 for code or data segment descriptor.
*/
uint64_t S : 1;
/** @brief Descriptor privilege level.
* @details This field determines the privilege level of the segment.
* @details 0 = kernel mode, 3 = user mode.
*/
uint64_t DPL : 2;
/** @brief Present bit.
* @details This bit must be 1 for all valid descriptors.
*/
uint64_t P : 1;
} __packed;
uint8_t Raw;
};
union GlobalDescriptorTableFlags
{
// TODO: Add more flags.
struct
{
/** @brief Unknown. */
uint64_t Unknown : 5;
/** @brief Long mode.
* @details If the long mode bit is clear, the segment is in 32-bit protected mode.
* @details If the long mode bit is set, the segment is in 64-bit long mode.
*/
uint64_t L : 1;
} __packed;
uint8_t Raw;
};
typedef struct _TaskStateSegmentEntry
{ {
/* LOW */ /* LOW */
uint16_t Length; uint16_t Limit;
uint16_t BaseLow; uint16_t BaseLow;
uint8_t BaseMiddle; uint8_t BaseMiddle;
GlobalDescriptorTableAccess Flags; union GlobalDescriptorTableAccess
{
struct
{
/** @brief Access bit.
* @note The CPU sets this bit to 1 when the segment is accessed.
*/
uint8_t A : 1;
/** @brief Readable bit for code segments, writable bit for data segments.
* @details For code segments, this bit must be 1 for the segment to be readable.
* @details For data segments, this bit must be 1 for the segment to be writable.
*/
uint8_t RW : 1;
/** @brief Direction bit for data segments, conforming bit for code segments.
* @details For data segments, this bit must be 1 for the segment to grow up (higher addresses).
* @details For code segments, this bit must be 1 for code in the segment to be able to be executed from an equal or lower privilege level.
*/
uint8_t DC : 1;
/** @brief Executable bit.
* @details This bit must be 1 for code-segment descriptors.
* @details This bit must be 0 for data-segment and system descriptors.
*/
uint8_t E : 1;
/** @brief Descriptor type.
* @details This bit must be 0 for system descriptors.
* @details This bit must be 1 for code or data segment descriptor.
*/
uint8_t S : 1;
/** @brief Descriptor privilege level.
* @details This field determines the privilege level of the segment.
* @details 0 = kernel mode, 3 = user mode.
*/
uint8_t DPL : 2;
/** @brief Present bit.
* @details This bit must be 1 for all valid descriptors.
*/
uint8_t P : 1;
} __packed;
uint8_t Raw : 8;
} Access;
uint8_t Granularity; uint8_t Granularity;
uint8_t BaseHigh; uint8_t BaseHigh;
/* HIGH */ /* HIGH */
uint32_t BaseUpper; uint32_t BaseUpper;
uint32_t Reserved; uint32_t Reserved;
} __packed TaskStateSegmentEntry; } __packed;
typedef struct _TaskStateSegment struct TaskStateSegment
{ {
uint32_t Reserved0 __aligned(16); uint32_t Reserved0 __aligned(16);
uint64_t StackPointer[3]; uint64_t StackPointer[3];
@ -112,25 +90,107 @@ namespace GlobalDescriptorTable
uint64_t Reserved2; uint64_t Reserved2;
uint16_t Reserved3; uint16_t Reserved3;
uint16_t IOMapBaseAddressOffset; uint16_t IOMapBaseAddressOffset;
} __packed TaskStateSegment; } __packed;
typedef struct _GlobalDescriptorTableEntry struct GlobalDescriptorTableEntry
{ {
/** @brief Length */ /** @brief Limit 0:15 */
uint16_t Length; uint16_t Limit0 : 16;
/** @brief Low Base */
uint16_t BaseLow;
/** @brief Middle Base */
uint8_t BaseMiddle;
/** @brief Access */
GlobalDescriptorTableAccess Access;
/** @brief Flags */
GlobalDescriptorTableFlags Flags;
/** @brief High Base */
uint8_t BaseHigh;
} __packed GlobalDescriptorTableEntry;
typedef struct _GlobalDescriptorTableEntries /** @brief Low Base 0:15 */
uint16_t BaseLow : 16;
/** @brief Middle Base 16:23 */
uint8_t BaseMiddle : 8;
/** @brief Access */
union GlobalDescriptorTableAccess
{
struct
{
/** @brief Access bit.
* @note The CPU sets this bit to 1 when the segment is accessed.
*/
uint8_t A : 1;
/** @brief Readable bit for code segments, writable bit for data segments.
* @details For code segments, this bit must be 1 for the segment to be readable.
* @details For data segments, this bit must be 1 for the segment to be writable.
*/
uint8_t RW : 1;
/** @brief Direction bit for data segments, conforming bit for code segments.
* @details For data segments, this bit must be 1 for the segment to grow up (higher addresses).
* @details For code segments, this bit must be 1 for code in the segment to be able to be executed from an equal or lower privilege level.
*/
uint8_t DC : 1;
/** @brief Executable bit.
* @details This bit must be 1 for code-segment descriptors.
* @details This bit must be 0 for data-segment and system descriptors.
*/
uint8_t E : 1;
/** @brief Descriptor type.
* @details This bit must be 0 for system descriptors.
* @details This bit must be 1 for code or data segment descriptor.
*/
uint8_t S : 1;
/** @brief Descriptor privilege level.
* @details This field determines the privilege level of the segment.
* @details 0 = kernel mode, 3 = user mode.
*/
uint8_t DPL : 2;
/** @brief Present bit.
* @details This bit must be 1 for all valid descriptors.
*/
uint8_t P : 1;
} __packed;
uint8_t Raw : 8;
} Access;
// /** @brief Limit 16:19 */
// uint16_t Limit1 : 4;
/** @brief Flags */
union GlobalDescriptorTableFlags
{
struct
{
uint8_t Reserved : 4; /* FIXME: Without this, the kernel crashes. */
/** @brief Available bit.
* @details This bit is available for use by system software.
*/
uint8_t AVL : 1;
/** @brief Long mode.
* @details If the long mode bit is clear, the segment is in 32-bit protected mode.
* @details If the long mode bit is set, the segment is in 64-bit long mode.
*/
uint8_t L : 1;
/** @brief Size flag.
* @details If the size bit is clear, the segment is in 16-bit protected mode.
* @details If the size bit is set, the segment is in 32-bit protected mode.
*/
uint8_t DB : 1;
/** @brief Granularity bit.
* @details If the granularity bit is clear, the segment limit is in 1 B blocks.
* @details If the granularity bit is set, the segment limit is in 4 KiB blocks.
*/
uint8_t G : 1;
} __packed;
uint8_t Raw : 8;
} Flags;
/** @brief High Base 24:31 */
uint8_t BaseHigh : 8;
} __packed;
struct GlobalDescriptorTableEntries
{ {
GlobalDescriptorTableEntry Null; GlobalDescriptorTableEntry Null;
GlobalDescriptorTableEntry Code; GlobalDescriptorTableEntry Code;
@ -138,15 +198,15 @@ namespace GlobalDescriptorTable
GlobalDescriptorTableEntry UserData; GlobalDescriptorTableEntry UserData;
GlobalDescriptorTableEntry UserCode; GlobalDescriptorTableEntry UserCode;
TaskStateSegmentEntry TaskStateSegment; TaskStateSegmentEntry TaskStateSegment;
} __packed GlobalDescriptorTableEntries; } __packed;
typedef struct _GlobalDescriptorTableDescriptor struct GlobalDescriptorTableDescriptor
{ {
/** @brief GDT entries length */ /** @brief GDT entries length */
uint16_t Length; uint16_t Length;
/** @brief GDT entries address */ /** @brief GDT entries address */
GlobalDescriptorTableEntries *Entries; GlobalDescriptorTableEntries *Entries;
} __packed GlobalDescriptorTableDescriptor; } __packed;
extern void *CPUStackPointer[]; extern void *CPUStackPointer[];
extern TaskStateSegment tss[]; extern TaskStateSegment tss[];

