Fennix/Kernel/Core/Memory/Memory.cpp

680 lines
23 KiB
C++

#include <memory.hpp>
#include <convert.h>
#include <lock.hpp>
#include <debug.h>
#ifdef DEBUG
#include <uart.hpp>
#endif
#include "HeapAllocators/Xalloc/Xalloc.hpp"
#include "../Library/liballoc_1_1.h"
#include "../../kernel.h"
// #define DEBUG_ALLOCATIONS_SL 1
// #define DEBUG_ALLOCATIONS 1
#ifdef DEBUG_ALLOCATIONS
#define memdbg(m, ...) \
debug(m, ##__VA_ARGS__); \
__sync
#else
#define memdbg(m, ...)
#endif
using namespace Memory;
#ifdef DEBUG_ALLOCATIONS_SL
NewLock(AllocatorLock);
NewLock(OperatorAllocatorLock);
#endif
Physical KernelAllocator;
PageTable4 *KernelPageTable = nullptr;
PageTable4 *UserspaceKernelOnlyPageTable = nullptr;
void *KPT = nullptr;
static MemoryAllocatorType AllocatorType = MemoryAllocatorType::None;
Xalloc::V1 *XallocV1Allocator = nullptr;
#ifdef DEBUG
NIF void tracepagetable(PageTable4 *pt)
{
for (int i = 0; i < 512; i++)
{
#if defined(a64)
if (pt->Entries[i].Present)
debug("Entry %03d: %x %x %x %x %x %x %x %p-%#llx", i,
pt->Entries[i].Present, pt->Entries[i].ReadWrite,
pt->Entries[i].UserSupervisor, pt->Entries[i].WriteThrough,
pt->Entries[i].CacheDisable, pt->Entries[i].Accessed,
pt->Entries[i].ExecuteDisable, pt->Entries[i].Address << 12,
pt->Entries[i]);
#elif defined(a32)
#elif defined(aa64)
#endif
}
}
#endif
NIF void MapFromZero(PageTable4 *PT, BootInfo *Info)
{
static int once = 0;
if (!once++)
{
Virtual va = Virtual(PT);
void *NullAddress = KernelAllocator.RequestPage();
memset(NullAddress, 0, PAGE_SIZE); // TODO: If the CPU instruction pointer hits this page, there should be function to handle it. (memcpy assembly code?)
va.Map((void *)0, (void *)NullAddress, PTFlag::RW | PTFlag::US);
uintptr_t VirtualOffsetNormalVMA = NORMAL_VMA_OFFSET;
size_t MemSize = Info->Memory.Size;
for (size_t t = 0; t < MemSize; t += PAGE_SIZE)
{
va.Map((void *)t, (void *)t, PTFlag::RW /* | PTFlag::US */);
// va.Map((void *)VirtualOffsetNormalVMA, (void *)t, PTFlag::RW /* | PTFlag::US */);
// VirtualOffsetNormalVMA += PAGE_SIZE;
}
}
else
{
error("MapFromZero() called more than once!");
CPU::Stop();
}
}
NIF void MapFramebuffer(PageTable4 *PT, BootInfo *Info)
{
Virtual va = Virtual(PT);
int itrfb = 0;
while (1)
{
if (!Info->Framebuffer[itrfb].BaseAddress)
break;
for (uintptr_t fb_base = (uintptr_t)Info->Framebuffer[itrfb].BaseAddress;
fb_base < ((uintptr_t)Info->Framebuffer[itrfb].BaseAddress + ((Info->Framebuffer[itrfb].Pitch * Info->Framebuffer[itrfb].Height) + PAGE_SIZE));
fb_base += PAGE_SIZE)
va.Map((void *)fb_base, (void *)fb_base, PTFlag::RW | PTFlag::US | PTFlag::G);
itrfb++;
}
}
NIF void MapKernel(PageTable4 *PT, BootInfo *Info)
{
/* KernelStart KernelTextEnd KernelRoDataEnd KernelEnd
Kernel Start & Text Start ------ Text End ------ Kernel Rodata End ------ Kernel Data End & Kernel End
*/
Virtual va = Virtual(PT);
uintptr_t KernelStart = (uintptr_t)&_kernel_start;
uintptr_t KernelTextEnd = (uintptr_t)&_kernel_text_end;
uintptr_t KernelDataEnd = (uintptr_t)&_kernel_data_end;
uintptr_t KernelRoDataEnd = (uintptr_t)&_kernel_rodata_end;
