mirror of
https://github.com/EnderIce2/Fennix.git
synced 2025-05-25 22:14:34 +00:00
11034 lines
436 KiB
C
11034 lines
436 KiB
C
/* stb_image_resize2 - v2.14 - public domain image resizing
|
|
|
|
by Jeff Roberts (v2) and Jorge L Rodriguez
|
|
http://github.com/nothings/stb
|
|
|
|
Can be threaded with the extended API. SSE2, AVX, Neon and WASM SIMD support. Only
|
|
scaling and translation is supported, no rotations or shears.
|
|
|
|
COMPILING & LINKING
|
|
In one C/C++ file that #includes this file, do this:
|
|
#define STB_IMAGE_RESIZE_IMPLEMENTATION
|
|
before the #include. That will create the implementation in that file.
|
|
|
|
EASY API CALLS:
|
|
Easy API downsamples w/Mitchell filter, upsamples w/cubic interpolation, clamps to edge.
|
|
|
|
stbir_resize_uint8_srgb( input_pixels, input_w, input_h, input_stride_in_bytes,
|
|
output_pixels, output_w, output_h, output_stride_in_bytes,
|
|
pixel_layout_enum )
|
|
|
|
stbir_resize_uint8_linear( input_pixels, input_w, input_h, input_stride_in_bytes,
|
|
output_pixels, output_w, output_h, output_stride_in_bytes,
|
|
pixel_layout_enum )
|
|
|
|
stbir_resize_float_linear( input_pixels, input_w, input_h, input_stride_in_bytes,
|
|
output_pixels, output_w, output_h, output_stride_in_bytes,
|
|
pixel_layout_enum )
|
|
|
|
If you pass NULL or zero for the output_pixels, we will allocate the output buffer
|
|
for you and return it from the function (free with free() or STBIR_FREE).
|
|
As a special case, XX_stride_in_bytes of 0 means packed continuously in memory.
|
|
|
|
API LEVELS
|
|
There are three levels of API - easy-to-use, medium-complexity and extended-complexity.
|
|
|
|
See the "header file" section of the source for API documentation.
|
|
|
|
ADDITIONAL DOCUMENTATION
|
|
|
|
MEMORY ALLOCATION
|
|
By default, we use malloc and free for memory allocation. To override the
|
|
memory allocation, before the implementation #include, add a:
|
|
|
|
#define STBIR_MALLOC(size,user_data) ...
|
|
#define STBIR_FREE(ptr,user_data) ...
|
|
|
|
Each resize makes exactly one call to malloc/free (unless you use the
|
|
extended API where you can do one allocation for many resizes). Under
|
|
address sanitizer, we do separate allocations to find overread/writes.
|
|
|
|
PERFORMANCE
|
|
This library was written with an emphasis on performance. When testing
|
|
stb_image_resize with RGBA, the fastest mode is STBIR_4CHANNEL with
|
|
STBIR_TYPE_UINT8 pixels and CLAMPed edges (which is what many other resize
|
|
libs do by default). Also, make sure SIMD is turned on of course (default
|
|
for 64-bit targets). Avoid WRAP edge mode if you want the fastest speed.
|
|
|
|
This library also comes with profiling built-in. If you define STBIR_PROFILE,
|
|
you can use the advanced API and get low-level profiling information by
|
|
calling stbir_resize_extended_profile_info() or stbir_resize_split_profile_info()
|
|
after a resize.
|
|
|
|
SIMD
|
|
Most of the routines have optimized SSE2, AVX, NEON and WASM versions.
|
|
|
|
On Microsoft compilers, we automatically turn on SIMD for 64-bit x64 and
|
|
ARM; for 32-bit x86 and ARM, you select SIMD mode by defining STBIR_SSE2 or
|
|
STBIR_NEON. For AVX and AVX2, we auto-select it by detecting the /arch:AVX
|
|
or /arch:AVX2 switches. You can also always manually turn SSE2, AVX or AVX2
|
|
support on by defining STBIR_SSE2, STBIR_AVX or STBIR_AVX2.
|
|
|
|
On Linux, SSE2 and Neon is on by default for 64-bit x64 or ARM64. For 32-bit,
|
|
we select x86 SIMD mode by whether you have -msse2, -mavx or -mavx2 enabled
|
|
on the command line. For 32-bit ARM, you must pass -mfpu=neon-vfpv4 for both
|
|
clang and GCC, but GCC also requires an additional -mfp16-format=ieee to
|
|
automatically enable NEON.
|
|
|
|
On x86 platforms, you can also define STBIR_FP16C to turn on FP16C instructions
|
|
for converting back and forth to half-floats. This is autoselected when we
|
|
are using AVX2. Clang and GCC also require the -mf16c switch. ARM always uses
|
|
the built-in half float hardware NEON instructions.
|
|
|
|
You can also tell us to use multiply-add instructions with STBIR_USE_FMA.
|
|
Because x86 doesn't always have fma, we turn it off by default to maintain
|
|
determinism across all platforms. If you don't care about non-FMA determinism
|
|
and are willing to restrict yourself to more recent x86 CPUs (around the AVX
|
|
timeframe), then fma will give you around a 15% speedup.
|
|
|
|
You can force off SIMD in all cases by defining STBIR_NO_SIMD. You can turn
|
|
off AVX or AVX2 specifically with STBIR_NO_AVX or STBIR_NO_AVX2. AVX is 10%
|
|
to 40% faster, and AVX2 is generally another 12%.
|
|
|
|
ALPHA CHANNEL
|
|
Most of the resizing functions provide the ability to control how the alpha
|
|
channel of an image is processed.
|
|
|
|
When alpha represents transparency, it is important that when combining
|
|
colors with filtering, the pixels should not be treated equally; they
|
|
should use a weighted average based on their alpha values. For example,
|
|
if a pixel is 1% opaque bright green and another pixel is 99% opaque
|
|
black and you average them, the average will be 50% opaque, but the
|
|
unweighted average and will be a middling green color, while the weighted
|
|
average will be nearly black. This means the unweighted version introduced
|
|
green energy that didn't exist in the source image.
|
|
|
|
(If you want to know why this makes sense, you can work out the math for
|
|
the following: consider what happens if you alpha composite a source image
|
|
over a fixed color and then average the output, vs. if you average the
|
|
source image pixels and then composite that over the same fixed color.
|
|
Only the weighted average produces the same result as the ground truth
|
|
composite-then-average result.)
|
|
|
|
Therefore, it is in general best to "alpha weight" the pixels when applying
|
|
filters to them. This essentially means multiplying the colors by the alpha
|
|
values before combining them, and then dividing by the alpha value at the
|
|
end.
|
|
|
|
The computer graphics industry introduced a technique called "premultiplied
|
|
alpha" or "associated alpha" in which image colors are stored in image files
|
|
already multiplied by their alpha. This saves some math when compositing,
|
|
and also avoids the need to divide by the alpha at the end (which is quite
|
|
inefficient). However, while premultiplied alpha is common in the movie CGI
|
|
industry, it is not commonplace in other industries like videogames, and most
|
|
consumer file formats are generally expected to contain not-premultiplied
|
|
colors. For example, Photoshop saves PNG files "unpremultiplied", and web
|
|
browsers like Chrome and Firefox expect PNG images to be unpremultiplied.
|
|
|
|
Note that there are three possibilities that might describe your image
|
|
and resize expectation:
|
|
|
|
1. images are not premultiplied, alpha weighting is desired
|
|
2. images are not premultiplied, alpha weighting is not desired
|
|
3. images are premultiplied
|
|
|
|
Both case #2 and case #3 require the exact same math: no alpha weighting
|
|
should be applied or removed. Only case 1 requires extra math operations;
|
|
the other two cases can be handled identically.
|
|
|
|
stb_image_resize expects case #1 by default, applying alpha weighting to
|
|
images, expecting the input images to be unpremultiplied. This is what the
|
|
COLOR+ALPHA buffer types tell the resizer to do.
|
|
|
|
When you use the pixel layouts STBIR_RGBA, STBIR_BGRA, STBIR_ARGB,
|
|
STBIR_ABGR, STBIR_RX, or STBIR_XR you are telling us that the pixels are
|
|
non-premultiplied. In these cases, the resizer will alpha weight the colors
|
|
(effectively creating the premultiplied image), do the filtering, and then
|
|
convert back to non-premult on exit.
|
|
|
|
When you use the pixel layouts STBIR_RGBA_PM, STBIR_RGBA_PM, STBIR_RGBA_PM,
|
|
STBIR_RGBA_PM, STBIR_RX_PM or STBIR_XR_PM, you are telling that the pixels
|
|
ARE premultiplied. In this case, the resizer doesn't have to do the
|
|
premultipling - it can filter directly on the input. This about twice as
|
|
fast as the non-premultiplied case, so it's the right option if your data is
|
|
already setup correctly.
|
|
|
|
When you use the pixel layout STBIR_4CHANNEL or STBIR_2CHANNEL, you are
|
|
telling us that there is no channel that represents transparency; it may be
|
|
RGB and some unrelated fourth channel that has been stored in the alpha
|
|
channel, but it is actually not alpha. No special processing will be
|
|
performed.
|
|
|
|
The difference between the generic 4 or 2 channel layouts, and the
|
|
specialized _PM versions is with the _PM versions you are telling us that
|
|
the data *is* alpha, just don't premultiply it. That's important when
|
|
using SRGB pixel formats, we need to know where the alpha is, because
|
|
it is converted linearly (rather than with the SRGB converters).
|
|
|
|
Because alpha weighting produces the same effect as premultiplying, you
|
|
even have the option with non-premultiplied inputs to let the resizer
|
|
produce a premultiplied output. Because the intially computed alpha-weighted
|
|
output image is effectively premultiplied, this is actually more performant
|
|
than the normal path which un-premultiplies the output image as a final step.
|
|
|
|
Finally, when converting both in and out of non-premulitplied space (for
|
|
example, when using STBIR_RGBA), we go to somewhat heroic measures to
|
|
ensure that areas with zero alpha value pixels get something reasonable
|
|
in the RGB values. If you don't care about the RGB values of zero alpha
|
|
pixels, you can call the stbir_set_non_pm_alpha_speed_over_quality()
|
|
function - this runs a premultiplied resize about 25% faster. That said,
|
|
when you really care about speed, using premultiplied pixels for both in
|
|
and out (STBIR_RGBA_PM, etc) much faster than both of these premultiplied
|
|
options.
|
|
|
|
PIXEL LAYOUT CONVERSION
|
|
The resizer can convert from some pixel layouts to others. When using the
|
|
stbir_set_pixel_layouts(), you can, for example, specify STBIR_RGBA
|
|
on input, and STBIR_ARGB on output, and it will re-organize the channels
|
|
during the resize. Currently, you can only convert between two pixel
|
|
layouts with the same number of channels.
|
|
|
|
DETERMINISM
|
|
We commit to being deterministic (from x64 to ARM to scalar to SIMD, etc).
|
|
This requires compiling with fast-math off (using at least /fp:precise).
|
|
Also, you must turn off fp-contracting (which turns mult+adds into fmas)!
|
|
We attempt to do this with pragmas, but with Clang, you usually want to add
|
|
-ffp-contract=off to the command line as well.
|
|
|
|
For 32-bit x86, you must use SSE and SSE2 codegen for determinism. That is,
|
|
if the scalar x87 unit gets used at all, we immediately lose determinism.
|
|
On Microsoft Visual Studio 2008 and earlier, from what we can tell there is
|
|
no way to be deterministic in 32-bit x86 (some x87 always leaks in, even
|
|
with fp:strict). On 32-bit x86 GCC, determinism requires both -msse2 and
|
|
-fpmath=sse.
|
|
|
|
Note that we will not be deterministic with float data containing NaNs -
|
|
the NaNs will propagate differently on different SIMD and platforms.
|
|
|
|
If you turn on STBIR_USE_FMA, then we will be deterministic with other
|
|
fma targets, but we will differ from non-fma targets (this is unavoidable,
|
|
because a fma isn't simply an add with a mult - it also introduces a
|
|
rounding difference compared to non-fma instruction sequences.
|
|
|
|
FLOAT PIXEL FORMAT RANGE
|
|
Any range of values can be used for the non-alpha float data that you pass
|
|
in (0 to 1, -1 to 1, whatever). However, if you are inputting float values
|
|
but *outputting* bytes or shorts, you must use a range of 0 to 1 so that we
|
|
scale back properly. The alpha channel must also be 0 to 1 for any format
|
|
that does premultiplication prior to resizing.
|
|
|
|
Note also that with float output, using filters with negative lobes, the
|
|
output filtered values might go slightly out of range. You can define
|
|
STBIR_FLOAT_LOW_CLAMP and/or STBIR_FLOAT_HIGH_CLAMP to specify the range
|
|
to clamp to on output, if that's important.
|
|
|
|
MAX/MIN SCALE FACTORS
|
|
The input pixel resolutions are in integers, and we do the internal pointer
|
|
resolution in size_t sized integers. However, the scale ratio from input
|
|
resolution to output resolution is calculated in float form. This means
|
|
the effective possible scale ratio is limited to 24 bits (or 16 million
|
|
to 1). As you get close to the size of the float resolution (again, 16
|
|
million pixels wide or high), you might start seeing float inaccuracy
|
|
issues in general in the pipeline. If you have to do extreme resizes,
|
|
you can usually do this is multiple stages (using float intermediate
|
|
buffers).
|
|
|
|
FLIPPED IMAGES
|
|
Stride is just the delta from one scanline to the next. This means you can
|
|
use a negative stride to handle inverted images (point to the final
|
|
scanline and use a negative stride). You can invert the input or output,
|
|
using negative strides.
|
|
|
|
DEFAULT FILTERS
|
|
For functions which don't provide explicit control over what filters to
|
|
use, you can change the compile-time defaults with:
|
|
|
|
#define STBIR_DEFAULT_FILTER_UPSAMPLE STBIR_FILTER_something
|
|
#define STBIR_DEFAULT_FILTER_DOWNSAMPLE STBIR_FILTER_something
|
|
|
|
See stbir_filter in the header-file section for the list of filters.
|
|
|
|
NEW FILTERS
|
|
A number of 1D filter kernels are supplied. For a list of supported
|
|
filters, see the stbir_filter enum. You can install your own filters by
|
|
using the stbir_set_filter_callbacks function.
|
|
|
|
PROGRESS
|
|
For interactive use with slow resize operations, you can use the
|
|
scanline callbacks in the extended API. It would have to be a *very* large
|
|
image resample to need progress though - we're very fast.
|
|
|
|
CEIL and FLOOR
|
|
In scalar mode, the only functions we use from math.h are ceilf and floorf,
|
|
but if you have your own versions, you can define the STBIR_CEILF(v) and
|
|
STBIR_FLOORF(v) macros and we'll use them instead. In SIMD, we just use
|
|
our own versions.
|
|
|
|
ASSERT
|
|
Define STBIR_ASSERT(boolval) to override assert() and not use assert.h
|
|
|
|
PORTING FROM VERSION 1
|
|
The API has changed. You can continue to use the old version of stb_image_resize.h,
|
|
which is available in the "deprecated/" directory.
|
|
|
|
If you're using the old simple-to-use API, porting is straightforward.
|
|
(For more advanced APIs, read the documentation.)
|
|
|
|
stbir_resize_uint8():
|
|
- call `stbir_resize_uint8_linear`, cast channel count to `stbir_pixel_layout`
|
|
|
|
stbir_resize_float():
|
|
- call `stbir_resize_float_linear`, cast channel count to `stbir_pixel_layout`
|
|
|
|
stbir_resize_uint8_srgb():
|
|
- function name is unchanged
|
|
- cast channel count to `stbir_pixel_layout`
|
|
- above is sufficient unless your image has alpha and it's not RGBA/BGRA
|
|
- in that case, follow the below instructions for stbir_resize_uint8_srgb_edgemode
|
|
|
|
stbir_resize_uint8_srgb_edgemode()
|
|
- switch to the "medium complexity" API
|
|
- stbir_resize(), very similar API but a few more parameters:
|
|
- pixel_layout: cast channel count to `stbir_pixel_layout`
|
|
- data_type: STBIR_TYPE_UINT8_SRGB
|
|
- edge: unchanged (STBIR_EDGE_WRAP, etc.)
|
|
- filter: STBIR_FILTER_DEFAULT
|
|
- which channel is alpha is specified in stbir_pixel_layout, see enum for details
|
|
|
|
FUTURE TODOS
|
|
* For polyphase integral filters, we just memcpy the coeffs to dupe
|
|
them, but we should indirect and use the same coeff memory.
|
|
* Add pixel layout conversions for sensible different channel counts
|
|
(maybe, 1->3/4, 3->4, 4->1, 3->1).
|
|
* For SIMD encode and decode scanline routines, do any pre-aligning
|
|
for bad input/output buffer alignments and pitch?
|
|
* For very wide scanlines, we should we do vertical strips to stay within
|
|
L2 cache. Maybe do chunks of 1K pixels at a time. There would be
|
|
some pixel reconversion, but probably dwarfed by things falling out
|
|
of cache. Probably also something possible with alternating between
|
|
scattering and gathering at high resize scales?
|
|
* Should we have a multiple MIPs at the same time function (could keep
|
|
more memory in cache during multiple resizes)?
|
|
* Rewrite the coefficient generator to do many at once.
|
|
* AVX-512 vertical kernels - worried about downclocking here.
|
|
* Convert the reincludes to macros when we know they aren't changing.
|
|
* Experiment with pivoting the horizontal and always using the
|
|
vertical filters (which are faster, but perhaps not enough to overcome
|
|
the pivot cost and the extra memory touches). Need to buffer the whole
|
|
image so have to balance memory use.
|
|
* Most of our code is internally function pointers, should we compile
|
|
all the SIMD stuff always and dynamically dispatch?
|
|
|
|
CONTRIBUTORS
|
|
Jeff Roberts: 2.0 implementation, optimizations, SIMD
|
|
Martins Mozeiko: NEON simd, WASM simd, clang and GCC whisperer
|
|
Fabian Giesen: half float and srgb converters
|
|
Sean Barrett: API design, optimizations
|
|
Jorge L Rodriguez: Original 1.0 implementation
|
|
Aras Pranckevicius: bugfixes
|
|
Nathan Reed: warning fixes for 1.0
|
|
|
|
REVISIONS
|
|
2.14 (2025-05-09) fixed a bug using downsampling gather horizontal first, and
|
|
scatter with vertical first.
|
|
2.13 (2025-02-27) fixed a bug when using input callbacks, turned off simd for
|
|
tiny-c, fixed some variables that should have been static,
|
|
fixes a bug when calculating temp memory with resizes that
|
|
exceed 2GB of temp memory (very large resizes).
|
|
2.12 (2024-10-18) fix incorrect use of user_data with STBIR_FREE
|
|
2.11 (2024-09-08) fix harmless asan warnings in 2-channel and 3-channel mode
|
|
with AVX-2, fix some weird scaling edge conditions with
|
|
point sample mode.
|
|
2.10 (2024-07-27) fix the defines GCC and mingw for loop unroll control,
|
|
fix MSVC 32-bit arm half float routines.
|
|
2.09 (2024-06-19) fix the defines for 32-bit ARM GCC builds (was selecting
|
|
hardware half floats).
|
|
2.08 (2024-06-10) fix for RGB->BGR three channel flips and add SIMD (thanks
|
|
to Ryan Salsbury), fix for sub-rect resizes, use the
|
|
pragmas to control unrolling when they are available.
|
|
2.07 (2024-05-24) fix for slow final split during threaded conversions of very
|
|
wide scanlines when downsampling (caused by extra input
|
|
converting), fix for wide scanline resamples with many
|
|
splits (int overflow), fix GCC warning.
|
|
2.06 (2024-02-10) fix for identical width/height 3x or more down-scaling
|
|
undersampling a single row on rare resize ratios (about 1%).
|
|
2.05 (2024-02-07) fix for 2 pixel to 1 pixel resizes with wrap (thanks Aras),
|
|
fix for output callback (thanks Julien Koenen).
|
|
2.04 (2023-11-17) fix for rare AVX bug, shadowed symbol (thanks Nikola Smiljanic).
|
|
2.03 (2023-11-01) ASAN and TSAN warnings fixed, minor tweaks.
|
|
2.00 (2023-10-10) mostly new source: new api, optimizations, simd, vertical-first, etc
|
|
2x-5x faster without simd, 4x-12x faster with simd,
|
|
in some cases, 20x to 40x faster esp resizing large to very small.
|
|
0.96 (2019-03-04) fixed warnings
|
|
0.95 (2017-07-23) fixed warnings
|
|
0.94 (2017-03-18) fixed warnings
|
|
0.93 (2017-03-03) fixed bug with certain combinations of heights
|
|
0.92 (2017-01-02) fix integer overflow on large (>2GB) images
|
|
0.91 (2016-04-02) fix warnings; fix handling of subpixel regions
|
|
0.90 (2014-09-17) first released version
|
|
|
|
LICENSE
|
|
See end of file for license information.
|
|
*/
|
|
|
|
#if !defined(STB_IMAGE_RESIZE_DO_HORIZONTALS) && !defined(STB_IMAGE_RESIZE_DO_VERTICALS) && !defined(STB_IMAGE_RESIZE_DO_CODERS) // for internal re-includes
|
|
|
|
#ifndef STBIR_INCLUDE_STB_IMAGE_RESIZE2_H
|
|
#define STBIR_INCLUDE_STB_IMAGE_RESIZE2_H
|
|
|
|
#include <stddef.h>
|
|
#ifdef _MSC_VER
|
|
typedef unsigned char stbir_uint8;
|
|
typedef unsigned short stbir_uint16;
|
|
typedef unsigned int stbir_uint32;
|
|
typedef unsigned __int64 stbir_uint64;
|
|
#else
|
|
#include <stdint.h>
|
|
typedef uint8_t stbir_uint8;
|
|
typedef uint16_t stbir_uint16;
|
|
typedef uint32_t stbir_uint32;
|
|
typedef uint64_t stbir_uint64;
|
|
#endif
|
|
|
|
#ifndef STBIRDEF
|
|
#ifdef STB_IMAGE_RESIZE_STATIC
|
|
#define STBIRDEF static
|
|
#else
|
|
#ifdef __cplusplus
|
|
#define STBIRDEF extern "C"
|
|
#else
|
|
#define STBIRDEF extern
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
//// start "header file" ///////////////////////////////////////////////////
|
|
//
|
|
// Easy-to-use API:
|
|
//
|
|
// * stride is the offset between successive rows of image data
|
|
// in memory, in bytes. specify 0 for packed continuously in memory
|
|
// * colorspace is linear or sRGB as specified by function name
|
|
// * Uses the default filters
|
|
// * Uses edge mode clamped
|
|
// * returned result is 1 for success or 0 in case of an error.