View File

@ -25,75 +25,123 @@
namespace GlobalDescriptorTable namespace GlobalDescriptorTable
{ {
static GlobalDescriptorTableEntries GDTEntriesTemplate = { static GlobalDescriptorTableEntries GDTEntriesTemplate = {
// null .Null =
{.Length = 0x0, {
.BaseLow = 0x0, .Limit0 = 0x0,
.BaseMiddle = 0x0, .BaseLow = 0x0,
.Access = {.Raw = 0x0}, .BaseMiddle = 0x0,
.Flags = {.Raw = 0x0}, .Access = {.Raw = 0x0},
.BaseHigh = 0x0}, // .Limit1 = 0x0,
.Flags = {.Raw = 0x0},
.BaseHigh = 0x0,
},
// kernel code .Code =
{.Length = 0x0, {
.BaseLow = 0x0, .Limit0 = 0xFFFF,
.BaseMiddle = 0x0, .BaseLow = 0x0,
.Access = {.A = 0, .BaseMiddle = 0x0,
.Access = {
.A = 0,
.RW = 1, .RW = 1,
.DC = 0, .DC = 0,
.E = 1, .E = 1,
.S = 1, .S = 1,
.DPL = 0, .DPL = 0,
.P = 1}, .P = 1,
.Flags = {.Unknown = 0x0, .L = 1}, },
.BaseHigh = 0x0}, // .Limit1 = 0xF,
.Flags = {
.Reserved = 0xF, /* Workaround for Limit1 */
// kernel data .AVL = 0,
{.Length = 0x0, .L = 0,
.BaseLow = 0x0, .DB = 1,
.BaseMiddle = 0x0, .G = 1,
.Access = {.A = 0, },
.RW = 1, .BaseHigh = 0x0,
.DC = 0, },
.E = 0,
.S = 1,
.DPL = 0,
.P = 1},
.Flags = {.Raw = 0x0},
.BaseHigh = 0x0},
// user data .Data = {
{.Length = 0x0, .Limit0 = 0xFFFF,
.BaseLow = 0x0, .BaseLow = 0x0,
.BaseMiddle = 0x0, .BaseMiddle = 0x0,
.Access = {.A = 0, .Access = {
.RW = 1, .A = 0,
.DC = 0, .RW = 1,
.E = 0, .DC = 0,
.S = 1, .E = 0,
.DPL = 3, .S = 1,
.P = 1}, .DPL = 0,
.Flags = {.Raw = 0x0}, .P = 1,
.BaseHigh = 0x0}, },
// .Limit1 = 0xF,
.Flags = {
.Reserved = 0xF, /* Workaround for Limit1 */
// user code .AVL = 0,
{.Length = 0x0, .L = 0,
.BaseLow = 0x0, .DB = 1,
.BaseMiddle = 0x0, .G = 1,
.Access = {.A = 0, },
.RW = 1, .BaseHigh = 0x0,
.DC = 0, },
.E = 1,
.S = 1,
.DPL = 3,
.P = 1},
.Flags = {.Unknown = 0x0, .L = 1},
.BaseHigh = 0x0},
// tss .UserData = {
{}}; .Limit0 = 0xFFFF,
.BaseLow = 0x0,
.BaseMiddle = 0x0,
.Access = {
.A = 0,
.RW = 1,
.DC = 0,
.E = 0,
.S = 1,
.DPL = 3,
.P = 1,
},
// .Limit1 = 0xF,
.Flags = {
.Reserved = 0xF, /* Workaround for Limit1 */
GlobalDescriptorTableEntries GDTEntries[MAX_CPU]; .AVL = 0,
GlobalDescriptorTableDescriptor gdt[MAX_CPU]; .L = 0,
.DB = 1,
.G = 1,
},
.BaseHigh = 0x0,
},
.UserCode = {
.Limit0 = 0xFFFF,
.BaseLow = 0x0,
.BaseMiddle = 0x0,
.Access = {
.A = 0,
.RW = 1,
.DC = 0,
.E = 1,
.S = 1,
.DPL = 3,
.P = 1,
},
// .Limit1 = 0xF,
.Flags = {
.Reserved = 0xF, /* Workaround for Limit1 */
.AVL = 0,
.L = 0,
.DB = 1,
.G = 1,
},
.BaseHigh = 0x0,
},
.TaskStateSegment = {},
};
GlobalDescriptorTableEntries GDTEntries[MAX_CPU] __aligned(16);
GlobalDescriptorTableDescriptor gdt[MAX_CPU] __aligned(16);
TaskStateSegment tss[MAX_CPU] = { TaskStateSegment tss[MAX_CPU] = {
0, 0,
@ -102,15 +150,123 @@ namespace GlobalDescriptorTable
{0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0},
0, 0,
0, 0,
0,
}; };
void *CPUStackPointer[MAX_CPU]; void *CPUStackPointer[MAX_CPU];
SafeFunction void Init(int Core) SafeFunction void Init(int Core)
{ {
memcpy(&GDTEntries[Core], &GDTEntriesTemplate, sizeof(GlobalDescriptorTableEntries));
gdt[Core] = {.Length = sizeof(GlobalDescriptorTableEntries) - 1, .Entries = &GDTEntries[Core]};
debug("GDT: %#lx", &gdt[Core]);
debug("GDT KERNEL: CODE %#lx: Limit0: 0x%X, BaseLow: 0x%X, BaseMiddle: 0x%X, Access: 0x%X, Limit1: 0x%X, Flags: 0x%X, BaseHigh: 0x%X",
GDT_KERNEL_CODE,
GDTEntries[Core].Code.Limit0,
GDTEntries[Core].Code.BaseLow,
GDTEntries[Core].Code.BaseMiddle,
GDTEntries[Core].Code.Access.Raw,
GDTEntries[Core].Code.Flags.Reserved,
GDTEntries[Core].Code.Flags.Raw & ~0xF,
GDTEntries[Core].Code.BaseHigh);
debug("GDT KERNEL: DATA %#lx: Limit0: 0x%X, BaseLow: 0x%X, BaseMiddle: 0x%X, Access: 0x%X, Limit1: 0x%X, Flags: 0x%X, BaseHigh: 0x%X",
GDT_KERNEL_DATA,
GDTEntries[Core].Data.Limit0,
GDTEntries[Core].Data.BaseLow,
GDTEntries[Core].Data.BaseMiddle,
GDTEntries[Core].Data.Access.Raw,
GDTEntries[Core].Data.Flags.Reserved,
GDTEntries[Core].Data.Flags.Raw & ~0xF,
GDTEntries[Core].Data.BaseHigh);
debug("GDT USER: CODE %#lx: Limit0: 0x%X, BaseLow: 0x%X, BaseMiddle: 0x%X, Access: 0x%X, Limit1: 0x%X, Flags: 0x%X, BaseHigh: 0x%X",
GDT_USER_CODE,
GDTEntries[Core].UserCode.Limit0,
GDTEntries[Core].UserCode.BaseLow,
GDTEntries[Core].UserCode.BaseMiddle,
GDTEntries[Core].UserCode.Access.Raw,
GDTEntries[Core].UserCode.Flags.Reserved,
GDTEntries[Core].UserCode.Flags.Raw & ~0xF,
GDTEntries[Core].UserCode.BaseHigh);
debug("GDT USER: DATA %#lx: Limit0: 0x%X, BaseLow: 0x%X, BaseMiddle: 0x%X, Access: 0x%X, Limit1: 0x%X, Flags: 0x%X, BaseHigh: 0x%X",
GDT_USER_DATA,
GDTEntries[Core].UserData.Limit0,
GDTEntries[Core].UserData.BaseLow,
GDTEntries[Core].UserData.BaseMiddle,
GDTEntries[Core].UserData.Access.Raw,
GDTEntries[Core].UserData.Flags.Reserved,
GDTEntries[Core].UserData.Flags.Raw & ~0xF,
GDTEntries[Core].UserData.BaseHigh);
CPU::x32::lgdt(&gdt[Core]);
asmv("mov %%esp, %%eax\n"
"push $16\n"
"push %%eax\n"
"pushf\n"
"push $8\n"
"push $1f\n"
"iret\n"
"1:\n"
"movw $16, %%ax\n"
"movw %%ax, %%ds\n"
"movw %%ax, %%es\n" ::
: "memory", "eax");
CPUStackPointer[Core] = KernelAllocator.RequestPages(TO_PAGES(STACK_SIZE + 1));
memset(CPUStackPointer[Core], 0, STACK_SIZE);
debug("CPU %d Stack Pointer: %#lx-%#lx (%d pages)", Core,
CPUStackPointer[Core], (uintptr_t)CPUStackPointer[Core] + STACK_SIZE,
TO_PAGES(STACK_SIZE + 1));
uintptr_t Base = (uintptr_t)&tss[Core];
size_t Limit = Base + sizeof(TaskStateSegment);
gdt[Core].Entries->TaskStateSegment.Limit = Limit & 0xFFFF;
gdt[Core].Entries->TaskStateSegment.BaseLow = Base & 0xFFFF;
gdt[Core].Entries->TaskStateSegment.BaseMiddle = (Base >> 16) & 0xFF;
gdt[Core].Entries->TaskStateSegment.BaseHigh = (Base >> 24) & 0xFF;
gdt[Core].Entries->TaskStateSegment.BaseUpper = s_cst(uint32_t, (Base >> 32) & 0xFFFFFFFF);
gdt[Core].Entries->TaskStateSegment.Access = {.A = 1, .RW = 0, .DC = 0, .E = 1, .S = 0, .DPL = 0, .P = 1};
gdt[Core].Entries->TaskStateSegment.Granularity = (0 << 4) | ((Limit >> 16) & 0xF);
tss[Core].IOMapBaseAddressOffset = sizeof(TaskStateSegment);
tss[Core].StackPointer[0] = (uint64_t)CPUStackPointer[Core] + STACK_SIZE;
tss[Core].StackPointer[1] = 0x0;
tss[Core].StackPointer[2] = 0x0;
for (size_t i = 0; i < sizeof(tss[Core].InterruptStackTable) / sizeof(tss[Core].InterruptStackTable[7]); i++)
{
void *NewStack = KernelAllocator.RequestPages(TO_PAGES(STACK_SIZE + 1));
tss[Core].InterruptStackTable[i] = (uint64_t)NewStack + STACK_SIZE;
memset((void *)(tss[Core].InterruptStackTable[i] - STACK_SIZE), 0, STACK_SIZE);
debug("IST-%d: %#lx-%#lx", i, NewStack, (uintptr_t)NewStack + STACK_SIZE);
}
CPU::x32::ltr(GDT_TSS);
debug("Global Descriptor Table initialized");
} }
SafeFunction void SetKernelStack(void *Stack) SafeFunction void SetKernelStack(void *Stack)
{ {
long CPUID = GetCurrentCPU()->ID;
if (Stack != nullptr)
tss[CPUID].StackPointer[0] = (uint64_t)Stack;
else
tss[CPUID].StackPointer[0] = (uint64_t)CPUStackPointer[CPUID] + STACK_SIZE;
/*
FIXME: There's a bug in kernel which if
we won't update "tss[CPUID].StackPointer[0]"
with the current stack pointer, the kernel
will crash.
*/
asmv("mov %%esp, %0"
: "=r"(tss[CPUID].StackPointer[0]));
} }
void *GetKernelStack() { return (void *)tss[GetCurrentCPU()->ID].StackPointer[0]; }
} }