uintptr_t KernelEnd = (uintptr_t)&_kernel_end;
uintptr_t BaseKernelMapAddress = (uintptr_t)Info->Kernel.PhysicalBase;
uintptr_t k;
for (k = KernelStart; k < KernelTextEnd; k += PAGE_SIZE)
{
va.Map((void *)k, (void *)BaseKernelMapAddress, PTFlag::RW);
KernelAllocator.LockPage((void *)BaseKernelMapAddress);
BaseKernelMapAddress += PAGE_SIZE;
}
for (k = KernelTextEnd; k < KernelDataEnd; k += PAGE_SIZE)
{
va.Map((void *)k, (void *)BaseKernelMapAddress, PTFlag::RW | PTFlag::G);
KernelAllocator.LockPage((void *)BaseKernelMapAddress);
BaseKernelMapAddress += PAGE_SIZE;
}
for (k = KernelDataEnd; k < KernelRoDataEnd; k += PAGE_SIZE)
{
va.Map((void *)k, (void *)BaseKernelMapAddress, PTFlag::P | PTFlag::G);
KernelAllocator.LockPage((void *)BaseKernelMapAddress);
BaseKernelMapAddress += PAGE_SIZE;
}
for (k = KernelRoDataEnd; k < KernelEnd; k += PAGE_SIZE)
{
va.Map((void *)k, (void *)BaseKernelMapAddress, PTFlag::RW | PTFlag::G);
KernelAllocator.LockPage((void *)BaseKernelMapAddress);
BaseKernelMapAddress += PAGE_SIZE;
}
debug("\nStart: %#llx - Text End: %#llx - RoEnd: %#llx - End: %#llx\nStart Physical: %#llx - End Physical: %#llx",
KernelStart, KernelTextEnd, KernelRoDataEnd, KernelEnd, Info->Kernel.PhysicalBase, BaseKernelMapAddress - PAGE_SIZE);
}
NIF void InitializeMemoryManagement(BootInfo *Info)
{
#ifdef DEBUG
for (uint64_t i = 0; i < Info->Memory.Entries; i++)
{
uintptr_t Base = reinterpret_cast<uintptr_t>(Info->Memory.Entry[i].BaseAddress);
uintptr_t Length = Info->Memory.Entry[i].Length;
uintptr_t End = Base + Length;
const char *Type = "Unknown";
switch (Info->Memory.Entry[i].Type)
{
case likely(Usable):
Type = "Usable";
break;
case Reserved:
Type = "Reserved";
break;
case ACPIReclaimable:
Type = "ACPI Reclaimable";
break;
case ACPINVS:
Type = "ACPI NVS";
break;
case BadMemory:
Type = "Bad Memory";
break;
case BootloaderReclaimable:
Type = "Bootloader Reclaimable";
break;
case KernelAndModules:
Type = "Kernel and Modules";
break;
case Framebuffer:
Type = "Framebuffer";
break;
default:
break;
}
debug("%lld: %#016llx-%#016llx %s",
i,
Base,
End,
Type);
}
#endif
trace("Initializing Physical Memory Manager");
// KernelAllocator = Physical(); <- Already called in the constructor
KernelAllocator.Init(Info);
debug("Memory Info: %lldMB / %lldMB (%lldMB reserved)",
TO_MB(KernelAllocator.GetUsedMemory()),
TO_MB(KernelAllocator.GetTotalMemory()),
TO_MB(KernelAllocator.GetReservedMemory()));
AllocatorType = MemoryAllocatorType::Pages;
trace("Initializing Virtual Memory Manager");
KernelPageTable = (PageTable4 *)KernelAllocator.RequestPages(TO_PAGES(PAGE_SIZE));
memset(KernelPageTable, 0, PAGE_SIZE);
UserspaceKernelOnlyPageTable = (PageTable4 *)KernelAllocator.RequestPages(TO_PAGES(PAGE_SIZE));
memset(UserspaceKernelOnlyPageTable, 0, PAGE_SIZE);
debug("Mapping from 0x0 to %#llx", Info->Memory.Size);
MapFromZero(KernelPageTable, Info);
debug("Mapping from 0x0 %#llx for Userspace Page Table", Info->Memory.Size);
UserspaceKernelOnlyPageTable[0] = KernelPageTable[0];
/* Mapping Framebuffer address */
