Reimplemented Xalloc from scratch

This commit is contained in:
Alex 2023-02-24 10:19:55 +02:00
parent 62e9d7b9c9
commit 4519204580
Signed by untrusted user who does not match committer: enderice2
GPG Key ID: EACC3AD603BAB4DD
11 changed files with 760 additions and 501 deletions

View File

@ -1,285 +0,0 @@
#include "Xalloc.hpp"
namespace Xalloc
{
class XLockClass
{
struct SpinLockData
{
uintptr_t LockData = 0x0;
const char *CurrentHolder = "(null)";
const char *AttemptingToGet = "(null)";
size_t Count = 0;
};
void DeadLock(SpinLockData Lock)
{
Xalloc_warn("Potential deadlock in lock '%s' held by '%s'! %ld locks in queue.", Lock.AttemptingToGet, Lock.CurrentHolder, Lock.Count);
}
private:
SpinLockData LockData;
bool IsLocked = false;
public:
int Lock(const char *FunctionName)
{
LockData.AttemptingToGet = FunctionName;
Retry:
unsigned int i = 0;
while (__atomic_exchange_n(&IsLocked, true, __ATOMIC_ACQUIRE) && ++i < 0x10000000)
;
if (i >= 0x10000000)
{
DeadLock(LockData);
goto Retry;
}
LockData.Count++;
LockData.CurrentHolder = FunctionName;
__sync_synchronize();
return 0;
}
int Unlock()
{
__sync_synchronize();
__atomic_store_n(&IsLocked, false, __ATOMIC_RELEASE);
LockData.Count--;
IsLocked = false;
return 0;
}
};
class XSmartLock
{
private:
XLockClass *LockPointer = nullptr;
public:
XSmartLock(XLockClass &Lock, const char *FunctionName)
{
this->LockPointer = &Lock;
this->LockPointer->Lock(FunctionName);
}
~XSmartLock() { this->LockPointer->Unlock(); }
};
XLockClass XLock;
#define XSL XSmartLock CONCAT(lock##_, __COUNTER__)(XLock, __FUNCTION__)
class SmartSMAPClass
{
private:
AllocatorV1 *allocator = nullptr;
public:
SmartSMAPClass(AllocatorV1 *allocator)
{
this->allocator = allocator;
this->allocator->Xstac();
}
~SmartSMAPClass() { this->allocator->Xclac(); }
};
#define SmartSMAP SmartSMAPClass XALLOC_CONCAT(SmartSMAP##_, __COUNTER__)(this)
AllocatorV1::AllocatorV1(void *Address, bool UserMode, bool SMAPEnabled)
{
SmartSMAP;
XSL;
void *Position = Address;
UserMapping = UserMode;
SMAPUsed = SMAPEnabled;
for (Xuint64_t i = 0; i < 0x20; i++)
{
void *Page = Xalloc_REQUEST_PAGE();
if (UserMapping)
Xalloc_MAP_MEMORY(Position, Page, Xalloc_MAP_MEMORY_READ_WRITE | Xalloc_MAP_MEMORY_USER);
else
Xalloc_MAP_MEMORY(Position, Page, Xalloc_MAP_MEMORY_READ_WRITE);
Xalloc_trace("Preallocate Heap Memory (%#llx-%#llx [%#llx])...", Position, (Xuint64_t)Position + Xalloc_PAGE_SIZE, Page);
Position = (void *)((Xuint64_t)Position + Xalloc_PAGE_SIZE);
}
Xuint64_t HeapLength = 16 * Xalloc_PAGE_SIZE;
this->HeapStart = Address;
this->HeapEnd = (void *)((Xuint64_t)this->HeapStart + HeapLength);
HeapSegment *StartSegment = (HeapSegment *)Address;
StartSegment->Length = HeapLength - sizeof(HeapSegment);
StartSegment->Next = nullptr;
StartSegment->Last = nullptr;
StartSegment->IsFree = true;
this->LastSegment = StartSegment;
}
AllocatorV1::~AllocatorV1()
{
SmartSMAP;
XSL;
Xalloc_trace("Destructor not implemented yet.");
}
void AllocatorV1::ExpandHeap(Xuint64_t Length)
{
if (Length % Xalloc_PAGE_SIZE)
{
Length -= Length % Xalloc_PAGE_SIZE;
Length += Xalloc_PAGE_SIZE;
}
Xuint64_t PageCount = Length / Xalloc_PAGE_SIZE;
HeapSegment *NewSegment = (HeapSegment *)this->HeapEnd;
for (Xuint64_t i = 0; i < PageCount; i++)
{
void *Page = Xalloc_REQUEST_PAGE();
if (UserMapping)
Xalloc_MAP_MEMORY(this->HeapEnd, Page, Xalloc_MAP_MEMORY_READ_WRITE | Xalloc_MAP_MEMORY_USER);
else
Xalloc_MAP_MEMORY(this->HeapEnd, Page, Xalloc_MAP_MEMORY_READ_WRITE);
// Xalloc_trace("Expanding Heap Memory (%#llx-%#llx [%#llx])...", this->HeapEnd, (Xuint64_t)this->HeapEnd + Xalloc_PAGE_SIZE, Page);
this->HeapEnd = (void *)((Xuint64_t)this->HeapEnd + Xalloc_PAGE_SIZE);
}
NewSegment->IsFree = true;
NewSegment->Last = this->LastSegment;
this->LastSegment->Next = NewSegment;
this->LastSegment = NewSegment;
NewSegment->Next = nullptr;
NewSegment->Length = Length - sizeof(HeapSegment);
NewSegment->CombineBackward(this->LastSegment);
}
void *AllocatorV1::Malloc(Xuint64_t Size)
{
SmartSMAP;
XSL;
if (this->HeapStart == nullptr)
{
Xalloc_err("Memory allocation not initialized yet!");
return 0;
}
if (Size < 0x10)
{
// Xalloc_warn("Allocation size is too small, using 0x10 instead!");
Size = 0x10;
}
// #ifdef DEBUG
// if (Size < 1024)
// debug("Allocating %dB", Size);
// else if (TO_KB(Size) < 1024)
// debug("Allocating %dKB", TO_KB(Size));
// else if (TO_MB(Size) < 1024)
// debug("Allocating %dMB", TO_MB(Size));
// else if (TO_GB(Size) < 1024)
// debug("Allocating %dGB", TO_GB(Size));
// #endif
if (Size % 0x10 > 0) // it is not a multiple of 0x10
{
Size -= (Size % 0x10);
Size += 0x10;
}
if (Size == 0)
{
return nullptr;
}
HeapSegment *CurrentSegment = (HeapSegment *)this->HeapStart;
while (true)
{
if (CurrentSegment->IsFree)
{
if (CurrentSegment->Length > Size)
{
CurrentSegment->Split(Size, this->LastSegment);
CurrentSegment->IsFree = false;
return (void *)((Xuint64_t)CurrentSegment + sizeof(HeapSegment));
}
if (CurrentSegment->Length == Size)
{
CurrentSegment->IsFree = false;
return (void *)((Xuint64_t)CurrentSegment + sizeof(HeapSegment));
}
}
if (CurrentSegment->Next == nullptr)
break;
CurrentSegment = CurrentSegment->Next;
}
ExpandHeap(Size);
XLock.Unlock();
return this->Malloc(Size);
}
void AllocatorV1::Free(void *Address)
{
SmartSMAP;
XSL;
if (this->HeapStart == nullptr)
{
Xalloc_err("Memory allocation not initialized yet!");
return;
}
HeapSegment *Segment = (HeapSegment *)Address - 1;
Segment->IsFree = true;
Segment->CombineForward(this->LastSegment);
Segment->CombineBackward(this->LastSegment);
}
void *AllocatorV1::Calloc(Xuint64_t NumberOfBlocks, Xuint64_t Size)
{
SmartSMAP;
XSL;
if (this->HeapStart == nullptr)
{
Xalloc_err("Memory allocation not initialized yet!");
return 0;
}
if (Size < 0x10)
{
// Xalloc_warn("Allocation size is too small, using 0x10 instead!");
Size = 0x10;
}
XLock.Unlock();
void *Block = this->Malloc(NumberOfBlocks * Size);
XLock.Lock(__FUNCTION__);
if (Block)
Xmemset(Block, 0, NumberOfBlocks * Size);
return Block;
}
void *AllocatorV1::Realloc(void *Address, Xuint64_t Size)
{
SmartSMAP;
XSL;
if (this->HeapStart == nullptr)
{
Xalloc_err("Memory allocation not initialized yet!");
return 0;
}
if (!Address && Size == 0)
{
XLock.Unlock();
this->Free(Address);
return nullptr;
}
else if (!Address)
{
XLock.Unlock();
return this->Calloc(Size, sizeof(char));
}
if (Size < 0x10)
{
// Xalloc_warn("Allocation size is too small, using 0x10 instead!");
Size = 0x10;
}
XLock.Unlock();
void *newAddress = this->Calloc(Size, sizeof(char));
XLock.Lock(__FUNCTION__);
Xmemcpy(newAddress, Address, Size);
return newAddress;
}
}