View File

@ -0,0 +1,727 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "idt.hpp"
#include <memory.hpp>
#include <cpu.hpp>
#include <debug.h>
#include <io.h>
#include "gdt.hpp"
#include "../../../kernel.h"
/* conversion from uint64_t {aka long unsigned int} to unsigned char:2 may change value */
#pragma GCC diagnostic ignored "-Wconversion"
extern "C" void MainInterruptHandler(void *Data);
extern "C" void ExceptionHandler(void *Data);
namespace InterruptDescriptorTable
{
static InterruptDescriptorTableEntry Entries[0x100];
InterruptDescriptorTableDescriptor idtd = {
.Length = sizeof(Entries) - 1,
.Entries = Entries,
};
void SetEntry(uint8_t Index,
void (*Base)(),
InterruptGateType Gate,
InterruptRingType Ring,
bool Present,
uint16_t SegmentSelector)
{
/* FIXME: Check "Intel Software Developer Manual, Volume 3-A" at Section 6.11: IDT Descriptors */
Entries[Index].LowOffset = s_cst(uint16_t, ((uint32_t)Base & 0xFFFF));
Entries[Index].SegmentSelector = SegmentSelector;
Entries[Index].Reserved0 = 0;
Entries[Index].Flags = Gate;
Entries[Index].Reserved1 = 0;
Entries[Index].Ring = Ring;
Entries[Index].Present = Present;
Entries[Index].HighOffset = s_cst(uint16_t, ((uint32_t)Base >> 16 /* & 0xFFFF */));
}
extern "C" __naked __used __no_stack_protector __aligned(16) void ExceptionHandlerStub()
{
asm("cld\n"
"cli\n"
// "push %eax\n"
// "push %ebx\n"
// "push %ecx\n"
// "push %edx\n"
// "push %esi\n"
// "push %edi\n"
// "push %ebp\n"
"pusha\n"
"push %esp\n"
"call ExceptionHandler\n"
"popa\n"
// "pop %ebp\n"
// "pop %edi\n"
// "pop %esi\n"
// "pop %edx\n"
// "pop %ecx\n"
// "pop %ebx\n"
// "pop %eax\n"
"add $8, %esp\n"
"iret");
}
extern "C" __naked __used __no_stack_protector __aligned(16) void InterruptHandlerStub()
{
asm("cld\n"
"cli\n"
// "push %eax\n"
// "push %ebx\n"
// "push %ecx\n"
// "push %edx\n"
// "push %esi\n"
// "push %edi\n"
// "push %ebp\n"
"pusha\n"
"push %esp\n"
"call MainInterruptHandler\n"
"popa\n"
// "pop %ebp\n"
// "pop %edi\n"
// "pop %esi\n"
// "pop %edx\n"
// "pop %ecx\n"
// "pop %ebx\n"
// "pop %eax\n"
"add $8, %esp\n"
"sti\n"
"iret");
}
#pragma region Exceptions
#define EXCEPTION_HANDLER(num) \
__naked __used __no_stack_protector __aligned(16) static void InterruptHandler_##num() \
{ \
asm("push $0\npush $" #num "\n" \
"jmp ExceptionHandlerStub"); \
}
#define EXCEPTION_ERROR_HANDLER(num) \
__naked __used __no_stack_protector __aligned(16) static void InterruptHandler_##num() \
{ \
asm("push $" #num "\n" \
"jmp ExceptionHandlerStub"); \
}
#define INTERRUPT_HANDLER(num) \
__naked __used __no_stack_protector __aligned(16) void InterruptHandler_##num() \
{ \
asm("push $0\npush $" #num "\n" \
"jmp InterruptHandlerStub\n"); \
}
/* ISR */
EXCEPTION_HANDLER(0x0);
EXCEPTION_HANDLER(0x1);
EXCEPTION_HANDLER(0x2);
EXCEPTION_HANDLER(0x3);
EXCEPTION_HANDLER(0x4);
EXCEPTION_HANDLER(0x5);
EXCEPTION_HANDLER(0x6);
EXCEPTION_HANDLER(0x7);
EXCEPTION_ERROR_HANDLER(0x8);
EXCEPTION_HANDLER(0x9);
EXCEPTION_ERROR_HANDLER(0xa);
EXCEPTION_ERROR_HANDLER(0xb);
EXCEPTION_ERROR_HANDLER(0xc);
EXCEPTION_ERROR_HANDLER(0xd);
EXCEPTION_ERROR_HANDLER(0xe);
EXCEPTION_HANDLER(0xf);
EXCEPTION_ERROR_HANDLER(0x10);
EXCEPTION_HANDLER(0x11);
EXCEPTION_HANDLER(0x12);
EXCEPTION_HANDLER(0x13);
EXCEPTION_HANDLER(0x14);
EXCEPTION_HANDLER(0x15);
EXCEPTION_HANDLER(0x16);
EXCEPTION_HANDLER(0x17);
EXCEPTION_HANDLER(0x18);
EXCEPTION_HANDLER(0x19);
EXCEPTION_HANDLER(0x1a);
EXCEPTION_HANDLER(0x1b);
EXCEPTION_HANDLER(0x1c);
EXCEPTION_HANDLER(0x1d);
EXCEPTION_HANDLER(0x1e);
EXCEPTION_HANDLER(0x1f);
/* IRQ */
INTERRUPT_HANDLER(0x20)
INTERRUPT_HANDLER(0x21)
INTERRUPT_HANDLER(0x22)
INTERRUPT_HANDLER(0x23)
INTERRUPT_HANDLER(0x24)
INTERRUPT_HANDLER(0x25)
INTERRUPT_HANDLER(0x26)
INTERRUPT_HANDLER(0x27)
INTERRUPT_HANDLER(0x28)
INTERRUPT_HANDLER(0x29)
INTERRUPT_HANDLER(0x2a)
INTERRUPT_HANDLER(0x2b)
INTERRUPT_HANDLER(0x2c)
INTERRUPT_HANDLER(0x2d)
INTERRUPT_HANDLER(0x2e)
INTERRUPT_HANDLER(0x2f)
/* Reserved by OS */
INTERRUPT_HANDLER(0x30)
INTERRUPT_HANDLER(0x31)
INTERRUPT_HANDLER(0x32)
INTERRUPT_HANDLER(0x33)
INTERRUPT_HANDLER(0x34)
INTERRUPT_HANDLER(0x35)
INTERRUPT_HANDLER(0x36)
INTERRUPT_HANDLER(0x37)
INTERRUPT_HANDLER(0x38)
INTERRUPT_HANDLER(0x39)
INTERRUPT_HANDLER(0x3a)
INTERRUPT_HANDLER(0x3b)
INTERRUPT_HANDLER(0x3c)
INTERRUPT_HANDLER(0x3d)
/* Free */
INTERRUPT_HANDLER(0x3e)
INTERRUPT_HANDLER(0x3f)
INTERRUPT_HANDLER(0x40)
INTERRUPT_HANDLER(0x41)
INTERRUPT_HANDLER(0x42)
INTERRUPT_HANDLER(0x43)
INTERRUPT_HANDLER(0x44)
INTERRUPT_HANDLER(0x45)
INTERRUPT_HANDLER(0x46)
INTERRUPT_HANDLER(0x47)
INTERRUPT_HANDLER(0x48)
INTERRUPT_HANDLER(0x49)
INTERRUPT_HANDLER(0x4a)
INTERRUPT_HANDLER(0x4b)
INTERRUPT_HANDLER(0x4c)
INTERRUPT_HANDLER(0x4d)
INTERRUPT_HANDLER(0x4e)
INTERRUPT_HANDLER(0x4f)
INTERRUPT_HANDLER(0x50)
INTERRUPT_HANDLER(0x51)
INTERRUPT_HANDLER(0x52)
INTERRUPT_HANDLER(0x53)
INTERRUPT_HANDLER(0x54)
INTERRUPT_HANDLER(0x55)
INTERRUPT_HANDLER(0x56)
INTERRUPT_HANDLER(0x57)
INTERRUPT_HANDLER(0x58)
INTERRUPT_HANDLER(0x59)
INTERRUPT_HANDLER(0x5a)
INTERRUPT_HANDLER(0x5b)
INTERRUPT_HANDLER(0x5c)
INTERRUPT_HANDLER(0x5d)
INTERRUPT_HANDLER(0x5e)
INTERRUPT_HANDLER(0x5f)
INTERRUPT_HANDLER(0x60)
INTERRUPT_HANDLER(0x61)
INTERRUPT_HANDLER(0x62)
INTERRUPT_HANDLER(0x63)
INTERRUPT_HANDLER(0x64)
INTERRUPT_HANDLER(0x65)
INTERRUPT_HANDLER(0x66)
INTERRUPT_HANDLER(0x67)
INTERRUPT_HANDLER(0x68)
INTERRUPT_HANDLER(0x69)
INTERRUPT_HANDLER(0x6a)
INTERRUPT_HANDLER(0x6b)
INTERRUPT_HANDLER(0x6c)
INTERRUPT_HANDLER(0x6d)
INTERRUPT_HANDLER(0x6e)
INTERRUPT_HANDLER(0x6f)
INTERRUPT_HANDLER(0x70)
INTERRUPT_HANDLER(0x71)
INTERRUPT_HANDLER(0x72)
INTERRUPT_HANDLER(0x73)
INTERRUPT_HANDLER(0x74)
INTERRUPT_HANDLER(0x75)
INTERRUPT_HANDLER(0x76)
INTERRUPT_HANDLER(0x77)
INTERRUPT_HANDLER(0x78)
INTERRUPT_HANDLER(0x79)
INTERRUPT_HANDLER(0x7a)
INTERRUPT_HANDLER(0x7b)
INTERRUPT_HANDLER(0x7c)
INTERRUPT_HANDLER(0x7d)
INTERRUPT_HANDLER(0x7e)
INTERRUPT_HANDLER(0x7f)
INTERRUPT_HANDLER(0x80)
INTERRUPT_HANDLER(0x81)
INTERRUPT_HANDLER(0x82)
INTERRUPT_HANDLER(0x83)
INTERRUPT_HANDLER(0x84)
INTERRUPT_HANDLER(0x85)
INTERRUPT_HANDLER(0x86)
INTERRUPT_HANDLER(0x87)
INTERRUPT_HANDLER(0x88)
INTERRUPT_HANDLER(0x89)
INTERRUPT_HANDLER(0x8a)
INTERRUPT_HANDLER(0x8b)
INTERRUPT_HANDLER(0x8c)
INTERRUPT_HANDLER(0x8d)
INTERRUPT_HANDLER(0x8e)
INTERRUPT_HANDLER(0x8f)
INTERRUPT_HANDLER(0x90)
INTERRUPT_HANDLER(0x91)
INTERRUPT_HANDLER(0x92)
INTERRUPT_HANDLER(0x93)
INTERRUPT_HANDLER(0x94)
INTERRUPT_HANDLER(0x95)
INTERRUPT_HANDLER(0x96)
INTERRUPT_HANDLER(0x97)
INTERRUPT_HANDLER(0x98)
INTERRUPT_HANDLER(0x99)
INTERRUPT_HANDLER(0x9a)
INTERRUPT_HANDLER(0x9b)
INTERRUPT_HANDLER(0x9c)
INTERRUPT_HANDLER(0x9d)
INTERRUPT_HANDLER(0x9e)
INTERRUPT_HANDLER(0x9f)
INTERRUPT_HANDLER(0xa0)
INTERRUPT_HANDLER(0xa1)
INTERRUPT_HANDLER(0xa2)
INTERRUPT_HANDLER(0xa3)
INTERRUPT_HANDLER(0xa4)
INTERRUPT_HANDLER(0xa5)
INTERRUPT_HANDLER(0xa6)
INTERRUPT_HANDLER(0xa7)
INTERRUPT_HANDLER(0xa8)
INTERRUPT_HANDLER(0xa9)
INTERRUPT_HANDLER(0xaa)
INTERRUPT_HANDLER(0xab)
INTERRUPT_HANDLER(0xac)
INTERRUPT_HANDLER(0xad)
INTERRUPT_HANDLER(0xae)
INTERRUPT_HANDLER(0xaf)
INTERRUPT_HANDLER(0xb0)
INTERRUPT_HANDLER(0xb1)
INTERRUPT_HANDLER(0xb2)
INTERRUPT_HANDLER(0xb3)
INTERRUPT_HANDLER(0xb4)
INTERRUPT_HANDLER(0xb5)
INTERRUPT_HANDLER(0xb6)
INTERRUPT_HANDLER(0xb7)
INTERRUPT_HANDLER(0xb8)
INTERRUPT_HANDLER(0xb9)
INTERRUPT_HANDLER(0xba)
INTERRUPT_HANDLER(0xbb)
INTERRUPT_HANDLER(0xbc)
INTERRUPT_HANDLER(0xbd)
INTERRUPT_HANDLER(0xbe)
INTERRUPT_HANDLER(0xbf)
INTERRUPT_HANDLER(0xc0)
INTERRUPT_HANDLER(0xc1)
INTERRUPT_HANDLER(0xc2)
INTERRUPT_HANDLER(0xc3)
INTERRUPT_HANDLER(0xc4)
INTERRUPT_HANDLER(0xc5)
INTERRUPT_HANDLER(0xc6)
INTERRUPT_HANDLER(0xc7)
INTERRUPT_HANDLER(0xc8)
INTERRUPT_HANDLER(0xc9)
INTERRUPT_HANDLER(0xca)
INTERRUPT_HANDLER(0xcb)
INTERRUPT_HANDLER(0xcc)
INTERRUPT_HANDLER(0xcd)
INTERRUPT_HANDLER(0xce)
INTERRUPT_HANDLER(0xcf)
INTERRUPT_HANDLER(0xd0)
INTERRUPT_HANDLER(0xd1)
INTERRUPT_HANDLER(0xd2)
INTERRUPT_HANDLER(0xd3)
INTERRUPT_HANDLER(0xd4)
INTERRUPT_HANDLER(0xd5)
INTERRUPT_HANDLER(0xd6)
INTERRUPT_HANDLER(0xd7)
INTERRUPT_HANDLER(0xd8)
INTERRUPT_HANDLER(0xd9)
INTERRUPT_HANDLER(0xda)
INTERRUPT_HANDLER(0xdb)
INTERRUPT_HANDLER(0xdc)
INTERRUPT_HANDLER(0xdd)
INTERRUPT_HANDLER(0xde)
INTERRUPT_HANDLER(0xdf)
INTERRUPT_HANDLER(0xe0)
INTERRUPT_HANDLER(0xe1)
INTERRUPT_HANDLER(0xe2)
INTERRUPT_HANDLER(0xe3)
INTERRUPT_HANDLER(0xe4)
INTERRUPT_HANDLER(0xe5)
INTERRUPT_HANDLER(0xe6)
INTERRUPT_HANDLER(0xe7)
INTERRUPT_HANDLER(0xe8)
INTERRUPT_HANDLER(0xe9)
INTERRUPT_HANDLER(0xea)
INTERRUPT_HANDLER(0xeb)
INTERRUPT_HANDLER(0xec)
INTERRUPT_HANDLER(0xed)
INTERRUPT_HANDLER(0xee)
INTERRUPT_HANDLER(0xef)
INTERRUPT_HANDLER(0xf0)
INTERRUPT_HANDLER(0xf1)
INTERRUPT_HANDLER(0xf2)
INTERRUPT_HANDLER(0xf3)
INTERRUPT_HANDLER(0xf4)
INTERRUPT_HANDLER(0xf5)
INTERRUPT_HANDLER(0xf6)
INTERRUPT_HANDLER(0xf7)
INTERRUPT_HANDLER(0xf8)
INTERRUPT_HANDLER(0xf9)
INTERRUPT_HANDLER(0xfa)
INTERRUPT_HANDLER(0xfb)
INTERRUPT_HANDLER(0xfc)
INTERRUPT_HANDLER(0xfd)
INTERRUPT_HANDLER(0xfe)
INTERRUPT_HANDLER(0xff)
#pragma endregion Exceptions
void Init(int Core)
{
if (Core == 0) /* Remap PIC using BSP */
{
// PIC
outb(0x20, 0x10 | 0x1);
outb(0x80, 0);
outb(0xA0, 0x10 | 0x10);
outb(0x80, 0);
outb(0x21, 0x20);
outb(0x80, 0);
outb(0xA1, 0x28);
outb(0x80, 0);
outb(0x21, 0x04);
outb(0x80, 0);
outb(0xA1, 0x02);
outb(0x80, 0);
outb(0x21, 1);
outb(0x80, 0);
outb(0xA1, 1);
outb(0x80, 0);
// Masking and disabling PIC
// outb(0x21, 0xff);
// outb(0x80, 0);
// outb(0xA1, 0xff);
}
/* ISR */
#ifdef DEBUG
// if (!DebuggerIsAttached)
if (true)
{
#endif
SetEntry(0x0, InterruptHandler_0x0, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x1, InterruptHandler_0x1, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x2, InterruptHandler_0x2, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x3, InterruptHandler_0x3, TRAP_32BIT, RING3, (!DebuggerIsAttached), GDT_KERNEL_CODE); /* Do not handle breakpoints if we are debugging the kernel. */
SetEntry(0x4, InterruptHandler_0x4, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x5, InterruptHandler_0x5, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x6, InterruptHandler_0x6, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x7, InterruptHandler_0x7, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x8, InterruptHandler_0x8, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x9, InterruptHandler_0x9, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xa, InterruptHandler_0xa, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xb, InterruptHandler_0xb, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xc, InterruptHandler_0xc, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xd, InterruptHandler_0xd, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xe, InterruptHandler_0xe, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xf, InterruptHandler_0xf, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x10, InterruptHandler_0x10, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x11, InterruptHandler_0x11, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x12, InterruptHandler_0x12, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x13, InterruptHandler_0x13, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x14, InterruptHandler_0x14, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x15, InterruptHandler_0x15, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x16, InterruptHandler_0x16, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x17, InterruptHandler_0x17, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x18, InterruptHandler_0x18, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x19, InterruptHandler_0x19, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x1a, InterruptHandler_0x1a, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x1b, InterruptHandler_0x1b, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x1c, InterruptHandler_0x1c, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x1d, InterruptHandler_0x1d, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x1e, InterruptHandler_0x1e, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x1f, InterruptHandler_0x1f, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
#ifdef DEBUG
}
else
KPrint("\eFFA500The debugger is attached, not setting up the ISR.");
#endif
/* IRQ */
SetEntry(0x20, InterruptHandler_0x20, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x21, InterruptHandler_0x21, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x22, InterruptHandler_0x22, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x23, InterruptHandler_0x23, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x24, InterruptHandler_0x24, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x25, InterruptHandler_0x25, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x26, InterruptHandler_0x26, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x27, InterruptHandler_0x27, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x28, InterruptHandler_0x28, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x29, InterruptHandler_0x29, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x2a, InterruptHandler_0x2a, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x2b, InterruptHandler_0x2b, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x2c, InterruptHandler_0x2c, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x2d, InterruptHandler_0x2d, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x2e, InterruptHandler_0x2e, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x2f, InterruptHandler_0x2f, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
/* Reserved by OS */
SetEntry(0x30, InterruptHandler_0x30, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x31, InterruptHandler_0x31, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x32, InterruptHandler_0x32, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x33, InterruptHandler_0x33, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x34, InterruptHandler_0x34, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x35, InterruptHandler_0x35, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x36, InterruptHandler_0x36, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x37, InterruptHandler_0x37, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x38, InterruptHandler_0x38, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x39, InterruptHandler_0x39, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x3a, InterruptHandler_0x3a, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x3b, InterruptHandler_0x3b, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x3c, InterruptHandler_0x3c, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x3d, InterruptHandler_0x3d, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
/* Free */