|
|
|
|
// stbir_pixel_layout specifies:
|
|
// number of channels
|
|
// order of channels
|
|
// whether color is premultiplied by alpha
|
|
// for back compatibility, you can cast the old channel count to an stbir_pixel_layout
|
|
typedef enum
|
|
{
|
|
STBIR_1CHANNEL = 1,
|
|
STBIR_2CHANNEL = 2,
|
|
STBIR_RGB = 3, // 3-chan, with order specified (for channel flipping)
|
|
STBIR_BGR = 0, // 3-chan, with order specified (for channel flipping)
|
|
STBIR_4CHANNEL = 5,
|
|
|
|
STBIR_RGBA = 4, // alpha formats, where alpha is NOT premultiplied into color channels
|
|
STBIR_BGRA = 6,
|
|
STBIR_ARGB = 7,
|
|
STBIR_ABGR = 8,
|
|
STBIR_RA = 9,
|
|
STBIR_AR = 10,
|
|
|
|
STBIR_RGBA_PM = 11, // alpha formats, where alpha is premultiplied into color channels
|
|
STBIR_BGRA_PM = 12,
|
|
STBIR_ARGB_PM = 13,
|
|
STBIR_ABGR_PM = 14,
|
|
STBIR_RA_PM = 15,
|
|
STBIR_AR_PM = 16,
|
|
|
|
STBIR_RGBA_NO_AW = 11, // alpha formats, where NO alpha weighting is applied at all!
|
|
STBIR_BGRA_NO_AW = 12, // these are just synonyms for the _PM flags (which also do
|
|
STBIR_ARGB_NO_AW = 13, // no alpha weighting). These names just make it more clear
|
|
STBIR_ABGR_NO_AW = 14, // for some folks).
|
|
STBIR_RA_NO_AW = 15,
|
|
STBIR_AR_NO_AW = 16,
|
|
|
|
} stbir_pixel_layout;
|
|
|
|
//===============================================================
|
|
// Simple-complexity API
|
|
//
|
|
// If output_pixels is NULL (0), then we will allocate the buffer and return it to you.
|
|
//--------------------------------
|
|
|
|
STBIRDEF unsigned char *stbir_resize_uint8_srgb(const unsigned char *input_pixels, int input_w, int input_h, int input_stride_in_bytes,
|
|
unsigned char *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
stbir_pixel_layout pixel_type);
|
|
|
|
STBIRDEF unsigned char *stbir_resize_uint8_linear(const unsigned char *input_pixels, int input_w, int input_h, int input_stride_in_bytes,
|
|
unsigned char *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
stbir_pixel_layout pixel_type);
|
|
|
|
STBIRDEF float *stbir_resize_float_linear(const float *input_pixels, int input_w, int input_h, int input_stride_in_bytes,
|
|
float *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
stbir_pixel_layout pixel_type);
|
|
//===============================================================
|
|
|
|
//===============================================================
|
|
// Medium-complexity API
|
|
//
|
|
// This extends the easy-to-use API as follows:
|
|
//
|
|
// * Can specify the datatype - U8, U8_SRGB, U16, FLOAT, HALF_FLOAT
|
|
// * Edge wrap can selected explicitly
|
|
// * Filter can be selected explicitly
|
|
//--------------------------------
|
|
|
|
typedef enum
|
|
{
|
|
STBIR_EDGE_CLAMP = 0,
|
|
STBIR_EDGE_REFLECT = 1,
|
|
STBIR_EDGE_WRAP = 2, // this edge mode is slower and uses more memory
|
|
STBIR_EDGE_ZERO = 3,
|
|
} stbir_edge;
|
|
|
|
typedef enum
|
|
{
|
|
STBIR_FILTER_DEFAULT = 0, // use same filter type that easy-to-use API chooses
|
|
STBIR_FILTER_BOX = 1, // A trapezoid w/1-pixel wide ramps, same result as box for integer scale ratios
|
|
STBIR_FILTER_TRIANGLE = 2, // On upsampling, produces same results as bilinear texture filtering
|
|
STBIR_FILTER_CUBICBSPLINE = 3, // The cubic b-spline (aka Mitchell-Netrevalli with B=1,C=0), gaussian-esque
|
|
STBIR_FILTER_CATMULLROM = 4, // An interpolating cubic spline
|
|
STBIR_FILTER_MITCHELL = 5, // Mitchell-Netrevalli filter with B=1/3, C=1/3
|
|
STBIR_FILTER_POINT_SAMPLE = 6, // Simple point sampling
|
|
STBIR_FILTER_OTHER = 7, // User callback specified
|
|
} stbir_filter;
|
|
|
|
typedef enum
|
|
{
|
|
STBIR_TYPE_UINT8 = 0,
|
|
STBIR_TYPE_UINT8_SRGB = 1,
|
|
STBIR_TYPE_UINT8_SRGB_ALPHA = 2, // alpha channel, when present, should also be SRGB (this is very unusual)
|
|
STBIR_TYPE_UINT16 = 3,
|
|
STBIR_TYPE_FLOAT = 4,
|
|
STBIR_TYPE_HALF_FLOAT = 5
|
|
} stbir_datatype;
|
|
|
|
// medium api
|
|
STBIRDEF void *stbir_resize(const void *input_pixels, int input_w, int input_h, int input_stride_in_bytes,
|
|
void *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
stbir_pixel_layout pixel_layout, stbir_datatype data_type,
|
|
stbir_edge edge, stbir_filter filter);
|
|
//===============================================================
|
|
|
|
//===============================================================
|
|
// Extended-complexity API
|
|
//
|
|
// This API exposes all resize functionality.
|
|
//
|
|
// * Separate filter types for each axis
|
|
// * Separate edge modes for each axis
|
|
// * Separate input and output data types
|
|
// * Can specify regions with subpixel correctness
|
|
// * Can specify alpha flags
|
|
// * Can specify a memory callback
|
|
// * Can specify a callback data type for pixel input and output
|
|
// * Can be threaded for a single resize
|
|
// * Can be used to resize many frames without recalculating the sampler info
|
|
//
|
|
// Use this API as follows:
|
|
// 1) Call the stbir_resize_init function on a local STBIR_RESIZE structure
|
|
// 2) Call any of the stbir_set functions
|
|
// 3) Optionally call stbir_build_samplers() if you are going to resample multiple times
|
|
// with the same input and output dimensions (like resizing video frames)
|
|
// 4) Resample by calling stbir_resize_extended().
|
|
// 5) Call stbir_free_samplers() if you called stbir_build_samplers()
|
|
//--------------------------------
|
|
|
|
// Types:
|
|
|
|
// INPUT CALLBACK: this callback is used for input scanlines
|
|
typedef void const *stbir_input_callback(void *optional_output, void const *input_ptr, int num_pixels, int x, int y, void *context);
|
|
|
|
// OUTPUT CALLBACK: this callback is used for output scanlines
|
|
typedef void stbir_output_callback(void const *output_ptr, int num_pixels, int y, void *context);
|
|
|
|
// callbacks for user installed filters
|
|
typedef float stbir__kernel_callback(float x, float scale, void *user_data); // centered at zero
|
|
typedef float stbir__support_callback(float scale, void *user_data);
|
|
|
|
// internal structure with precomputed scaling
|
|
typedef struct stbir__info stbir__info;
|
|
|
|
typedef struct STBIR_RESIZE // use the stbir_resize_init and stbir_override functions to set these values for future compatibility
|
|
{
|
|
void *user_data;
|
|
void const *input_pixels;
|
|
int input_w, input_h;
|
|
double input_s0, input_t0, input_s1, input_t1;
|
|
stbir_input_callback *input_cb;
|
|
void *output_pixels;
|
|
int output_w, output_h;
|
|
int output_subx, output_suby, output_subw, output_subh;
|
|
stbir_output_callback *output_cb;
|
|
int input_stride_in_bytes;
|
|
int output_stride_in_bytes;
|
|
int splits;
|
|
int fast_alpha;
|
|
int needs_rebuild;
|
|
int called_alloc;
|
|
stbir_pixel_layout input_pixel_layout_public;
|
|
stbir_pixel_layout output_pixel_layout_public;
|
|
stbir_datatype input_data_type;
|
|
stbir_datatype output_data_type;
|
|
stbir_filter horizontal_filter, vertical_filter;
|
|
stbir_edge horizontal_edge, vertical_edge;
|
|
stbir__kernel_callback *horizontal_filter_kernel;
|
|
stbir__support_callback *horizontal_filter_support;
|
|
stbir__kernel_callback *vertical_filter_kernel;
|
|
stbir__support_callback *vertical_filter_support;
|
|
stbir__info *samplers;
|
|
} STBIR_RESIZE;
|
|
|
|
// extended complexity api
|
|
|
|
// First off, you must ALWAYS call stbir_resize_init on your resize structure before any of the other calls!
|
|
STBIRDEF void stbir_resize_init(STBIR_RESIZE *resize,
|
|
const void *input_pixels, int input_w, int input_h, int input_stride_in_bytes, // stride can be zero
|
|
void *output_pixels, int output_w, int output_h, int output_stride_in_bytes, // stride can be zero
|
|
stbir_pixel_layout pixel_layout, stbir_datatype data_type);
|
|
|
|
//===============================================================
|
|
// You can update these parameters any time after resize_init and there is no cost
|
|
//--------------------------------
|
|
|
|
STBIRDEF void stbir_set_datatypes(STBIR_RESIZE *resize, stbir_datatype input_type, stbir_datatype output_type);
|
|
STBIRDEF void stbir_set_pixel_callbacks(STBIR_RESIZE *resize, stbir_input_callback *input_cb, stbir_output_callback *output_cb); // no callbacks by default
|
|
STBIRDEF void stbir_set_user_data(STBIR_RESIZE *resize, void *user_data); // pass back STBIR_RESIZE* by default
|
|
STBIRDEF void stbir_set_buffer_ptrs(STBIR_RESIZE *resize, const void *input_pixels, int input_stride_in_bytes, void *output_pixels, int output_stride_in_bytes);
|
|
|
|
//===============================================================
|
|
|
|
//===============================================================
|
|
// If you call any of these functions, you will trigger a sampler rebuild!
|
|
//--------------------------------
|
|
|
|
STBIRDEF int stbir_set_pixel_layouts(STBIR_RESIZE *resize, stbir_pixel_layout input_pixel_layout, stbir_pixel_layout output_pixel_layout); // sets new buffer layouts
|
|
STBIRDEF int stbir_set_edgemodes(STBIR_RESIZE *resize, stbir_edge horizontal_edge, stbir_edge vertical_edge); // CLAMP by default
|
|
|
|
STBIRDEF int stbir_set_filters(STBIR_RESIZE *resize, stbir_filter horizontal_filter, stbir_filter vertical_filter); // STBIR_DEFAULT_FILTER_UPSAMPLE/DOWNSAMPLE by default
|
|
STBIRDEF int stbir_set_filter_callbacks(STBIR_RESIZE *resize, stbir__kernel_callback *horizontal_filter, stbir__support_callback *horizontal_support, stbir__kernel_callback *vertical_filter, stbir__support_callback *vertical_support);
|
|
|
|
STBIRDEF int stbir_set_pixel_subrect(STBIR_RESIZE *resize, int subx, int suby, int subw, int subh); // sets both sub-regions (full regions by default)
|
|
STBIRDEF int stbir_set_input_subrect(STBIR_RESIZE *resize, double s0, double t0, double s1, double t1); // sets input sub-region (full region by default)
|
|
STBIRDEF int stbir_set_output_pixel_subrect(STBIR_RESIZE *resize, int subx, int suby, int subw, int subh); // sets output sub-region (full region by default)
|
|
|
|
// when inputting AND outputting non-premultiplied alpha pixels, we use a slower but higher quality technique
|
|
// that fills the zero alpha pixel's RGB values with something plausible. If you don't care about areas of
|
|
// zero alpha, you can call this function to get about a 25% speed improvement for STBIR_RGBA to STBIR_RGBA
|
|
// types of resizes.
|
|
STBIRDEF int stbir_set_non_pm_alpha_speed_over_quality(STBIR_RESIZE *resize, int non_pma_alpha_speed_over_quality);
|
|
//===============================================================
|
|
|
|
//===============================================================
|
|
// You can call build_samplers to prebuild all the internal data we need to resample.
|
|
// Then, if you call resize_extended many times with the same resize, you only pay the
|
|
// cost once.
|
|
// If you do call build_samplers, you MUST call free_samplers eventually.
|
|
//--------------------------------
|
|
|
|
// This builds the samplers and does one allocation
|
|
STBIRDEF int stbir_build_samplers(STBIR_RESIZE *resize);
|
|
|
|
// You MUST call this, if you call stbir_build_samplers or stbir_build_samplers_with_splits
|
|
STBIRDEF void stbir_free_samplers(STBIR_RESIZE *resize);
|
|
//===============================================================
|
|
|
|
// And this is the main function to perform the resize synchronously on one thread.
|
|
STBIRDEF int stbir_resize_extended(STBIR_RESIZE *resize);
|
|
|
|
//===============================================================
|
|
// Use these functions for multithreading.
|
|
// 1) You call stbir_build_samplers_with_splits first on the main thread
|
|
// 2) Then stbir_resize_with_split on each thread
|
|
// 3) stbir_free_samplers when done on the main thread
|
|
//--------------------------------
|
|
|
|
// This will build samplers for threading.
|
|
// You can pass in the number of threads you'd like to use (try_splits).
|
|
// It returns the number of splits (threads) that you can call it with.
|
|
/// It might be less if the image resize can't be split up that many ways.
|
|
|
|
STBIRDEF int stbir_build_samplers_with_splits(STBIR_RESIZE *resize, int try_splits);
|
|
|
|
// This function does a split of the resizing (you call this fuction for each
|
|
// split, on multiple threads). A split is a piece of the output resize pixel space.
|
|
|
|
// Note that you MUST call stbir_build_samplers_with_splits before stbir_resize_extended_split!
|
|
|
|
// Usually, you will always call stbir_resize_split with split_start as the thread_index
|
|
// and "1" for the split_count.
|
|
// But, if you have a weird situation where you MIGHT want 8 threads, but sometimes
|
|
// only 4 threads, you can use 0,2,4,6 for the split_start's and use "2" for the
|
|
// split_count each time to turn in into a 4 thread resize. (This is unusual).
|
|
|
|
STBIRDEF int stbir_resize_extended_split(STBIR_RESIZE *resize, int split_start, int split_count);
|
|
//===============================================================
|
|
|
|
//===============================================================
|
|
// Pixel Callbacks info:
|
|
//--------------------------------
|
|
|
|
// The input callback is super flexible - it calls you with the input address
|
|
// (based on the stride and base pointer), it gives you an optional_output
|
|
// pointer that you can fill, or you can just return your own pointer into
|
|
// your own data.
|
|
//
|
|
// You can also do conversion from non-supported data types if necessary - in
|
|
// this case, you ignore the input_ptr and just use the x and y parameters to
|
|
// calculate your own input_ptr based on the size of each non-supported pixel.
|
|
// (Something like the third example below.)
|
|
//
|
|
// You can also install just an input or just an output callback by setting the
|
|
// callback that you don't want to zero.
|
|
//
|
|
// First example, progress: (getting a callback that you can monitor the progress):
|
|
// void const * my_callback( void * optional_output, void const * input_ptr, int num_pixels, int x, int y, void * context )
|
|
// {
|
|
// percentage_done = y / input_height;
|
|
// return input_ptr; // use buffer from call
|
|
// }
|
|
//
|
|
// Next example, copying: (copy from some other buffer or stream):
|
|
// void const * my_callback( void * optional_output, void const * input_ptr, int num_pixels, int x, int y, void * context )
|
|
// {
|
|
// CopyOrStreamData( optional_output, other_data_src, num_pixels * pixel_width_in_bytes );
|
|
// return optional_output; // return the optional buffer that we filled
|
|
// }
|
|
//
|
|
// Third example, input another buffer without copying: (zero-copy from other buffer):
|
|
// void const * my_callback( void * optional_output, void const * input_ptr, int num_pixels, int x, int y, void * context )
|
|
// {
|
|
// void * pixels = ( (char*) other_image_base ) + ( y * other_image_stride ) + ( x * other_pixel_width_in_bytes );
|
|
// return pixels; // return pointer to your data without copying
|
|
// }
|
|
//
|
|
//
|
|
// The output callback is considerably simpler - it just calls you so that you can dump
|
|
// out each scanline. You could even directly copy out to disk if you have a simple format
|
|
// like TGA or BMP. You can also convert to other output types here if you want.
|
|
//
|
|
// Simple example:
|
|
// void const * my_output( void * output_ptr, int num_pixels, int y, void * context )
|
|
// {
|
|
// percentage_done = y / output_height;
|
|
// fwrite( output_ptr, pixel_width_in_bytes, num_pixels, output_file );
|
|
// }
|
|
//===============================================================
|
|
|
|
//===============================================================
|
|
// optional built-in profiling API
|
|
//--------------------------------
|
|
|
|
#ifdef STBIR_PROFILE
|
|
|
|
typedef struct STBIR_PROFILE_INFO
|
|
{
|
|
stbir_uint64 total_clocks;
|
|
|
|
// how many clocks spent (of total_clocks) in the various resize routines, along with a string description
|
|
// there are "resize_count" number of zones
|
|
stbir_uint64 clocks[8];
|
|
char const **descriptions;
|
|
|
|
// count of clocks and descriptions
|
|
stbir_uint32 count;
|
|
} STBIR_PROFILE_INFO;
|
|
|
|
// use after calling stbir_resize_extended (or stbir_build_samplers or stbir_build_samplers_with_splits)
|
|
STBIRDEF void stbir_resize_build_profile_info(STBIR_PROFILE_INFO *out_info, STBIR_RESIZE const *resize);
|
|
|
|
// use after calling stbir_resize_extended
|
|
STBIRDEF void stbir_resize_extended_profile_info(STBIR_PROFILE_INFO *out_info, STBIR_RESIZE const *resize);
|
|
|
|
// use after calling stbir_resize_extended_split
|
|
STBIRDEF void stbir_resize_split_profile_info(STBIR_PROFILE_INFO *out_info, STBIR_RESIZE const *resize, int split_start, int split_num);
|
|
|
|
//===============================================================
|
|
|
|
#endif
|
|
|
|
//// end header file /////////////////////////////////////////////////////
|
|
#endif // STBIR_INCLUDE_STB_IMAGE_RESIZE2_H
|
|
|
|
#if defined(STB_IMAGE_RESIZE_IMPLEMENTATION) || defined(STB_IMAGE_RESIZE2_IMPLEMENTATION)
|
|
|
|
#ifndef STBIR_ASSERT
|
|
#include <assert.h>
|
|
#define STBIR_ASSERT(x) assert(x)
|
|
#endif
|
|
|
|
#ifndef STBIR_MALLOC
|
|
#include <stdlib.h>
|
|
#define STBIR_MALLOC(size, user_data) ((void)(user_data), malloc(size))
|
|
#define STBIR_FREE(ptr, user_data) ((void)(user_data), free(ptr))
|
|
// (we used the comma operator to evaluate user_data, to avoid "unused parameter" warnings)
|
|
#endif
|
|
|
|
#ifdef _MSC_VER
|
|
|
|
#define stbir__inline __forceinline
|
|
|
|
#else
|
|
|
|
#define stbir__inline __inline__
|
|
|
|
// Clang address sanitizer
|
|
#if defined(__has_feature)
|
|
#if __has_feature(address_sanitizer) || __has_feature(memory_sanitizer)
|
|
#ifndef STBIR__SEPARATE_ALLOCATIONS
|
|
#define STBIR__SEPARATE_ALLOCATIONS
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#endif
|
|
|
|
// GCC and MSVC
|
|
#if defined(__SANITIZE_ADDRESS__)
|
|
#ifndef STBIR__SEPARATE_ALLOCATIONS
|
|
#define STBIR__SEPARATE_ALLOCATIONS
|
|
#endif
|
|
#endif
|
|
|
|
// Always turn off automatic FMA use - use STBIR_USE_FMA if you want.
|
|
// Otherwise, this is a determinism disaster.