View File

@ -1,180 +0,0 @@
#pragma once
#include <memory.hpp>
#include <debug.h>
// Functions defines
// Page allocation functions
#define Xalloc_REQUEST_PAGE() KernelAllocator.RequestPage()
#define Xalloc_REQUEST_PAGES(Pages) KernelAllocator.RequestPages(Pages)
#define Xalloc_FREE_PAGE(Address) KernelAllocator.FreePage(Address)
#define Xalloc_FREE_PAGES(Address, Pages) KernelAllocator.FreePages(Address, Pages)
#define Xalloc_MAP_MEMORY(VirtualAddress, PhysicalAddress, Flags) Memory::Virtual(KernelPageTable).Map(VirtualAddress, PhysicalAddress, Flags)
#define Xalloc_UNMAP_MEMORY(VirtualAddress) Memory::Virtual(KernelPageTable).Unmap(VirtualAddress)
#define Xalloc_MAP_MEMORY_READ_WRITE Memory::PTFlag::RW
#define Xalloc_MAP_MEMORY_USER Memory::PTFlag::US
#define Xalloc_PAGE_SIZE PAGE_SIZE
#define Xalloc_trace(m, ...) trace(m, ##__VA_ARGS__)
#define Xalloc_warn(m, ...) warn(m, ##__VA_ARGS__)
#define Xalloc_err(m, ...) error(m, ##__VA_ARGS__)
#define XALLOC_CONCAT(x, y) x##y
typedef long unsigned Xuint64_t;
namespace Xalloc
{
class AllocatorV1
{
private:
struct HeapSegment
{
Xuint64_t Length;
HeapSegment *Next;
HeapSegment *Last;
bool IsFree;
HeapSegment *Split(Xuint64_t SplitLength, HeapSegment *LastSegment)
{
if (SplitLength < 0x10)
return nullptr;
int64_t SplitSegmentLength = Length - SplitLength - (sizeof(HeapSegment));
if (SplitSegmentLength < 0x10)
return nullptr;
HeapSegment *NewSplitHdr = (HeapSegment *)((Xuint64_t)this + SplitLength + sizeof(HeapSegment));
Next->Last = NewSplitHdr;
NewSplitHdr->Next = Next;
Next = NewSplitHdr;
NewSplitHdr->Last = this;
NewSplitHdr->Length = SplitSegmentLength;
NewSplitHdr->IsFree = IsFree;
Length = SplitLength;
if (LastSegment == this)
LastSegment = NewSplitHdr;
return NewSplitHdr;
}
void CombineForward(HeapSegment *LastSegment)
{
if (Next == nullptr)
return;
if (Next->IsFree == false)
return;
if (Next == LastSegment)
LastSegment = this;
if (Next->Next != nullptr)
Next->Next->Last = this;
Length = Length + Next->Length + sizeof(HeapSegment);
Next = Next->Next;
}
void CombineBackward(HeapSegment *LastSegment)
{
if (Last != nullptr && Last->IsFree)
Last->CombineForward(LastSegment);
}
} __attribute__((aligned(16)));
void *HeapStart = nullptr;
void *HeapEnd = nullptr;
HeapSegment *LastSegment = nullptr;
bool UserMapping = false;
bool SMAPUsed = false;
void ExpandHeap(Xuint64_t Length);
// TODO: Change memcpy with an optimized version
static inline void *Xmemcpy(void *__restrict__ Destination, const void *__restrict__ Source, Xuint64_t Length)
{
unsigned char *dst = (unsigned char *)Destination;
const unsigned char *src = (const unsigned char *)Source;
for (Xuint64_t i = 0; i < Length; i++)
dst[i] = src[i];
return Destination;
}
// TODO: Change memset with an optimized version
static inline void *Xmemset(void *__restrict__ Destination, int Data, Xuint64_t Length)
{
unsigned char *Buffer = (unsigned char *)Destination;
for (Xuint64_t i = 0; i < Length; i++)
Buffer[i] = (unsigned char)Data;
return Destination;
}
public:
inline void Xstac()
{
if (this->SMAPUsed)
{
#if defined(__amd64__) || defined(__i386__)
asm volatile("stac" ::
: "cc");
#endif
}
}
inline void Xclac()
{
if (this->SMAPUsed)
{
#if defined(__amd64__) || defined(__i386__)
asm volatile("clac" ::
: "cc");
#endif
}
}
/**
* @brief Construct a new Allocator V1 object
*
* @param Address Virtual address to allocate.
* @param UserMode Map the new pages with USER flag?
* @param SMAPEnabled Does the kernel has Supervisor Mode Access Prevention enabled?
*/
AllocatorV1(void *Address, bool UserMode, bool SMAPEnabled);
/**
* @brief Destroy the Allocator V 1 object
*
*/
~AllocatorV1();
/**
* @brief Allocate a new memory block
*
* @param Size Size of the block to allocate.
* @return void* Pointer to the allocated block.