SetEntry(0x3e, InterruptHandler_0x3e, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x3f, InterruptHandler_0x3f, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x40, InterruptHandler_0x40, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x41, InterruptHandler_0x41, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x42, InterruptHandler_0x42, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x43, InterruptHandler_0x43, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x44, InterruptHandler_0x44, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x45, InterruptHandler_0x45, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x46, InterruptHandler_0x46, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x47, InterruptHandler_0x47, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x48, InterruptHandler_0x48, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x49, InterruptHandler_0x49, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x4a, InterruptHandler_0x4a, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x4b, InterruptHandler_0x4b, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x4c, InterruptHandler_0x4c, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x4d, InterruptHandler_0x4d, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x4e, InterruptHandler_0x4e, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x4f, InterruptHandler_0x4f, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x50, InterruptHandler_0x50, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x51, InterruptHandler_0x51, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x52, InterruptHandler_0x52, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x53, InterruptHandler_0x53, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x54, InterruptHandler_0x54, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x55, InterruptHandler_0x55, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x56, InterruptHandler_0x56, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x57, InterruptHandler_0x57, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x58, InterruptHandler_0x58, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x59, InterruptHandler_0x59, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x5a, InterruptHandler_0x5a, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x5b, InterruptHandler_0x5b, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x5c, InterruptHandler_0x5c, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x5d, InterruptHandler_0x5d, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x5e, InterruptHandler_0x5e, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x5f, InterruptHandler_0x5f, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x60, InterruptHandler_0x60, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x61, InterruptHandler_0x61, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x62, InterruptHandler_0x62, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x63, InterruptHandler_0x63, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x64, InterruptHandler_0x64, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x65, InterruptHandler_0x65, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x66, InterruptHandler_0x66, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x67, InterruptHandler_0x67, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x68, InterruptHandler_0x68, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x69, InterruptHandler_0x69, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x6a, InterruptHandler_0x6a, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x6b, InterruptHandler_0x6b, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x6c, InterruptHandler_0x6c, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x6d, InterruptHandler_0x6d, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x6e, InterruptHandler_0x6e, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x6f, InterruptHandler_0x6f, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x70, InterruptHandler_0x70, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x71, InterruptHandler_0x71, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x72, InterruptHandler_0x72, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x73, InterruptHandler_0x73, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x74, InterruptHandler_0x74, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x75, InterruptHandler_0x75, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x76, InterruptHandler_0x76, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x77, InterruptHandler_0x77, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x78, InterruptHandler_0x78, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x79, InterruptHandler_0x79, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x7a, InterruptHandler_0x7a, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x7b, InterruptHandler_0x7b, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x7c, InterruptHandler_0x7c, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x7d, InterruptHandler_0x7d, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x7e, InterruptHandler_0x7e, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x7f, InterruptHandler_0x7f, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x80, InterruptHandler_0x80, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x81, InterruptHandler_0x81, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x82, InterruptHandler_0x82, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x83, InterruptHandler_0x83, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x84, InterruptHandler_0x84, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x85, InterruptHandler_0x85, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x86, InterruptHandler_0x86, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x87, InterruptHandler_0x87, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x88, InterruptHandler_0x88, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x89, InterruptHandler_0x89, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x8a, InterruptHandler_0x8a, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x8b, InterruptHandler_0x8b, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x8c, InterruptHandler_0x8c, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x8d, InterruptHandler_0x8d, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x8e, InterruptHandler_0x8e, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x8f, InterruptHandler_0x8f, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x90, InterruptHandler_0x90, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x91, InterruptHandler_0x91, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x92, InterruptHandler_0x92, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x93, InterruptHandler_0x93, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x94, InterruptHandler_0x94, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x95, InterruptHandler_0x95, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x96, InterruptHandler_0x96, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x97, InterruptHandler_0x97, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x98, InterruptHandler_0x98, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x99, InterruptHandler_0x99, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x9a, InterruptHandler_0x9a, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x9b, InterruptHandler_0x9b, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x9c, InterruptHandler_0x9c, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x9d, InterruptHandler_0x9d, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x9e, InterruptHandler_0x9e, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0x9f, InterruptHandler_0x9f, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xa0, InterruptHandler_0xa0, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xa1, InterruptHandler_0xa1, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xa2, InterruptHandler_0xa2, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xa3, InterruptHandler_0xa3, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xa4, InterruptHandler_0xa4, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xa5, InterruptHandler_0xa5, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xa6, InterruptHandler_0xa6, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xa7, InterruptHandler_0xa7, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xa8, InterruptHandler_0xa8, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xa9, InterruptHandler_0xa9, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xaa, InterruptHandler_0xaa, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xab, InterruptHandler_0xab, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xac, InterruptHandler_0xac, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xad, InterruptHandler_0xad, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xae, InterruptHandler_0xae, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xaf, InterruptHandler_0xaf, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xb0, InterruptHandler_0xb0, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xb1, InterruptHandler_0xb1, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xb2, InterruptHandler_0xb2, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xb3, InterruptHandler_0xb3, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xb4, InterruptHandler_0xb4, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xb5, InterruptHandler_0xb5, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xb6, InterruptHandler_0xb6, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xb7, InterruptHandler_0xb7, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xb8, InterruptHandler_0xb8, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xb9, InterruptHandler_0xb9, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xba, InterruptHandler_0xba, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xbb, InterruptHandler_0xbb, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xbc, InterruptHandler_0xbc, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xbd, InterruptHandler_0xbd, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xbe, InterruptHandler_0xbe, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xbf, InterruptHandler_0xbf, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xc0, InterruptHandler_0xc0, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xc1, InterruptHandler_0xc1, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xc2, InterruptHandler_0xc2, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xc3, InterruptHandler_0xc3, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xc4, InterruptHandler_0xc4, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xc5, InterruptHandler_0xc5, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xc6, InterruptHandler_0xc6, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xc7, InterruptHandler_0xc7, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xc8, InterruptHandler_0xc8, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xc9, InterruptHandler_0xc9, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xca, InterruptHandler_0xca, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xcb, InterruptHandler_0xcb, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xcc, InterruptHandler_0xcc, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xcd, InterruptHandler_0xcd, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xce, InterruptHandler_0xce, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xcf, InterruptHandler_0xcf, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xd0, InterruptHandler_0xd0, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xd1, InterruptHandler_0xd1, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xd2, InterruptHandler_0xd2, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xd3, InterruptHandler_0xd3, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xd4, InterruptHandler_0xd4, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xd5, InterruptHandler_0xd5, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xd6, InterruptHandler_0xd6, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xd7, InterruptHandler_0xd7, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xd8, InterruptHandler_0xd8, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xd9, InterruptHandler_0xd9, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xda, InterruptHandler_0xda, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xdb, InterruptHandler_0xdb, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xdc, InterruptHandler_0xdc, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xdd, InterruptHandler_0xdd, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xde, InterruptHandler_0xde, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xdf, InterruptHandler_0xdf, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xe0, InterruptHandler_0xe0, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xe1, InterruptHandler_0xe1, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xe2, InterruptHandler_0xe2, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xe3, InterruptHandler_0xe3, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xe4, InterruptHandler_0xe4, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xe5, InterruptHandler_0xe5, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xe6, InterruptHandler_0xe6, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xe7, InterruptHandler_0xe7, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xe8, InterruptHandler_0xe8, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xe9, InterruptHandler_0xe9, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xea, InterruptHandler_0xea, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xeb, InterruptHandler_0xeb, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xec, InterruptHandler_0xec, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xed, InterruptHandler_0xed, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xee, InterruptHandler_0xee, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xef, InterruptHandler_0xef, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xf0, InterruptHandler_0xf0, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xf1, InterruptHandler_0xf1, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xf2, InterruptHandler_0xf2, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xf3, InterruptHandler_0xf3, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xf4, InterruptHandler_0xf4, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xf5, InterruptHandler_0xf5, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xf6, InterruptHandler_0xf6, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xf7, InterruptHandler_0xf7, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xf8, InterruptHandler_0xf8, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xf9, InterruptHandler_0xf9, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xfa, InterruptHandler_0xfa, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xfb, InterruptHandler_0xfb, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xfc, InterruptHandler_0xfc, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xfd, InterruptHandler_0xfd, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xfe, InterruptHandler_0xfe, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
SetEntry(0xff, InterruptHandler_0xff, TRAP_32BIT, RING0, true, GDT_KERNEL_CODE);
CPU::x32::lidt(&idtd);
}
}