|
|
#ifndef STBIR_DONT_CHANGE_FP_CONTRACT // override in case you don't want this behavior
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
#if _MSC_VER > 1200
|
|
#pragma fp_contract(off)
|
|
#endif
|
|
#elif defined(__GNUC__) && !defined(__clang__)
|
|
#pragma GCC optimize("fp-contract=off")
|
|
#else
|
|
#pragma STDC FP_CONTRACT OFF
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef _MSC_VER
|
|
#define STBIR__UNUSED(v) (void)(v)
|
|
#else
|
|
#define STBIR__UNUSED(v) (void)sizeof(v)
|
|
#endif
|
|
|
|
#define STBIR__ARRAY_SIZE(a) (sizeof((a)) / sizeof((a)[0]))
|
|
|
|
#ifndef STBIR_DEFAULT_FILTER_UPSAMPLE
|
|
#define STBIR_DEFAULT_FILTER_UPSAMPLE STBIR_FILTER_CATMULLROM
|
|
#endif
|
|
|
|
#ifndef STBIR_DEFAULT_FILTER_DOWNSAMPLE
|
|
#define STBIR_DEFAULT_FILTER_DOWNSAMPLE STBIR_FILTER_MITCHELL
|
|
#endif
|
|
|
|
#ifndef STBIR__HEADER_FILENAME
|
|
#define STBIR__HEADER_FILENAME "stb_image_resize2.h"
|
|
#endif
|
|
|
|
// the internal pixel layout enums are in a different order, so we can easily do range comparisons of types
|
|
// the public pixel layout is ordered in a way that if you cast num_channels (1-4) to the enum, you get something sensible
|
|
typedef enum
|
|
{
|
|
STBIRI_1CHANNEL = 0,
|
|
STBIRI_2CHANNEL = 1,
|
|
STBIRI_RGB = 2,
|
|
STBIRI_BGR = 3,
|
|
STBIRI_4CHANNEL = 4,
|
|
|
|
STBIRI_RGBA = 5,
|
|
STBIRI_BGRA = 6,
|
|
STBIRI_ARGB = 7,
|
|
STBIRI_ABGR = 8,
|
|
STBIRI_RA = 9,
|
|
STBIRI_AR = 10,
|
|
|
|
STBIRI_RGBA_PM = 11,
|
|
STBIRI_BGRA_PM = 12,
|
|
STBIRI_ARGB_PM = 13,
|
|
STBIRI_ABGR_PM = 14,
|
|
STBIRI_RA_PM = 15,
|
|
STBIRI_AR_PM = 16,
|
|
} stbir_internal_pixel_layout;
|
|
|
|
// define the public pixel layouts to not compile inside the implementation (to avoid accidental use)
|
|
#define STBIR_BGR bad_dont_use_in_implementation
|
|
#define STBIR_1CHANNEL STBIR_BGR
|
|
#define STBIR_2CHANNEL STBIR_BGR
|
|
#define STBIR_RGB STBIR_BGR
|
|
#define STBIR_RGBA STBIR_BGR
|
|
#define STBIR_4CHANNEL STBIR_BGR
|
|
#define STBIR_BGRA STBIR_BGR
|
|
#define STBIR_ARGB STBIR_BGR
|
|
#define STBIR_ABGR STBIR_BGR
|
|
#define STBIR_RA STBIR_BGR
|
|
#define STBIR_AR STBIR_BGR
|
|
#define STBIR_RGBA_PM STBIR_BGR
|
|
#define STBIR_BGRA_PM STBIR_BGR
|
|
#define STBIR_ARGB_PM STBIR_BGR
|
|
#define STBIR_ABGR_PM STBIR_BGR
|
|
#define STBIR_RA_PM STBIR_BGR
|
|
#define STBIR_AR_PM STBIR_BGR
|
|
|
|
// must match stbir_datatype
|
|
static unsigned char stbir__type_size[] = {
|
|
1, 1, 1, 2, 4, 2 // STBIR_TYPE_UINT8,STBIR_TYPE_UINT8_SRGB,STBIR_TYPE_UINT8_SRGB_ALPHA,STBIR_TYPE_UINT16,STBIR_TYPE_FLOAT,STBIR_TYPE_HALF_FLOAT
|
|
};
|
|
|
|
// When gathering, the contributors are which source pixels contribute.
|
|
// When scattering, the contributors are which destination pixels are contributed to.
|
|
typedef struct
|
|
{
|
|
int n0; // First contributing pixel
|
|
int n1; // Last contributing pixel
|
|
} stbir__contributors;
|
|
|
|
typedef struct
|
|
{
|
|
int lowest; // First sample index for whole filter
|
|
int highest; // Last sample index for whole filter
|
|
int widest; // widest single set of samples for an output
|
|
} stbir__filter_extent_info;
|
|
|
|
typedef struct
|
|
{
|
|
int n0; // First pixel of decode buffer to write to
|
|
int n1; // Last pixel of decode that will be written to
|
|
int pixel_offset_for_input; // Pixel offset into input_scanline
|
|
} stbir__span;
|
|
|
|
typedef struct stbir__scale_info
|
|
{
|
|
int input_full_size;
|
|
int output_sub_size;
|
|
float scale;
|
|
float inv_scale;
|
|
float pixel_shift; // starting shift in output pixel space (in pixels)
|
|
int scale_is_rational;
|
|
stbir_uint32 scale_numerator, scale_denominator;
|
|
} stbir__scale_info;
|
|
|
|
typedef struct
|
|
{
|
|
stbir__contributors *contributors;
|
|
float *coefficients;
|
|
stbir__contributors *gather_prescatter_contributors;
|
|
float *gather_prescatter_coefficients;
|
|
stbir__scale_info scale_info;
|
|
float support;
|
|
stbir_filter filter_enum;
|
|
stbir__kernel_callback *filter_kernel;
|
|
stbir__support_callback *filter_support;
|
|
stbir_edge edge;
|
|
int coefficient_width;
|
|
int filter_pixel_width;
|
|
int filter_pixel_margin;
|
|
int num_contributors;
|
|
int contributors_size;
|
|
int coefficients_size;
|
|
stbir__filter_extent_info extent_info;
|
|
int is_gather; // 0 = scatter, 1 = gather with scale >= 1, 2 = gather with scale < 1
|
|
int gather_prescatter_num_contributors;
|
|
int gather_prescatter_coefficient_width;
|
|
int gather_prescatter_contributors_size;
|
|
int gather_prescatter_coefficients_size;
|
|
} stbir__sampler;
|
|
|
|
typedef struct
|
|
{
|
|
stbir__contributors conservative;
|
|
int edge_sizes[2]; // this can be less than filter_pixel_margin, if the filter and scaling falls off
|
|
stbir__span spans[2]; // can be two spans, if doing input subrect with clamp mode WRAP
|
|
} stbir__extents;
|
|
|
|
typedef struct
|
|
{
|
|
#ifdef STBIR_PROFILE
|
|
union
|
|
{
|
|
struct
|
|
{
|
|
stbir_uint64 total, looping, vertical, horizontal, decode, encode, alpha, unalpha;
|
|
} named;
|
|
stbir_uint64 array[8];
|
|
} profile;
|
|
stbir_uint64 *current_zone_excluded_ptr;
|
|
#endif
|
|
float *decode_buffer;
|
|
|
|
int ring_buffer_first_scanline;
|
|
int ring_buffer_last_scanline;
|
|
int ring_buffer_begin_index; // first_scanline is at this index in the ring buffer
|
|
int start_output_y, end_output_y;
|
|
int start_input_y, end_input_y; // used in scatter only
|
|
|
|
#ifdef STBIR__SEPARATE_ALLOCATIONS
|
|
float **ring_buffers; // one pointer for each ring buffer
|
|
#else
|
|
float *ring_buffer; // one big buffer that we index into
|
|
#endif
|
|
|
|
float *vertical_buffer;
|
|
|
|
char no_cache_straddle[64];
|
|
} stbir__per_split_info;
|
|
|
|
typedef float *stbir__decode_pixels_func(float *decode, int width_times_channels, void const *input);
|
|
typedef void stbir__alpha_weight_func(float *decode_buffer, int width_times_channels);
|
|
typedef void stbir__horizontal_gather_channels_func(float *output_buffer, unsigned int output_sub_size, float const *decode_buffer,
|
|
stbir__contributors const *horizontal_contributors, float const *horizontal_coefficients, int coefficient_width);
|
|
typedef void stbir__alpha_unweight_func(float *encode_buffer, int width_times_channels);
|
|
typedef void stbir__encode_pixels_func(void *output, int width_times_channels, float const *encode);
|
|
|
|
struct stbir__info
|
|
{
|
|
#ifdef STBIR_PROFILE
|
|
union
|
|
{
|
|
struct
|
|
{
|
|
stbir_uint64 total, build, alloc, horizontal, vertical, cleanup, pivot;
|
|
} named;
|
|
stbir_uint64 array[7];
|
|
} profile;
|
|
stbir_uint64 *current_zone_excluded_ptr;
|
|
#endif
|
|
stbir__sampler horizontal;
|
|
stbir__sampler vertical;
|
|
|
|
void const *input_data;
|
|
void *output_data;
|
|
|
|
int input_stride_bytes;
|
|
int output_stride_bytes;
|
|
int ring_buffer_length_bytes; // The length of an individual entry in the ring buffer. The total number of ring buffers is stbir__get_filter_pixel_width(filter)
|
|
int ring_buffer_num_entries; // Total number of entries in the ring buffer.
|
|
|
|
stbir_datatype input_type;
|
|
stbir_datatype output_type;
|
|
|
|
stbir_input_callback *in_pixels_cb;
|
|
void *user_data;
|
|
stbir_output_callback *out_pixels_cb;
|
|
|
|
stbir__extents scanline_extents;
|
|
|
|
void *alloced_mem;
|
|
stbir__per_split_info *split_info; // by default 1, but there will be N of these allocated based on the thread init you did
|
|
|
|
stbir__decode_pixels_func *decode_pixels;
|
|
stbir__alpha_weight_func *alpha_weight;
|
|
stbir__horizontal_gather_channels_func *horizontal_gather_channels;
|
|
stbir__alpha_unweight_func *alpha_unweight;
|
|
stbir__encode_pixels_func *encode_pixels;
|
|
|
|
int alloc_ring_buffer_num_entries; // Number of entries in the ring buffer that will be allocated
|
|
int splits; // count of splits
|
|
|
|
stbir_internal_pixel_layout input_pixel_layout_internal;
|
|
stbir_internal_pixel_layout output_pixel_layout_internal;
|
|
|
|
int input_color_and_type;
|
|
int offset_x, offset_y; // offset within output_data
|
|
int vertical_first;
|
|
int channels;
|
|
int effective_channels; // same as channels, except on RGBA/ARGB (7), or XA/AX (3)
|
|
size_t alloced_total;
|
|
};
|
|
|
|
#define stbir__max_uint8_as_float 255.0f
|
|
#define stbir__max_uint16_as_float 65535.0f
|
|
#define stbir__max_uint8_as_float_inverted 3.9215689e-03f // (1.0f/255.0f)
|
|
#define stbir__max_uint16_as_float_inverted 1.5259022e-05f // (1.0f/65535.0f)
|
|
#define stbir__small_float ((float)1 / (1 << 20) / (1 << 20) / (1 << 20) / (1 << 20) / (1 << 20) / (1 << 20))
|
|
|
|
// min/max friendly
|
|
#define STBIR_CLAMP(x, xmin, xmax) \
|
|
for (;;) \
|
|
{ \
|
|
if ((x) < (xmin)) \
|
|
(x) = (xmin); \
|
|
if ((x) > (xmax)) \
|
|
(x) = (xmax); \
|
|
break; \
|
|
}
|
|
|
|
static stbir__inline int stbir__min(int a, int b)
|
|
{
|
|
return a < b ? a : b;
|
|
}
|
|
|
|
static stbir__inline int stbir__max(int a, int b)
|
|
{
|
|
return a > b ? a : b;
|
|
}
|
|
|
|
static float stbir__srgb_uchar_to_linear_float[256] = {
|
|
0.000000f, 0.000304f, 0.000607f, 0.000911f, 0.001214f, 0.001518f, 0.001821f, 0.002125f, 0.002428f, 0.002732f, 0.003035f,
|
|
0.003347f, 0.003677f, 0.004025f, 0.004391f, 0.004777f, 0.005182f, 0.005605f, 0.006049f, 0.006512f, 0.006995f, 0.007499f,
|
|
0.008023f, 0.008568f, 0.009134f, 0.009721f, 0.010330f, 0.010960f, 0.011612f, 0.012286f, 0.012983f, 0.013702f, 0.014444f,
|
|
0.015209f, 0.015996f, 0.016807f, 0.017642f, 0.018500f, 0.019382f, 0.020289f, 0.021219f, 0.022174f, 0.023153f, 0.024158f,
|
|
0.025187f, 0.026241f, 0.027321f, 0.028426f, 0.029557f, 0.030713f, 0.031896f, 0.033105f, 0.034340f, 0.035601f, 0.036889f,
|
|
0.038204f, 0.039546f, 0.040915f, 0.042311f, 0.043735f, 0.045186f, 0.046665f, 0.048172f, 0.049707f, 0.051269f, 0.052861f,
|
|
0.054480f, 0.056128f, 0.057805f, 0.059511f, 0.061246f, 0.063010f, 0.064803f, 0.066626f, 0.068478f, 0.070360f, 0.072272f,
|
|
0.074214f, 0.076185f, 0.078187f, 0.080220f, 0.082283f, 0.084376f, 0.086500f, 0.088656f, 0.090842f, 0.093059f, 0.095307f,
|
|
0.097587f, 0.099899f, 0.102242f, 0.104616f, 0.107023f, 0.109462f, 0.111932f, 0.114435f, 0.116971f, 0.119538f, 0.122139f,
|
|
0.124772f, 0.127438f, 0.130136f, 0.132868f, 0.135633f, 0.138432f, 0.141263f, 0.144128f, 0.147027f, 0.149960f, 0.152926f,
|
|
0.155926f, 0.158961f, 0.162029f, 0.165132f, 0.168269f, 0.171441f, 0.174647f, 0.177888f, 0.181164f, 0.184475f, 0.187821f,
|
|
0.191202f, 0.194618f, 0.198069f, 0.201556f, 0.205079f, 0.208637f, 0.212231f, 0.215861f, 0.219526f, 0.223228f, 0.226966f,
|
|
0.230740f, 0.234551f, 0.238398f, 0.242281f, 0.246201f, 0.250158f, 0.254152f, 0.258183f, 0.262251f, 0.266356f, 0.270498f,
|
|
0.274677f, 0.278894f, 0.283149f, 0.287441f, 0.291771f, 0.296138f, 0.300544f, 0.304987f, 0.309469f, 0.313989f, 0.318547f,
|
|
0.323143f, 0.327778f, 0.332452f, 0.337164f, 0.341914f, 0.346704f, 0.351533f, 0.356400f, 0.361307f, 0.366253f, 0.371238f,
|
|
0.376262f, 0.381326f, 0.386430f, 0.391573f, 0.396755f, 0.401978f, 0.407240f, 0.412543f, 0.417885f, 0.423268f, 0.428691f,
|
|
0.434154f, 0.439657f, 0.445201f, 0.450786f, 0.456411f, 0.462077f, 0.467784f, 0.473532f, 0.479320f, 0.485150f, 0.491021f,
|
|
0.496933f, 0.502887f, 0.508881f, 0.514918f, 0.520996f, 0.527115f, 0.533276f, 0.539480f, 0.545725f, 0.552011f, 0.558340f,
|
|
0.564712f, 0.571125f, 0.577581f, 0.584078f, 0.590619f, 0.597202f, 0.603827f, 0.610496f, 0.617207f, 0.623960f, 0.630757f,
|
|
0.637597f, 0.644480f, 0.651406f, 0.658375f, 0.665387f, 0.672443f, 0.679543f, 0.686685f, 0.693872f, 0.701102f, 0.708376f,
|
|
0.715694f, 0.723055f, 0.730461f, 0.737911f, 0.745404f, 0.752942f, 0.760525f, 0.768151f, 0.775822f, 0.783538f, 0.791298f,
|
|
0.799103f, 0.806952f, 0.814847f, 0.822786f, 0.830770f, 0.838799f, 0.846873f, 0.854993f, 0.863157f, 0.871367f, 0.879622f,
|
|
0.887923f, 0.896269f, 0.904661f, 0.913099f, 0.921582f, 0.930111f, 0.938686f, 0.947307f, 0.955974f, 0.964686f, 0.973445f,
|
|
0.982251f, 0.991102f, 1.0f};
|
|
|
|
typedef union
|
|
{
|
|
unsigned int u;
|
|
float f;
|
|
} stbir__FP32;
|
|
|
|
// From https://gist.github.com/rygorous/2203834
|
|
|
|
static const stbir_uint32 fp32_to_srgb8_tab4[104] = {
|
|
0x0073000d,
|
|
0x007a000d,
|
|
0x0080000d,
|
|
0x0087000d,
|
|
0x008d000d,
|
|
0x0094000d,
|
|
0x009a000d,
|
|
0x00a1000d,
|
|
0x00a7001a,
|
|
0x00b4001a,
|
|
0x00c1001a,
|
|
0x00ce001a,
|
|
0x00da001a,
|
|
0x00e7001a,
|
|
0x00f4001a,
|
|
0x0101001a,
|
|
0x010e0033,
|
|
0x01280033,
|
|
0x01410033,
|
|
0x015b0033,
|
|
0x01750033,
|
|
0x018f0033,
|
|
0x01a80033,
|
|
0x01c20033,
|
|
0x01dc0067,
|
|
0x020f0067,
|
|
0x02430067,
|
|
0x02760067,
|
|
0x02aa0067,
|
|
0x02dd0067,
|
|
0x03110067,
|
|
0x03440067,
|
|
0x037800ce,
|
|
0x03df00ce,
|
|
0x044600ce,
|
|
0x04ad00ce,
|
|
0x051400ce,
|
|
0x057b00c5,
|
|
0x05dd00bc,
|
|
0x063b00b5,
|
|
0x06970158,
|
|
0x07420142,
|
|
0x07e30130,
|
|
0x087b0120,
|
|
0x090b0112,
|
|
0x09940106,
|
|
0x0a1700fc,
|
|
0x0a9500f2,
|
|
0x0b0f01cb,
|
|
0x0bf401ae,
|
|
0x0ccb0195,
|
|
0x0d950180,
|
|
0x0e56016e,
|
|
0x0f0d015e,
|
|
0x0fbc0150,
|
|
0x10630143,
|
|
0x11070264,
|
|
0x1238023e,
|
|
0x1357021d,
|
|
0x14660201,
|
|
0x156601e9,
|
|
0x165a01d3,
|
|
0x174401c0,
|
|
0x182401af,
|
|
0x18fe0331,
|
|
0x1a9602fe,
|
|
0x1c1502d2,
|
|
0x1d7e02ad,
|
|
0x1ed4028d,
|
|
0x201a0270,
|
|
0x21520256,
|
|
0x227d0240,
|
|
0x239f0443,
|
|
0x25c003fe,
|
|
0x27bf03c4,
|
|
0x29a10392,
|
|
0x2b6a0367,
|
|
0x2d1d0341,
|
|
0x2ebe031f,
|
|
0x304d0300,
|
|
0x31d105b0,
|
|
0x34a80555,
|
|
0x37520507,
|
|
0x39d504c5,
|
|
0x3c37048b,
|
|
0x3e7c0458,
|
|
0x40a8042a,
|
|
0x42bd0401,
|
|
0x44c20798,
|
|
0x488e071e,
|
|
0x4c1c06b6,
|
|
0x4f76065d,
|
|
0x52a50610,
|
|
0x55ac05cc,
|
|
0x5892058f,
|
|
0x5b590559,
|
|
0x5e0c0a23,
|
|
0x631c0980,
|
|
0x67db08f6,
|
|
0x6c55087f,
|
|
0x70940818,
|
|
0x74a007bd,
|
|
0x787d076c,
|
|
0x7c330723,
|
|
};
|
|
|
|
static stbir__inline stbir_uint8 stbir__linear_to_srgb_uchar(float in)
|
|
{
|
|
static const stbir__FP32 almostone = {0x3f7fffff}; // 1-eps
|
|
static const stbir__FP32 minval = {(127 - 13) << 23};
|
|
stbir_uint32 tab, bias, scale, t;
|
|
stbir__FP32 f;
|
|
|
|
// Clamp to [2^(-13), 1-eps]; these two values map to 0 and 1, respectively.
|
|
// The tests are carefully written so that NaNs map to 0, same as in the reference
|
|
// implementation.
|
|
if (!(in > minval.f)) // written this way to catch NaNs
|
|
return 0;
|
|
if (in > almostone.f)
|
|
return 255;
|
|
|
|
// Do the table lookup and unpack bias, scale
|
|
f.f = in;
|
|
tab = fp32_to_srgb8_tab4[(f.u - minval.u) >> 20];
|
|
bias = (tab >> 16) << 9;
|
|
scale = tab & 0xffff;
|
|
|
|
// Grab next-highest mantissa bits and perform linear interpolation
|
|
t = (f.u >> 12) & 0xff;
|
|
return (unsigned char)((bias + scale * t) >> 16);
|
|
}
|
|
|
|
#ifndef STBIR_FORCE_GATHER_FILTER_SCANLINES_AMOUNT
|
|
#define STBIR_FORCE_GATHER_FILTER_SCANLINES_AMOUNT 32 // when downsampling and <= 32 scanlines of buffering, use gather. gather used down to 1/8th scaling for 25% win.
|
|
#endif
|
|
|
|
#ifndef STBIR_FORCE_MINIMUM_SCANLINES_FOR_SPLITS
|
|
#define STBIR_FORCE_MINIMUM_SCANLINES_FOR_SPLITS 4 // when threading, what is the minimum number of scanlines for a split?