*/
void *Malloc(Xuint64_t Size);
/**
* @brief Free a previously allocated block
*
* @param Address Address of the block to free.
*/
void Free(void *Address);
/**
* @brief Allocate a new memory block
*
* @param NumberOfBlocks Number of blocks to allocate.
* @param Size Size of the block to allocate.
* @return void* Pointer to the allocated block.
*/
void *Calloc(Xuint64_t NumberOfBlocks, Xuint64_t Size);
/**
* @brief Reallocate a previously allocated block
*
* @param Address Address of the block to reallocate.
* @param Size New size of the block.
* @return void* Pointer to the reallocated block.
*/
void *Realloc(void *Address, Xuint64_t Size);
};
}

View File

@ -0,0 +1,137 @@
# Xalloc
Xalloc is a custom memory allocator designed for hobby operating systems. It is written in C++ and provides a simple and efficient way to manage memory in your hobby OS.
#### ❗ This project is still in development and is not ready for use in production environments. ❗
---
## Features
- **Simple API** - Xalloc provides a simple API for allocating and freeing memory. It is designed to be easy to use and understand.
- [ ] todo complete this
---
## Getting Started
### Implementing missing functions
You will need to implement the following functions in your OS:
##### Wrapper.cpp
```cpp
extern "C" void *Xalloc_REQUEST_PAGES(Xsize_t Pages)
{
// ...
}
extern "C" void Xalloc_FREE_PAGES(void *Address, Xsize_t Pages)
{
// ...
}
extern "C" void Xalloc_MAP_MEMORY(void *VirtualAddress, void *PhysicalAddress, Xsize_t Flags)
{
// ...
}
extern "C" void Xalloc_UNMAP_MEMORY(void *VirtualAddress)
{
// ...
}
```
##### Xalloc.hpp
```cpp
#define Xalloc_PAGE_SIZE <page size> /* <-- Replace with your page size */
#define Xalloc_trace(m, ...) <trace function>
#define Xalloc_warn(m, ...) <warning function>
#define Xalloc_err(m, ...) <error function>
#define Xalloc_def <define a lock> /* eg. std::mutex Xalloc_lock; */
#define Xalloc_lock <lock function>
#define Xalloc_unlock <unlock function>
```
### Typical usage
```cpp
#include "Xalloc.hpp"
Xalloc::V1 *XallocV1Allocator = nullptr;
int main()
{
/* Virtual Base User SMAP */
XallocV1Allocator = new Xalloc::V1((void *)0xFFFFA00000000000, false, false);
void *p = XallocV1Allocator->malloc(1234);
/* ... */
XallocV1Allocator->free(p);
delete XallocV1Allocator;
return 0;
}
```
or
```cpp
#include "Xalloc.hpp"
int main()
{
/* Virtual Base User SMAP */
Xalloc::V1 XallocV1Allocator((void *)0xFFFFA00000000000, false, false);
void *p = XallocV1Allocator.malloc(1234);
/* ... */
XallocV1Allocator.free(p);
return 0;
}
```
---
## API
### Xalloc::V1
```cpp
void *malloc(Xsize_t Size);
```
Allocates a block of memory of size `Size` bytes.
If `Size` is 0, then `nullptr` is returned.
- `Size` - The size of the block to allocate in bytes.
<br><br>
```cpp
void free(void *Address);
```
Frees the memory block pointed to by `Address`.
If `Address` is `nullptr`, then no operation is performed.
- `Address` - The address of the memory block to free.
<br><br>
```cpp
void *calloc(Xsize_t NumberOfBlocks, Xsize_t Size);
```
Allocates a block of memory for an array of `NumberOfBlocks` elements, each of them `Size` bytes long.
If `NumberOfBlocks` or `Size` is 0, then `nullptr` is returned.
- `NumberOfBlocks` - The number of elements to allocate.
- `Size` - The size of each element in bytes.
<br><br>
```cpp
void *realloc(void *Address, Xsize_t Size);
```
Changes the size of the memory block pointed to by `Address` to `Size` bytes.
If `Address` is `nullptr`, then the call is equivalent to `malloc(Size)`.
If `Size` is equal to zero, and `Address` is not `nullptr`, then the call is equivalent to `free(Address)`.
- `Address` - The address of the memory block to resize.
- `Size` - The new size of the memory block in bytes.
---