View File

@ -22,114 +22,175 @@
namespace GlobalDescriptorTable namespace GlobalDescriptorTable
{ {
/** @brief The GDT Access Table struct TaskStateSegmentEntry
* @details For more information, see https://wiki.osdev.org/Global_Descriptor_Table
*/
union GlobalDescriptorTableAccess
{
struct
{
/** @brief Access bit.
* @note The CPU sets this bit to 1 when the segment is accessed.
*/
uint8_t A : 1;
/** @brief Readable bit for code segments, writable bit for data segments.
* @details For code segments, this bit must be 1 for the segment to be readable.
* @details For data segments, this bit must be 1 for the segment to be writable.
*/
uint8_t RW : 1;
/** @brief Direction bit for data segments, conforming bit for code segments.
* @details For data segments, this bit must be 1 for the segment to grow up (higher addresses).
* @details For code segments, this bit must be 1 for code in the segment to be able to be executed from an equal or lower privilege level.
*/
uint8_t DC : 1;
/** @brief Executable bit.
* @details This bit must be 1 for code-segment descriptors.
* @details This bit must be 0 for data-segment and system descriptors.
*/
uint8_t E : 1;
/** @brief Descriptor type.
* @details This bit must be 0 for system descriptors.
* @details This bit must be 1 for code or data segment descriptor.
*/
uint8_t S : 1;
/** @brief Descriptor privilege level.
* @details This field determines the privilege level of the segment.
* @details 0 = kernel mode, 3 = user mode.
*/
uint8_t DPL : 2;
/** @brief Present bit.
* @details This bit must be 1 for all valid descriptors.
*/
uint8_t P : 1;
} __packed;
uint8_t Raw;
};
union GlobalDescriptorTableFlags
{
// TODO: Add more flags.
struct
{
/** @brief Unknown. */
uint8_t Unknown : 5;
/** @brief Long mode.
* @details If the long mode bit is clear, the segment is in 32-bit protected mode.
* @details If the long mode bit is set, the segment is in 64-bit long mode.
*/
uint8_t L : 1;
} __packed;
uint8_t Raw;
};
typedef struct _TaskStateSegmentEntry
{ {
/* LOW */ /* LOW */
uint16_t Length; uint16_t Limit;
uint16_t BaseLow; uint16_t BaseLow;
uint8_t BaseMiddle; uint8_t BaseMiddle;
GlobalDescriptorTableAccess Flags; union GlobalDescriptorTableAccess
{
struct
{
/** @brief Access bit.
* @note The CPU sets this bit to 1 when the segment is accessed.
*/
uint8_t A : 1;
/** @brief Readable bit for code segments, writable bit for data segments.
* @details For code segments, this bit must be 1 for the segment to be readable.
* @details For data segments, this bit must be 1 for the segment to be writable.
*/
uint8_t RW : 1;
/** @brief Direction bit for data segments, conforming bit for code segments.
* @details For data segments, this bit must be 1 for the segment to grow up (higher addresses).
* @details For code segments, this bit must be 1 for code in the segment to be able to be executed from an equal or lower privilege level.
*/
uint8_t DC : 1;
/** @brief Executable bit.
* @details This bit must be 1 for code-segment descriptors.
* @details This bit must be 0 for data-segment and system descriptors.
*/
uint8_t E : 1;
/** @brief Descriptor type.
* @details This bit must be 0 for system descriptors.
* @details This bit must be 1 for code or data segment descriptor.
*/
uint8_t S : 1;
/** @brief Descriptor privilege level.
* @details This field determines the privilege level of the segment.
* @details 0 = kernel mode, 3 = user mode.
*/
uint8_t DPL : 2;
/** @brief Present bit.
* @details This bit must be 1 for all valid descriptors.
*/
uint8_t P : 1;
} __packed;
uint8_t Raw : 8;
} Access;
uint8_t Granularity; uint8_t Granularity;
uint8_t BaseHigh; uint8_t BaseHigh;
/* HIGH */ /* HIGH */
uint32_t BaseUpper; uint32_t BaseUpper;
uint32_t Reserved; uint32_t Reserved;
} __packed TaskStateSegmentEntry; } __packed;
typedef struct _TaskStateSegment struct TaskStateSegment
{ {
uint32_t Reserved0 __aligned(16); uint32_t Reserved0 __aligned(16);
uint64_t StackPointer[3]; uint64_t StackPointer[3];
uint64_t Reserved1; uint64_t Reserved1;
uint64_t InterruptStackTable[7]; uint64_t InterruptStackTable[7];
uint16_t Reserved2; uint64_t Reserved2;
uint16_t Reserved3;
uint16_t IOMapBaseAddressOffset; uint16_t IOMapBaseAddressOffset;
} __packed TaskStateSegment; } __packed;
typedef struct _GlobalDescriptorTableEntry struct GlobalDescriptorTableEntry
{ {
/** @brief Length */ /** @brief Limit 0:15 */
uint16_t Length; uint16_t Limit0 : 16;
/** @brief Low Base */
uint16_t BaseLow;
/** @brief Middle Base */
uint8_t BaseMiddle;
/** @brief Access */
GlobalDescriptorTableAccess Access;
/** @brief Flags */
GlobalDescriptorTableFlags Flags;
/** @brief High Base */
uint8_t BaseHigh;
} __packed GlobalDescriptorTableEntry;
typedef struct _GlobalDescriptorTableEntries /** @brief Low Base 0:15 */
uint16_t BaseLow : 16;
/** @brief Middle Base 16:23 */
uint8_t BaseMiddle : 8;
/** @brief Access */
union GlobalDescriptorTableAccess
{
struct
{
/** @brief Access bit.
* @note The CPU sets this bit to 1 when the segment is accessed.
*/
uint8_t A : 1;
/** @brief Readable bit for code segments, writable bit for data segments.
* @details For code segments, this bit must be 1 for the segment to be readable.
* @details For data segments, this bit must be 1 for the segment to be writable.
*/
uint8_t RW : 1;
/** @brief Direction bit for data segments, conforming bit for code segments.
* @details For data segments, this bit must be 1 for the segment to grow up (higher addresses).
* @details For code segments, this bit must be 1 for code in the segment to be able to be executed from an equal or lower privilege level.
*/
uint8_t DC : 1;
/** @brief Executable bit.
* @details This bit must be 1 for code-segment descriptors.
* @details This bit must be 0 for data-segment and system descriptors.
*/
uint8_t E : 1;
/** @brief Descriptor type.
* @details This bit must be 0 for system descriptors.
* @details This bit must be 1 for code or data segment descriptor.
*/
uint8_t S : 1;
/** @brief Descriptor privilege level.
* @details This field determines the privilege level of the segment.
* @details 0 = kernel mode, 3 = user mode.
*/
uint8_t DPL : 2;
/** @brief Present bit.
* @details This bit must be 1 for all valid descriptors.
*/
uint8_t P : 1;
} __packed;
uint8_t Raw : 8;
} Access;
// /** @brief Limit 16:19 */
// uint16_t Limit1 : 4;
/** @brief Flags */
union GlobalDescriptorTableFlags
{
struct
{
uint8_t Reserved : 4; /* FIXME: Without this, the kernel crashes. */
/** @brief Available bit.
* @details This bit is available for use by system software.
*/
uint8_t AVL : 1;
/** @brief Long mode.
* @details If the long mode bit is clear, the segment is in 32-bit protected mode.
* @details If the long mode bit is set, the segment is in 64-bit long mode.
*/
uint8_t L : 1;
/** @brief Size flag.
* @details If the size bit is clear, the segment is in 16-bit protected mode.
* @details If the size bit is set, the segment is in 32-bit protected mode.
*/
uint8_t DB : 1;
/** @brief Granularity bit.
* @details If the granularity bit is clear, the segment limit is in 1 B blocks.
* @details If the granularity bit is set, the segment limit is in 4 KiB blocks.
*/
uint8_t G : 1;
} __packed;
uint8_t Raw : 8;
} Flags;
/** @brief High Base 24:31 */
uint8_t BaseHigh : 8;
} __packed;
struct GlobalDescriptorTableEntries
{ {
GlobalDescriptorTableEntry Null; GlobalDescriptorTableEntry Null;
GlobalDescriptorTableEntry Code; GlobalDescriptorTableEntry Code;
@ -137,20 +198,21 @@ namespace GlobalDescriptorTable
GlobalDescriptorTableEntry UserData; GlobalDescriptorTableEntry UserData;
GlobalDescriptorTableEntry UserCode; GlobalDescriptorTableEntry UserCode;
TaskStateSegmentEntry TaskStateSegment; TaskStateSegmentEntry TaskStateSegment;
} __packed GlobalDescriptorTableEntries; } __packed;
typedef struct _GlobalDescriptorTableDescriptor struct GlobalDescriptorTableDescriptor
{ {
/** @brief GDT entries length */ /** @brief GDT entries length */
uint16_t Length; uint16_t Length;
/** @brief GDT entries address */ /** @brief GDT entries address */
GlobalDescriptorTableEntries *Entries; GlobalDescriptorTableEntries *Entries;
} __packed GlobalDescriptorTableDescriptor; } __packed;
extern void *CPUStackPointer[]; extern void *CPUStackPointer[];
extern TaskStateSegment tss[]; extern TaskStateSegment tss[];
void Init(int Core); void Init(int Core);
void SetKernelStack(void *Stack); void SetKernelStack(void *Stack);
void *GetKernelStack();
} }
#define GDT_KERNEL_CODE offsetof(GlobalDescriptorTable::GlobalDescriptorTableEntries, Code) #define GDT_KERNEL_CODE offsetof(GlobalDescriptorTable::GlobalDescriptorTableEntries, Code)