debug("Mapping Framebuffer");
MapFramebuffer(KernelPageTable, Info);
debug("Mapping Framebuffer for Userspace Page Table");
MapFramebuffer(UserspaceKernelOnlyPageTable, Info);
/* Kernel mapping */
debug("Mapping Kernel");
MapKernel(KernelPageTable, Info);
debug("Mapping Kernel for Userspace Page Table");
MapKernel(UserspaceKernelOnlyPageTable, Info);
trace("Applying new page table from address %p", KernelPageTable);
#ifdef DEBUG
debug("Kernel:");
tracepagetable(KernelPageTable);
debug("Userspace:");
tracepagetable(UserspaceKernelOnlyPageTable);
#endif
KPT = KernelPageTable;
#if defined(a64) || defined(a32)
asmv("mov %0, %%cr3" ::"r"(KPT));
#elif defined(aa64)
asmv("msr ttbr0_el1, %0" ::"r"(KPT));
#endif
debug("Page table updated.");
if (strstr(Info->Kernel.CommandLine, "xallocv1"))
{
XallocV1Allocator = new Xalloc::V1((void *)KERNEL_HEAP_BASE, false, false);
AllocatorType = MemoryAllocatorType::XallocV1;
trace("XallocV1 Allocator initialized (%p)", XallocV1Allocator);
}
else if (strstr(Info->Kernel.CommandLine, "liballoc11"))
{
AllocatorType = MemoryAllocatorType::liballoc11;
}
}
void *HeapMalloc(size_t Size)
{
#ifdef DEBUG_ALLOCATIONS_SL
SmartLockClass lock___COUNTER__(AllocatorLock, (KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown"));
#endif
memdbg("malloc(%d)->[%s]", Size, KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown");
void *ret = nullptr;
switch (AllocatorType)
{
case MemoryAllocatorType::Pages:
{
ret = KernelAllocator.RequestPages(TO_PAGES(Size));
memset(ret, 0, Size);
break;
}
case MemoryAllocatorType::XallocV1:
{
ret = XallocV1Allocator->malloc(Size);
break;
}
case MemoryAllocatorType::liballoc11:
{
ret = PREFIX(malloc)(Size);
memset(ret, 0, Size);
break;
}
default:
throw;
}
#ifdef DEBUG
if (EnableExternalMemoryTracer)
{
char LockTmpStr[64];
strcpy_unsafe(LockTmpStr, __FUNCTION__);
strcat_unsafe(LockTmpStr, "_memTrk");
mExtTrkLock.TimeoutLock(LockTmpStr, 10000);
sprintf(mExtTrkLog, "malloc( %ld )=%p~%p\n\r",
Size,
ret, __builtin_return_address(0));
UniversalAsynchronousReceiverTransmitter::UART mTrkUART = UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM3);
for (short i = 0; i < MEM_TRK_MAX_SIZE; i++)
{
if (mExtTrkLog[i] == '\r')
break;
mTrkUART.Write(mExtTrkLog[i]);
}
mExtTrkLock.Unlock();
}
#endif
return ret;
}
void *HeapCalloc(size_t n, size_t Size)
{
#ifdef DEBUG_ALLOCATIONS_SL
SmartLockClass lock___COUNTER__(AllocatorLock, (KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown"));
#endif
memdbg("calloc(%d, %d)->[%s]", n, Size, KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown");
void *ret = nullptr;
switch (AllocatorType)
{
case MemoryAllocatorType::Pages:
{
ret = KernelAllocator.RequestPages(TO_PAGES(n * Size));
memset(ret, 0, n * Size);
break;
}
case MemoryAllocatorType::XallocV1:
{
ret = XallocV1Allocator->calloc(n, Size);
break;
}
case MemoryAllocatorType::liballoc11:
{
void *ret = PREFIX(calloc)(n, Size);
memset(ret, 0, Size);
return ret;
}
default:
throw;
}
#ifdef DEBUG
if (EnableExternalMemoryTracer)
{
char LockTmpStr[64];
strcpy_unsafe(LockTmpStr, __FUNCTION__);