View File

@ -0,0 +1,23 @@
#include "Xalloc.hpp"
#include <memory.hpp>
extern "C" void *Xalloc_REQUEST_PAGES(Xsize_t Pages)
{
return KernelAllocator.RequestPages(Pages);
}
extern "C" void Xalloc_FREE_PAGES(void *Address, Xsize_t Pages)
{
KernelAllocator.FreePages(Address, Pages);
}
extern "C" void Xalloc_MAP_MEMORY(void *VirtualAddress, void *PhysicalAddress, Xsize_t Flags)
{
Memory::Virtual(KernelPageTable).Map(VirtualAddress, PhysicalAddress, Flags);
}
extern "C" void Xalloc_UNMAP_MEMORY(void *VirtualAddress)
{
Memory::Virtual(KernelPageTable).Unmap(VirtualAddress);
}

View File

@ -0,0 +1,101 @@
#ifndef __FENNIX_KERNEL_Xalloc_H__
#define __FENNIX_KERNEL_Xalloc_H__
#include <memory.hpp>
#include <lock.hpp>
#include <debug.h>
typedef long unsigned Xuint64_t;
typedef long unsigned Xsize_t;
#define Xalloc_PAGE_SIZE PAGE_SIZE
#define Xalloc_trace(m, ...) trace(m, ##__VA_ARGS__)
#define Xalloc_warn(m, ...) warn(m, ##__VA_ARGS__)
#define Xalloc_err(m, ...) error(m, ##__VA_ARGS__)
#define Xalloc_def NewLock(XallocLock)
#define Xalloc_lock XallocLock.Lock(__FUNCTION__)
#define Xalloc_unlock XallocLock.Unlock()
namespace Xalloc
{
class V1
{
private:
void *BaseVirtualAddress = nullptr;
void *FirstBlock = nullptr;
void *LastBlock = nullptr;
bool UserMapping = false;
bool SMAPUsed = false;
public:
/** @brief Execute "stac" instruction if the kernel has SMAP enabled */
void Xstac();
/** @brief Execute "clac" instruction if the kernel has SMAP enabled */
void Xclac();
/**
* @brief Arrange the blocks to optimize the memory usage
* The allocator is not arranged by default
* to avoid performance issues.
* This function will defragment the memory
* and free the unused blocks.
*
* You should call this function when the
* kernel is idle or when is not using
* the allocator.
*/
void Arrange();
/**
* @brief Allocate a new memory block
*
* @param Size Size of the block to allocate.
* @return void* Pointer to the allocated block.
*/
void *malloc(Xsize_t Size);
/**
* @brief Free a previously allocated block
*
* @param Address Address of the block to free.
*/
void free(void *Address);
/**
* @brief Allocate a new memory block
*
* @param NumberOfBlocks Number of blocks to allocate.
* @param Size Size of the block to allocate.
* @return void* Pointer to the allocated block.
*/
void *calloc(Xsize_t NumberOfBlocks, Xsize_t Size);
/**
* @brief Reallocate a previously allocated block
*
* @param Address Address of the block to reallocate.
* @param Size New size of the block.
* @return void* Pointer to the reallocated block.
*/
void *realloc(void *Address, Xsize_t Size);
/**
* @brief Construct a new Allocator object
*
* @param BaseVirtualAddress Virtual address to map the pages.
* @param UserMode Map the new pages with USER flag?
* @param SMAPEnabled Does the kernel has Supervisor Mode Access Prevention enabled?
*/
V1(void *BaseVirtualAddress, bool UserMode, bool SMAPEnabled);
/**
* @brief Destroy the Allocator object
*
*/
~V1();
};
}
#endif // !__FENNIX_KERNEL_Xalloc_H__