View File

@ -22,6 +22,48 @@
namespace InterruptDescriptorTable namespace InterruptDescriptorTable
{ {
typedef enum _InterruptGateType
{
TASK = 0b101,
INT_16BIT = 0b110,
TRAP_16BIT = 0b111,
INT_32BIT = 0b1110,
TRAP_32BIT = 0b1111,
} InterruptGateType;
typedef enum _InterruptRingType
{
RING0 = 0b0,
RING1 = 0b1,
RING2 = 0b10,
RING3 = 0b11,
} InterruptRingType;
typedef struct _InterruptDescriptorTableEntry
{
uint32_t LowOffset : 16;
uint32_t SegmentSelector : 16;
uint32_t Reserved0 : 5;
uint32_t Flags : 4;
uint32_t Reserved1 : 1;
uint32_t Ring : 2;
uint32_t Present : 1;
uint32_t HighOffset : 16;
} __packed InterruptDescriptorTableEntry;
typedef struct _InterruptDescriptorTableDescriptor
{
uint16_t Length;
InterruptDescriptorTableEntry *Entries;
} __packed InterruptDescriptorTableDescriptor;
void SetEntry(uint8_t Index,
void (*Base)(),
InterruptGateType Gate,
InterruptRingType Ring,
bool Present,
uint16_t SegmentSelector);
void Init(int Core); void Init(int Core);
} }

View File

@ -817,8 +817,8 @@ namespace CrashHandler
{ {
// TODO: SUPPORT SMP // TODO: SUPPORT SMP
CPU::Interrupts(CPU::Disable); CPU::Interrupts(CPU::Disable);
SBIdx = 255;
CHArchTrapFrame *Frame = (CHArchTrapFrame *)Data; CHArchTrapFrame *Frame = (CHArchTrapFrame *)Data;
SBIdx = 255;
#if defined(a64) #if defined(a64)
debug("-----------------------------------------------------------------------------------"); debug("-----------------------------------------------------------------------------------");
error("Exception: %#llx", Frame->InterruptNumber); error("Exception: %#llx", Frame->InterruptNumber);

View File

@ -57,7 +57,7 @@ static inline NIF void WritePrefix(DebugLevel Level, const char *File, int Line,
case DebugLevelUbsan: case DebugLevelUbsan:
{ {
DbgLvlString = "UBSAN"; DbgLvlString = "UBSAN";
fctprintf(uart_wrapper, nullptr, "%s|%s: ", DbgLvlString, Function); fctprintf(uart_wrapper, nullptr, "%s| ", DbgLvlString);
return; return;
} }
default: default:

View File

@ -245,10 +245,7 @@ namespace Driver
} }
} }
else else
{
KPrint("\eE85230Failed to open driver directory: %s! (Status: %#lx)", Config.DriverDirectory, DriverDirectory.Status); KPrint("\eE85230Failed to open driver directory: %s! (Status: %#lx)", Config.DriverDirectory, DriverDirectory.Status);
CPU::Stop();
}
vfs->Close(DriverDirectory); vfs->Close(DriverDirectory);
} }

View File

@ -77,7 +77,22 @@ namespace Interrupts
debug("Stack for core %d is %#lx (Address: %#lx)", Core, CoreData->Stack, CoreData->Stack - STACK_SIZE); debug("Stack for core %d is %#lx (Address: %#lx)", Core, CoreData->Stack, CoreData->Stack - STACK_SIZE);
InitializeSystemCalls(); InitializeSystemCalls();
#elif defined(a32) #elif defined(a32)
warn("i386 is not supported yet"); GlobalDescriptorTable::Init(Core);
InterruptDescriptorTable::Init(Core);
CPUData *CoreData = GetCPU(Core);
CoreData->Checksum = CPU_DATA_CHECKSUM;
CPU::x32::wrmsr(CPU::x32::MSR_GS_BASE, (uint64_t)CoreData);
CPU::x32::wrmsr(CPU::x32::MSR_SHADOW_GS_BASE, (uint64_t)CoreData);
CoreData->ID = Core;
CoreData->IsActive = true;
CoreData->SystemCallStack = (uint8_t *)((uintptr_t)KernelAllocator.RequestPages(TO_PAGES(STACK_SIZE + 1)) + STACK_SIZE);
CoreData->Stack = (uintptr_t)KernelAllocator.RequestPages(TO_PAGES(STACK_SIZE + 1)) + STACK_SIZE;
if (CoreData->Checksum != CPU_DATA_CHECKSUM)
{
KPrint("CPU %d checksum mismatch! %x != %x", Core, CoreData->Checksum, CPU_DATA_CHECKSUM);
CPU::Stop();
}
debug("Stack for core %d is %#lx (Address: %#lx)", Core, CoreData->Stack, CoreData->Stack - STACK_SIZE);
#elif defined(aa64) #elif defined(aa64)
warn("aarch64 is not supported yet"); warn("aarch64 is not supported yet");
#endif #endif

View File

@ -120,6 +120,9 @@ namespace Memory
for (size_t t = 0; t < TableSize; t++) for (size_t t = 0; t < TableSize; t++)
{ {
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wint-to-pointer-cast"
// TODO: Should I be concerned about unaligned memory access? // TODO: Should I be concerned about unaligned memory access?
ACPI::ACPI::ACPIHeader *SDTHdr = nullptr; ACPI::ACPI::ACPIHeader *SDTHdr = nullptr;
if (XSDT) if (XSDT)
@ -127,6 +130,8 @@ namespace Memory
else else
SDTHdr = (ACPI::ACPI::ACPIHeader *)(*(uint32_t *)((uint64_t)ACPIPtr + sizeof(ACPI::ACPI::ACPIHeader) + (t * 4))); SDTHdr = (ACPI::ACPI::ACPIHeader *)(*(uint32_t *)((uint64_t)ACPIPtr + sizeof(ACPI::ACPI::ACPIHeader) + (t * 4)));
#pragma GCC diagnostic pop
this->ReservePages(SDTHdr, TO_PAGES(SDTHdr->Length)); this->ReservePages(SDTHdr, TO_PAGES(SDTHdr->Length));
} }

View File

@ -49,6 +49,10 @@ namespace SymbolResolver
__no_sanitize("alignment") void Symbols::AddBySymbolInfo(uint64_t Num, uint64_t EntSize, uint64_t Shndx, uintptr_t Sections) __no_sanitize("alignment") void Symbols::AddBySymbolInfo(uint64_t Num, uint64_t EntSize, uint64_t Shndx, uintptr_t Sections)
{ {
#ifdef a32
fixme("Function not working on 32-bit");
return;
#endif
if (this->TotalEntries >= 0x10000) if (this->TotalEntries >= 0x10000)
{ {
error("Symbol table is full"); error("Symbol table is full");

View File

@ -36,7 +36,7 @@ namespace SMBIOS
SMBIOSEntryPoint *GetSMBIOSEntryPoint() { return (SMBIOSEntryPoint *)bInfo.SMBIOSPtr; } SMBIOSEntryPoint *GetSMBIOSEntryPoint() { return (SMBIOSEntryPoint *)bInfo.SMBIOSPtr; }
static inline int SMBIOSTableLength(SMBIOSHeader *Hdr) __no_sanitize("alignment") static inline int SMBIOSTableLength(SMBIOSHeader *Hdr)
{ {
int i; int i;
const char *strtab = (char *)Hdr + Hdr->Length; const char *strtab = (char *)Hdr + Hdr->Length;
@ -45,7 +45,7 @@ namespace SMBIOS
return Hdr->Length + i + 1; return Hdr->Length + i + 1;
} }
void *GetSMBIOSHeader(SMBIOSType Type) __no_sanitize("alignment") void *GetSMBIOSHeader(SMBIOSType Type)
{ {
if (!CheckSMBIOS()) if (!CheckSMBIOS())
return nullptr; return nullptr;