|
|
#endif
|
|
|
|
#define STBIR_INPUT_CALLBACK_PADDING 3
|
|
|
|
#ifdef _M_IX86_FP
|
|
#if (_M_IX86_FP >= 1)
|
|
#ifndef STBIR_SSE
|
|
#define STBIR_SSE
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef __TINYC__
|
|
// tiny c has no intrinsics yet - this can become a version check if they add them
|
|
#define STBIR_NO_SIMD
|
|
#endif
|
|
|
|
#if defined(_x86_64) || defined(__x86_64__) || defined(_M_X64) || defined(__x86_64) || defined(_M_AMD64) || defined(__SSE2__) || defined(STBIR_SSE) || defined(STBIR_SSE2)
|
|
#ifndef STBIR_SSE2
|
|
#define STBIR_SSE2
|
|
#endif
|
|
#if defined(__AVX__) || defined(STBIR_AVX2)
|
|
#ifndef STBIR_AVX
|
|
#ifndef STBIR_NO_AVX
|
|
#define STBIR_AVX
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#if defined(__AVX2__) || defined(STBIR_AVX2)
|
|
#ifndef STBIR_NO_AVX2
|
|
#ifndef STBIR_AVX2
|
|
#define STBIR_AVX2
|
|
#endif
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
#ifndef STBIR_FP16C // FP16C instructions are on all AVX2 cpus, so we can autoselect it here on microsoft - clang needs -m16c
|
|
#define STBIR_FP16C
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#ifdef __F16C__
|
|
#ifndef STBIR_FP16C // turn on FP16C instructions if the define is set (for clang and gcc)
|
|
#define STBIR_FP16C
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(_M_ARM64) || defined(__aarch64__) || defined(__arm64__) || ((__ARM_NEON_FP & 4) != 0) || defined(__ARM_NEON__)
|
|
#ifndef STBIR_NEON
|
|
#define STBIR_NEON
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(_M_ARM) || defined(__arm__)
|
|
#ifdef STBIR_USE_FMA
|
|
#undef STBIR_USE_FMA // no FMA for 32-bit arm on MSVC
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(__wasm__) && defined(__wasm_simd128__)
|
|
#ifndef STBIR_WASM
|
|
#define STBIR_WASM
|
|
#endif
|
|
#endif
|
|
|
|
// restrict pointers for the output pointers, other loop and unroll control
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
#define STBIR_STREAMOUT_PTR(star) star __restrict
|
|
#define STBIR_NO_UNROLL(ptr) __assume(ptr) // this oddly keeps msvc from unrolling a loop
|
|
#if _MSC_VER >= 1900
|
|
#define STBIR_NO_UNROLL_LOOP_START __pragma(loop(no_vector))
|
|
#else
|
|
#define STBIR_NO_UNROLL_LOOP_START
|
|
#endif
|
|
#elif defined(__clang__)
|
|
#define STBIR_STREAMOUT_PTR(star) star __restrict__
|
|
#define STBIR_NO_UNROLL(ptr) __asm__("" ::"r"(ptr))
|
|
#if (__clang_major__ >= 4) || ((__clang_major__ >= 3) && (__clang_minor__ >= 5))
|
|
#define STBIR_NO_UNROLL_LOOP_START _Pragma("clang loop unroll(disable)") _Pragma("clang loop vectorize(disable)")
|
|
#else
|
|
#define STBIR_NO_UNROLL_LOOP_START
|
|
#endif
|
|
#elif defined(__GNUC__)
|
|
#define STBIR_STREAMOUT_PTR(star) star __restrict__
|
|
#define STBIR_NO_UNROLL(ptr) __asm__("" ::"r"(ptr))
|
|
#if __GNUC__ >= 14
|
|
#define STBIR_NO_UNROLL_LOOP_START _Pragma("GCC unroll 0") _Pragma("GCC novector")
|
|
#else
|
|
#define STBIR_NO_UNROLL_LOOP_START
|
|
#endif
|
|
#define STBIR_NO_UNROLL_LOOP_START_INF_FOR
|
|
#else
|
|
#define STBIR_STREAMOUT_PTR(star) star
|
|
#define STBIR_NO_UNROLL(ptr)
|
|
#define STBIR_NO_UNROLL_LOOP_START
|
|
#endif
|
|
|
|
#ifndef STBIR_NO_UNROLL_LOOP_START_INF_FOR
|
|
#define STBIR_NO_UNROLL_LOOP_START_INF_FOR STBIR_NO_UNROLL_LOOP_START
|
|
#endif
|
|
|
|
#ifdef STBIR_NO_SIMD // force simd off for whatever reason
|
|
|
|
// force simd off overrides everything else, so clear it all
|
|
|
|
#ifdef STBIR_SSE2
|
|
#undef STBIR_SSE2
|
|
#endif
|
|
|
|
#ifdef STBIR_AVX
|
|
#undef STBIR_AVX
|
|
#endif
|
|
|
|
#ifdef STBIR_NEON
|
|
#undef STBIR_NEON
|
|
#endif
|
|
|
|
#ifdef STBIR_AVX2
|
|
#undef STBIR_AVX2
|
|
#endif
|
|
|
|
#ifdef STBIR_FP16C
|
|
#undef STBIR_FP16C
|
|
#endif
|
|
|
|
#ifdef STBIR_WASM
|
|
#undef STBIR_WASM
|
|
#endif
|
|
|
|
#ifdef STBIR_SIMD
|
|
#undef STBIR_SIMD
|
|
#endif
|
|
|
|
#else // STBIR_SIMD
|
|
|
|
#ifdef STBIR_SSE2
|
|
#include <emmintrin.h>
|
|
|
|
#define stbir__simdf __m128
|
|
#define stbir__simdi __m128i
|
|
|
|
#define stbir_simdi_castf(reg) _mm_castps_si128(reg)
|
|
#define stbir_simdf_casti(reg) _mm_castsi128_ps(reg)
|
|
|
|
#define stbir__simdf_load(reg, ptr) (reg) = _mm_loadu_ps((float const *)(ptr))
|
|
#define stbir__simdi_load(reg, ptr) (reg) = _mm_loadu_si128((stbir__simdi const *)(ptr))
|
|
#define stbir__simdf_load1(out, ptr) (out) = _mm_load_ss((float const *)(ptr)) // top values can be random (not denormal or nan for perf)
|
|
#define stbir__simdi_load1(out, ptr) (out) = _mm_castps_si128(_mm_load_ss((float const *)(ptr)))
|
|
#define stbir__simdf_load1z(out, ptr) (out) = _mm_load_ss((float const *)(ptr)) // top values must be zero
|
|
#define stbir__simdf_frep4(fvar) _mm_set_ps1(fvar)
|
|
#define stbir__simdf_load1frep4(out, fvar) (out) = _mm_set_ps1(fvar)
|
|
#define stbir__simdf_load2(out, ptr) (out) = _mm_castsi128_ps(_mm_loadl_epi64((__m128i *)(ptr))) // top values can be random (not denormal or nan for perf)
|
|
#define stbir__simdf_load2z(out, ptr) (out) = _mm_castsi128_ps(_mm_loadl_epi64((__m128i *)(ptr))) // top values must be zero
|
|
#define stbir__simdf_load2hmerge(out, reg, ptr) (out) = _mm_castpd_ps(_mm_loadh_pd(_mm_castps_pd(reg), (double *)(ptr)))
|
|
|
|
#define stbir__simdf_zeroP() _mm_setzero_ps()
|
|
#define stbir__simdf_zero(reg) (reg) = _mm_setzero_ps()
|
|
|
|
#define stbir__simdf_store(ptr, reg) _mm_storeu_ps((float *)(ptr), reg)
|
|
#define stbir__simdf_store1(ptr, reg) _mm_store_ss((float *)(ptr), reg)
|
|
#define stbir__simdf_store2(ptr, reg) _mm_storel_epi64((__m128i *)(ptr), _mm_castps_si128(reg))
|
|
#define stbir__simdf_store2h(ptr, reg) _mm_storeh_pd((double *)(ptr), _mm_castps_pd(reg))
|
|
|
|
#define stbir__simdi_store(ptr, reg) _mm_storeu_si128((__m128i *)(ptr), reg)
|
|
#define stbir__simdi_store1(ptr, reg) _mm_store_ss((float *)(ptr), _mm_castsi128_ps(reg))
|
|
#define stbir__simdi_store2(ptr, reg) _mm_storel_epi64((__m128i *)(ptr), (reg))
|
|
|
|
#define stbir__prefetch(ptr) _mm_prefetch((char *)(ptr), _MM_HINT_T0)
|
|
|
|
#define stbir__simdi_expand_u8_to_u32(out0, out1, out2, out3, ireg) \
|
|
{ \
|
|
stbir__simdi zero = _mm_setzero_si128(); \
|
|
out2 = _mm_unpacklo_epi8(ireg, zero); \
|
|
out3 = _mm_unpackhi_epi8(ireg, zero); \
|
|
out0 = _mm_unpacklo_epi16(out2, zero); \
|
|
out1 = _mm_unpackhi_epi16(out2, zero); \
|
|
out2 = _mm_unpacklo_epi16(out3, zero); \
|
|
out3 = _mm_unpackhi_epi16(out3, zero); \
|
|
}
|
|
|
|
#define stbir__simdi_expand_u8_to_1u32(out, ireg) \
|
|
{ \
|
|
stbir__simdi zero = _mm_setzero_si128(); \
|
|
out = _mm_unpacklo_epi8(ireg, zero); \
|
|
out = _mm_unpacklo_epi16(out, zero); \
|
|
}
|
|
|
|
#define stbir__simdi_expand_u16_to_u32(out0, out1, ireg) \
|
|
{ \
|
|
stbir__simdi zero = _mm_setzero_si128(); \
|
|
out0 = _mm_unpacklo_epi16(ireg, zero); \
|
|
out1 = _mm_unpackhi_epi16(ireg, zero); \
|
|
}
|
|
|
|
#define stbir__simdf_convert_float_to_i32(i, f) (i) = _mm_cvttps_epi32(f)
|
|
#define stbir__simdf_convert_float_to_int(f) _mm_cvtt_ss2si(f)
|
|
#define stbir__simdf_convert_float_to_uint8(f) ((unsigned char)_mm_cvtsi128_si32(_mm_cvttps_epi32(_mm_max_ps(_mm_min_ps(f, STBIR__CONSTF(STBIR_max_uint8_as_float)), _mm_setzero_ps()))))
|
|
#define stbir__simdf_convert_float_to_short(f) ((unsigned short)_mm_cvtsi128_si32(_mm_cvttps_epi32(_mm_max_ps(_mm_min_ps(f, STBIR__CONSTF(STBIR_max_uint16_as_float)), _mm_setzero_ps()))))
|
|
|
|
#define stbir__simdi_to_int(i) _mm_cvtsi128_si32(i)
|
|
#define stbir__simdi_convert_i32_to_float(out, ireg) (out) = _mm_cvtepi32_ps(ireg)
|
|
#define stbir__simdf_add(out, reg0, reg1) (out) = _mm_add_ps(reg0, reg1)
|
|
#define stbir__simdf_mult(out, reg0, reg1) (out) = _mm_mul_ps(reg0, reg1)
|
|
#define stbir__simdf_mult_mem(out, reg, ptr) (out) = _mm_mul_ps(reg, _mm_loadu_ps((float const *)(ptr)))
|
|
#define stbir__simdf_mult1_mem(out, reg, ptr) (out) = _mm_mul_ss(reg, _mm_load_ss((float const *)(ptr)))
|
|
#define stbir__simdf_add_mem(out, reg, ptr) (out) = _mm_add_ps(reg, _mm_loadu_ps((float const *)(ptr)))
|
|
#define stbir__simdf_add1_mem(out, reg, ptr) (out) = _mm_add_ss(reg, _mm_load_ss((float const *)(ptr)))
|
|
|
|
#ifdef STBIR_USE_FMA // not on by default to maintain bit identical simd to non-simd
|
|
#include <immintrin.h>
|
|
#define stbir__simdf_madd(out, add, mul1, mul2) (out) = _mm_fmadd_ps(mul1, mul2, add)
|
|
#define stbir__simdf_madd1(out, add, mul1, mul2) (out) = _mm_fmadd_ss(mul1, mul2, add)
|
|
#define stbir__simdf_madd_mem(out, add, mul, ptr) (out) = _mm_fmadd_ps(mul, _mm_loadu_ps((float const *)(ptr)), add)
|
|
#define stbir__simdf_madd1_mem(out, add, mul, ptr) (out) = _mm_fmadd_ss(mul, _mm_load_ss((float const *)(ptr)), add)
|
|
#else
|
|
#define stbir__simdf_madd(out, add, mul1, mul2) (out) = _mm_add_ps(add, _mm_mul_ps(mul1, mul2))
|
|
#define stbir__simdf_madd1(out, add, mul1, mul2) (out) = _mm_add_ss(add, _mm_mul_ss(mul1, mul2))
|
|
#define stbir__simdf_madd_mem(out, add, mul, ptr) (out) = _mm_add_ps(add, _mm_mul_ps(mul, _mm_loadu_ps((float const *)(ptr))))
|
|
#define stbir__simdf_madd1_mem(out, add, mul, ptr) (out) = _mm_add_ss(add, _mm_mul_ss(mul, _mm_load_ss((float const *)(ptr))))
|
|
#endif
|
|
|
|
#define stbir__simdf_add1(out, reg0, reg1) (out) = _mm_add_ss(reg0, reg1)
|
|
#define stbir__simdf_mult1(out, reg0, reg1) (out) = _mm_mul_ss(reg0, reg1)
|
|
|
|
#define stbir__simdf_and(out, reg0, reg1) (out) = _mm_and_ps(reg0, reg1)
|
|
#define stbir__simdf_or(out, reg0, reg1) (out) = _mm_or_ps(reg0, reg1)
|
|
|
|
#define stbir__simdf_min(out, reg0, reg1) (out) = _mm_min_ps(reg0, reg1)
|
|
#define stbir__simdf_max(out, reg0, reg1) (out) = _mm_max_ps(reg0, reg1)
|
|
#define stbir__simdf_min1(out, reg0, reg1) (out) = _mm_min_ss(reg0, reg1)
|
|
#define stbir__simdf_max1(out, reg0, reg1) (out) = _mm_max_ss(reg0, reg1)
|
|
|
|
#define stbir__simdf_0123ABCDto3ABx(out, reg0, reg1) (out) = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(_mm_shuffle_ps(reg1, reg0, (0 << 0) + (1 << 2) + (2 << 4) + (3 << 6))), (3 << 0) + (0 << 2) + (1 << 4) + (2 << 6)))
|
|
#define stbir__simdf_0123ABCDto23Ax(out, reg0, reg1) (out) = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(_mm_shuffle_ps(reg1, reg0, (0 << 0) + (1 << 2) + (2 << 4) + (3 << 6))), (2 << 0) + (3 << 2) + (0 << 4) + (1 << 6)))
|
|
|
|
static const stbir__simdf STBIR_zeroones = {0.0f, 1.0f, 0.0f, 1.0f};
|
|
static const stbir__simdf STBIR_onezeros = {1.0f, 0.0f, 1.0f, 0.0f};
|
|
#define stbir__simdf_aaa1(out, alp, ones) (out) = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(_mm_movehl_ps(ones, alp)), (1 << 0) + (1 << 2) + (1 << 4) + (2 << 6)))
|
|
#define stbir__simdf_1aaa(out, alp, ones) (out) = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(_mm_movelh_ps(ones, alp)), (0 << 0) + (2 << 2) + (2 << 4) + (2 << 6)))
|
|
#define stbir__simdf_a1a1(out, alp, ones) (out) = _mm_or_ps(_mm_castsi128_ps(_mm_srli_epi64(_mm_castps_si128(alp), 32)), STBIR_zeroones)
|
|
#define stbir__simdf_1a1a(out, alp, ones) (out) = _mm_or_ps(_mm_castsi128_ps(_mm_slli_epi64(_mm_castps_si128(alp), 32)), STBIR_onezeros)
|
|
|
|
#define stbir__simdf_swiz(reg, one, two, three, four) _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(reg), (one << 0) + (two << 2) + (three << 4) + (four << 6)))
|
|
|
|
#define stbir__simdi_and(out, reg0, reg1) (out) = _mm_and_si128(reg0, reg1)
|
|
#define stbir__simdi_or(out, reg0, reg1) (out) = _mm_or_si128(reg0, reg1)
|
|
#define stbir__simdi_16madd(out, reg0, reg1) (out) = _mm_madd_epi16(reg0, reg1)
|
|
|
|
#define stbir__simdf_pack_to_8bytes(out, aa, bb) \
|
|
{ \
|
|
stbir__simdf af, bf; \
|
|
stbir__simdi a, b; \
|
|
af = _mm_min_ps(aa, STBIR_max_uint8_as_float); \
|
|
bf = _mm_min_ps(bb, STBIR_max_uint8_as_float); \
|
|
af = _mm_max_ps(af, _mm_setzero_ps()); \
|
|
bf = _mm_max_ps(bf, _mm_setzero_ps()); \
|
|
a = _mm_cvttps_epi32(af); \
|
|
b = _mm_cvttps_epi32(bf); \
|
|
a = _mm_packs_epi32(a, b); \
|
|
out = _mm_packus_epi16(a, a); \
|
|
}
|
|
|
|
#define stbir__simdf_load4_transposed(o0, o1, o2, o3, ptr) \
|
|
stbir__simdf_load(o0, (ptr)); \
|
|
stbir__simdf_load(o1, (ptr) + 4); \
|
|
stbir__simdf_load(o2, (ptr) + 8); \
|
|
stbir__simdf_load(o3, (ptr) + 12); \
|
|
{ \
|
|
__m128 tmp0, tmp1, tmp2, tmp3; \
|
|
tmp0 = _mm_unpacklo_ps(o0, o1); \
|
|
tmp2 = _mm_unpacklo_ps(o2, o3); \
|
|
tmp1 = _mm_unpackhi_ps(o0, o1); \
|
|
tmp3 = _mm_unpackhi_ps(o2, o3); \
|
|
o0 = _mm_movelh_ps(tmp0, tmp2); \
|
|
o1 = _mm_movehl_ps(tmp2, tmp0); \
|
|
o2 = _mm_movelh_ps(tmp1, tmp3); \
|
|
o3 = _mm_movehl_ps(tmp3, tmp1); \
|
|
}
|
|
|
|
#define stbir__interleave_pack_and_store_16_u8(ptr, r0, r1, r2, r3) \
|
|
r0 = _mm_packs_epi32(r0, r1); \
|
|
r2 = _mm_packs_epi32(r2, r3); \
|
|
r1 = _mm_unpacklo_epi16(r0, r2); \
|
|
r3 = _mm_unpackhi_epi16(r0, r2); \
|
|
r0 = _mm_unpacklo_epi16(r1, r3); \
|
|
r2 = _mm_unpackhi_epi16(r1, r3); \
|
|
r0 = _mm_packus_epi16(r0, r2); \
|
|
stbir__simdi_store(ptr, r0);
|
|
|
|
#define stbir__simdi_32shr(out, reg, imm) out = _mm_srli_epi32(reg, imm)
|
|
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
// msvc inits with 8 bytes
|
|
#define STBIR__CONST_32_TO_8(v) (char)(unsigned char)((v) & 255), (char)(unsigned char)(((v) >> 8) & 255), (char)(unsigned char)(((v) >> 16) & 255), (char)(unsigned char)(((v) >> 24) & 255)
|
|
#define STBIR__CONST_4_32i(v) STBIR__CONST_32_TO_8(v), STBIR__CONST_32_TO_8(v), STBIR__CONST_32_TO_8(v), STBIR__CONST_32_TO_8(v)
|
|
#define STBIR__CONST_4d_32i(v0, v1, v2, v3) STBIR__CONST_32_TO_8(v0), STBIR__CONST_32_TO_8(v1), STBIR__CONST_32_TO_8(v2), STBIR__CONST_32_TO_8(v3)
|
|
#else
|
|
// everything else inits with long long's
|
|
#define STBIR__CONST_4_32i(v) (long long)((((stbir_uint64)(stbir_uint32)(v)) << 32) | ((stbir_uint64)(stbir_uint32)(v))), (long long)((((stbir_uint64)(stbir_uint32)(v)) << 32) | ((stbir_uint64)(stbir_uint32)(v)))
|
|
#define STBIR__CONST_4d_32i(v0, v1, v2, v3) (long long)((((stbir_uint64)(stbir_uint32)(v1)) << 32) | ((stbir_uint64)(stbir_uint32)(v0))), (long long)((((stbir_uint64)(stbir_uint32)(v3)) << 32) | ((stbir_uint64)(stbir_uint32)(v2)))
|
|
#endif
|
|
|
|
#define STBIR__SIMDF_CONST(var, x) stbir__simdf var = {x, x, x, x}
|
|
#define STBIR__SIMDI_CONST(var, x) stbir__simdi var = {STBIR__CONST_4_32i(x)}
|
|
#define STBIR__CONSTF(var) (var)
|
|
#define STBIR__CONSTI(var) (var)
|
|
|
|
#if defined(STBIR_AVX) || defined(__SSE4_1__)
|
|
#include <smmintrin.h>
|
|
