2023-03-31 17:39:01 +03:00

727 lines
25 KiB
C

#include "ld.h"
#include "../../libs/include/sysbase.h"
#include "../../../Kernel/syscalls.h"
#include "../../../Kernel/ipc.h"
#include "elf.h"
uintptr_t RequestPages(size_t Count)
{
return syscall1(_RequestPages, Count);
}
int FreePages(uintptr_t Address, size_t Count)
{
return syscall2(_FreePages, Address, Count);
}
int IPC(enum IPCCommand Command, enum IPCType Type, int ID, int Flags, void *Buffer, size_t Size)
{
return syscall6(_IPC, (long)Command, (long)Type, (long)ID, (long)Flags, (long)Buffer, (long)Size);
}
uintptr_t KernelCTL(enum KCtl Command, uint64_t Arg1, uint64_t Arg2, uint64_t Arg3, uint64_t Arg4)
{
return syscall5(_KernelCTL, Command, Arg1, Arg2, Arg3, Arg4);
}
struct LibAddressCollection
{
char Name[32];
uintptr_t ElfFile;
uintptr_t MemoryImage;
uintptr_t ParentElfFile;
uintptr_t ParentMemoryImage;
struct LibAddressCollection *Next;
char Valid;
};
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
static char Lock = 0;
__attribute__((naked, used, no_stack_protector)) void ELF_LAZY_RESOLVE_STUB()
{
while (Lock == 1)
;
__asm__ __volatile__("mfence\n");
Lock = 1;
__asm__ __volatile__("pop %r11\n"
"pop %r10\n"
"push %rdi\n"
"push %rsi\n"
"push %rdx\n"
"push %rcx\n"
"push %r8\n"
"push %r9\n"
"mov %r11, %rdi\n" // Move the first argument to rdi (libs collection)
"mov %r10, %rsi\n" // Move the second argument to rsi (rel index)
"call ELF_LAZY_RESOLVE_MAIN\n"
"mov %rax, %r11\n" // Move the return value to r11
"pop %r9\n"
"pop %r8\n"
"pop %rcx\n"
"pop %rdx\n"
"pop %rsi\n"
"pop %rdi\n"
"jmp *%r11\n"); // Jump to the return value
}
int abs(int i) { return i < 0 ? -i : i; }
void swap(char *x, char *y)
{
char t = *x;
*x = *y;
*y = t;
}
char *reverse(char *Buffer, int i, int j)
{
while (i < j)
swap(&Buffer[i++], &Buffer[j--]);
return Buffer;
}
char *ltoa(long Value, char *Buffer, int Base)
{
if (Base < 2 || Base > 32)
return Buffer;
long n = (long)abs((int)Value);
int i = 0;
while (n)
{
int r = n % Base;
if (r >= 10)
Buffer[i++] = 65 + (r - 10);
else
Buffer[i++] = 48 + r;
n = n / Base;
}
if (i == 0)
Buffer[i++] = '0';
if (Value < 0 && Base == 10)
Buffer[i++] = '-';
Buffer[i] = '\0';
return reverse(Buffer, 0, i - 1);
}
static inline void PutCharToKernelConsole(char c)
{
__asm__ __volatile__("syscall"
:
: "a"(1), "D"(c), "S"(0)
: "rcx", "r11", "memory");
}
void Print(char *String)
{
for (short i = 0; String[i] != '\0'; i++)
PutCharToKernelConsole(String[i]);
}
void PrintNL(char *String)
{
Print(String);
Print("\n");
}
void *memcpy(void *dest, const void *src, __SIZE_TYPE__ n)
{
__UINT8_TYPE__ *d = dest;
const __UINT8_TYPE__ *s = src;
while (n--)
*d++ = *s++;
return dest;
}
void *memset(void *s, int c, __SIZE_TYPE__ n)
{
__UINT8_TYPE__ *p = s;
while (n--)
*p++ = c;
}
int strcmp(const char *l, const char *r)
{