View File

@ -0,0 +1,263 @@
#include "Xalloc.hpp"
Xalloc_def;
#define XALLOC_CONCAT(x, y) x##y
#define XStoP(x) (x / Xalloc_PAGE_SIZE + 1)
#define XPtoS(x) (x * Xalloc_PAGE_SIZE)
#define Xalloc_BlockChecksum 0xA110C
extern "C" void *Xalloc_REQUEST_PAGES(Xsize_t Pages);
extern "C" void Xalloc_FREE_PAGES(void *Address, Xsize_t Pages);
extern "C" void Xalloc_MAP_MEMORY(void *VirtualAddress, void *PhysicalAddress, Xsize_t Flags);
extern "C" void Xalloc_UNMAP_MEMORY(void *VirtualAddress);
// TODO: Change memcpy with an optimized version
void *Xmemcpy(void *__restrict__ Destination, const void *__restrict__ Source, Xuint64_t Length)
{
unsigned char *dst = (unsigned char *)Destination;
const unsigned char *src = (const unsigned char *)Source;
for (Xuint64_t i = 0; i < Length; i++)
dst[i] = src[i];
return Destination;
}
// TODO: Change memset with an optimized version
void *Xmemset(void *__restrict__ Destination, int Data, Xuint64_t Length)
{
unsigned char *Buffer = (unsigned char *)Destination;
for (Xuint64_t i = 0; i < Length; i++)
Buffer[i] = (unsigned char)Data;
return Destination;
}
namespace Xalloc
{
class Block
{
public:
void *Address = nullptr;
int Checksum = Xalloc_BlockChecksum;
Xsize_t Size = 0;
Block *Next = nullptr;
Block *Last = nullptr;
bool IsFree = true;
bool Check()
{
if (this->Checksum != Xalloc_BlockChecksum)
return false;
return true;
}
Block(Xsize_t Size)
{
this->Size = Size;
this->Address = Xalloc_REQUEST_PAGES(XStoP(Size));
}
~Block()
{
Xalloc_FREE_PAGES(this->Address, XStoP(this->Size));
}
/**
* @brief Overload new operator to allocate memory from the heap
* @param Size Unused
* @return void* Pointer to the allocated memory
*/
void *operator new(Xsize_t Size)
{
void *ptr = Xalloc_REQUEST_PAGES(XStoP(sizeof(Block)));
return ptr;
}
/**
* @brief Overload delete operator to free memory from the heap
* @param Address Pointer to the memory to free
*/
void operator delete(void *Address)
{
Xalloc_FREE_PAGES(Address, XStoP(sizeof(Block)));
}
} __attribute__((packed, aligned((16))));
class SmartSMAPClass
{
private:
V1 *allocator = nullptr;
public:
SmartSMAPClass(V1 *allocator)
{
this->allocator = allocator;
this->allocator->Xstac();
}
~SmartSMAPClass() { this->allocator->Xclac(); }
};
#define SmartSMAP SmartSMAPClass XALLOC_CONCAT(SmartSMAP##_, __COUNTER__)(this)
void V1::Xstac()
{
if (this->SMAPUsed)
{
#if defined(__amd64__) || defined(__i386__)
asm volatile("stac" ::
: "cc");
#endif
}
}
void V1::Xclac()
{
if (this->SMAPUsed)
{
#if defined(__amd64__) || defined(__i386__)
asm volatile("clac" ::
: "cc");
#endif
}
}
void V1::Arrange()
{
Xalloc_err("Arrange() is not implemented yet!");
}
void *V1::malloc(Xsize_t Size)
{
if (Size == 0)
{
Xalloc_warn("Attempted to allocate 0 bytes!");
return nullptr;
}
SmartSMAP;
Xalloc_lock;
if (this->FirstBlock == nullptr)
{
this->FirstBlock = new Block(Size);
((Block *)this->FirstBlock)->IsFree = false;
((Block *)this->FirstBlock)->Checksum = Xalloc_BlockChecksum;
Xmemset(((Block *)this->FirstBlock)->Address, 0, Size);
Xalloc_unlock;
return ((Block *)this->FirstBlock)->Address;
}
Block *CurrentBlock = ((Block *)this->FirstBlock);
while (CurrentBlock != nullptr)
{
if (CurrentBlock->IsFree && CurrentBlock->Size >= Size)
{
CurrentBlock->IsFree = false;
CurrentBlock->Checksum = Xalloc_BlockChecksum;
Xmemset(CurrentBlock->Address, 0, Size);
Xalloc_unlock;
return CurrentBlock->Address;
}
CurrentBlock = CurrentBlock->Next;
}
CurrentBlock = ((Block *)this->FirstBlock);
while (CurrentBlock->Next != nullptr)
CurrentBlock = CurrentBlock->Next;
CurrentBlock->Next = new Block(Size);
((Block *)CurrentBlock->Next)->Last = CurrentBlock;
((Block *)CurrentBlock->Next)->IsFree = false;
((Block *)CurrentBlock->Next)->Checksum = Xalloc_BlockChecksum;
Xmemset(((Block *)CurrentBlock->Next)->Address, 0, Size);
Xalloc_unlock;
return ((Block *)CurrentBlock->Next)->Address;
}
void V1::free(void *Address)
{
if (Address == nullptr)
{
Xalloc_warn("Attempted to free a null pointer!");
return;
}
SmartSMAP;
Xalloc_lock;
Block *CurrentBlock = ((Block *)this->FirstBlock);
while (CurrentBlock != nullptr)
{
if (CurrentBlock->Address == Address)
{
if (CurrentBlock->IsFree)
{
Xalloc_warn("Attempted to free an already freed pointer!");
Xalloc_unlock;
return;
}
CurrentBlock->IsFree = true;
CurrentBlock->Checksum = Xalloc_BlockChecksum;
Xalloc_unlock;
return;
}
CurrentBlock = CurrentBlock->Next;
}
Xalloc_err("Invalid address.");
Xalloc_unlock;
}
void *V1::calloc(Xsize_t NumberOfBlocks, Xsize_t Size)
{
if (NumberOfBlocks == 0 || Size == 0)
{
Xalloc_warn("The %s%s%s is 0!",
NumberOfBlocks == 0 ? "NumberOfBlocks" : "",
NumberOfBlocks == 0 && Size == 0 ? " and " : "",
Size == 0 ? "Size" : "");
return nullptr;
}
return this->malloc(NumberOfBlocks * Size);
}
void *V1::realloc(void *Address, Xsize_t Size)
{
if (Address == nullptr)
return this->malloc(Size);
if (Size == 0)
{
this->free(Address);
return nullptr;
}
// SmartSMAP;
// Xalloc_lock;
// ...
// Xalloc_unlock;
// TODO: Implement realloc
this->free(Address);
return this->malloc(Size);
}
V1::V1(void *BaseVirtualAddress, bool UserMode, bool SMAPEnabled)
{
SmartSMAP;
Xalloc_lock;
this->SMAPUsed = SMAPEnabled;
this->UserMapping = UserMode;
this->BaseVirtualAddress = BaseVirtualAddress;
Xalloc_unlock;
}
V1::~V1()
{
SmartSMAP;
Xalloc_lock;
Xalloc_trace("Destructor not implemented yet.");
Xalloc_unlock;
}
}