#define stbir__simdf_pack_to_8words(out, reg0, reg1) out = _mm_packus_epi32(_mm_cvttps_epi32(_mm_max_ps(_mm_min_ps(reg0, STBIR__CONSTF(STBIR_max_uint16_as_float)), _mm_setzero_ps())), _mm_cvttps_epi32(_mm_max_ps(_mm_min_ps(reg1, STBIR__CONSTF(STBIR_max_uint16_as_float)), _mm_setzero_ps())))
|
|
#else
|
|
static STBIR__SIMDI_CONST(stbir__s32_32768, 32768);
|
|
static STBIR__SIMDI_CONST(stbir__s16_32768, ((32768 << 16) | 32768));
|
|
|
|
#define stbir__simdf_pack_to_8words(out, reg0, reg1) \
|
|
{ \
|
|
stbir__simdi tmp0, tmp1; \
|
|
tmp0 = _mm_cvttps_epi32(_mm_max_ps(_mm_min_ps(reg0, STBIR__CONSTF(STBIR_max_uint16_as_float)), _mm_setzero_ps())); \
|
|
tmp1 = _mm_cvttps_epi32(_mm_max_ps(_mm_min_ps(reg1, STBIR__CONSTF(STBIR_max_uint16_as_float)), _mm_setzero_ps())); \
|
|
tmp0 = _mm_sub_epi32(tmp0, stbir__s32_32768); \
|
|
tmp1 = _mm_sub_epi32(tmp1, stbir__s32_32768); \
|
|
out = _mm_packs_epi32(tmp0, tmp1); \
|
|
out = _mm_sub_epi16(out, stbir__s16_32768); \
|
|
}
|
|
|
|
#endif
|
|
|
|
#define STBIR_SIMD
|
|
|
|
// if we detect AVX, set the simd8 defines
|
|
#ifdef STBIR_AVX
|
|
#include <immintrin.h>
|
|
#define STBIR_SIMD8
|
|
#define stbir__simdf8 __m256
|
|
#define stbir__simdi8 __m256i
|
|
#define stbir__simdf8_load(out, ptr) (out) = _mm256_loadu_ps((float const *)(ptr))
|
|
#define stbir__simdi8_load(out, ptr) (out) = _mm256_loadu_si256((__m256i const *)(ptr))
|
|
#define stbir__simdf8_mult(out, a, b) (out) = _mm256_mul_ps((a), (b))
|
|
#define stbir__simdf8_store(ptr, out) _mm256_storeu_ps((float *)(ptr), out)
|
|
#define stbir__simdi8_store(ptr, reg) _mm256_storeu_si256((__m256i *)(ptr), reg)
|
|
#define stbir__simdf8_frep8(fval) _mm256_set1_ps(fval)
|
|
|
|
#define stbir__simdf8_min(out, reg0, reg1) (out) = _mm256_min_ps(reg0, reg1)
|
|
#define stbir__simdf8_max(out, reg0, reg1) (out) = _mm256_max_ps(reg0, reg1)
|
|
|
|
#define stbir__simdf8_add4halves(out, bot4, top8) (out) = _mm_add_ps(bot4, _mm256_extractf128_ps(top8, 1))
|
|
#define stbir__simdf8_mult_mem(out, reg, ptr) (out) = _mm256_mul_ps(reg, _mm256_loadu_ps((float const *)(ptr)))
|
|
#define stbir__simdf8_add_mem(out, reg, ptr) (out) = _mm256_add_ps(reg, _mm256_loadu_ps((float const *)(ptr)))
|
|
#define stbir__simdf8_add(out, a, b) (out) = _mm256_add_ps(a, b)
|
|
#define stbir__simdf8_load1b(out, ptr) (out) = _mm256_broadcast_ss(ptr)
|
|
#define stbir__simdf_load1rep4(out, ptr) (out) = _mm_broadcast_ss(ptr) // avx load instruction
|
|
|
|
#define stbir__simdi8_convert_i32_to_float(out, ireg) (out) = _mm256_cvtepi32_ps(ireg)
|
|
#define stbir__simdf8_convert_float_to_i32(i, f) (i) = _mm256_cvttps_epi32(f)
|
|
|
|
#define stbir__simdf8_bot4s(out, a, b) (out) = _mm256_permute2f128_ps(a, b, (0 << 0) + (2 << 4))
|
|
#define stbir__simdf8_top4s(out, a, b) (out) = _mm256_permute2f128_ps(a, b, (1 << 0) + (3 << 4))
|
|
|
|
#define stbir__simdf8_gettop4(reg) _mm256_extractf128_ps(reg, 1)
|
|
|
|
#ifdef STBIR_AVX2
|
|
|
|
#define stbir__simdi8_expand_u8_to_u32(out0, out1, ireg) \
|
|
{ \
|
|
stbir__simdi8 a, zero = _mm256_setzero_si256(); \
|
|
a = _mm256_permute4x64_epi64(_mm256_unpacklo_epi8(_mm256_permute4x64_epi64(_mm256_castsi128_si256(ireg), (0 << 0) + (2 << 2) + (1 << 4) + (3 << 6)), zero), (0 << 0) + (2 << 2) + (1 << 4) + (3 << 6)); \
|
|
out0 = _mm256_unpacklo_epi16(a, zero); \
|
|
out1 = _mm256_unpackhi_epi16(a, zero); \
|
|
}
|
|
|
|
#define stbir__simdf8_pack_to_16bytes(out, aa, bb) \
|
|
{ \
|
|
stbir__simdi8 t; \
|
|
stbir__simdf8 af, bf; \
|
|
stbir__simdi8 a, b; \
|
|
af = _mm256_min_ps(aa, STBIR_max_uint8_as_floatX); \
|
|
bf = _mm256_min_ps(bb, STBIR_max_uint8_as_floatX); \
|
|
af = _mm256_max_ps(af, _mm256_setzero_ps()); \
|
|
bf = _mm256_max_ps(bf, _mm256_setzero_ps()); \
|
|
a = _mm256_cvttps_epi32(af); \
|
|
b = _mm256_cvttps_epi32(bf); \
|
|
t = _mm256_permute4x64_epi64(_mm256_packs_epi32(a, b), (0 << 0) + (2 << 2) + (1 << 4) + (3 << 6)); \
|
|
out = _mm256_castsi256_si128(_mm256_permute4x64_epi64(_mm256_packus_epi16(t, t), (0 << 0) + (2 << 2) + (1 << 4) + (3 << 6))); \
|
|
}
|
|
|
|
#define stbir__simdi8_expand_u16_to_u32(out, ireg) out = _mm256_unpacklo_epi16(_mm256_permute4x64_epi64(_mm256_castsi128_si256(ireg), (0 << 0) + (2 << 2) + (1 << 4) + (3 << 6)), _mm256_setzero_si256());
|
|
|
|
#define stbir__simdf8_pack_to_16words(out, aa, bb) \
|
|
{ \
|
|
stbir__simdf8 af, bf; \
|
|
stbir__simdi8 a, b; \
|
|
af = _mm256_min_ps(aa, STBIR_max_uint16_as_floatX); \
|
|
bf = _mm256_min_ps(bb, STBIR_max_uint16_as_floatX); \
|
|
af = _mm256_max_ps(af, _mm256_setzero_ps()); \
|
|
bf = _mm256_max_ps(bf, _mm256_setzero_ps()); \
|
|
a = _mm256_cvttps_epi32(af); \
|
|
b = _mm256_cvttps_epi32(bf); \
|
|
(out) = _mm256_permute4x64_epi64(_mm256_packus_epi32(a, b), (0 << 0) + (2 << 2) + (1 << 4) + (3 << 6)); \
|
|
}
|
|
|
|
#else
|
|
|
|
#define stbir__simdi8_expand_u8_to_u32(out0, out1, ireg) \
|
|
{ \
|
|
stbir__simdi a, zero = _mm_setzero_si128(); \
|
|
a = _mm_unpacklo_epi8(ireg, zero); \
|
|
out0 = _mm256_setr_m128i(_mm_unpacklo_epi16(a, zero), _mm_unpackhi_epi16(a, zero)); \
|
|
a = _mm_unpackhi_epi8(ireg, zero); \
|
|
out1 = _mm256_setr_m128i(_mm_unpacklo_epi16(a, zero), _mm_unpackhi_epi16(a, zero)); \
|
|
}
|
|
|
|
#define stbir__simdf8_pack_to_16bytes(out, aa, bb) \
|
|
{ \
|
|
stbir__simdi t; \
|
|
stbir__simdf8 af, bf; \
|
|
stbir__simdi8 a, b; \
|
|
af = _mm256_min_ps(aa, STBIR_max_uint8_as_floatX); \
|
|
bf = _mm256_min_ps(bb, STBIR_max_uint8_as_floatX); \
|
|
af = _mm256_max_ps(af, _mm256_setzero_ps()); \
|
|
bf = _mm256_max_ps(bf, _mm256_setzero_ps()); \
|
|
a = _mm256_cvttps_epi32(af); \
|
|
b = _mm256_cvttps_epi32(bf); \
|
|
out = _mm_packs_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1)); \
|
|
out = _mm_packus_epi16(out, out); \
|
|
t = _mm_packs_epi32(_mm256_castsi256_si128(b), _mm256_extractf128_si256(b, 1)); \
|
|
t = _mm_packus_epi16(t, t); \
|
|
out = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(out), _mm_castsi128_ps(t), (0 << 0) + (1 << 2) + (0 << 4) + (1 << 6))); \
|
|
}
|
|
|
|
#define stbir__simdi8_expand_u16_to_u32(out, ireg) \
|
|
{ \
|
|
stbir__simdi a, b, zero = _mm_setzero_si128(); \
|
|
a = _mm_unpacklo_epi16(ireg, zero); \
|
|
b = _mm_unpackhi_epi16(ireg, zero); \
|
|
out = _mm256_insertf128_si256(_mm256_castsi128_si256(a), b, 1); \
|
|
}
|
|
|
|
#define stbir__simdf8_pack_to_16words(out, aa, bb) \
|
|
{ \
|
|
stbir__simdi t0, t1; \
|
|
stbir__simdf8 af, bf; \
|
|
stbir__simdi8 a, b; \
|
|
af = _mm256_min_ps(aa, STBIR_max_uint16_as_floatX); \
|
|
bf = _mm256_min_ps(bb, STBIR_max_uint16_as_floatX); \
|
|
af = _mm256_max_ps(af, _mm256_setzero_ps()); \
|
|
bf = _mm256_max_ps(bf, _mm256_setzero_ps()); \
|
|
a = _mm256_cvttps_epi32(af); \
|
|
b = _mm256_cvttps_epi32(bf); \
|
|
t0 = _mm_packus_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1)); \
|
|
t1 = _mm_packus_epi32(_mm256_castsi256_si128(b), _mm256_extractf128_si256(b, 1)); \
|
|
out = _mm256_setr_m128i(t0, t1); \
|
|
}
|
|
|
|
#endif
|
|
|
|
static __m256i stbir_00001111 = {STBIR__CONST_4d_32i(0, 0, 0, 0), STBIR__CONST_4d_32i(1, 1, 1, 1)};
|
|
#define stbir__simdf8_0123to00001111(out, in) (out) = _mm256_permutevar_ps(in, stbir_00001111)
|
|
|
|
static __m256i stbir_22223333 = {STBIR__CONST_4d_32i(2, 2, 2, 2), STBIR__CONST_4d_32i(3, 3, 3, 3)};
|
|
#define stbir__simdf8_0123to22223333(out, in) (out) = _mm256_permutevar_ps(in, stbir_22223333)
|
|
|
|
#define stbir__simdf8_0123to2222(out, in) (out) = stbir__simdf_swiz(_mm256_castps256_ps128(in), 2, 2, 2, 2)
|
|
|
|
#define stbir__simdf8_load4b(out, ptr) (out) = _mm256_broadcast_ps((__m128 const *)(ptr))
|
|
|
|
static __m256i stbir_00112233 = {STBIR__CONST_4d_32i(0, 0, 1, 1), STBIR__CONST_4d_32i(2, 2, 3, 3)};
|
|
#define stbir__simdf8_0123to00112233(out, in) (out) = _mm256_permutevar_ps(in, stbir_00112233)
|
|
#define stbir__simdf8_add4(out, a8, b) (out) = _mm256_add_ps(a8, _mm256_castps128_ps256(b))
|
|
|
|
static __m256i stbir_load6 = {STBIR__CONST_4_32i(0x80000000), STBIR__CONST_4d_32i(0x80000000, 0x80000000, 0, 0)};
|
|
#define stbir__simdf8_load6z(out, ptr) (out) = _mm256_maskload_ps(ptr, stbir_load6)
|
|
|
|
#define stbir__simdf8_0123to00000000(out, in) (out) = _mm256_shuffle_ps(in, in, (0 << 0) + (0 << 2) + (0 << 4) + (0 << 6))
|
|
#define stbir__simdf8_0123to11111111(out, in) (out) = _mm256_shuffle_ps(in, in, (1 << 0) + (1 << 2) + (1 << 4) + (1 << 6))
|
|
#define stbir__simdf8_0123to22222222(out, in) (out) = _mm256_shuffle_ps(in, in, (2 << 0) + (2 << 2) + (2 << 4) + (2 << 6))
|
|
#define stbir__simdf8_0123to33333333(out, in) (out) = _mm256_shuffle_ps(in, in, (3 << 0) + (3 << 2) + (3 << 4) + (3 << 6))
|
|
#define stbir__simdf8_0123to21032103(out, in) (out) = _mm256_shuffle_ps(in, in, (2 << 0) + (1 << 2) + (0 << 4) + (3 << 6))
|
|
#define stbir__simdf8_0123to32103210(out, in) (out) = _mm256_shuffle_ps(in, in, (3 << 0) + (2 << 2) + (1 << 4) + (0 << 6))
|
|
#define stbir__simdf8_0123to12301230(out, in) (out) = _mm256_shuffle_ps(in, in, (1 << 0) + (2 << 2) + (3 << 4) + (0 << 6))
|
|
#define stbir__simdf8_0123to10321032(out, in) (out) = _mm256_shuffle_ps(in, in, (1 << 0) + (0 << 2) + (3 << 4) + (2 << 6))
|
|
#define stbir__simdf8_0123to30123012(out, in) (out) = _mm256_shuffle_ps(in, in, (3 << 0) + (0 << 2) + (1 << 4) + (2 << 6))
|
|
|
|
#define stbir__simdf8_0123to11331133(out, in) (out) = _mm256_shuffle_ps(in, in, (1 << 0) + (1 << 2) + (3 << 4) + (3 << 6))
|
|
#define stbir__simdf8_0123to00220022(out, in) (out) = _mm256_shuffle_ps(in, in, (0 << 0) + (0 << 2) + (2 << 4) + (2 << 6))
|
|
|
|
#define stbir__simdf8_aaa1(out, alp, ones) \
|
|
(out) = _mm256_blend_ps(alp, ones, (1 << 0) + (1 << 1) + (1 << 2) + (0 << 3) + (1 << 4) + (1 << 5) + (1 << 6) + (0 << 7)); \
|
|
(out) = _mm256_shuffle_ps(out, out, (3 << 0) + (3 << 2) + (3 << 4) + (0 << 6))
|
|
#define stbir__simdf8_1aaa(out, alp, ones) \
|
|
(out) = _mm256_blend_ps(alp, ones, (0 << 0) + (1 << 1) + (1 << 2) + (1 << 3) + (0 << 4) + (1 << 5) + (1 << 6) + (1 << 7)); \
|
|
(out) = _mm256_shuffle_ps(out, out, (1 << 0) + (0 << 2) + (0 << 4) + (0 << 6))
|
|
#define stbir__simdf8_a1a1(out, alp, ones) \
|
|
(out) = _mm256_blend_ps(alp, ones, (1 << 0) + (0 << 1) + (1 << 2) + (0 << 3) + (1 << 4) + (0 << 5) + (1 << 6) + (0 << 7)); \
|
|
(out) = _mm256_shuffle_ps(out, out, (1 << 0) + (0 << 2) + (3 << 4) + (2 << 6))
|
|
#define stbir__simdf8_1a1a(out, alp, ones) \
|
|
(out) = _mm256_blend_ps(alp, ones, (0 << 0) + (1 << 1) + (0 << 2) + (1 << 3) + (0 << 4) + (1 << 5) + (0 << 6) + (1 << 7)); \
|
|
(out) = _mm256_shuffle_ps(out, out, (1 << 0) + (0 << 2) + (3 << 4) + (2 << 6))
|
|
|
|
#define stbir__simdf8_zero(reg) (reg) = _mm256_setzero_ps()
|
|
|
|
#ifdef STBIR_USE_FMA // not on by default to maintain bit identical simd to non-simd
|
|
#define stbir__simdf8_madd(out, add, mul1, mul2) (out) = _mm256_fmadd_ps(mul1, mul2, add)
|
|
#define stbir__simdf8_madd_mem(out, add, mul, ptr) (out) = _mm256_fmadd_ps(mul, _mm256_loadu_ps((float const *)(ptr)), add)
|
|
#define stbir__simdf8_madd_mem4(out, add, mul, ptr) (out) = _mm256_fmadd_ps(_mm256_setr_m128(mul, _mm_setzero_ps()), _mm256_setr_m128(_mm_loadu_ps((float const *)(ptr)), _mm_setzero_ps()), add)
|
|
#else
|
|
#define stbir__simdf8_madd(out, add, mul1, mul2) (out) = _mm256_add_ps(add, _mm256_mul_ps(mul1, mul2))
|
|
#define stbir__simdf8_madd_mem(out, add, mul, ptr) (out) = _mm256_add_ps(add, _mm256_mul_ps(mul, _mm256_loadu_ps((float const *)(ptr))))
|
|
#define stbir__simdf8_madd_mem4(out, add, mul, ptr) (out) = _mm256_add_ps(add, _mm256_setr_m128(_mm_mul_ps(mul, _mm_loadu_ps((float const *)(ptr))), _mm_setzero_ps()))
|
|
#endif
|
|
#define stbir__if_simdf8_cast_to_simdf4(val) _mm256_castps256_ps128(val)
|
|
|
|
#endif
|
|
|
|
#ifdef STBIR_FLOORF
|
|
#undef STBIR_FLOORF
|
|
#endif
|
|
#define STBIR_FLOORF stbir_simd_floorf
|
|
static stbir__inline float stbir_simd_floorf(float x) // martins floorf
|
|
{
|
|
#if defined(STBIR_AVX) || defined(__SSE4_1__) || defined(STBIR_SSE41)
|
|
__m128 t = _mm_set_ss(x);
|
|
return _mm_cvtss_f32(_mm_floor_ss(t, t));
|
|
#else
|
|
__m128 f = _mm_set_ss(x);
|
|
__m128 t = _mm_cvtepi32_ps(_mm_cvttps_epi32(f));
|
|
__m128 r = _mm_add_ss(t, _mm_and_ps(_mm_cmplt_ss(f, t), _mm_set_ss(-1.0f)));
|
|
return _mm_cvtss_f32(r);
|
|
#endif
|
|
}
|
|
|
|
#ifdef STBIR_CEILF
|
|
#undef STBIR_CEILF
|
|
#endif
|
|
#define STBIR_CEILF stbir_simd_ceilf
|
|
static stbir__inline float stbir_simd_ceilf(float x) // martins ceilf
|
|
{
|
|
#if defined(STBIR_AVX) || defined(__SSE4_1__) || defined(STBIR_SSE41)
|
|
__m128 t = _mm_set_ss(x);
|
|
return _mm_cvtss_f32(_mm_ceil_ss(t, t));
|
|
#else
|
|
__m128 f = _mm_set_ss(x);
|
|
__m128 t = _mm_cvtepi32_ps(_mm_cvttps_epi32(f));
|
|
__m128 r = _mm_add_ss(t, _mm_and_ps(_mm_cmplt_ss(t, f), _mm_set_ss(1.0f)));
|
|
return _mm_cvtss_f32(r);
|
|
#endif
|
|
}
|
|
|
|
#elif defined(STBIR_NEON)
|
|
|
|
#include <arm_neon.h>
|
|
|
|
#define stbir__simdf float32x4_t
|
|
#define stbir__simdi uint32x4_t
|
|
|
|
#define stbir_simdi_castf(reg) vreinterpretq_u32_f32(reg)
|
|
#define stbir_simdf_casti(reg) vreinterpretq_f32_u32(reg)
|
|
|
|
#define stbir__simdf_load(reg, ptr) (reg) = vld1q_f32((float const *)(ptr))
|
|
#define stbir__simdi_load(reg, ptr) (reg) = vld1q_u32((uint32_t const *)(ptr))
|
|
#define stbir__simdf_load1(out, ptr) (out) = vld1q_dup_f32((float const *)(ptr)) // top values can be random (not denormal or nan for perf)
|
|
#define stbir__simdi_load1(out, ptr) (out) = vld1q_dup_u32((uint32_t const *)(ptr))
|
|
#define stbir__simdf_load1z(out, ptr) (out) = vld1q_lane_f32((float const *)(ptr), vdupq_n_f32(0), 0) // top values must be zero
|
|
#define stbir__simdf_frep4(fvar) vdupq_n_f32(fvar)
|
|
#define stbir__simdf_load1frep4(out, fvar) (out) = vdupq_n_f32(fvar)
|
|
#define stbir__simdf_load2(out, ptr) (out) = vcombine_f32(vld1_f32((float const *)(ptr)), vcreate_f32(0)) // top values can be random (not denormal or nan for perf)
|
|
#define stbir__simdf_load2z(out, ptr) (out) = vcombine_f32(vld1_f32((float const *)(ptr)), vcreate_f32(0)) // top values must be zero
|
|
#define stbir__simdf_load2hmerge(out, reg, ptr) (out) = vcombine_f32(vget_low_f32(reg), vld1_f32((float const *)(ptr)))
|
|
|
|
#define stbir__simdf_zeroP() vdupq_n_f32(0)
|
|
#define stbir__simdf_zero(reg) (reg) = vdupq_n_f32(0)
|
|
|
|
#define stbir__simdf_store(ptr, reg) vst1q_f32((float *)(ptr), reg)
|
|
#define stbir__simdf_store1(ptr, reg) vst1q_lane_f32((float *)(ptr), reg, 0)
|
|