for (; *l == *r && *l; l++, r++)
;
return *(unsigned char *)l - *(unsigned char *)r;
}
struct Elf64_Dyn *ELFGetDynamicTag(void *ElfFile, enum DynamicArrayTags Tag)
{
Elf64_Ehdr *ELFHeader = (Elf64_Ehdr *)ElfFile;
Elf64_Phdr ItrProgramHeader;
for (Elf64_Half i = 0; i < ELFHeader->e_phnum; i++)
{
memcpy(&ItrProgramHeader, (__UINT8_TYPE__ *)ElfFile + ELFHeader->e_phoff + ELFHeader->e_phentsize * i, sizeof(Elf64_Phdr));
if (ItrProgramHeader.p_type == PT_DYNAMIC)
{
struct Elf64_Dyn *Dynamic = (struct Elf64_Dyn *)((__UINT8_TYPE__ *)ElfFile + ItrProgramHeader.p_offset);
for (__SIZE_TYPE__ i = 0; i < ItrProgramHeader.p_filesz / sizeof(struct Elf64_Dyn); i++)
{
if (Dynamic[i].d_tag == Tag)
{
// debug("Found dynamic tag %d at %#lx [d_val: %#lx].", Tag, &Dynamic[i], Dynamic[i].d_un.d_val);
return &Dynamic[i];
}
if (Dynamic[i].d_tag == DT_NULL)
{
// debug("Reached end of dynamic tag list for tag %d.", Tag);
return (void *)0;
}
}
}
}
// debug("Dynamic tag %d not found.", Tag);
return (void *)0;
}
Elf64_Sym *ELFGetSymbol(uintptr_t ElfFile, char *SymbolName)
{
struct Elf64_Dyn *_SymTab = ELFGetDynamicTag((void *)ElfFile, DT_SYMTAB);
struct Elf64_Dyn *_StrTab = ELFGetDynamicTag((void *)ElfFile, DT_STRTAB);
Elf64_Sym *DynSym = (Elf64_Sym *)(ElfFile + _SymTab->d_un.d_ptr);
char *DynStr = (char *)(ElfFile + _StrTab->d_un.d_ptr);
for (int i = 0; i < _SymTab->d_un.d_val; i++)
{
if (strcmp(DynStr + DynSym[i].st_name, SymbolName) == 0)
return &DynSym[i];
}
PrintNL("ELFGetSymbol: Symbol not found!");
return (Elf64_Sym *)0;
}
void (*ELF_LAZY_RESOLVE_MAIN(struct LibAddressCollection *Info, long RelIndex))()
{
char DbgBuff[32];
if (Info)
{
struct LibAddressCollection *tmp = Info;
PrintNL("_______");
// The last entry is the null entry (Valid == false) which determines the end of the list.
while (tmp->Valid)
{
Print("-- ");
Print(tmp->Name);
Print(" ");
ltoa(RelIndex, DbgBuff, 10);
Print(DbgBuff);
PrintNL(" --");
uintptr_t BaseAddress = __UINTPTR_MAX__;
Elf64_Phdr ItrProgramHeader;
for (Elf64_Half i = 0; i < ((Elf64_Ehdr *)tmp->ElfFile)->e_phnum; i++)
{
memcpy(&ItrProgramHeader, (__UINT8_TYPE__ *)tmp->ElfFile + ((Elf64_Ehdr *)tmp->ElfFile)->e_phoff + ((Elf64_Ehdr *)tmp->ElfFile)->e_phentsize * i, sizeof(Elf64_Phdr));
BaseAddress = MIN(BaseAddress, ItrProgramHeader.p_vaddr);
}
ltoa((long)tmp->MemoryImage, DbgBuff, 16);
Print("mmImg 0x");
PrintNL(DbgBuff);
ltoa(BaseAddress, DbgBuff, 16);
Print("BAddr 0x");
PrintNL(DbgBuff);
struct Elf64_Dyn *_JmpRel = ELFGetDynamicTag((void *)tmp->ElfFile, DT_JMPREL);
struct Elf64_Dyn *_SymTab = ELFGetDynamicTag((void *)tmp->ElfFile, DT_SYMTAB);
struct Elf64_Dyn *_StrTab = ELFGetDynamicTag((void *)tmp->ElfFile, DT_STRTAB);
if (!_JmpRel)
{
PrintNL("No DT_JMPREL");
goto RetryNextLib;
}
else if (RelIndex >= _JmpRel->d_un.d_val / sizeof(Elf64_Rela))
{