View File

@ -382,216 +382,121 @@ const char *Type_Check_Kinds[] = {
"Cast to virtual base of", "Cast to virtual base of",
}; };
bool UBSANMsg(const char *file, uint32_t line, uint32_t column)
{
/* This can be ignored (unaligned memory access) */
if (strstr(file, "AdvancedConfigurationAndPowerInterface.cpp") &&
((line == 34 && column == 47) ||
(line == 36 && column == 47)))
return false;
/* This can be ignored (unaligned memory access) */
if (strstr(file, "SystemManagementBIOS.cpp") &&
((line == 47 && column == 21) ||
(line == 44 && column == 49) ||
(line == 62 && column == 26)))
return false;
/* This can be ignored (unaligned memory access) */
if (strstr(file, "DynamicHostConfigurationProtocol.cpp") &&
(line == 63 && column == 30))
return false;
if (strstr(file, "liballoc_1_1.c"))
return false;
/* This can be ignored (store address x with insufficient space for object of type 'y') */
if (strstr(file, "Task.cpp") && line > 500)
return false;
/* This can be ignored (store address x with insufficient space for object of type 'y') */
if (strstr(file, "InternetProtocol.cpp") &&
((line == 66 && column == 13) ||
(line == 66 && column == 93) ||
(line == 68 && column == 51) ||
(line == 68 && column == 165) ||
(line == 73 && column == 36) ||
(line == 78 && column == 54) ||
(line == 79 && column == 64) ||
(line == 81 && column == 126) ||
(line == 81 && column == 165) ||
(line == 81 && column == 15) ||
(line == 156 && column == 38) ||
(line == 157 && column == 47) ||
(line == 158 && column == 45)))
return false;
/* This can be ignored (store address x with insufficient space for object of type 'y') */
if (strstr(file, "DynamicHostConfigurationProtocol.cpp") &&
((line == 156 && column == 38) ||
(line == 157 && column == 47) ||
(line == 158 && column == 45)))
return false;
ubsan("\t\tIn File: %s:%i:%i", file, line, column);
return true;
}
void __ubsan_handle_type_mismatch_v1(struct type_mismatch_v1_data *type_mismatch, uintptr_t pointer) void __ubsan_handle_type_mismatch_v1(struct type_mismatch_v1_data *type_mismatch, uintptr_t pointer)
{ {
struct source_location *location = &type_mismatch->location; struct source_location *location = &type_mismatch->location;
if (pointer == 0) if (pointer == 0)
{ {
if (UBSANMsg(location->file, location->line, location->column)) ubsan("\t\tIn File: %s:%i:%i", location->file, location->line, location->column);
{ ubsan("Null pointer access.");
ubsan("Null pointer access.");
}
} }
else if (type_mismatch->alignment != 0 && is_aligned(pointer, type_mismatch->alignment)) else if (type_mismatch->alignment != 0 && is_aligned(pointer, type_mismatch->alignment))
{ {
if (UBSANMsg(location->file, location->line, location->column)) ubsan("\t\tIn File: %s:%i:%i", location->file, location->line, location->column);
{ ubsan("Unaligned memory access %#llx.", pointer);
ubsan("Unaligned memory access %#llx.", pointer);
}
} }
else else
{ {
if (UBSANMsg(location->file, location->line, location->column)) ubsan("\t\tIn File: %s:%i:%i", location->file, location->line, location->column);
{ ubsan("%s address %#llx with insufficient space for object of type %s",
ubsan("%s address %#llx with insufficient space for object of type %s", Type_Check_Kinds[type_mismatch->type_check_kind], (void *)pointer, type_mismatch->type->name);
Type_Check_Kinds[type_mismatch->type_check_kind], (void *)pointer, type_mismatch->type->name);
}
} }
} }
void __ubsan_handle_add_overflow(struct overflow_data *data) void __ubsan_handle_add_overflow(struct overflow_data *data)
{ {
if (UBSANMsg(data->location.file, data->location.line, data->location.column)) ubsan("\t\tIn File: %s:%i:%i", data->location.file, data->location.line, data->location.column);
{ ubsan("Addition overflow.");
ubsan("Addition overflow.");
}
} }
void __ubsan_handle_sub_overflow(struct overflow_data *data) void __ubsan_handle_sub_overflow(struct overflow_data *data)
{ {
if (UBSANMsg(data->location.file, data->location.line, data->location.column)) ubsan("\t\tIn File: %s:%i:%i", data->location.file, data->location.line, data->location.column);
{ ubsan("Subtraction overflow.");
ubsan("Subtraction overflow.");
}
} }
void __ubsan_handle_mul_overflow(struct overflow_data *data) void __ubsan_handle_mul_overflow(struct overflow_data *data)
{ {
if (UBSANMsg(data->location.file, data->location.line, data->location.column)) ubsan("\t\tIn File: %s:%i:%i", data->location.file, data->location.line, data->location.column);
{ ubsan("Multiplication overflow.");
ubsan("Multiplication overflow.");
}
} }
void __ubsan_handle_divrem_overflow(struct overflow_data *data) void __ubsan_handle_divrem_overflow(struct overflow_data *data)
{ {
if (UBSANMsg(data->location.file, data->location.line, data->location.column)) ubsan("\t\tIn File: %s:%i:%i", data->location.file, data->location.line, data->location.column);
{ ubsan("Division overflow.");
ubsan("Division overflow.");
}
} }
void __ubsan_handle_negate_overflow(struct overflow_data *data) void __ubsan_handle_negate_overflow(struct overflow_data *data)
{ {
if (UBSANMsg(data->location.file, data->location.line, data->location.column)) ubsan("\t\tIn File: %s:%i:%i", data->location.file, data->location.line, data->location.column);
{ ubsan("Negation overflow.");
ubsan("Negation overflow.");
}
} }
void __ubsan_handle_pointer_overflow(struct overflow_data *data) void __ubsan_handle_pointer_overflow(struct overflow_data *data)
{ {
if (UBSANMsg(data->location.file, data->location.line, data->location.column)) ubsan("\t\tIn File: %s:%i:%i", data->location.file, data->location.line, data->location.column);
{ ubsan("Pointer overflow.");
ubsan("Pointer overflow.");
}
} }
void __ubsan_handle_shift_out_of_bounds(struct shift_out_of_bounds_data *data) void __ubsan_handle_shift_out_of_bounds(struct shift_out_of_bounds_data *data)
{ {
if (UBSANMsg(data->location.file, data->location.line, data->location.column)) ubsan("\t\tIn File: %s:%i:%i", data->location.file, data->location.line, data->location.column);
{ ubsan("Shift out of bounds.");
ubsan("Shift out of bounds.");
}
} }
void __ubsan_handle_load_invalid_value(struct invalid_value_data *data) void __ubsan_handle_load_invalid_value(struct invalid_value_data *data)
{ {
if (UBSANMsg(data->location.file, data->location.line, data->location.column)) ubsan("\t\tIn File: %s:%i:%i", data->location.file, data->location.line, data->location.column);
{ ubsan("Invalid load value.");
ubsan("Invalid load value.");
}
} }
void __ubsan_handle_out_of_bounds(struct array_out_of_bounds_data *data) void __ubsan_handle_out_of_bounds(struct array_out_of_bounds_data *data)
{ {
if (UBSANMsg(data->location.file, data->location.line, data->location.column)) ubsan("\t\tIn File: %s:%i:%i", data->location.file, data->location.line, data->location.column);
{ ubsan("Array out of bounds.");
ubsan("Array out of bounds.");
}
} }
void __ubsan_handle_vla_bound_not_positive(struct negative_vla_data *data) void __ubsan_handle_vla_bound_not_positive(struct negative_vla_data *data)
{ {
if (UBSANMsg(data->location.file, data->location.line, data->location.column)) ubsan("\t\tIn File: %s:%i:%i", data->location.file, data->location.line, data->location.column);
{ ubsan("Variable-length argument is negative.");
ubsan("Variable-length argument is negative.");
}
} }
void __ubsan_handle_nonnull_return(struct nonnull_return_data *data) void __ubsan_handle_nonnull_return(struct nonnull_return_data *data)
{ {
if (UBSANMsg(data->location.file, data->location.line, data->location.column)) ubsan("\t\tIn File: %s:%i:%i", data->location.file, data->location.line, data->location.column);
{ ubsan("Non-null return is null.");
ubsan("Non-null return is null.");
}
} }
void __ubsan_handle_nonnull_return_v1(struct nonnull_return_data *data) void __ubsan_handle_nonnull_return_v1(struct nonnull_return_data *data)
{ {
if (UBSANMsg(data->location.file, data->location.line, data->location.column)) ubsan("\t\tIn File: %s:%i:%i", data->location.file, data->location.line, data->location.column);
{ ubsan("Non-null return is null.");
ubsan("Non-null return is null.");
}
} }
void __ubsan_handle_nonnull_arg(struct nonnull_arg_data *data) void __ubsan_handle_nonnull_arg(struct nonnull_arg_data *data)
{ {
if (UBSANMsg(data->location.file, data->location.line, data->location.column)) ubsan("\t\tIn File: %s:%i:%i", data->location.file, data->location.line, data->location.column);
{ ubsan("Non-null argument is null.");
ubsan("Non-null argument is null.");
}
} }
void __ubsan_handle_builtin_unreachable(struct unreachable_data *data) void __ubsan_handle_builtin_unreachable(struct unreachable_data *data)
{ {
if (UBSANMsg(data->location.file, data->location.line, data->location.column)) ubsan("\t\tIn File: %s:%i:%i", data->location.file, data->location.line, data->location.column);
{ ubsan("Unreachable code reached.");
ubsan("Unreachable code reached.");
}
} }
void __ubsan_handle_invalid_builtin(struct invalid_builtin_data *data) void __ubsan_handle_invalid_builtin(struct invalid_builtin_data *data)
{ {
if (UBSANMsg(data->location.file, data->location.line, data->location.column)) ubsan("\t\tIn File: %s:%i:%i", data->location.file, data->location.line, data->location.column);
{ ubsan("Invalid builtin.");
ubsan("Invalid builtin.");
}
} }
void __ubsan_handle_missing_return(struct unreachable_data *data) void __ubsan_handle_missing_return(struct unreachable_data *data)
{ {
if (UBSANMsg(data->location.file, data->location.line, data->location.column)) ubsan("\t\tIn File: %s:%i:%i", data->location.file, data->location.line, data->location.column);
{ ubsan("Missing return.");
ubsan("Missing return.");
}
} }
void __ubsan_vptr_type_cache(uintptr_t *cache, uintptr_t ptr) void __ubsan_vptr_type_cache(uintptr_t *cache, uintptr_t ptr)
@ -602,9 +507,7 @@ void __ubsan_vptr_type_cache(uintptr_t *cache, uintptr_t ptr)
void __ubsan_handle_dynamic_type_cache_miss(struct dynamic_type_cache_miss_data *data, uintptr_t ptr) void __ubsan_handle_dynamic_type_cache_miss(struct dynamic_type_cache_miss_data *data, uintptr_t ptr)
{ {
if (UBSANMsg(data->location.file, data->location.line, data->location.column)) ubsan("\t\tIn File: %s:%i:%i", data->location.file, data->location.line, data->location.column);
{ ubsan("Dynamic type cache miss.");
ubsan("Dynamic type cache miss.");
}
UNUSED(ptr); UNUSED(ptr);
} }

View File

@ -105,15 +105,18 @@ namespace UniversalAsynchronousReceiverTransmitter
NoProfiler_outportb(s_cst(uint16_t, Port + 2), 0xC7); // Enable FIFO, clear them, with 14-byte threshold NoProfiler_outportb(s_cst(uint16_t, Port + 2), 0xC7); // Enable FIFO, clear them, with 14-byte threshold
NoProfiler_outportb(s_cst(uint16_t, Port + 4), 0x0B); // IRQs enabled, RTS/DSR set NoProfiler_outportb(s_cst(uint16_t, Port + 4), 0x0B); // IRQs enabled, RTS/DSR set
/* FIXME https://wiki.osdev.org/Serial_Ports */
// NoProfiler_outportb(s_cst(uint16_t, Port + 0), 0x1E);
// NoProfiler_outportb(s_cst(uint16_t, Port + 0), 0xAE);
// Check if the serial port is faulty. // Check if the serial port is faulty.
if (NoProfiler_inportb(s_cst(uint16_t, Port + 0)) != 0xAE) // if (NoProfiler_inportb(s_cst(uint16_t, Port + 0)) != 0xAE)
{ // {
static int once = 0; // static int once = 0;
if (!once++) // if (!once++)
warn("Serial port %#llx is faulty.", Port); // warn("Serial port %#llx is faulty.", Port);
// serialports[Port] = false; // ignore for now // // serialports[Port] = false; // ignore for now
// return; // // return;
} // }
// Set to normal operation mode. // Set to normal operation mode.
NoProfiler_outportb(s_cst(uint16_t, Port + 4), 0x0F); NoProfiler_outportb(s_cst(uint16_t, Port + 4), 0x0F);