#define stbir__simdf_store2(ptr, reg) vst1_f32((float *)(ptr), vget_low_f32(reg))
|
|
#define stbir__simdf_store2h(ptr, reg) vst1_f32((float *)(ptr), vget_high_f32(reg))
|
|
|
|
#define stbir__simdi_store(ptr, reg) vst1q_u32((uint32_t *)(ptr), reg)
|
|
#define stbir__simdi_store1(ptr, reg) vst1q_lane_u32((uint32_t *)(ptr), reg, 0)
|
|
#define stbir__simdi_store2(ptr, reg) vst1_u32((uint32_t *)(ptr), vget_low_u32(reg))
|
|
|
|
#define stbir__prefetch(ptr)
|
|
|
|
#define stbir__simdi_expand_u8_to_u32(out0, out1, out2, out3, ireg) \
|
|
{ \
|
|
uint16x8_t l = vmovl_u8(vget_low_u8(vreinterpretq_u8_u32(ireg))); \
|
|
uint16x8_t h = vmovl_u8(vget_high_u8(vreinterpretq_u8_u32(ireg))); \
|
|
out0 = vmovl_u16(vget_low_u16(l)); \
|
|
out1 = vmovl_u16(vget_high_u16(l)); \
|
|
out2 = vmovl_u16(vget_low_u16(h)); \
|
|
out3 = vmovl_u16(vget_high_u16(h)); \
|
|
}
|
|
|
|
#define stbir__simdi_expand_u8_to_1u32(out, ireg) \
|
|
{ \
|
|
uint16x8_t tmp = vmovl_u8(vget_low_u8(vreinterpretq_u8_u32(ireg))); \
|
|
out = vmovl_u16(vget_low_u16(tmp)); \
|
|
}
|
|
|
|
#define stbir__simdi_expand_u16_to_u32(out0, out1, ireg) \
|
|
{ \
|
|
uint16x8_t tmp = vreinterpretq_u16_u32(ireg); \
|
|
out0 = vmovl_u16(vget_low_u16(tmp)); \
|
|
out1 = vmovl_u16(vget_high_u16(tmp)); \
|
|
}
|
|
|
|
#define stbir__simdf_convert_float_to_i32(i, f) (i) = vreinterpretq_u32_s32(vcvtq_s32_f32(f))
|
|
#define stbir__simdf_convert_float_to_int(f) vgetq_lane_s32(vcvtq_s32_f32(f), 0)
|
|
#define stbir__simdi_to_int(i) (int)vgetq_lane_u32(i, 0)
|
|
#define stbir__simdf_convert_float_to_uint8(f) ((unsigned char)vgetq_lane_s32(vcvtq_s32_f32(vmaxq_f32(vminq_f32(f, STBIR__CONSTF(STBIR_max_uint8_as_float)), vdupq_n_f32(0))), 0))
|
|
#define stbir__simdf_convert_float_to_short(f) ((unsigned short)vgetq_lane_s32(vcvtq_s32_f32(vmaxq_f32(vminq_f32(f, STBIR__CONSTF(STBIR_max_uint16_as_float)), vdupq_n_f32(0))), 0))
|
|
#define stbir__simdi_convert_i32_to_float(out, ireg) (out) = vcvtq_f32_s32(vreinterpretq_s32_u32(ireg))
|
|
#define stbir__simdf_add(out, reg0, reg1) (out) = vaddq_f32(reg0, reg1)
|
|
#define stbir__simdf_mult(out, reg0, reg1) (out) = vmulq_f32(reg0, reg1)
|
|
#define stbir__simdf_mult_mem(out, reg, ptr) (out) = vmulq_f32(reg, vld1q_f32((float const *)(ptr)))
|
|
#define stbir__simdf_mult1_mem(out, reg, ptr) (out) = vmulq_f32(reg, vld1q_dup_f32((float const *)(ptr)))
|
|
#define stbir__simdf_add_mem(out, reg, ptr) (out) = vaddq_f32(reg, vld1q_f32((float const *)(ptr)))
|
|
#define stbir__simdf_add1_mem(out, reg, ptr) (out) = vaddq_f32(reg, vld1q_dup_f32((float const *)(ptr)))
|
|
|
|
#ifdef STBIR_USE_FMA // not on by default to maintain bit identical simd to non-simd (and also x64 no madd to arm madd)
|
|
#define stbir__simdf_madd(out, add, mul1, mul2) (out) = vfmaq_f32(add, mul1, mul2)
|
|
#define stbir__simdf_madd1(out, add, mul1, mul2) (out) = vfmaq_f32(add, mul1, mul2)
|
|
#define stbir__simdf_madd_mem(out, add, mul, ptr) (out) = vfmaq_f32(add, mul, vld1q_f32((float const *)(ptr)))
|
|
#define stbir__simdf_madd1_mem(out, add, mul, ptr) (out) = vfmaq_f32(add, mul, vld1q_dup_f32((float const *)(ptr)))
|
|
#else
|
|
#define stbir__simdf_madd(out, add, mul1, mul2) (out) = vaddq_f32(add, vmulq_f32(mul1, mul2))
|
|
#define stbir__simdf_madd1(out, add, mul1, mul2) (out) = vaddq_f32(add, vmulq_f32(mul1, mul2))
|
|
#define stbir__simdf_madd_mem(out, add, mul, ptr) (out) = vaddq_f32(add, vmulq_f32(mul, vld1q_f32((float const *)(ptr))))
|
|
#define stbir__simdf_madd1_mem(out, add, mul, ptr) (out) = vaddq_f32(add, vmulq_f32(mul, vld1q_dup_f32((float const *)(ptr))))
|
|
#endif
|
|
|
|
#define stbir__simdf_add1(out, reg0, reg1) (out) = vaddq_f32(reg0, reg1)
|
|
#define stbir__simdf_mult1(out, reg0, reg1) (out) = vmulq_f32(reg0, reg1)
|
|
|
|
#define stbir__simdf_and(out, reg0, reg1) (out) = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(reg0), vreinterpretq_u32_f32(reg1)))
|
|
#define stbir__simdf_or(out, reg0, reg1) (out) = vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(reg0), vreinterpretq_u32_f32(reg1)))
|
|
|
|
#define stbir__simdf_min(out, reg0, reg1) (out) = vminq_f32(reg0, reg1)
|
|
#define stbir__simdf_max(out, reg0, reg1) (out) = vmaxq_f32(reg0, reg1)
|
|
#define stbir__simdf_min1(out, reg0, reg1) (out) = vminq_f32(reg0, reg1)
|
|
#define stbir__simdf_max1(out, reg0, reg1) (out) = vmaxq_f32(reg0, reg1)
|
|
|
|
#define stbir__simdf_0123ABCDto3ABx(out, reg0, reg1) (out) = vextq_f32(reg0, reg1, 3)
|
|
#define stbir__simdf_0123ABCDto23Ax(out, reg0, reg1) (out) = vextq_f32(reg0, reg1, 2)
|
|
|
|
#define stbir__simdf_a1a1(out, alp, ones) (out) = vzipq_f32(vuzpq_f32(alp, alp).val[1], ones).val[0]
|
|
#define stbir__simdf_1a1a(out, alp, ones) (out) = vzipq_f32(ones, vuzpq_f32(alp, alp).val[0]).val[0]
|
|
|
|
#if defined(_M_ARM64) || defined(__aarch64__) || defined(__arm64__)
|
|
|
|
#define stbir__simdf_aaa1(out, alp, ones) (out) = vcopyq_laneq_f32(vdupq_n_f32(vgetq_lane_f32(alp, 3)), 3, ones, 3)
|
|
#define stbir__simdf_1aaa(out, alp, ones) (out) = vcopyq_laneq_f32(vdupq_n_f32(vgetq_lane_f32(alp, 0)), 0, ones, 0)
|
|
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
#define stbir_make16(a, b, c, d) vcombine_u8( \
|
|
vcreate_u8((4 * a + 0) | ((4 * a + 1) << 8) | ((4 * a + 2) << 16) | ((4 * a + 3) << 24) | \
|
|
((stbir_uint64)(4 * b + 0) << 32) | ((stbir_uint64)(4 * b + 1) << 40) | ((stbir_uint64)(4 * b + 2) << 48) | ((stbir_uint64)(4 * b + 3) << 56)), \
|
|
vcreate_u8((4 * c + 0) | ((4 * c + 1) << 8) | ((4 * c + 2) << 16) | ((4 * c + 3) << 24) | \
|
|
((stbir_uint64)(4 * d + 0) << 32) | ((stbir_uint64)(4 * d + 1) << 40) | ((stbir_uint64)(4 * d + 2) << 48) | ((stbir_uint64)(4 * d + 3) << 56)))
|
|
|
|
static stbir__inline uint8x16x2_t stbir_make16x2(float32x4_t rega, float32x4_t regb)
|
|
{
|
|
uint8x16x2_t r = {vreinterpretq_u8_f32(rega), vreinterpretq_u8_f32(regb)};
|
|
return r;
|
|
}
|
|
#else
|
|
#define stbir_make16(a, b, c, d) (uint8x16_t){4 * a + 0, 4 * a + 1, 4 * a + 2, 4 * a + 3, 4 * b + 0, 4 * b + 1, 4 * b + 2, 4 * b + 3, 4 * c + 0, 4 * c + 1, 4 * c + 2, 4 * c + 3, 4 * d + 0, 4 * d + 1, 4 * d + 2, 4 * d + 3}
|
|
#define stbir_make16x2(a, b) \
|
|
(uint8x16x2_t) \
|
|
{ \
|
|
{ \
|
|
vreinterpretq_u8_f32(a), vreinterpretq_u8_f32(b) \
|
|
} \
|
|
}
|
|
#endif
|
|
|
|
#define stbir__simdf_swiz(reg, one, two, three, four) vreinterpretq_f32_u8(vqtbl1q_u8(vreinterpretq_u8_f32(reg), stbir_make16(one, two, three, four)))
|
|
#define stbir__simdf_swiz2(rega, regb, one, two, three, four) vreinterpretq_f32_u8(vqtbl2q_u8(stbir_make16x2(rega, regb), stbir_make16(one, two, three, four)))
|
|
|
|
#define stbir__simdi_16madd(out, reg0, reg1) \
|
|
{ \
|
|
int16x8_t r0 = vreinterpretq_s16_u32(reg0); \
|
|
int16x8_t r1 = vreinterpretq_s16_u32(reg1); \
|
|
int32x4_t tmp0 = vmull_s16(vget_low_s16(r0), vget_low_s16(r1)); \
|
|
int32x4_t tmp1 = vmull_s16(vget_high_s16(r0), vget_high_s16(r1)); \
|
|
(out) = vreinterpretq_u32_s32(vpaddq_s32(tmp0, tmp1)); \
|
|
}
|
|
|
|
#else
|
|
|
|
#define stbir__simdf_aaa1(out, alp, ones) (out) = vsetq_lane_f32(1.0f, vdupq_n_f32(vgetq_lane_f32(alp, 3)), 3)
|
|
#define stbir__simdf_1aaa(out, alp, ones) (out) = vsetq_lane_f32(1.0f, vdupq_n_f32(vgetq_lane_f32(alp, 0)), 0)
|
|
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
static stbir__inline uint8x8x2_t stbir_make8x2(float32x4_t reg)
|
|
{
|
|
uint8x8x2_t r = {{vget_low_u8(vreinterpretq_u8_f32(reg)), vget_high_u8(vreinterpretq_u8_f32(reg))}};
|
|
return r;
|
|
}
|
|
#define stbir_make8(a, b) vcreate_u8( \
|
|
(4 * a + 0) | ((4 * a + 1) << 8) | ((4 * a + 2) << 16) | ((4 * a + 3) << 24) | \
|
|
((stbir_uint64)(4 * b + 0) << 32) | ((stbir_uint64)(4 * b + 1) << 40) | ((stbir_uint64)(4 * b + 2) << 48) | ((stbir_uint64)(4 * b + 3) << 56))
|
|
#else
|
|
#define stbir_make8x2(reg) \
|
|
(uint8x8x2_t) \
|
|
{ \
|
|
{ \
|
|
vget_low_u8(vreinterpretq_u8_f32(reg)), vget_high_u8(vreinterpretq_u8_f32(reg)) \
|
|
} \
|
|
}
|
|
#define stbir_make8(a, b) (uint8x8_t){4 * a + 0, 4 * a + 1, 4 * a + 2, 4 * a + 3, 4 * b + 0, 4 * b + 1, 4 * b + 2, 4 * b + 3}
|
|
#endif
|
|
|
|
#define stbir__simdf_swiz(reg, one, two, three, four) vreinterpretq_f32_u8(vcombine_u8( \
|
|
vtbl2_u8(stbir_make8x2(reg), stbir_make8(one, two)), \
|
|
vtbl2_u8(stbir_make8x2(reg), stbir_make8(three, four))))
|
|
|
|
#define stbir__simdi_16madd(out, reg0, reg1) \
|
|
{ \
|
|
int16x8_t r0 = vreinterpretq_s16_u32(reg0); \
|
|
int16x8_t r1 = vreinterpretq_s16_u32(reg1); \
|
|
int32x4_t tmp0 = vmull_s16(vget_low_s16(r0), vget_low_s16(r1)); \
|
|
int32x4_t tmp1 = vmull_s16(vget_high_s16(r0), vget_high_s16(r1)); \
|
|
int32x2_t out0 = vpadd_s32(vget_low_s32(tmp0), vget_high_s32(tmp0)); \
|
|
int32x2_t out1 = vpadd_s32(vget_low_s32(tmp1), vget_high_s32(tmp1)); \
|
|
(out) = vreinterpretq_u32_s32(vcombine_s32(out0, out1)); \
|
|
}
|
|
|
|
#endif
|
|
|
|
#define stbir__simdi_and(out, reg0, reg1) (out) = vandq_u32(reg0, reg1)
|
|
#define stbir__simdi_or(out, reg0, reg1) (out) = vorrq_u32(reg0, reg1)
|
|
|
|
#define stbir__simdf_pack_to_8bytes(out, aa, bb) \
|
|
{ \
|
|
float32x4_t af = vmaxq_f32(vminq_f32(aa, STBIR__CONSTF(STBIR_max_uint8_as_float)), vdupq_n_f32(0)); \
|
|
float32x4_t bf = vmaxq_f32(vminq_f32(bb, STBIR__CONSTF(STBIR_max_uint8_as_float)), vdupq_n_f32(0)); \
|
|
int16x4_t ai = vqmovn_s32(vcvtq_s32_f32(af)); \
|
|
int16x4_t bi = vqmovn_s32(vcvtq_s32_f32(bf)); \
|
|
uint8x8_t out8 = vqmovun_s16(vcombine_s16(ai, bi)); \
|
|
out = vreinterpretq_u32_u8(vcombine_u8(out8, out8)); \
|
|
}
|
|
|
|
#define stbir__simdf_pack_to_8words(out, aa, bb) \
|
|
{ \
|
|
float32x4_t af = vmaxq_f32(vminq_f32(aa, STBIR__CONSTF(STBIR_max_uint16_as_float)), vdupq_n_f32(0)); \
|
|
float32x4_t bf = vmaxq_f32(vminq_f32(bb, STBIR__CONSTF(STBIR_max_uint16_as_float)), vdupq_n_f32(0)); \
|
|
int32x4_t ai = vcvtq_s32_f32(af); \
|
|
int32x4_t bi = vcvtq_s32_f32(bf); \
|
|
out = vreinterpretq_u32_u16(vcombine_u16(vqmovun_s32(ai), vqmovun_s32(bi))); \
|
|
}
|
|
|
|
#define stbir__interleave_pack_and_store_16_u8(ptr, r0, r1, r2, r3) \
|
|
{ \
|
|
int16x4x2_t tmp0 = vzip_s16(vqmovn_s32(vreinterpretq_s32_u32(r0)), vqmovn_s32(vreinterpretq_s32_u32(r2))); \
|
|
int16x4x2_t tmp1 = vzip_s16(vqmovn_s32(vreinterpretq_s32_u32(r1)), vqmovn_s32(vreinterpretq_s32_u32(r3))); \
|
|
uint8x8x2_t out = \
|
|
{{ \
|
|
vqmovun_s16(vcombine_s16(tmp0.val[0], tmp0.val[1])), \
|
|
vqmovun_s16(vcombine_s16(tmp1.val[0], tmp1.val[1])), \
|
|
}}; \
|
|
vst2_u8(ptr, out); \
|
|
}
|
|
|
|
#define stbir__simdf_load4_transposed(o0, o1, o2, o3, ptr) \
|
|
{ \
|
|
float32x4x4_t tmp = vld4q_f32(ptr); \
|
|
o0 = tmp.val[0]; \
|
|
o1 = tmp.val[1]; \
|
|
o2 = tmp.val[2]; \
|
|
o3 = tmp.val[3]; \
|
|
}
|
|
|
|
#define stbir__simdi_32shr(out, reg, imm) out = vshrq_n_u32(reg, imm)
|
|
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
#define STBIR__SIMDF_CONST(var, x) __declspec(align(8)) float var[] = {x, x, x, x}
|
|
#define STBIR__SIMDI_CONST(var, x) __declspec(align(8)) uint32_t var[] = {x, x, x, x}
|
|
#define STBIR__CONSTF(var) (*(const float32x4_t *)var)
|
|
#define STBIR__CONSTI(var) (*(const uint32x4_t *)var)
|
|
#else
|
|
#define STBIR__SIMDF_CONST(var, x) stbir__simdf var = {x, x, x, x}
|
|
#define STBIR__SIMDI_CONST(var, x) stbir__simdi var = {x, x, x, x}
|
|
#define STBIR__CONSTF(var) (var)
|
|
#define STBIR__CONSTI(var) (var)
|
|
#endif
|
|
|
|
#ifdef STBIR_FLOORF
|
|
#undef STBIR_FLOORF
|
|
#endif
|
|
#define STBIR_FLOORF stbir_simd_floorf
|
|
static stbir__inline float stbir_simd_floorf(float x)
|
|
{
|
|
#if defined(_M_ARM64) || defined(__aarch64__) || defined(__arm64__)
|
|
return vget_lane_f32(vrndm_f32(vdup_n_f32(x)), 0);
|
|
#else
|
|
float32x2_t f = vdup_n_f32(x);
|
|
float32x2_t t = vcvt_f32_s32(vcvt_s32_f32(f));
|
|
uint32x2_t a = vclt_f32(f, t);
|
|
uint32x2_t b = vreinterpret_u32_f32(vdup_n_f32(-1.0f));
|
|
float32x2_t r = vadd_f32(t, vreinterpret_f32_u32(vand_u32(a, b)));
|
|
return vget_lane_f32(r, 0);
|
|
#endif
|
|
}
|
|
|
|
#ifdef STBIR_CEILF
|
|
#undef STBIR_CEILF
|
|
#endif
|
|
#define STBIR_CEILF stbir_simd_ceilf
|
|
static stbir__inline float stbir_simd_ceilf(float x)
|
|
{
|
|
#if defined(_M_ARM64) || defined(__aarch64__) || defined(__arm64__)
|
|
return vget_lane_f32(vrndp_f32(vdup_n_f32(x)), 0);
|
|
#else
|
|
float32x2_t f = vdup_n_f32(x);
|
|
float32x2_t t = vcvt_f32_s32(vcvt_s32_f32(f));
|
|
uint32x2_t a = vclt_f32(t, f);
|
|
uint32x2_t b = vreinterpret_u32_f32(vdup_n_f32(1.0f));
|
|
float32x2_t r = vadd_f32(t, vreinterpret_f32_u32(vand_u32(a, b)));
|
|
return vget_lane_f32(r, 0);
|
|
#endif
|
|
}
|
|
|
|
#define STBIR_SIMD
|
|
|
|
#elif defined(STBIR_WASM)
|
|
|
|
#include <wasm_simd128.h>
|
|
|
|
#define stbir__simdf v128_t
|
|
#define stbir__simdi v128_t
|
|
|
|
#define stbir_simdi_castf(reg) (reg)
|
|
#define stbir_simdf_casti(reg) (reg)
|
|
|
|
#define stbir__simdf_load(reg, ptr) (reg) = wasm_v128_load((void const *)(ptr))
|
|
#define stbir__simdi_load(reg, ptr) (reg) = wasm_v128_load((void const *)(ptr))
|
|
#define stbir__simdf_load1(out, ptr) (out) = wasm_v128_load32_splat((void const *)(ptr)) // top values can be random (not denormal or nan for perf)
|
|
#define stbir__simdi_load1(out, ptr) (out) = wasm_v128_load32_splat((void const *)(ptr))
|
|
#define stbir__simdf_load1z(out, ptr) (out) = wasm_v128_load32_zero((void const *)(ptr)) // top values must be zero
|
|
#define stbir__simdf_frep4(fvar) wasm_f32x4_splat(fvar)
|
|
#define stbir__simdf_load1frep4(out, fvar) (out) = wasm_f32x4_splat(fvar)
|
|
#define stbir__simdf_load2(out, ptr) (out) = wasm_v128_load64_splat((void const *)(ptr)) // top values can be random (not denormal or nan for perf)
|
|
#define stbir__simdf_load2z(out, ptr) (out) = wasm_v128_load64_zero((void const *)(ptr)) // top values must be zero
|
|
#define stbir__simdf_load2hmerge(out, reg, ptr) (out) = wasm_v128_load64_lane((void const *)(ptr), reg, 1)
|
|
|
|
#define stbir__simdf_zeroP() wasm_f32x4_const_splat(0)
|
|
#define stbir__simdf_zero(reg) (reg) = wasm_f32x4_const_splat(0)
|
|
|
|
#define stbir__simdf_store(ptr, reg) wasm_v128_store((void *)(ptr), reg)
|
|
#define stbir__simdf_store1(ptr, reg) wasm_v128_store32_lane((void *)(ptr), reg, 0)
|
|
#define stbir__simdf_store2(ptr, reg) wasm_v128_store64_lane((void *)(ptr), reg, 0)
|
|
#define stbir__simdf_store2h(ptr, reg) wasm_v128_store64_lane((void *)(ptr), reg, 1)
|
|
|
|
#define stbir__simdi_store(ptr, reg) wasm_v128_store((void *)(ptr), reg)