PrintNL("RelIndex is greater than the number of relocations");
goto RetryNextLib;
}
if (!_SymTab)
{
PrintNL("No DT_SYMTAB");
goto RetryNextLib;
}
if (!_StrTab)
{
PrintNL("No DT_STRTAB");
goto RetryNextLib;
}
if (!_JmpRel && !_SymTab && !_StrTab)
goto RetryNextLib;
Elf64_Rela *JmpRel = (Elf64_Rela *)(tmp->MemoryImage + (_JmpRel->d_un.d_ptr - BaseAddress));
Elf64_Sym *SymTab = (Elf64_Sym *)(tmp->MemoryImage + (_SymTab->d_un.d_ptr - BaseAddress));
char *DynStr = (char *)(tmp->MemoryImage + (_StrTab->d_un.d_ptr - BaseAddress));
Elf64_Rela *Rel = JmpRel + RelIndex;
Elf64_Addr *GOTEntry = (Elf64_Addr *)(tmp->MemoryImage + Rel->r_offset);
int RelType = ELF64_R_TYPE(Rel->r_info);
switch (RelType)
{
case R_X86_64_NONE:
{
PrintNL("R_X86_64_NONE");
if (*GOTEntry == 0)
{
PrintNL("GOTEntry is 0");
break;
}
Lock = 0;
return (void (*)()) * GOTEntry;
}
case R_X86_64_JUMP_SLOT:
{
PrintNL("R_X86_64_JUMP_SLOT");
int SymIndex = ELF64_R_SYM(Rel->r_info);
Elf64_Sym *Sym = SymTab + SymIndex;
if (Sym->st_name)
{
char *SymName = DynStr + Sym->st_name; /* I think i get this wrong */
Print("SymName: ");
PrintNL(SymName);
Elf64_Sym *LibSym = ELFGetSymbol(tmp->ElfFile, SymName);
if (LibSym)
{
*GOTEntry = (Elf64_Addr)(tmp->MemoryImage + LibSym->st_value);
ltoa(*GOTEntry, DbgBuff, 16);
Print("*GOTEntry: 0x");
PrintNL(DbgBuff);
Lock = 0;
return (void (*)()) * GOTEntry;
}
}
break;
}
default:
{
ltoa(RelType, DbgBuff, 10);
Print("RelType not supported ");
PrintNL(DbgBuff);
break;
}
}
RetryNextLib:
PrintNL("Retrying next lib");
tmp = tmp->Next;
}
}
Lock = 0;
__asm__ __volatile__("mfence\n");
Print("Symbol index ");
ltoa(RelIndex, DbgBuff, 10);
Print(DbgBuff);
PrintNL(" not found");
int ExitCode = 0x51801;
syscall1(_Exit, ExitCode);
while (1) // Make sure we don't return
;
}
/* This function is a mess and needs to be cleaned up. */
/*
bool ELFDynamicReallocation(void *ElfFile, void *MemoryImage)
{
debug("ELF dynamic reallocation for image at %#lx.", ElfFile);
Elf64_Ehdr *ELFHeader = (Elf64_Ehdr *)ElfFile;
uintptr_t BaseAddress = UINTPTR_MAX;
size_t ElfAppSize = 0;
Elf64_Phdr ItrPhdr;
for (Elf64_Half i = 0; i < ELFHeader->e_phnum; i++)
{
memcpy(&ItrPhdr,
(uint8_t *)ElfFile + ELFHeader->e_phoff + ELFHeader->e_phentsize * i,
sizeof(Elf64_Phdr));
BaseAddress = MIN(BaseAddress, ItrPhdr.p_vaddr);
}
for (Elf64_Half i = 0; i < ELFHeader->e_phnum; i++)
{
memcpy(&ItrPhdr,
(uint8_t *)ElfFile + ELFHeader->e_phoff + ELFHeader->e_phentsize * i,
sizeof(Elf64_Phdr));
uintptr_t SegmentEnd = ItrPhdr.p_vaddr - BaseAddress + ItrPhdr.p_memsz;
ElfAppSize = MAX(ElfAppSize, SegmentEnd);
}
debug("BaseAddress: %#lx Size: %ld", BaseAddress, ElfAppSize);
Elf64_Dyn *_GOTEntry = (Elf64_Dyn *)ELFGetDynamicTag(ElfFile, DT_PLTGOT);
Elf64_Dyn *_Rela = ELFGetDynamicTag(ElfFile, DT_RELA);
Elf64_Dyn *_RelaEnt = ELFGetDynamicTag(ElfFile, DT_RELAENT);