View File

@ -4,7 +4,7 @@
#include <lock.hpp> #include <lock.hpp>
#include <debug.h> #include <debug.h>
#include "HeapAllocators/Xalloc.hpp" #include "HeapAllocators/Xalloc/Xalloc.hpp"
#include "../Library/liballoc_1_1.h" #include "../Library/liballoc_1_1.h"
#include "../../kernel.h" #include "../../kernel.h"
@ -32,7 +32,7 @@ PageTable4 *UserspaceKernelOnlyPageTable = nullptr;
void *KPT = nullptr; void *KPT = nullptr;
static MemoryAllocatorType AllocatorType = MemoryAllocatorType::None; static MemoryAllocatorType AllocatorType = MemoryAllocatorType::None;
Xalloc::AllocatorV1 *XallocV1Allocator = nullptr; Xalloc::V1 *XallocV1Allocator = nullptr;
#ifdef DEBUG #ifdef DEBUG
__no_instrument_function void tracepagetable(PageTable4 *pt) __no_instrument_function void tracepagetable(PageTable4 *pt)
@ -241,7 +241,7 @@ __no_instrument_function void InitializeMemoryManagement(BootInfo *Info)
debug("Page table updated."); debug("Page table updated.");
if (strstr(Info->Kernel.CommandLine, "xallocv1")) if (strstr(Info->Kernel.CommandLine, "xallocv1"))
{ {
XallocV1Allocator = new Xalloc::AllocatorV1((void *)KERNEL_HEAP_BASE, false, false); XallocV1Allocator = new Xalloc::V1((void *)KERNEL_HEAP_BASE, false, false);
AllocatorType = MemoryAllocatorType::XallocV1; AllocatorType = MemoryAllocatorType::XallocV1;
trace("XallocV1 Allocator initialized (%p)", XallocV1Allocator); trace("XallocV1 Allocator initialized (%p)", XallocV1Allocator);
} }
@ -262,11 +262,7 @@ void *HeapMalloc(size_t Size)
case unlikely(MemoryAllocatorType::Pages): case unlikely(MemoryAllocatorType::Pages):
return KernelAllocator.RequestPages(TO_PAGES(Size)); return KernelAllocator.RequestPages(TO_PAGES(Size));
case MemoryAllocatorType::XallocV1: case MemoryAllocatorType::XallocV1:
{ return XallocV1Allocator->malloc(Size);
void *ret = XallocV1Allocator->Malloc(Size);
memset(ret, 0, Size);
return ret;
}
case MemoryAllocatorType::liballoc11: case MemoryAllocatorType::liballoc11:
{ {
void *ret = PREFIX(malloc)(Size); void *ret = PREFIX(malloc)(Size);
@ -289,11 +285,7 @@ void *HeapCalloc(size_t n, size_t Size)
case unlikely(MemoryAllocatorType::Pages): case unlikely(MemoryAllocatorType::Pages):
return KernelAllocator.RequestPages(TO_PAGES(n * Size)); return KernelAllocator.RequestPages(TO_PAGES(n * Size));
case MemoryAllocatorType::XallocV1: case MemoryAllocatorType::XallocV1:
{ return XallocV1Allocator->calloc(n, Size);
void *ret = XallocV1Allocator->Calloc(n, Size);
memset(ret, 0, n * Size);
return ret;
}
case MemoryAllocatorType::liballoc11: case MemoryAllocatorType::liballoc11:
{ {
void *ret = PREFIX(calloc)(n, Size); void *ret = PREFIX(calloc)(n, Size);
@ -311,22 +303,12 @@ void *HeapRealloc(void *Address, size_t Size)
SmartLockClass lock___COUNTER__(AllocatorLock, (KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown")); SmartLockClass lock___COUNTER__(AllocatorLock, (KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown"));
#endif #endif
memdbg("realloc(%#lx, %d)->[%s]", Address, Size, KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown"); memdbg("realloc(%#lx, %d)->[%s]", Address, Size, KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown");
if (unlikely(!Address))
{
error("Attempt to realloc a null pointer");
return nullptr;
}
switch (AllocatorType) switch (AllocatorType)
{ {
case unlikely(MemoryAllocatorType::Pages): case unlikely(MemoryAllocatorType::Pages):
return KernelAllocator.RequestPages(TO_PAGES(Size)); // WARNING: Potential memory leak return KernelAllocator.RequestPages(TO_PAGES(Size)); // WARNING: Potential memory leak
case MemoryAllocatorType::XallocV1: case MemoryAllocatorType::XallocV1:
{ return XallocV1Allocator->realloc(Address, Size);
void *ret = XallocV1Allocator->Realloc(Address, Size);
memset(ret, 0, Size);
return ret;
}
case MemoryAllocatorType::liballoc11: case MemoryAllocatorType::liballoc11:
{ {
void *ret = PREFIX(realloc)(Address, Size); void *ret = PREFIX(realloc)(Address, Size);
@ -344,20 +326,13 @@ void HeapFree(void *Address)
SmartLockClass lock___COUNTER__(AllocatorLock, (KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown")); SmartLockClass lock___COUNTER__(AllocatorLock, (KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown"));
#endif #endif
memdbg("free(%#lx)->[%s]", Address, KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown"); memdbg("free(%#lx)->[%s]", Address, KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown");
if (unlikely(!Address))
{
warn("Attempt to free a null pointer");
return;
}
switch (AllocatorType) switch (AllocatorType)
{ {
case unlikely(MemoryAllocatorType::Pages): case unlikely(MemoryAllocatorType::Pages):
KernelAllocator.FreePage(Address); // WARNING: Potential memory leak KernelAllocator.FreePage(Address); // WARNING: Potential memory leak
break; break;
case MemoryAllocatorType::XallocV1: case MemoryAllocatorType::XallocV1:
if (XallocV1Allocator) XallocV1Allocator->free(Address);
XallocV1Allocator->Free(Address);
break; break;
case MemoryAllocatorType::liballoc11: case MemoryAllocatorType::liballoc11:
PREFIX(free) PREFIX(free)