|
|
#define stbir__simdi_store1(ptr, reg) wasm_v128_store32_lane((void *)(ptr), reg, 0)
|
|
#define stbir__simdi_store2(ptr, reg) wasm_v128_store64_lane((void *)(ptr), reg, 0)
|
|
|
|
#define stbir__prefetch(ptr)
|
|
|
|
#define stbir__simdi_expand_u8_to_u32(out0, out1, out2, out3, ireg) \
|
|
{ \
|
|
v128_t l = wasm_u16x8_extend_low_u8x16(ireg); \
|
|
v128_t h = wasm_u16x8_extend_high_u8x16(ireg); \
|
|
out0 = wasm_u32x4_extend_low_u16x8(l); \
|
|
out1 = wasm_u32x4_extend_high_u16x8(l); \
|
|
out2 = wasm_u32x4_extend_low_u16x8(h); \
|
|
out3 = wasm_u32x4_extend_high_u16x8(h); \
|
|
}
|
|
|
|
#define stbir__simdi_expand_u8_to_1u32(out, ireg) \
|
|
{ \
|
|
v128_t tmp = wasm_u16x8_extend_low_u8x16(ireg); \
|
|
out = wasm_u32x4_extend_low_u16x8(tmp); \
|
|
}
|
|
|
|
#define stbir__simdi_expand_u16_to_u32(out0, out1, ireg) \
|
|
{ \
|
|
out0 = wasm_u32x4_extend_low_u16x8(ireg); \
|
|
out1 = wasm_u32x4_extend_high_u16x8(ireg); \
|
|
}
|
|
|
|
#define stbir__simdf_convert_float_to_i32(i, f) (i) = wasm_i32x4_trunc_sat_f32x4(f)
|
|
#define stbir__simdf_convert_float_to_int(f) wasm_i32x4_extract_lane(wasm_i32x4_trunc_sat_f32x4(f), 0)
|
|
#define stbir__simdi_to_int(i) wasm_i32x4_extract_lane(i, 0)
|
|
#define stbir__simdf_convert_float_to_uint8(f) ((unsigned char)wasm_i32x4_extract_lane(wasm_i32x4_trunc_sat_f32x4(wasm_f32x4_max(wasm_f32x4_min(f, STBIR_max_uint8_as_float), wasm_f32x4_const_splat(0))), 0))
|
|
#define stbir__simdf_convert_float_to_short(f) ((unsigned short)wasm_i32x4_extract_lane(wasm_i32x4_trunc_sat_f32x4(wasm_f32x4_max(wasm_f32x4_min(f, STBIR_max_uint16_as_float), wasm_f32x4_const_splat(0))), 0))
|
|
#define stbir__simdi_convert_i32_to_float(out, ireg) (out) = wasm_f32x4_convert_i32x4(ireg)
|
|
#define stbir__simdf_add(out, reg0, reg1) (out) = wasm_f32x4_add(reg0, reg1)
|
|
#define stbir__simdf_mult(out, reg0, reg1) (out) = wasm_f32x4_mul(reg0, reg1)
|
|
#define stbir__simdf_mult_mem(out, reg, ptr) (out) = wasm_f32x4_mul(reg, wasm_v128_load((void const *)(ptr)))
|
|
#define stbir__simdf_mult1_mem(out, reg, ptr) (out) = wasm_f32x4_mul(reg, wasm_v128_load32_splat((void const *)(ptr)))
|
|
#define stbir__simdf_add_mem(out, reg, ptr) (out) = wasm_f32x4_add(reg, wasm_v128_load((void const *)(ptr)))
|
|
#define stbir__simdf_add1_mem(out, reg, ptr) (out) = wasm_f32x4_add(reg, wasm_v128_load32_splat((void const *)(ptr)))
|
|
|
|
#define stbir__simdf_madd(out, add, mul1, mul2) (out) = wasm_f32x4_add(add, wasm_f32x4_mul(mul1, mul2))
|
|
#define stbir__simdf_madd1(out, add, mul1, mul2) (out) = wasm_f32x4_add(add, wasm_f32x4_mul(mul1, mul2))
|
|
#define stbir__simdf_madd_mem(out, add, mul, ptr) (out) = wasm_f32x4_add(add, wasm_f32x4_mul(mul, wasm_v128_load((void const *)(ptr))))
|
|
#define stbir__simdf_madd1_mem(out, add, mul, ptr) (out) = wasm_f32x4_add(add, wasm_f32x4_mul(mul, wasm_v128_load32_splat((void const *)(ptr))))
|
|
|
|
#define stbir__simdf_add1(out, reg0, reg1) (out) = wasm_f32x4_add(reg0, reg1)
|
|
#define stbir__simdf_mult1(out, reg0, reg1) (out) = wasm_f32x4_mul(reg0, reg1)
|
|
|
|
#define stbir__simdf_and(out, reg0, reg1) (out) = wasm_v128_and(reg0, reg1)
|
|
#define stbir__simdf_or(out, reg0, reg1) (out) = wasm_v128_or(reg0, reg1)
|
|
|
|
#define stbir__simdf_min(out, reg0, reg1) (out) = wasm_f32x4_min(reg0, reg1)
|
|
#define stbir__simdf_max(out, reg0, reg1) (out) = wasm_f32x4_max(reg0, reg1)
|
|
#define stbir__simdf_min1(out, reg0, reg1) (out) = wasm_f32x4_min(reg0, reg1)
|
|
#define stbir__simdf_max1(out, reg0, reg1) (out) = wasm_f32x4_max(reg0, reg1)
|
|
|
|
#define stbir__simdf_0123ABCDto3ABx(out, reg0, reg1) (out) = wasm_i32x4_shuffle(reg0, reg1, 3, 4, 5, -1)
|
|
#define stbir__simdf_0123ABCDto23Ax(out, reg0, reg1) (out) = wasm_i32x4_shuffle(reg0, reg1, 2, 3, 4, -1)
|
|
|
|
#define stbir__simdf_aaa1(out, alp, ones) (out) = wasm_i32x4_shuffle(alp, ones, 3, 3, 3, 4)
|
|
#define stbir__simdf_1aaa(out, alp, ones) (out) = wasm_i32x4_shuffle(alp, ones, 4, 0, 0, 0)
|
|
#define stbir__simdf_a1a1(out, alp, ones) (out) = wasm_i32x4_shuffle(alp, ones, 1, 4, 3, 4)
|
|
#define stbir__simdf_1a1a(out, alp, ones) (out) = wasm_i32x4_shuffle(alp, ones, 4, 0, 4, 2)
|
|
|
|
#define stbir__simdf_swiz(reg, one, two, three, four) wasm_i32x4_shuffle(reg, reg, one, two, three, four)
|
|
|
|
#define stbir__simdi_and(out, reg0, reg1) (out) = wasm_v128_and(reg0, reg1)
|
|
#define stbir__simdi_or(out, reg0, reg1) (out) = wasm_v128_or(reg0, reg1)
|
|
#define stbir__simdi_16madd(out, reg0, reg1) (out) = wasm_i32x4_dot_i16x8(reg0, reg1)
|
|
|
|
#define stbir__simdf_pack_to_8bytes(out, aa, bb) \
|
|
{ \
|
|
v128_t af = wasm_f32x4_max(wasm_f32x4_min(aa, STBIR_max_uint8_as_float), wasm_f32x4_const_splat(0)); \
|
|
v128_t bf = wasm_f32x4_max(wasm_f32x4_min(bb, STBIR_max_uint8_as_float), wasm_f32x4_const_splat(0)); \
|
|
v128_t ai = wasm_i32x4_trunc_sat_f32x4(af); \
|
|
v128_t bi = wasm_i32x4_trunc_sat_f32x4(bf); \
|
|
v128_t out16 = wasm_i16x8_narrow_i32x4(ai, bi); \
|
|
out = wasm_u8x16_narrow_i16x8(out16, out16); \
|
|
}
|
|
|
|
#define stbir__simdf_pack_to_8words(out, aa, bb) \
|
|
{ \
|
|
v128_t af = wasm_f32x4_max(wasm_f32x4_min(aa, STBIR_max_uint16_as_float), wasm_f32x4_const_splat(0)); \
|
|
v128_t bf = wasm_f32x4_max(wasm_f32x4_min(bb, STBIR_max_uint16_as_float), wasm_f32x4_const_splat(0)); \
|
|
v128_t ai = wasm_i32x4_trunc_sat_f32x4(af); \
|
|
v128_t bi = wasm_i32x4_trunc_sat_f32x4(bf); \
|
|
out = wasm_u16x8_narrow_i32x4(ai, bi); \
|
|
}
|
|
|
|
#define stbir__interleave_pack_and_store_16_u8(ptr, r0, r1, r2, r3) \
|
|
{ \
|
|
v128_t tmp0 = wasm_i16x8_narrow_i32x4(r0, r1); \
|
|
v128_t tmp1 = wasm_i16x8_narrow_i32x4(r2, r3); \
|
|
v128_t tmp = wasm_u8x16_narrow_i16x8(tmp0, tmp1); \
|
|
tmp = wasm_i8x16_shuffle(tmp, tmp, 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15); \
|
|
wasm_v128_store((void *)(ptr), tmp); \
|
|
}
|
|
|
|
#define stbir__simdf_load4_transposed(o0, o1, o2, o3, ptr) \
|
|
{ \
|
|
v128_t t0 = wasm_v128_load(ptr); \
|
|
v128_t t1 = wasm_v128_load(ptr + 4); \
|
|
v128_t t2 = wasm_v128_load(ptr + 8); \
|
|
v128_t t3 = wasm_v128_load(ptr + 12); \
|
|
v128_t s0 = wasm_i32x4_shuffle(t0, t1, 0, 4, 2, 6); \
|
|
v128_t s1 = wasm_i32x4_shuffle(t0, t1, 1, 5, 3, 7); \
|
|
v128_t s2 = wasm_i32x4_shuffle(t2, t3, 0, 4, 2, 6); \
|
|
v128_t s3 = wasm_i32x4_shuffle(t2, t3, 1, 5, 3, 7); \
|
|
o0 = wasm_i32x4_shuffle(s0, s2, 0, 1, 4, 5); \
|
|
o1 = wasm_i32x4_shuffle(s1, s3, 0, 1, 4, 5); \
|
|
o2 = wasm_i32x4_shuffle(s0, s2, 2, 3, 6, 7); \
|
|
o3 = wasm_i32x4_shuffle(s1, s3, 2, 3, 6, 7); \
|
|
}
|
|
|
|
#define stbir__simdi_32shr(out, reg, imm) out = wasm_u32x4_shr(reg, imm)
|
|
|
|
typedef float stbir__f32x4 __attribute__((__vector_size__(16), __aligned__(16)));
|
|
#define STBIR__SIMDF_CONST(var, x) \
|
|
stbir__simdf var = (v128_t)(stbir__f32x4) { x, x, x, x }
|
|
#define STBIR__SIMDI_CONST(var, x) stbir__simdi var = {x, x, x, x}
|
|
#define STBIR__CONSTF(var) (var)
|
|
#define STBIR__CONSTI(var) (var)
|
|
|
|
#ifdef STBIR_FLOORF
|
|
#undef STBIR_FLOORF
|
|
#endif
|
|
#define STBIR_FLOORF stbir_simd_floorf
|
|
static stbir__inline float stbir_simd_floorf(float x)
|
|
{
|
|
return wasm_f32x4_extract_lane(wasm_f32x4_floor(wasm_f32x4_splat(x)), 0);
|
|
}
|
|
|
|
#ifdef STBIR_CEILF
|
|
#undef STBIR_CEILF
|
|
#endif
|
|
#define STBIR_CEILF stbir_simd_ceilf
|
|
static stbir__inline float stbir_simd_ceilf(float x)
|
|
{
|
|
return wasm_f32x4_extract_lane(wasm_f32x4_ceil(wasm_f32x4_splat(x)), 0);
|
|
}
|
|
|
|
#define STBIR_SIMD
|
|
|
|
#endif // SSE2/NEON/WASM
|
|
|
|
#endif // NO SIMD
|
|
|
|
#ifdef STBIR_SIMD8
|
|
#define stbir__simdfX stbir__simdf8
|
|
#define stbir__simdiX stbir__simdi8
|
|
#define stbir__simdfX_load stbir__simdf8_load
|
|
#define stbir__simdiX_load stbir__simdi8_load
|
|
#define stbir__simdfX_mult stbir__simdf8_mult
|
|
#define stbir__simdfX_add_mem stbir__simdf8_add_mem
|
|
#define stbir__simdfX_madd_mem stbir__simdf8_madd_mem
|
|
#define stbir__simdfX_store stbir__simdf8_store
|
|
#define stbir__simdiX_store stbir__simdi8_store
|
|
#define stbir__simdf_frepX stbir__simdf8_frep8
|
|
#define stbir__simdfX_madd stbir__simdf8_madd
|
|
#define stbir__simdfX_min stbir__simdf8_min
|
|
#define stbir__simdfX_max stbir__simdf8_max
|
|
#define stbir__simdfX_aaa1 stbir__simdf8_aaa1
|
|
#define stbir__simdfX_1aaa stbir__simdf8_1aaa
|
|
#define stbir__simdfX_a1a1 stbir__simdf8_a1a1
|
|
#define stbir__simdfX_1a1a stbir__simdf8_1a1a
|
|
#define stbir__simdfX_convert_float_to_i32 stbir__simdf8_convert_float_to_i32
|
|
#define stbir__simdfX_pack_to_words stbir__simdf8_pack_to_16words
|
|
#define stbir__simdfX_zero stbir__simdf8_zero
|
|
#define STBIR_onesX STBIR_ones8
|
|
#define STBIR_max_uint8_as_floatX STBIR_max_uint8_as_float8
|
|
#define STBIR_max_uint16_as_floatX STBIR_max_uint16_as_float8
|
|
#define STBIR_simd_point5X STBIR_simd_point58
|
|
#define stbir__simdfX_float_count 8
|
|
#define stbir__simdfX_0123to1230 stbir__simdf8_0123to12301230
|
|
#define stbir__simdfX_0123to2103 stbir__simdf8_0123to21032103
|
|
static const stbir__simdf8 STBIR_max_uint16_as_float_inverted8 = {stbir__max_uint16_as_float_inverted, stbir__max_uint16_as_float_inverted, stbir__max_uint16_as_float_inverted, stbir__max_uint16_as_float_inverted, stbir__max_uint16_as_float_inverted, stbir__max_uint16_as_float_inverted, stbir__max_uint16_as_float_inverted, stbir__max_uint16_as_float_inverted};
|
|
static const stbir__simdf8 STBIR_max_uint8_as_float_inverted8 = {stbir__max_uint8_as_float_inverted, stbir__max_uint8_as_float_inverted, stbir__max_uint8_as_float_inverted, stbir__max_uint8_as_float_inverted, stbir__max_uint8_as_float_inverted, stbir__max_uint8_as_float_inverted, stbir__max_uint8_as_float_inverted, stbir__max_uint8_as_float_inverted};
|
|
static const stbir__simdf8 STBIR_ones8 = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
|
|
static const stbir__simdf8 STBIR_simd_point58 = {0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5};
|
|
static const stbir__simdf8 STBIR_max_uint8_as_float8 = {stbir__max_uint8_as_float, stbir__max_uint8_as_float, stbir__max_uint8_as_float, stbir__max_uint8_as_float, stbir__max_uint8_as_float, stbir__max_uint8_as_float, stbir__max_uint8_as_float, stbir__max_uint8_as_float};
|
|
static const stbir__simdf8 STBIR_max_uint16_as_float8 = {stbir__max_uint16_as_float, stbir__max_uint16_as_float, stbir__max_uint16_as_float, stbir__max_uint16_as_float, stbir__max_uint16_as_float, stbir__max_uint16_as_float, stbir__max_uint16_as_float, stbir__max_uint16_as_float};
|
|
#else
|
|
#define stbir__simdfX stbir__simdf
|
|
#define stbir__simdiX stbir__simdi
|
|
#define stbir__simdfX_load stbir__simdf_load
|
|
#define stbir__simdiX_load stbir__simdi_load
|
|
#define stbir__simdfX_mult stbir__simdf_mult
|
|
#define stbir__simdfX_add_mem stbir__simdf_add_mem
|
|
#define stbir__simdfX_madd_mem stbir__simdf_madd_mem
|
|
#define stbir__simdfX_store stbir__simdf_store
|
|
#define stbir__simdiX_store stbir__simdi_store
|
|
#define stbir__simdf_frepX stbir__simdf_frep4
|
|
#define stbir__simdfX_madd stbir__simdf_madd
|
|
#define stbir__simdfX_min stbir__simdf_min
|
|
#define stbir__simdfX_max stbir__simdf_max
|
|
#define stbir__simdfX_aaa1 stbir__simdf_aaa1
|
|
#define stbir__simdfX_1aaa stbir__simdf_1aaa
|
|
#define stbir__simdfX_a1a1 stbir__simdf_a1a1
|
|
#define stbir__simdfX_1a1a stbir__simdf_1a1a
|
|
#define stbir__simdfX_convert_float_to_i32 stbir__simdf_convert_float_to_i32
|
|
#define stbir__simdfX_pack_to_words stbir__simdf_pack_to_8words
|
|
#define stbir__simdfX_zero stbir__simdf_zero
|
|
#define STBIR_onesX STBIR__CONSTF(STBIR_ones)
|
|
#define STBIR_simd_point5X STBIR__CONSTF(STBIR_simd_point5)
|
|
#define STBIR_max_uint8_as_floatX STBIR__CONSTF(STBIR_max_uint8_as_float)
|
|
#define STBIR_max_uint16_as_floatX STBIR__CONSTF(STBIR_max_uint16_as_float)
|
|
#define stbir__simdfX_float_count 4
|
|
#define stbir__if_simdf8_cast_to_simdf4(val) (val)
|
|
#define stbir__simdfX_0123to1230 stbir__simdf_0123to1230
|
|
#define stbir__simdfX_0123to2103 stbir__simdf_0123to2103
|
|
#endif
|
|
|
|
#if defined(STBIR_NEON) && !defined(_M_ARM) && !defined(__arm__)
|
|
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
typedef __int16 stbir__FP16;
|
|
#else
|
|
typedef float16_t stbir__FP16;
|
|
#endif
|
|
|
|
#else // no NEON, or 32-bit ARM for MSVC
|
|
|
|
typedef union stbir__FP16
|
|
{
|
|
unsigned short u;
|
|
} stbir__FP16;
|
|
|
|
#endif
|
|
|
|
#if (!defined(STBIR_NEON) && !defined(STBIR_FP16C)) || (defined(STBIR_NEON) && defined(_M_ARM)) || (defined(STBIR_NEON) && defined(__arm__))
|
|
|
|
// Fabian's half float routines, see: https://gist.github.com/rygorous/2156668
|
|
|
|
static stbir__inline float stbir__half_to_float(stbir__FP16 h)
|
|
{
|
|
static const stbir__FP32 magic = {(254 - 15) << 23};
|
|
static const stbir__FP32 was_infnan = {(127 + 16) << 23};
|
|
stbir__FP32 o;
|
|
|
|
o.u = (h.u & 0x7fff) << 13; // exponent/mantissa bits
|
|
o.f *= magic.f; // exponent adjust
|
|
if (o.f >= was_infnan.f) // make sure Inf/NaN survive
|
|
o.u |= 255 << 23;
|
|
o.u |= (h.u & 0x8000) << 16; // sign bit
|
|
return o.f;
|
|
}
|
|
|
|
static stbir__inline stbir__FP16 stbir__float_to_half(float val)
|
|
{
|
|
stbir__FP32 f32infty = {255 << 23};
|
|
stbir__FP32 f16max = {(127 + 16) << 23};
|
|
stbir__FP32 denorm_magic = {((127 - 15) + (23 - 10) + 1) << 23};
|
|
unsigned int sign_mask = 0x80000000u;
|
|
stbir__FP16 o = {0};
|
|
stbir__FP32 f;
|
|
unsigned int sign;
|
|
|
|
f.f = val;
|
|
sign = f.u & sign_mask;
|
|
f.u ^= sign;
|
|
|
|
if (f.u >= f16max.u) // result is Inf or NaN (all exponent bits set)
|
|
o.u = (f.u > f32infty.u) ? 0x7e00 : 0x7c00; // NaN->qNaN and Inf->Inf
|
|
else // (De)normalized number or zero
|
|
{
|
|
if (f.u < (113 << 23)) // resulting FP16 is subnormal or zero
|
|
{
|
|
// use a magic value to align our 10 mantissa bits at the bottom of
|
|
// the float. as long as FP addition is round-to-nearest-even this
|
|
// just works.
|
|
f.f += denorm_magic.f;
|
|
// and one integer subtract of the bias later, we have our final float!
|
|
o.u = (unsigned short)(f.u - denorm_magic.u);
|
|
}
|
|
else
|
|
{
|
|
unsigned int mant_odd = (f.u >> 13) & 1; // resulting mantissa is odd
|
|
// update exponent, rounding bias part 1
|
|
f.u = f.u + ((15u - 127) << 23) + 0xfff;
|
|
// rounding bias part 2
|
|
f.u += mant_odd;
|
|
// take the bits!