Elf64_Dyn *_JmpRel = ELFGetDynamicTag(ElfFile, DT_JMPREL);
Elf64_Dyn *_SymTab = ELFGetDynamicTag(ElfFile, DT_SYMTAB);
Elf64_Dyn *_StrTab = ELFGetDynamicTag(ElfFile, DT_STRTAB);
Elf64_Dyn *RelaSize = ELFGetDynamicTag(ElfFile, DT_RELASZ);
Elf64_Dyn *PltRelSize = ELFGetDynamicTag(ElfFile, DT_PLTRELSZ);
Elf64_Addr *GOTEntry = (Elf64_Addr *)((uintptr_t)(_GOTEntry->d_un.d_ptr - BaseAddress) + (uintptr_t)MemoryImage);
Elf64_Dyn *Rela = (Elf64_Dyn *)((uintptr_t)(_Rela->d_un.d_ptr - BaseAddress) + (uintptr_t)MemoryImage);
Elf64_Dyn *RelaEnt = (Elf64_Dyn *)((uintptr_t)(_RelaEnt->d_un.d_ptr - BaseAddress) + (uintptr_t)MemoryImage);
Elf64_Dyn *JmpRel = (Elf64_Dyn *)((uintptr_t)(_JmpRel->d_un.d_ptr - BaseAddress) + (uintptr_t)MemoryImage);
Elf64_Dyn *SymTab = (Elf64_Dyn *)((uintptr_t)(_SymTab->d_un.d_ptr - BaseAddress) + (uintptr_t)MemoryImage);
Elf64_Dyn *StrTab = (Elf64_Dyn *)((uintptr_t)(_StrTab->d_un.d_ptr - BaseAddress) + (uintptr_t)MemoryImage);
debug("GOTEntry: %#lx [%#lx]", _GOTEntry, GOTEntry);
debug("Rela: %#lx [%#lx]", _Rela, Rela);
debug("RelaEnt: %#lx [%#lx]", _RelaEnt, RelaEnt);
debug("JmpRel: %#lx [%#lx]", _JmpRel, JmpRel);
debug("SymTab: %#lx [%#lx]", _SymTab, SymTab);
debug("StrTab: %#lx [%#lx]", _StrTab, StrTab);
if (RelaSize)
debug("RelaSize: %ld", RelaSize->d_un.d_val);
if (PltRelSize)
debug("PltRelSize: %ld", PltRelSize->d_un.d_val);
Elf64_Xword PltRelSizeVal = PltRelSize ? PltRelSize->d_un.d_val : 0;
Elf64_Xword RelaSizeVal = RelaSize ? RelaSize->d_un.d_val : 0;
Elf64_Xword PltRelSizeValCount = PltRelSizeVal / sizeof(Elf64_Rela);
Elf64_Xword RelaSizeValCount = RelaSizeVal / sizeof(Elf64_Rela);
debug("PltRelSizeVal: %ld", PltRelSizeVal);
debug("RelaSizeVal: %ld", RelaSizeVal);
debug("PltRelSizeValCount: %ld", PltRelSizeValCount);
debug("RelaSizeValCount: %ld", RelaSizeValCount);
for (Elf64_Xword i = 0; i < PltRelSizeValCount; i++)
{
Elf64_Rela *RelaF = (Elf64_Rela *)((uintptr_t)JmpRel + i);
Elf64_Xword RelaType = ELF64_R_TYPE(RelaF->r_info);
debug("Itr %ld Type %ld", i, RelaType);
switch (RelaType)
{
case R_X86_64_NONE:
{
debug("No relocation needed");
break;
}
case R_X86_64_JUMP_SLOT:
{
debug("Relocation for jump slot");
Elf64_Xword SymIndex = ELF64_R_SYM(RelaF->r_info);
Elf64_Sym *Sym = (Elf64_Sym *)((uintptr_t)SymTab + SymIndex);
char *SymName = (char *)((uintptr_t)StrTab + Sym->st_name);
debug("Symbol %s at %#lx", SymName, Sym->st_value);
Elf64_Addr *GOTEntry = (Elf64_Addr *)RelaF->r_offset;
if (Sym->st_value)
{
fixme("Not implemented");
*GOTEntry = (Elf64_Addr)ElfFile + Sym->st_value;
}
// else
// *GOTEntry = (Elf64_Addr)ElfLazyResolver;
// Elf64_Sym *Sym = (Elf64_Sym *)((uintptr_t)ElfFile + (uintptr_t)SymTab + ELF64_R_SYM(RelaF->r_info) * sizeof(Elf64_Sym));
// char *SymName = (char *)((uintptr_t)ElfFile + (uintptr_t)StrTab + Sym->st_name);