strcat_unsafe(LockTmpStr, "_memTrk");
mExtTrkLock.TimeoutLock(LockTmpStr, 10000);
sprintf(mExtTrkLog, "calloc( %ld %ld )=%p~%p\n\r",
n, Size,
ret, __builtin_return_address(0));
UniversalAsynchronousReceiverTransmitter::UART mTrkUART = UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM3);
for (short i = 0; i < MEM_TRK_MAX_SIZE; i++)
{
if (mExtTrkLog[i] == '\r')
break;
mTrkUART.Write(mExtTrkLog[i]);
}
mExtTrkLock.Unlock();
}
#endif
return ret;
}
void *HeapRealloc(void *Address, size_t Size)
{
#ifdef DEBUG_ALLOCATIONS_SL
SmartLockClass lock___COUNTER__(AllocatorLock, (KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown"));
#endif
memdbg("realloc(%#lx, %d)->[%s]", Address, Size, KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown");
void *ret = nullptr;
switch (AllocatorType)
{
case unlikely(MemoryAllocatorType::Pages):
{
ret = KernelAllocator.RequestPages(TO_PAGES(Size)); // WARNING: Potential memory leak
memset(ret, 0, Size);
break;
}
case MemoryAllocatorType::XallocV1:
{
ret = XallocV1Allocator->realloc(Address, Size);
break;
}
case MemoryAllocatorType::liballoc11:
{
void *ret = PREFIX(realloc)(Address, Size);
memset(ret, 0, Size);
return ret;
}
default:
throw;
}
#ifdef DEBUG
if (EnableExternalMemoryTracer)
{
char LockTmpStr[64];
strcpy_unsafe(LockTmpStr, __FUNCTION__);
strcat_unsafe(LockTmpStr, "_memTrk");
mExtTrkLock.TimeoutLock(LockTmpStr, 10000);
sprintf(mExtTrkLog, "realloc( %p %ld )=%p~%p\n\r",
Address, Size,
ret, __builtin_return_address(0));
UniversalAsynchronousReceiverTransmitter::UART mTrkUART = UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM3);
for (short i = 0; i < MEM_TRK_MAX_SIZE; i++)
{
if (mExtTrkLog[i] == '\r')
break;
mTrkUART.Write(mExtTrkLog[i]);
}
mExtTrkLock.Unlock();
}
#endif
return ret;
}
void HeapFree(void *Address)
{
#ifdef DEBUG_ALLOCATIONS_SL
SmartLockClass lock___COUNTER__(AllocatorLock, (KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown"));
#endif
memdbg("free(%#lx)->[%s]", Address, KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown");
switch (AllocatorType)
{
case unlikely(MemoryAllocatorType::Pages):
{
KernelAllocator.FreePage(Address); // WARNING: Potential memory leak
break;
}
case MemoryAllocatorType::XallocV1:
{
XallocV1Allocator->free(Address);
break;
}
case MemoryAllocatorType::liballoc11:
{
PREFIX(free)
(Address);
break;
}
default:
throw;
}
#ifdef DEBUG
if (EnableExternalMemoryTracer)
{
char LockTmpStr[64];
strcpy_unsafe(LockTmpStr, __FUNCTION__);
strcat_unsafe(LockTmpStr, "_memTrk");
mExtTrkLock.TimeoutLock(LockTmpStr, 10000);
sprintf(mExtTrkLog, "free( %p )~%p\n\r",
Address,
__builtin_return_address(0));
UniversalAsynchronousReceiverTransmitter::UART mTrkUART = UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM3);
for (short i = 0; i < MEM_TRK_MAX_SIZE; i++)
{
if (mExtTrkLog[i] == '\r')
break;
mTrkUART.Write(mExtTrkLog[i]);
}
mExtTrkLock.Unlock();
}
#endif
}
void *operator new(size_t Size)
{
#ifdef DEBUG_ALLOCATIONS_SL
SmartLockClass lock___COUNTER__(OperatorAllocatorLock, (KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown"));