View File

@ -536,7 +536,6 @@ EXTERNC __no_stack_protector NIF void Entry(BootInfo *Info)
TestString(); TestString();
TestMemoryAllocation(); TestMemoryAllocation();
#endif #endif
EnableProfiler = true; EnableProfiler = true;
Main(); Main();
} }

View File

@ -276,7 +276,7 @@ Execute::SpawnData SpawnInit()
/* Files: 0.tga 1.tga ... 26.tga */ /* Files: 0.tga 1.tga ... 26.tga */
void *Frames[27]; void *Frames[27];
uint32_t FrameSizes[27]; uint32_t FrameSizes[27];
uint32_t FrameCount = 1; size_t FrameCount = 1;
void BootLogoAnimationThread() void BootLogoAnimationThread()
{ {

View File

@ -50,7 +50,7 @@ namespace NetworkDHCP
debug("DHCP interface %#lx destroyed.", this); debug("DHCP interface %#lx destroyed.", this);
} }
void DHCP::CreatePacket(DHCPHeader *Packet, uint8_t MessageType, uint32_t RequestIP) __no_sanitize("alignment") void DHCP::CreatePacket(DHCPHeader *Packet, uint8_t MessageType, uint32_t RequestIP)
{ {
Packet->Opcode = b8(DHCP_OP_BOOTREQUEST); Packet->Opcode = b8(DHCP_OP_BOOTREQUEST);
Packet->HardwareType = b8(1); Packet->HardwareType = b8(1);
@ -153,7 +153,7 @@ namespace NetworkDHCP
return nullptr; return nullptr;
} }
void DHCP::OnUDPPacketReceived(NetworkUDP::Socket *Socket, uint8_t *Data, size_t Length) __no_sanitize("alignment") void DHCP::OnUDPPacketReceived(NetworkUDP::Socket *Socket, uint8_t *Data, size_t Length)
{ {
UNUSED(Socket); UNUSED(Socket);
UNUSED(Length); UNUSED(Length);

View File

@ -68,7 +68,7 @@ namespace NetworkIPv4
std::vector<IPv4Events *> RegisteredEvents; std::vector<IPv4Events *> RegisteredEvents;
bool IPv4::OnEthernetPacketReceived(uint8_t *Data, size_t Length) __no_sanitize("alignment") bool IPv4::OnEthernetPacketReceived(uint8_t *Data, size_t Length)
{ {
IPv4Packet *Packet = (IPv4Packet *)Data; IPv4Packet *Packet = (IPv4Packet *)Data;
netdbg("Received %d bytes [Protocol %ld]", Length, Packet->Header.Protocol); netdbg("Received %d bytes [Protocol %ld]", Length, Packet->Header.Protocol);

View File

@ -347,15 +347,15 @@ namespace Tasking
NextTID--; NextTID--;
} }
TCB *Task::CreateThread(PCB *Parent, __no_sanitize("undefined") TCB *Task::CreateThread(PCB *Parent,
IP EntryPoint, IP EntryPoint,
const char **argv, const char **argv,
const char **envp, const char **envp,
const std::vector<AuxiliaryVector> &auxv, const std::vector<AuxiliaryVector> &auxv,
IPOffset Offset, IPOffset Offset,
TaskArchitecture Architecture, TaskArchitecture Architecture,
TaskCompatibility Compatibility, TaskCompatibility Compatibility,
bool ThreadNotReady) bool ThreadNotReady)
{ {
SmartLock(TaskingLock); SmartLock(TaskingLock);
TCB *Thread = new TCB; TCB *Thread = new TCB;

View File

@ -247,7 +247,7 @@ void TestMemoryAllocation()
assert(InvMlc == nullptr); assert(InvMlc == nullptr);
kfree(InvMlc); kfree(InvMlc);
debug("Memory Test Complete\n"); debug("Memory Test Complete");
} }
#endif // DEBUG #endif // DEBUG

View File

@ -262,21 +262,31 @@ namespace CPU
typedef struct TrapFrame typedef struct TrapFrame
{ {
uint32_t ebp; // Base Pointer (meant for stack frames) // uint32_t ebp; // Base Pointer (meant for stack frames)
// uint32_t edi; // Destination index for string operations
// uint32_t esi; // Source index for string operations
// uint32_t edx; // Data (commonly extends the A register)
// uint32_t ecx; // Counter
// uint32_t ebx; // Base
// uint32_t eax; // Accumulator
uint32_t edi; // Destination index for string operations uint32_t edi; // Destination index for string operations
uint32_t esi; // Source index for string operations uint32_t esi; // Source index for string operations
uint32_t ebp; // Base Pointer (meant for stack frames)
uint32_t esp; // Stack Pointer
uint32_t ebx; // Base
uint32_t edx; // Data (commonly extends the A register) uint32_t edx; // Data (commonly extends the A register)
uint32_t ecx; // Counter uint32_t ecx; // Counter
uint32_t ebx; // Base
uint32_t eax; // Accumulator uint32_t eax; // Accumulator
uint32_t InterruptNumber; // Interrupt Number uint32_t InterruptNumber; // Interrupt Number
uint32_t ErrorCode; // Error code uint32_t ErrorCode; // Error code
uint32_t eip; // Instruction Pointer
uint32_t cs; // Code Segment uint32_t eip; // Instruction Pointer
EFLAGS eflags; // Register Flags uint32_t cs; // Code Segment
uint32_t esp; // Stack Pointer EFLAGS eflags; // Register Flags
uint32_t ss; // Stack Segment // uint32_t esp; // Stack Pointer
uint32_t ss; // Stack Segment
} TrapFrame; } TrapFrame;
// ! TODO: UNTESTED! // ! TODO: UNTESTED!
@ -359,7 +369,7 @@ namespace CPU
*/ */
static inline void cpuid(uint32_t Function, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx) static inline void cpuid(uint32_t Function, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx)
{ {
#if defined(a32) #ifdef a32
asmv("cpuid" asmv("cpuid"
: "=a"(*eax), "=b"(*ebx), "=c"(*ecx), "=d"(*edx) : "=a"(*eax), "=b"(*ebx), "=c"(*ecx), "=d"(*edx)
: "a"(Function)); : "a"(Function));
@ -372,9 +382,36 @@ namespace CPU
#endif #endif
} }
SafeFunction static inline void lgdt(void *gdt)
{
#ifdef a32
asmv("lgdt (%0)"
:
: "r"(gdt));
#endif
}
SafeFunction static inline void lidt(void *idt)
{
#ifdef a32
asmv("lidt (%0)"
:
: "r"(idt));
#endif
}
SafeFunction static inline void ltr(uint16_t Segment)
{
#ifdef a32
asmv("ltr %0"
:
: "r"(Segment));
#endif
}
SafeFunction static inline void invlpg(void *Address) SafeFunction static inline void invlpg(void *Address)
{ {
#if defined(a32) #ifdef a32
asmv("invlpg (%0)" asmv("invlpg (%0)"
: :
: "r"(Address) : "r"(Address)
@ -386,7 +423,7 @@ namespace CPU
SafeFunction static inline void fxsave(void *FXSaveArea) SafeFunction static inline void fxsave(void *FXSaveArea)
{ {
#if defined(a32) #ifdef a32
if (!FXSaveArea) if (!FXSaveArea)
return; return;
@ -399,7 +436,7 @@ namespace CPU
SafeFunction static inline void fxrstor(void *FXRstorArea) SafeFunction static inline void fxrstor(void *FXRstorArea)
{ {
#if defined(a32) #ifdef a32
if (!FXRstorArea) if (!FXRstorArea)
return; return;
@ -515,11 +552,12 @@ namespace CPU
uint64_t InterruptNumber; // Interrupt Number uint64_t InterruptNumber; // Interrupt Number
uint64_t ErrorCode; // Error code uint64_t ErrorCode; // Error code
uint64_t rip; // Instruction Pointer
uint64_t cs; // Code Segment uint64_t rip; // Instruction Pointer
RFLAGS rflags; // Register Flags uint64_t cs; // Code Segment
uint64_t rsp; // Stack Pointer RFLAGS rflags; // Register Flags
uint64_t ss; // Stack Segment uint64_t rsp; // Stack Pointer
uint64_t ss; // Stack Segment
} TrapFrame; } TrapFrame;
typedef union EFER typedef union EFER
@ -673,7 +711,7 @@ namespace CPU
SafeFunction static inline void lgdt(void *gdt) SafeFunction static inline void lgdt(void *gdt)
{ {
#if defined(a64) #ifdef a64
asmv("lgdt (%0)" asmv("lgdt (%0)"
: :
: "r"(gdt)); : "r"(gdt));
@ -682,7 +720,7 @@ namespace CPU
SafeFunction static inline void lidt(void *idt) SafeFunction static inline void lidt(void *idt)
{ {
#if defined(a64) #ifdef a64
asmv("lidt (%0)" asmv("lidt (%0)"
: :
: "r"(idt)); : "r"(idt));
@ -691,7 +729,7 @@ namespace CPU
SafeFunction static inline void ltr(uint16_t Segment) SafeFunction static inline void ltr(uint16_t Segment)
{ {
#if defined(a64) #ifdef a64
asmv("ltr %0" asmv("ltr %0"
: :
: "r"(Segment)); : "r"(Segment));
@ -700,7 +738,7 @@ namespace CPU
SafeFunction static inline void invlpg(void *Address) SafeFunction static inline void invlpg(void *Address)
{ {
#if defined(a64) #ifdef a64
asmv("invlpg (%0)" asmv("invlpg (%0)"
: :
: "r"(Address) : "r"(Address)
@ -719,7 +757,7 @@ namespace CPU
*/ */
SafeFunction static inline void cpuid(uint32_t Function, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx) SafeFunction static inline void cpuid(uint32_t Function, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx)
{ {
#if defined(a64) #ifdef a64
asmv("cpuid" asmv("cpuid"
: "=a"(*eax), "=b"(*ebx), "=c"(*ecx), "=d"(*edx) : "=a"(*eax), "=b"(*ebx), "=c"(*ecx), "=d"(*edx)
: "a"(Function)); : "a"(Function));
@ -742,7 +780,7 @@ namespace CPU
SafeFunction static inline void fxsave(void *FXSaveArea) SafeFunction static inline void fxsave(void *FXSaveArea)
{ {
#if defined(a64) #ifdef a64
if (!FXSaveArea || FXSaveArea >= (char *)0xfffffffffffff000) if (!FXSaveArea || FXSaveArea >= (char *)0xfffffffffffff000)
return; return;
@ -755,7 +793,7 @@ namespace CPU
SafeFunction static inline void fxrstor(void *FXRstorArea) SafeFunction static inline void fxrstor(void *FXRstorArea)
{ {
#if defined(a64) #ifdef a64
if (!FXRstorArea || FXRstorArea >= (char *)0xfffffffffffff000) if (!FXRstorArea || FXRstorArea >= (char *)0xfffffffffffff000)
return; return;