// void *SymAddr = (void *)Lib->Address + Sym->st_value;
// debug("Symbol %s at %#lx", SymName, SymAddr);
// *(void **)(RelaF->r_offset + (uintptr_t)ElfFile) = SymAddr;
break;
}
case R_X86_64_RELATIVE:
{
debug("Relative relocation");
uintptr_t *Ptr = (uintptr_t *)((uintptr_t)ElfFile + RelaF->r_offset);
*Ptr = (uintptr_t)MemoryImage + RelaF->r_addend;
break;
}
default:
{
fixme("RelaType %d", RelaType);
break;
}
}
}
for (Elf64_Xword i = 0; i < RelaSizeValCount; i++)
{
Elf64_Rela *RelaF = (Elf64_Rela *)((uintptr_t)ElfFile + (uintptr_t)Rela + i);
Elf64_Xword RelaType = ELF64_R_TYPE(RelaF->r_info);
debug("Itr %ld Type %ld", i, RelaType);
switch (RelaType)
{
case R_X86_64_NONE:
{
debug("No relocation needed");
break;
}
case R_X86_64_64:
{
debug("64-bit relocation");
Elf64_Xword SymIndex = ELF64_R_SYM(RelaF->r_info);
Elf64_Sym *Sym = (Elf64_Sym *)((uintptr_t)ElfFile + (uintptr_t)SymTab + SymIndex);
char *SymName = (char *)((uintptr_t)ElfFile + (uintptr_t)StrTab + Sym->st_name);
debug("Symbol %s at %#lx", SymName, Sym->st_value);
uintptr_t *Ptr = (uintptr_t *)((uintptr_t)ElfFile + RelaF->r_offset);
*Ptr = (uintptr_t)MemoryImage + Sym->st_value + RelaF->r_addend;
break;
}
case R_X86_64_GLOB_DAT:
{
debug("Global data relocation");
Elf64_Xword SymIndex = ELF64_R_SYM(RelaF->r_info);
Elf64_Sym *Sym = (Elf64_Sym *)((uintptr_t)ElfFile + (uintptr_t)SymTab + SymIndex);
char *SymName = (char *)((uintptr_t)ElfFile + (uintptr_t)StrTab + Sym->st_name);
debug("Symbol %s at %#lx", SymName, Sym->st_value);
uintptr_t *Ptr = (uintptr_t *)((uintptr_t)ElfFile + RelaF->r_offset);
*Ptr = (uintptr_t)MemoryImage + Sym->st_value;
break;
}
case R_X86_64_RELATIVE:
{
debug("Relative relocation");
Elf64_Xword SymIndex = ELF64_R_SYM(RelaF->r_info);
Elf64_Sym *Sym = (Elf64_Sym *)((uintptr_t)ElfFile + (uintptr_t)SymTab + SymIndex);
char *SymName = (char *)((uintptr_t)ElfFile + (uintptr_t)StrTab + Sym->st_name);
debug("Symbol %s at %#lx", SymName, Sym->st_value);
uintptr_t *Ptr = (uintptr_t *)((uintptr_t)ElfFile + RelaF->r_offset);
*Ptr = (uintptr_t)MemoryImage + RelaF->r_addend;
break;
}
default:
{
fixme("RelaType %d", RelaType);
break;
}
}
}
return true;
}
*/
/*
ELFDynamicReallocation(ElfFile, MemoryImage);
LibAddressCollection *LibsForLazyResolver = (LibAddressCollection *)ELFBase.TmpMem->RequestPages(TO_PAGES(sizeof(LibAddressCollection)), true);
memset(LibsForLazyResolver, 0, sizeof(LibAddressCollection));
LibAddressCollection *LFLRTmp = LibsForLazyResolver;
debug("LibsForLazyResolver: %#lx", LibsForLazyResolver);
if (NeededLibraries.size() > 0)
{
VirtualFileSystem::Node *ParentNode = ExFile->Node->Parent; // Working Directory
if (ParentNode)
{
char *WorkingDirAbsolutePath = vfs->GetPathFromNode(ParentNode);
debug("Working directory: \"%s\"", WorkingDirAbsolutePath);
int LibCount = 0;
foreach (auto Library in NeededLibraries)