#endif
memdbg("new(%d)->[%s]", Size, KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown");
void *ret = HeapMalloc(Size);
#ifdef DEBUG
if (EnableExternalMemoryTracer)
{
char LockTmpStr[64];
strcpy_unsafe(LockTmpStr, __FUNCTION__);
strcat_unsafe(LockTmpStr, "_memTrk");
mExtTrkLock.TimeoutLock(LockTmpStr, 10000);
sprintf(mExtTrkLog, "new( %ld )=%p~%p\n\r",
Size,
ret, __builtin_return_address(0));
UniversalAsynchronousReceiverTransmitter::UART mTrkUART = UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM3);
for (short i = 0; i < MEM_TRK_MAX_SIZE; i++)
{
if (mExtTrkLog[i] == '\r')
break;
mTrkUART.Write(mExtTrkLog[i]);
}
mExtTrkLock.Unlock();
}
#endif
return ret;
}
void *operator new[](size_t Size)
{
#ifdef DEBUG_ALLOCATIONS_SL
SmartLockClass lock___COUNTER__(OperatorAllocatorLock, (KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown"));
#endif
memdbg("new[](%d)->[%s]", Size, KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown");
void *ret = HeapMalloc(Size);
#ifdef DEBUG
if (EnableExternalMemoryTracer)
{
char LockTmpStr[64];
strcpy_unsafe(LockTmpStr, __FUNCTION__);
strcat_unsafe(LockTmpStr, "_memTrk");
mExtTrkLock.TimeoutLock(LockTmpStr, 10000);
sprintf(mExtTrkLog, "new[]( %ld )=%p~%p\n\r",
Size,
ret, __builtin_return_address(0));
UniversalAsynchronousReceiverTransmitter::UART mTrkUART = UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM3);
for (short i = 0; i < MEM_TRK_MAX_SIZE; i++)
{
if (mExtTrkLog[i] == '\r')
break;
mTrkUART.Write(mExtTrkLog[i]);
}
mExtTrkLock.Unlock();
}
#endif
return ret;
}
void *operator new(unsigned long Size, std::align_val_t Alignment)
{
#ifdef DEBUG_ALLOCATIONS_SL
SmartLockClass lock___COUNTER__(OperatorAllocatorLock, (KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown"));
#endif
memdbg("new(%d, %d)->[%s]", Size, Alignment, KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown");
fixme("operator new with alignment(%#lx) is not implemented", Alignment);
void *ret = HeapMalloc(Size);
#ifdef DEBUG
if (EnableExternalMemoryTracer)
{
char LockTmpStr[64];
strcpy_unsafe(LockTmpStr, __FUNCTION__);
strcat_unsafe(LockTmpStr, "_memTrk");
mExtTrkLock.TimeoutLock(LockTmpStr, 10000);
sprintf(mExtTrkLog, "new( %ld %#lx )=%p~%p\n\r",
Size, (uintptr_t)Alignment,
ret, __builtin_return_address(0));
UniversalAsynchronousReceiverTransmitter::UART mTrkUART = UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM3);
for (short i = 0; i < MEM_TRK_MAX_SIZE; i++)
{
if (mExtTrkLog[i] == '\r')
break;
mTrkUART.Write(mExtTrkLog[i]);
}
mExtTrkLock.Unlock();
}
#endif
return ret;
}
void operator delete(void *Pointer)
{
#ifdef DEBUG_ALLOCATIONS_SL
SmartLockClass lock___COUNTER__(OperatorAllocatorLock, (KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown"));
#endif
memdbg("delete(%#lx)->[%s]", Pointer, KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown");
HeapFree(Pointer);
#ifdef DEBUG
if (EnableExternalMemoryTracer)
{
char LockTmpStr[64];
strcpy_unsafe(LockTmpStr, __FUNCTION__);
strcat_unsafe(LockTmpStr, "_memTrk");
