import pandas as pd import matplotlib.pyplot as plt import numpy as np data = pd.read_csv("sensors_log.csv") data['timestamp'] = pd.to_datetime(data['timestamp']) data.set_index('timestamp', inplace=True) plt.style.use('dark_background') columns_to_plot = { 'CPU (°C)': 1, 'Vcore (V)': 0.01, 'VSOC (V)': 0.01, 'VDDP (mV)': 5, 'DRAM (V)': 0.01, } for column, threshold in columns_to_plot.items(): plt.figure(figsize=(12, 6)) plt.plot(data.index, data[column], label=column, color='cyan', linewidth=2) last_labeled_value = None for x, y in zip(data.index, data[column]): if last_labeled_value is None or abs(y - last_labeled_value) > threshold: plt.text(x, y, f"{y:.2f}", fontsize=9, ha='center', va='bottom', color='white') last_labeled_value = y plt.xlabel("Timestamp", fontsize=12, color='white') plt.ylabel("Value", fontsize=12, color='white') plt.title(f"{column} Over Time", fontsize=14, color='white') plt.legend(loc='upper left') plt.grid(visible=True, color='gray', linestyle='--', alpha=0.7) plt.tight_layout() plt.savefig(f"{column}_graph_no_points_dark.png", dpi=300) plt.show()