{
char LibPath[256];
strcpy(LibPath, WorkingDirAbsolutePath);
strcat(LibPath, "/");
strcat(LibPath, Library);
debug("Searching for \"%s\"...", LibPath);
bool AlreadyTried = false;
LibPathRetry:
VirtualFileSystem::FILE *LibNode = vfs->Open(LibPath);
if (LibNode->Status != VirtualFileSystem::FileStatus::OK)
{
vfs->Close(LibNode);
if (!AlreadyTried)
{
debug("Library \"%s\" not found, retrying... (%#x)", LibPath, LibNode->Status);
memset(LibPath, 0, 256);
strcpy(LibPath, "/system/lib/");
strcat(LibPath, Library);
AlreadyTried = true;
goto LibPathRetry;
}
else
warn("Failed to load library \"%s\" (%#x)", Library, LibNode->Status);
}
else
{
debug("Library found \"%s\" (%#x)", LibPath, LibNode->Status);
SharedLibraries *sl = AddLibrary(Library, (void *)LibNode->Node->Address, LibNode->Node->Length);
strcpy(LFLRTmp->Name, Library);
LFLRTmp->ElfFile = (uintptr_t *)sl->Address;
LFLRTmp->MemoryImage = (uintptr_t *)sl->MemoryImage;
LFLRTmp->ParentElfFile = (uintptr_t *)ElfFile;
LFLRTmp->ParentMemoryImage = (uintptr_t *)MemoryImage;
LFLRTmp->Valid = true;
debug("LIBRARY: %s, %#lx, %#lx", Library, LFLRTmp->ElfFile, LFLRTmp->MemoryImage);
LFLRTmp->Next = (LibAddressCollection *)ELFBase.TmpMem->RequestPages(TO_PAGES(sizeof(LibAddressCollection)), true);
LFLRTmp = LFLRTmp->Next;
memset(LFLRTmp, 0, sizeof(LibAddressCollection));
}
}
}
else
{
error("Couldn't get the parent node from path %s", vfs->GetPathFromNode(ExFile->Node));
}
}
ELFAddLazyResolverToGOT(ElfFile, MemoryImage, LibsForLazyResolver);
*/
struct InterpreterIPCDataLibrary
{
char Name[128];
};
typedef struct
{
char Path[256];
void *ElfFile;
void *MemoryImage;
struct InterpreterIPCDataLibrary Libraries[64];
} InterpreterIPCData;
/* Preload */
int ld_main()
{
/* Prevent race condition. */
uintptr_t KCTL_ret = KernelCTL(KCTL_IS_CRITICAL, 0, 0, 0, 0);
do
{
syscall1(_Sleep, 250);
KCTL_ret = KernelCTL(KCTL_IS_CRITICAL, 0, 0, 0, 0);
} while (KCTL_ret == SYSCALL_ACCESS_DENIED);
if (KCTL_ret == false)
return -4;
/* Everything is ok, continue. */
return 0;
}
bool ELFAddLazyResolverToGOT(void *ElfFile, void *MemoryImage, struct LibAddressCollection *Libs)
{
struct Elf64_Dyn *Dyn = (struct Elf64_Dyn *)ELFGetDynamicTag(ElfFile, DT_PLTGOT);
if (!Dyn)
return false;
Elf64_Addr *GOT = (Elf64_Addr *)Dyn->d_un.d_ptr;
GOT[1] = (uintptr_t)Libs;
GOT[2] = (uintptr_t)ELF_LAZY_RESOLVE_STUB;
return true;
}
/* Actual load */
int ld_load(int argc, char *argv[], char *envp[])
{
uintptr_t PageSize = KernelCTL(KCTL_GET_PAGE_SIZE, 0, 0, 0, 0);
int PagesForIPCDataStruct = sizeof(InterpreterIPCData) / PageSize + 1;
InterpreterIPCData *IPCBuffer = (InterpreterIPCData *)RequestPages(PagesForIPCDataStruct);
int IPC_ID = IPC(IPC_CREATE, IPC_TYPE_MessagePassing, 0, 0, "LOAD", sizeof(InterpreterIPCData));
while (true)
{