mExtTrkLock.TimeoutLock(LockTmpStr, 10000);
sprintf(mExtTrkLog, "delete( %p )~%p\n\r",
Pointer,
__builtin_return_address(0));
UniversalAsynchronousReceiverTransmitter::UART mTrkUART = UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM3);
for (short i = 0; i < MEM_TRK_MAX_SIZE; i++)
{
if (mExtTrkLog[i] == '\r')
break;
mTrkUART.Write(mExtTrkLog[i]);
}
mExtTrkLock.Unlock();
}
#endif
}
void operator delete[](void *Pointer)
{
#ifdef DEBUG_ALLOCATIONS_SL
SmartLockClass lock___COUNTER__(OperatorAllocatorLock, (KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown"));
#endif
memdbg("delete[](%#lx)->[%s]", Pointer, KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown");
HeapFree(Pointer);
#ifdef DEBUG
if (EnableExternalMemoryTracer)
{
char LockTmpStr[64];
strcpy_unsafe(LockTmpStr, __FUNCTION__);
strcat_unsafe(LockTmpStr, "_memTrk");
mExtTrkLock.TimeoutLock(LockTmpStr, 10000);
sprintf(mExtTrkLog, "delete[]( %p )~%p\n\r",
Pointer,
__builtin_return_address(0));
UniversalAsynchronousReceiverTransmitter::UART mTrkUART = UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM3);
for (short i = 0; i < MEM_TRK_MAX_SIZE; i++)
{
if (mExtTrkLog[i] == '\r')
break;
mTrkUART.Write(mExtTrkLog[i]);
}
mExtTrkLock.Unlock();
}
#endif
}
void operator delete(void *Pointer, long unsigned int Size)
{
UNUSED(Size);
#ifdef DEBUG_ALLOCATIONS_SL
SmartLockClass lock___COUNTER__(OperatorAllocatorLock, (KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown"));
#endif
memdbg("delete(%#lx, %d)->[%s]", Pointer, Size, KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown");
HeapFree(Pointer);
#ifdef DEBUG
if (EnableExternalMemoryTracer)
{
char LockTmpStr[64];
strcpy_unsafe(LockTmpStr, __FUNCTION__);
strcat_unsafe(LockTmpStr, "_memTrk");
mExtTrkLock.TimeoutLock(LockTmpStr, 10000);
sprintf(mExtTrkLog, "delete( %p %ld )~%p\n\r",
Pointer, Size,
__builtin_return_address(0));
UniversalAsynchronousReceiverTransmitter::UART mTrkUART = UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM3);
for (short i = 0; i < MEM_TRK_MAX_SIZE; i++)
{
if (mExtTrkLog[i] == '\r')
break;
mTrkUART.Write(mExtTrkLog[i]);
}
mExtTrkLock.Unlock();
}
#endif
}
void operator delete[](void *Pointer, long unsigned int Size)
{
UNUSED(Size);
#ifdef DEBUG_ALLOCATIONS_SL
SmartLockClass lock___COUNTER__(OperatorAllocatorLock, (KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown"));
#endif
memdbg("delete[](%#lx, %d)->[%s]", Pointer, Size, KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown");
HeapFree(Pointer);
#ifdef DEBUG
if (EnableExternalMemoryTracer)
{
char LockTmpStr[64];
strcpy_unsafe(LockTmpStr, __FUNCTION__);
strcat_unsafe(LockTmpStr, "_memTrk");
mExtTrkLock.TimeoutLock(LockTmpStr, 10000);
sprintf(mExtTrkLog, "delete[]( %p %ld )~%p\n\r",
Pointer, Size,
__builtin_return_address(0));
UniversalAsynchronousReceiverTransmitter::UART mTrkUART = UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM3);
for (short i = 0; i < MEM_TRK_MAX_SIZE; i++)
{
if (mExtTrkLog[i] == '\r')
break;
mTrkUART.Write(mExtTrkLog[i]);
}
mExtTrkLock.Unlock();
}
#endif
}