View File

@ -32,6 +32,7 @@ void TreeFS(Node *node, int Depth)
{ {
printf("%*c %s\eFFFFFF\n", Depth, ' ', Chld->Name); printf("%*c %s\eFFFFFF\n", Depth, ' ', Chld->Name);
Display->SetBuffer(0); Display->SetBuffer(0);
TaskManager->Sleep(100);
TreeFS(Chld, Depth + 1); TreeFS(Chld, Depth + 1);
} }
} }
@ -137,6 +138,8 @@ void KernelMainThread()
/* TODO: This should not be enabled because it may cause a deadlock. Not sure where or how. */ /* TODO: This should not be enabled because it may cause a deadlock. Not sure where or how. */
// Tasking::PCB *tskMgr = TaskManager->CreateProcess(TaskManager->GetCurrentProcess(), "Debug Task Manager", Tasking::TaskTrustLevel::Kernel); // Tasking::PCB *tskMgr = TaskManager->CreateProcess(TaskManager->GetCurrentProcess(), "Debug Task Manager", Tasking::TaskTrustLevel::Kernel);
// TaskManager->CreateThread(tskMgr, (Tasking::IP)TaskMgr)->SetPriority(Tasking::High); // TaskManager->CreateThread(tskMgr, (Tasking::IP)TaskMgr)->SetPriority(Tasking::High);
TreeFS(vfs->GetRootNode(), 0);
#endif #endif
KPrint("Kernel Compiled at: %s %s with C++ Standard: %d", __DATE__, __TIME__, CPP_LANGUAGE_STANDARD); KPrint("Kernel Compiled at: %s %s with C++ Standard: %d", __DATE__, __TIME__, CPP_LANGUAGE_STANDARD);
@ -163,10 +166,6 @@ void KernelMainThread()
KPrint("Starting Network Interface Manager..."); KPrint("Starting Network Interface Manager...");
NIManager->StartService(); NIManager->StartService();
#ifdef DEBUG
TreeFS(vfs->GetRootNode(), 0);
#endif
Time::Clock tm = Time::ReadClock(); Time::Clock tm = Time::ReadClock();
printf("\eCCCCCC[\e00AEFF%02d:%02d:%02d\eCCCCCC] ", tm.Hour, tm.Minute, tm.Second); printf("\eCCCCCC[\e00AEFF%02d:%02d:%02d\eCCCCCC] ", tm.Hour, tm.Minute, tm.Second);
const char *USpace_msg = "Setting up userspace"; const char *USpace_msg = "Setting up userspace";

View File

@ -340,6 +340,7 @@ EXTERNC __no_stack_protector __no_instrument_function void Entry(BootInfo *Info)
#ifdef DEBUG #ifdef DEBUG
// Running tests // Running tests
TestString(); TestString();
TestMemoryAllocation();
#endif #endif
EnableProfiler = true; EnableProfiler = true;