IPC(IPC_LISTEN, IPC_TYPE_MessagePassing, IPC_ID, 1, NULL, 0);
IPC(IPC_WAIT, IPC_TYPE_MessagePassing, IPC_ID, 0, NULL, 0);
int IPCResult = IPC(IPC_READ, IPC_TYPE_MessagePassing, IPC_ID, 0, IPCBuffer, PageSize);
if (IPCResult == IPC_E_CODE_Success)
break;
}
struct LibAddressCollection *LibsForLazyResolver = (struct LibAddressCollection *)RequestPages(sizeof(struct LibAddressCollection) / PageSize + 1);
for (size_t i = 0; i < 64; i++)
{
if (IPCBuffer->Libraries[i].Name[0] == '\0')
break;
uintptr_t lib_addr = KernelCTL(KCTL_GET_ELF_LIB_FILE, (uint64_t)IPCBuffer->Libraries[i].Name, 0, 0, 0);
uintptr_t lib_mm_image = KernelCTL(KCTL_GET_ELF_LIB_FILE, (uint64_t)IPCBuffer->Libraries[i].Name, 0, 0, 0);
if (lib_addr == 0 || lib_mm_image == 0)
{
enum SyscallsErrorCodes ret = KernelCTL(KCTL_REGISTER_ELF_LIB, (uint64_t)IPCBuffer->Libraries[i].Name, (uint64_t)IPCBuffer->Libraries[i].Name, 0, 0);
if (ret != SYSCALL_OK)
{
PrintNL("Failed to register ELF lib");
return -0x11B;
}
lib_addr = KernelCTL(KCTL_GET_ELF_LIB_FILE, (uint64_t)IPCBuffer->Libraries[i].Name, 0, 0, 0);
lib_mm_image = KernelCTL(KCTL_GET_ELF_LIB_FILE, (uint64_t)IPCBuffer->Libraries[i].Name, 0, 0, 0);
}
if (LibsForLazyResolver->Next == NULL)
{
LibsForLazyResolver->Valid = true;
LibsForLazyResolver->ElfFile = (uintptr_t)lib_addr;
LibsForLazyResolver->MemoryImage = (uintptr_t)lib_mm_image;
for (size_t j = 0; j < 32; j++)
LibsForLazyResolver->Name[j] = IPCBuffer->Libraries[i].Name[j];
LibsForLazyResolver->Next = (struct LibAddressCollection *)RequestPages(sizeof(struct LibAddressCollection) / PageSize + 1);
memset(LibsForLazyResolver->Next, 0, sizeof(struct LibAddressCollection));
continue;
}
struct LibAddressCollection *CurrentLibsForLazyResolver = LibsForLazyResolver;
while (CurrentLibsForLazyResolver->Next != NULL)
CurrentLibsForLazyResolver = CurrentLibsForLazyResolver->Next;
CurrentLibsForLazyResolver->Valid = true;
CurrentLibsForLazyResolver->ElfFile = (uintptr_t)lib_addr;
CurrentLibsForLazyResolver->MemoryImage = (uintptr_t)lib_mm_image;
for (size_t j = 0; j < 32; j++)
CurrentLibsForLazyResolver->Name[j] = IPCBuffer->Libraries[i].Name[j];
CurrentLibsForLazyResolver->Next = (struct LibAddressCollection *)RequestPages(sizeof(struct LibAddressCollection) / PageSize + 1);
memset(CurrentLibsForLazyResolver->Next, 0, sizeof(struct LibAddressCollection));
}
struct LibAddressCollection *CurrentLibsForLazyResolver = LibsForLazyResolver;
if (!ELFAddLazyResolverToGOT(IPCBuffer->ElfFile, IPCBuffer->MemoryImage, LibsForLazyResolver))
{
PrintNL("Failed to add lazy resolver to GOT");
return -0x607;
}
Elf64_Addr Entry = ((Elf64_Ehdr *)IPCBuffer->MemoryImage)->e_entry;
IPC(IPC_DELETE, IPC_TYPE_MessagePassing, IPC_ID, 0, NULL, 0);
FreePages((uintptr_t)IPCBuffer, PagesForIPCDataStruct);
return ((int (*)(int, char *[], char *[]))Entry)(argc, argv, envp);
}