224
Tests/MemoryAllocation.cpp Normal file
View File

@ -0,0 +1,224 @@
#ifdef DEBUG
#include <string.hpp>
#include <memory.hpp>
#include <debug.h>
/* Originally from: https://github.com/EnderIce2/FennixProject/blob/main/kernel/test.cpp */
#define MEMTEST_ITERATIONS 1024
class test_mem_new_delete
{
public:
test_mem_new_delete();
~test_mem_new_delete();
};
test_mem_new_delete::test_mem_new_delete()
{
for (char i = 0; i < 2; i++)
;
}
test_mem_new_delete::~test_mem_new_delete()
{
for (char i = 0; i < 2; i++)
;
}
void TestMemoryAllocation()
{
void *tmpAlloc1 = kmalloc(176);
void *tmpAlloc2 = kmalloc(511);
void *tmpAlloc3 = kmalloc(1027);
void *tmpAlloc4 = kmalloc(1569);
for (int repeat = 0; repeat < 4; repeat++)
{
debug("---------------[TEST %d]---------------\n", repeat);
debug("Single Page Request Test");
{
uint64_t prq1 = (uint64_t)KernelAllocator.RequestPage();
KernelAllocator.FreePage((void *)prq1);
for (uint64_t i = 0; i < MEMTEST_ITERATIONS; i++)
KernelAllocator.FreePage(KernelAllocator.RequestPage());
uint64_t prq2 = (uint64_t)KernelAllocator.RequestPage();
KernelAllocator.FreePage((void *)prq2);
debug(" Result:\t\t1-[%#lx]; 2-[%#lx]", (void *)prq1, (void *)prq2);
assert(prq1 == prq2);
}
debug("Multiple Page Request Test");
{
uint64_t prq1 = (uint64_t)KernelAllocator.RequestPages(10);
KernelAllocator.FreePages((void *)prq1, 10);
for (uint64_t i = 0; i < MEMTEST_ITERATIONS; i++)
KernelAllocator.FreePages(KernelAllocator.RequestPages(20), 20);
uint64_t prq2 = (uint64_t)KernelAllocator.RequestPages(10);
KernelAllocator.FreePages((void *)prq2, 10);
debug(" Result:\t\t1-[%#lx]; 2-[%#lx]", (void *)prq1, (void *)prq2);
assert(prq1 == prq2);
}
debug("Multiple Fixed Malloc Test");
{
uint64_t prq1 = (uint64_t)kmalloc(0x1000);
kfree((void *)prq1);
for (uint64_t i = 0; i < MEMTEST_ITERATIONS; i++)
kfree(kmalloc(0x10000));
uint64_t prq2 = (uint64_t)kmalloc(0x1000);
kfree((void *)prq2);
debug(" Result:\t\t1-[%#lx]; 2-[%#lx]", (void *)prq1, (void *)prq2);
assert(prq1 == prq2);
}
debug("Multiple Dynamic Malloc Test");
{
uint64_t prq1 = (uint64_t)kmalloc(0x1000);
kfree((void *)prq1);
for (uint64_t i = 0; i < MEMTEST_ITERATIONS; i++)
kfree(kmalloc(i));
uint64_t prq2 = (uint64_t)kmalloc(0x1000);
kfree((void *)prq2);
debug(" Result:\t1-[%#lx]; 2-[%#lx]", (void *)prq1, (void *)prq2);
assert(prq1 == prq2);
}
debug("New/Delete Test");
{
uint64_t prq1 = (uint64_t)kmalloc(0x1000);
kfree((void *)prq1);
for (uint64_t i = 0; i < MEMTEST_ITERATIONS; i++)
{
test_mem_new_delete *t = new test_mem_new_delete();
delete t;
}
uint64_t prq2 = (uint64_t)kmalloc(0x1000);
kfree((void *)prq2);
debug(" Result: \t1-[%#lx]; 2-[%#lx]", (void *)prq1, (void *)prq2);
assert(prq1 == prq2);
}
debug("New/Delete Fixed Array Test");
{
uint64_t prq1 = (uint64_t)kmalloc(0x1000);
kfree((void *)prq1);
for (uint64_t i = 0; i < MEMTEST_ITERATIONS; i++)
{
char *t = new char[128];
delete[] t;
}
uint64_t prq2 = (uint64_t)kmalloc(0x1000);
kfree((void *)prq2);
debug(" Result: \t1-[%#lx]; 2-[%#lx]", (void *)prq1, (void *)prq2);
assert(prq1 == prq2);
}
debug("New/Delete Dynamic Array Test");
{
uint64_t prq1 = (uint64_t)kmalloc(0x1000);
kfree((void *)prq1);
for (uint64_t i = 0; i < MEMTEST_ITERATIONS; i++)
{
if (i == 0)
continue;
char *t = new char[i];
delete[] t;
}
uint64_t prq2 = (uint64_t)kmalloc(0x1000);
kfree((void *)prq2);
debug(" Result:\t1-[%#lx]; 2-[%#lx]\n", (void *)prq1, (void *)prq2);
assert(prq1 == prq2);
}
debug("calloc Test");
{
uint64_t prq1 = (uint64_t)kmalloc(0x1000);
kfree((void *)prq1);
for (uint64_t i = 0; i < MEMTEST_ITERATIONS; i++)
{
char *t = (char *)kcalloc(128, 1);
kfree(t);
}
uint64_t prq2 = (uint64_t)kmalloc(0x1000);
kfree((void *)prq2);
debug(" Result:\t1-[%#lx]; 2-[%#lx]", (void *)prq1, (void *)prq2);
assert(prq1 == prq2);
}
debug("realloc Test");
{
uint64_t prq1 = (uint64_t)kmalloc(0x1000);
kfree((void *)prq1);
for (uint64_t i = 0; i < MEMTEST_ITERATIONS; i++)
{
char *t = (char *)kmalloc(128);
t = (char *)krealloc(t, 256);
kfree(t);
}
uint64_t prq2 = (uint64_t)kmalloc(0x1000);
kfree((void *)prq2);
debug(" Result:\t1-[%#lx]; 2-[%#lx]", (void *)prq1, (void *)prq2);
assert(prq1 == prq2);
}
}
kfree(tmpAlloc1);
kfree(tmpAlloc2);
kfree(tmpAlloc3);
kfree(tmpAlloc4);
debug("Memory Stress Test");
for (size_t i = 0; i < 0x1000; i++)
kfree(kmalloc(i));
debug("Invalid Usage Test");
kfree(tmpAlloc1);
kfree(tmpAlloc2);
kfree(tmpAlloc3);
kfree(tmpAlloc4);
void *InvMlc = kmalloc(0);
assert(InvMlc == nullptr);
krealloc(InvMlc, 0);
assert(InvMlc == nullptr);
kcalloc(0, 0);
assert(InvMlc == nullptr);
kcalloc(1, 0);
assert(InvMlc == nullptr);
kcalloc(0, 1);
assert(InvMlc == nullptr);
kfree(InvMlc);
debug("Memory Test Complete\n");
}
#endif // DEBUG

View File

@ -5,6 +5,7 @@
#include <types.h> #include <types.h>
void TestString(); void TestString();
void TestMemoryAllocation();
#endif // DEBUG #endif // DEBUG
#endif // !__FENNIX_KERNEL_non_constructor_tests_H__ #endif // !__FENNIX_KERNEL_non_constructor_tests_H__