|
|
o.u = (unsigned short)(f.u >> 13);
|
|
}
|
|
}
|
|
|
|
o.u |= sign >> 16;
|
|
return o;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined(STBIR_FP16C)
|
|
|
|
#include <immintrin.h>
|
|
|
|
static stbir__inline void stbir__half_to_float_SIMD(float *output, stbir__FP16 const *input)
|
|
{
|
|
_mm256_storeu_ps((float *)output, _mm256_cvtph_ps(_mm_loadu_si128((__m128i const *)input)));
|
|
}
|
|
|
|
static stbir__inline void stbir__float_to_half_SIMD(stbir__FP16 *output, float const *input)
|
|
{
|
|
_mm_storeu_si128((__m128i *)output, _mm256_cvtps_ph(_mm256_loadu_ps(input), 0));
|
|
}
|
|
|
|
static stbir__inline float stbir__half_to_float(stbir__FP16 h)
|
|
{
|
|
return _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128((int)h.u)));
|
|
}
|
|
|
|
static stbir__inline stbir__FP16 stbir__float_to_half(float f)
|
|
{
|
|
stbir__FP16 h;
|
|
h.u = (unsigned short)_mm_cvtsi128_si32(_mm_cvtps_ph(_mm_set_ss(f), 0));
|
|
return h;
|
|
}
|
|
|
|
#elif defined(STBIR_SSE2)
|
|
|
|
// Fabian's half float routines, see: https://gist.github.com/rygorous/2156668
|
|
stbir__inline static void stbir__half_to_float_SIMD(float *output, void const *input)
|
|
{
|
|
static const STBIR__SIMDI_CONST(mask_nosign, 0x7fff);
|
|
static const STBIR__SIMDI_CONST(smallest_normal, 0x0400);
|
|
static const STBIR__SIMDI_CONST(infinity, 0x7c00);
|
|
static const STBIR__SIMDI_CONST(expadjust_normal, (127 - 15) << 23);
|
|
static const STBIR__SIMDI_CONST(magic_denorm, 113 << 23);
|
|
|
|
__m128i i = _mm_loadu_si128((__m128i const *)(input));
|
|
__m128i h = _mm_unpacklo_epi16(i, _mm_setzero_si128());
|
|
__m128i mnosign = STBIR__CONSTI(mask_nosign);
|
|
__m128i eadjust = STBIR__CONSTI(expadjust_normal);
|
|
__m128i smallest = STBIR__CONSTI(smallest_normal);
|
|
__m128i infty = STBIR__CONSTI(infinity);
|
|
__m128i expmant = _mm_and_si128(mnosign, h);
|
|
__m128i justsign = _mm_xor_si128(h, expmant);
|
|
__m128i b_notinfnan = _mm_cmpgt_epi32(infty, expmant);
|
|
__m128i b_isdenorm = _mm_cmpgt_epi32(smallest, expmant);
|
|
__m128i shifted = _mm_slli_epi32(expmant, 13);
|
|
__m128i adj_infnan = _mm_andnot_si128(b_notinfnan, eadjust);
|
|
__m128i adjusted = _mm_add_epi32(eadjust, shifted);
|
|
__m128i den1 = _mm_add_epi32(shifted, STBIR__CONSTI(magic_denorm));
|
|
__m128i adjusted2 = _mm_add_epi32(adjusted, adj_infnan);
|
|
__m128 den2 = _mm_sub_ps(_mm_castsi128_ps(den1), *(const __m128 *)&magic_denorm);
|
|
__m128 adjusted3 = _mm_and_ps(den2, _mm_castsi128_ps(b_isdenorm));
|
|
__m128 adjusted4 = _mm_andnot_ps(_mm_castsi128_ps(b_isdenorm), _mm_castsi128_ps(adjusted2));
|
|
__m128 adjusted5 = _mm_or_ps(adjusted3, adjusted4);
|
|
__m128i sign = _mm_slli_epi32(justsign, 16);
|
|
__m128 final = _mm_or_ps(adjusted5, _mm_castsi128_ps(sign));
|
|
stbir__simdf_store(output + 0, final);
|
|
|
|
h = _mm_unpackhi_epi16(i, _mm_setzero_si128());
|
|
expmant = _mm_and_si128(mnosign, h);
|
|
justsign = _mm_xor_si128(h, expmant);
|
|
b_notinfnan = _mm_cmpgt_epi32(infty, expmant);
|
|
b_isdenorm = _mm_cmpgt_epi32(smallest, expmant);
|
|
shifted = _mm_slli_epi32(expmant, 13);
|
|
adj_infnan = _mm_andnot_si128(b_notinfnan, eadjust);
|
|
adjusted = _mm_add_epi32(eadjust, shifted);
|
|
den1 = _mm_add_epi32(shifted, STBIR__CONSTI(magic_denorm));
|
|
adjusted2 = _mm_add_epi32(adjusted, adj_infnan);
|
|
den2 = _mm_sub_ps(_mm_castsi128_ps(den1), *(const __m128 *)&magic_denorm);
|
|
adjusted3 = _mm_and_ps(den2, _mm_castsi128_ps(b_isdenorm));
|
|
adjusted4 = _mm_andnot_ps(_mm_castsi128_ps(b_isdenorm), _mm_castsi128_ps(adjusted2));
|
|
adjusted5 = _mm_or_ps(adjusted3, adjusted4);
|
|
sign = _mm_slli_epi32(justsign, 16);
|
|
final = _mm_or_ps(adjusted5, _mm_castsi128_ps(sign));
|
|
stbir__simdf_store(output + 4, final);
|
|
|
|
// ~38 SSE2 ops for 8 values
|
|
}
|
|
|
|
// Fabian's round-to-nearest-even float to half
|
|
// ~48 SSE2 ops for 8 output
|
|
stbir__inline static void stbir__float_to_half_SIMD(void *output, float const *input)
|
|
{
|
|
static const STBIR__SIMDI_CONST(mask_sign, 0x80000000u);
|
|
static const STBIR__SIMDI_CONST(c_f16max, (127 + 16) << 23); // all FP32 values >=this round to +inf
|
|
static const STBIR__SIMDI_CONST(c_nanbit, 0x200);
|
|
static const STBIR__SIMDI_CONST(c_infty_as_fp16, 0x7c00);
|
|
static const STBIR__SIMDI_CONST(c_min_normal, (127 - 14) << 23); // smallest FP32 that yields a normalized FP16
|
|
static const STBIR__SIMDI_CONST(c_subnorm_magic, ((127 - 15) + (23 - 10) + 1) << 23);
|
|
static const STBIR__SIMDI_CONST(c_normal_bias, 0xfff - ((127 - 15) << 23)); // adjust exponent and add mantissa rounding
|
|
|
|
__m128 f = _mm_loadu_ps(input);
|
|
__m128 msign = _mm_castsi128_ps(STBIR__CONSTI(mask_sign));
|
|
__m128 justsign = _mm_and_ps(msign, f);
|
|
__m128 absf = _mm_xor_ps(f, justsign);
|
|
__m128i absf_int = _mm_castps_si128(absf); // the cast is "free" (extra bypass latency, but no thruput hit)
|
|
__m128i f16max = STBIR__CONSTI(c_f16max);
|
|
__m128 b_isnan = _mm_cmpunord_ps(absf, absf); // is this a NaN?
|
|
__m128i b_isregular = _mm_cmpgt_epi32(f16max, absf_int); // (sub)normalized or special?
|
|
__m128i nanbit = _mm_and_si128(_mm_castps_si128(b_isnan), STBIR__CONSTI(c_nanbit));
|
|
__m128i inf_or_nan = _mm_or_si128(nanbit, STBIR__CONSTI(c_infty_as_fp16)); // output for specials
|
|
|
|
__m128i min_normal = STBIR__CONSTI(c_min_normal);
|
|
__m128i b_issub = _mm_cmpgt_epi32(min_normal, absf_int);
|
|
|
|
// "result is subnormal" path
|
|
__m128 subnorm1 = _mm_add_ps(absf, _mm_castsi128_ps(STBIR__CONSTI(c_subnorm_magic))); // magic value to round output mantissa
|
|
__m128i subnorm2 = _mm_sub_epi32(_mm_castps_si128(subnorm1), STBIR__CONSTI(c_subnorm_magic)); // subtract out bias
|
|
|
|
// "result is normal" path
|
|
__m128i mantoddbit = _mm_slli_epi32(absf_int, 31 - 13); // shift bit 13 (mantissa LSB) to sign
|
|
__m128i mantodd = _mm_srai_epi32(mantoddbit, 31); // -1 if FP16 mantissa odd, else 0
|
|
|
|
__m128i round1 = _mm_add_epi32(absf_int, STBIR__CONSTI(c_normal_bias));
|
|
__m128i round2 = _mm_sub_epi32(round1, mantodd); // if mantissa LSB odd, bias towards rounding up (RTNE)
|
|
__m128i normal = _mm_srli_epi32(round2, 13); // rounded result
|
|
|
|
// combine the two non-specials
|
|
__m128i nonspecial = _mm_or_si128(_mm_and_si128(subnorm2, b_issub), _mm_andnot_si128(b_issub, normal));
|
|
|
|
// merge in specials as well
|
|
__m128i joined = _mm_or_si128(_mm_and_si128(nonspecial, b_isregular), _mm_andnot_si128(b_isregular, inf_or_nan));
|
|
|
|
__m128i sign_shift = _mm_srai_epi32(_mm_castps_si128(justsign), 16);
|
|
__m128i final2, final = _mm_or_si128(joined, sign_shift);
|
|
|
|
f = _mm_loadu_ps(input + 4);
|
|
justsign = _mm_and_ps(msign, f);
|
|
absf = _mm_xor_ps(f, justsign);
|
|
absf_int = _mm_castps_si128(absf); // the cast is "free" (extra bypass latency, but no thruput hit)
|
|
b_isnan = _mm_cmpunord_ps(absf, absf); // is this a NaN?
|
|
b_isregular = _mm_cmpgt_epi32(f16max, absf_int); // (sub)normalized or special?
|
|
nanbit = _mm_and_si128(_mm_castps_si128(b_isnan), c_nanbit);
|
|
inf_or_nan = _mm_or_si128(nanbit, STBIR__CONSTI(c_infty_as_fp16)); // output for specials
|
|
|
|
b_issub = _mm_cmpgt_epi32(min_normal, absf_int);
|
|
|
|
// "result is subnormal" path
|
|
subnorm1 = _mm_add_ps(absf, _mm_castsi128_ps(STBIR__CONSTI(c_subnorm_magic))); // magic value to round output mantissa
|
|
subnorm2 = _mm_sub_epi32(_mm_castps_si128(subnorm1), STBIR__CONSTI(c_subnorm_magic)); // subtract out bias
|
|
|
|
// "result is normal" path
|
|
mantoddbit = _mm_slli_epi32(absf_int, 31 - 13); // shift bit 13 (mantissa LSB) to sign
|
|
mantodd = _mm_srai_epi32(mantoddbit, 31); // -1 if FP16 mantissa odd, else 0
|
|
|
|
round1 = _mm_add_epi32(absf_int, STBIR__CONSTI(c_normal_bias));
|
|
round2 = _mm_sub_epi32(round1, mantodd); // if mantissa LSB odd, bias towards rounding up (RTNE)
|
|
normal = _mm_srli_epi32(round2, 13); // rounded result
|
|
|
|
// combine the two non-specials
|
|
nonspecial = _mm_or_si128(_mm_and_si128(subnorm2, b_issub), _mm_andnot_si128(b_issub, normal));
|
|
|
|
// merge in specials as well
|
|
joined = _mm_or_si128(_mm_and_si128(nonspecial, b_isregular), _mm_andnot_si128(b_isregular, inf_or_nan));
|
|
|
|
sign_shift = _mm_srai_epi32(_mm_castps_si128(justsign), 16);
|
|
final2 = _mm_or_si128(joined, sign_shift);
|
|
final = _mm_packs_epi32(final, final2);
|
|
stbir__simdi_store(output, final);
|
|
}
|
|
|
|
#elif defined(STBIR_NEON) && defined(_MSC_VER) && defined(_M_ARM64) && !defined(__clang__) // 64-bit ARM on MSVC (not clang)
|
|
|
|
static stbir__inline void stbir__half_to_float_SIMD(float *output, stbir__FP16 const *input)
|
|
{
|
|
float16x4_t in0 = vld1_f16(input + 0);
|
|
float16x4_t in1 = vld1_f16(input + 4);
|
|
vst1q_f32(output + 0, vcvt_f32_f16(in0));
|
|
vst1q_f32(output + 4, vcvt_f32_f16(in1));
|
|
}
|
|
|
|
static stbir__inline void stbir__float_to_half_SIMD(stbir__FP16 *output, float const *input)
|
|
{
|
|
float16x4_t out0 = vcvt_f16_f32(vld1q_f32(input + 0));
|
|
float16x4_t out1 = vcvt_f16_f32(vld1q_f32(input + 4));
|
|
vst1_f16(output + 0, out0);
|
|
vst1_f16(output + 4, out1);
|
|
}
|
|
|
|
static stbir__inline float stbir__half_to_float(stbir__FP16 h)
|
|
{
|
|
return vgetq_lane_f32(vcvt_f32_f16(vld1_dup_f16(&h)), 0);
|
|
}
|
|
|
|
static stbir__inline stbir__FP16 stbir__float_to_half(float f)
|
|
{
|
|
return vget_lane_f16(vcvt_f16_f32(vdupq_n_f32(f)), 0).n16_u16[0];
|
|
}
|
|
|
|
#elif defined(STBIR_NEON) && (defined(_M_ARM64) || defined(__aarch64__) || defined(__arm64__)) // 64-bit ARM
|
|
|
|
static stbir__inline void stbir__half_to_float_SIMD(float *output, stbir__FP16 const *input)
|
|
{
|
|
float16x8_t in = vld1q_f16(input);
|
|
vst1q_f32(output + 0, vcvt_f32_f16(vget_low_f16(in)));
|
|
vst1q_f32(output + 4, vcvt_f32_f16(vget_high_f16(in)));
|
|
}
|
|
|
|
static stbir__inline void stbir__float_to_half_SIMD(stbir__FP16 *output, float const *input)
|
|
{
|
|
float16x4_t out0 = vcvt_f16_f32(vld1q_f32(input + 0));
|
|
float16x4_t out1 = vcvt_f16_f32(vld1q_f32(input + 4));
|
|
vst1q_f16(output, vcombine_f16(out0, out1));
|
|
}
|
|
|
|
static stbir__inline float stbir__half_to_float(stbir__FP16 h)
|
|
{
|
|
return vgetq_lane_f32(vcvt_f32_f16(vdup_n_f16(h)), 0);
|
|
}
|
|
|
|
static stbir__inline stbir__FP16 stbir__float_to_half(float f)
|
|
{
|
|
return vget_lane_f16(vcvt_f16_f32(vdupq_n_f32(f)), 0);
|
|
}
|
|
|
|
#elif defined(STBIR_WASM) || (defined(STBIR_NEON) && (defined(_MSC_VER) || defined(_M_ARM) || defined(__arm__))) // WASM or 32-bit ARM on MSVC/clang
|
|
|
|
static stbir__inline void stbir__half_to_float_SIMD(float *output, stbir__FP16 const *input)
|
|
{
|
|
for (int i = 0; i < 8; i++)
|
|
{
|
|
output[i] = stbir__half_to_float(input[i]);
|
|
}
|
|
}
|
|
static stbir__inline void stbir__float_to_half_SIMD(stbir__FP16 *output, float const *input)
|
|
{
|
|
for (int i = 0; i < 8; i++)
|
|
{
|
|
output[i] = stbir__float_to_half(input[i]);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef STBIR_SIMD
|
|
|
|
#define stbir__simdf_0123to3333(out, reg) (out) = stbir__simdf_swiz(reg, 3, 3, 3, 3)
|
|
#define stbir__simdf_0123to2222(out, reg) (out) = stbir__simdf_swiz(reg, 2, 2, 2, 2)
|
|
#define stbir__simdf_0123to1111(out, reg) (out) = stbir__simdf_swiz(reg, 1, 1, 1, 1)
|
|
#define stbir__simdf_0123to0000(out, reg) (out) = stbir__simdf_swiz(reg, 0, 0, 0, 0)
|
|
#define stbir__simdf_0123to0003(out, reg) (out) = stbir__simdf_swiz(reg, 0, 0, 0, 3)
|
|
#define stbir__simdf_0123to0001(out, reg) (out) = stbir__simdf_swiz(reg, 0, 0, 0, 1)
|
|
#define stbir__simdf_0123to1122(out, reg) (out) = stbir__simdf_swiz(reg, 1, 1, 2, 2)
|
|
#define stbir__simdf_0123to2333(out, reg) (out) = stbir__simdf_swiz(reg, 2, 3, 3, 3)
|
|
#define stbir__simdf_0123to0023(out, reg) (out) = stbir__simdf_swiz(reg, 0, 0, 2, 3)
|
|
#define stbir__simdf_0123to1230(out, reg) (out) = stbir__simdf_swiz(reg, 1, 2, 3, 0)
|
|
#define stbir__simdf_0123to2103(out, reg) (out) = stbir__simdf_swiz(reg, 2, 1, 0, 3)
|
|
#define stbir__simdf_0123to3210(out, reg) (out) = stbir__simdf_swiz(reg, 3, 2, 1, 0)
|
|
#define stbir__simdf_0123to2301(out, reg) (out) = stbir__simdf_swiz(reg, 2, 3, 0, 1)
|
|
#define stbir__simdf_0123to3012(out, reg) (out) = stbir__simdf_swiz(reg, 3, 0, 1, 2)
|
|
#define stbir__simdf_0123to0011(out, reg) (out) = stbir__simdf_swiz(reg, 0, 0, 1, 1)
|
|
#define stbir__simdf_0123to1100(out, reg) (out) = stbir__simdf_swiz(reg, 1, 1, 0, 0)
|
|
#define stbir__simdf_0123to2233(out, reg) (out) = stbir__simdf_swiz(reg, 2, 2, 3, 3)
|
|
#define stbir__simdf_0123to1133(out, reg) (out) = stbir__simdf_swiz(reg, 1, 1, 3, 3)
|
|
#define stbir__simdf_0123to0022(out, reg) (out) = stbir__simdf_swiz(reg, 0, 0, 2, 2)
|
|
#define stbir__simdf_0123to1032(out, reg) (out) = stbir__simdf_swiz(reg, 1, 0, 3, 2)
|
|
|
|
typedef union stbir__simdi_u32
|
|
{
|
|
stbir_uint32 m128i_u32[4];
|
|
int m128i_i32[4];
|
|
stbir__simdi m128i_i128;
|
|
} stbir__simdi_u32;
|
|
|
|
static const int STBIR_mask[9] = {0, 0, 0, -1, -1, -1, 0, 0, 0};
|
|
|
|
static const STBIR__SIMDF_CONST(STBIR_max_uint8_as_float, stbir__max_uint8_as_float);
|
|
static const STBIR__SIMDF_CONST(STBIR_max_uint16_as_float, stbir__max_uint16_as_float);
|
|
static const STBIR__SIMDF_CONST(STBIR_max_uint8_as_float_inverted, stbir__max_uint8_as_float_inverted);
|
|
static const STBIR__SIMDF_CONST(STBIR_max_uint16_as_float_inverted, stbir__max_uint16_as_float_inverted);
|
|
|
|
static const STBIR__SIMDF_CONST(STBIR_simd_point5, 0.5f);
|
|
static const STBIR__SIMDF_CONST(STBIR_ones, 1.0f);
|
|
static const STBIR__SIMDI_CONST(STBIR_almost_zero, (127 - 13) << 23);
|
|
static const STBIR__SIMDI_CONST(STBIR_almost_one, 0x3f7fffff);
|
|
static const STBIR__SIMDI_CONST(STBIR_mastissa_mask, 0xff);
|
|
static const STBIR__SIMDI_CONST(STBIR_topscale, 0x02000000);
|
|
|
|
// Basically, in simd mode, we unroll the proper amount, and we don't want
|
|
// the non-simd remnant loops to be unroll because they only run a few times
|
|
// Adding this switch saves about 5K on clang which is Captain Unroll the 3rd.
|
|
#define STBIR_SIMD_STREAMOUT_PTR(star) STBIR_STREAMOUT_PTR(star)
|
|
#define STBIR_SIMD_NO_UNROLL(ptr) STBIR_NO_UNROLL(ptr)
|
|
#define STBIR_SIMD_NO_UNROLL_LOOP_START STBIR_NO_UNROLL_LOOP_START
|
|
#define STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR STBIR_NO_UNROLL_LOOP_START_INF_FOR
|
|
|
|
#ifdef STBIR_MEMCPY
|
|
#undef STBIR_MEMCPY
|
|
#endif
|
|
#define STBIR_MEMCPY stbir_simd_memcpy
|
|
|
|
// override normal use of memcpy with much simpler copy (faster and smaller with our sized copies)
|
|
static void stbir_simd_memcpy(void *dest, void const *src, size_t bytes)
|
|
{
|
|
char STBIR_SIMD_STREAMOUT_PTR(*) d = (char *)dest;
|
|
char STBIR_SIMD_STREAMOUT_PTR(*) d_end = ((char *)dest) + bytes;
|
|
ptrdiff_t ofs_to_src = (char *)src - (char *)dest;
|
|
|
|
// check overlaps
|
|
STBIR_ASSERT(((d >= ((char *)src) + bytes)) || ((d + bytes) <= (char *)src));
|
|
|
|
if (bytes < (16 * stbir__simdfX_float_count))
|
|
{
|
|
if (bytes < 16)
|
|
{
|
|
if (bytes)
|
|
{
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
STBIR_SIMD_NO_UNROLL(d);
|
|
d[0] = d[ofs_to_src];
|
|
++d;
|
|
} while (d < d_end);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
stbir__simdf x;
|
|
// do one unaligned to get us aligned for the stream out below
|
|
stbir__simdf_load(x, (d + ofs_to_src));
|
|
stbir__simdf_store(d, x);
|
|
d = (char *)((((size_t)d) + 16) & ~15);
|
|
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR
|
|
for (;;)
|
|
{
|
|
STBIR_SIMD_NO_UNROLL(d);
|
|
|
|
if (d > (d_end - 16))
|
|
{
|
|
if (d == d_end)
|
|
return;
|
|
d = d_end - 16;
|
|
}
|
|
|
|
stbir__simdf_load(x, (d + ofs_to_src));
|
|
stbir__simdf_store(d, x);
|
|
d += 16;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
stbir__simdfX x0, x1, x2, x3;
|
|
|
|
// do one unaligned to get us aligned for the stream out below
|
|
stbir__simdfX_load(x0, (d + ofs_to_src) + 0 * stbir__simdfX_float_count);
|
|
stbir__simdfX_load(x1, (d + ofs_to_src) + 4 * stbir__simdfX_float_count);
|
|
stbir__simdfX_load(x2, (d + ofs_to_src) + 8 * stbir__simdfX_float_count);
|
|
stbir__simdfX_load(x3, (d + ofs_to_src) + 12 * stbir__simdfX_float_count);
|
|
stbir__simdfX_store(d + 0 * stbir__simdfX_float_count, x0);
|
|
stbir__simdfX_store(d + 4 * stbir__simdfX_float_count, x1);
|
|
stbir__simdfX_store(d + 8 * stbir__simdfX_float_count, x2);
|
|
stbir__simdfX_store(d + 12 * stbir__simdfX_float_count, x3);
|
|
d = (char *)((((size_t)d) + (16 * stbir__simdfX_float_count)) & ~((16 * stbir__simdfX_float_count) - 1));
|
|
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR
|
|
for (;;)
|
|
{
|
|
STBIR_SIMD_NO_UNROLL(d);
|
|
|
|
if (d > (d_end - (16 * stbir__simdfX_float_count)))
|
|
{
|
|
if (d == d_end)
|
|
return;
|
|
d = d_end - (16 * stbir__simdfX_float_count);
|
|
}
|
|
|
|
stbir__simdfX_load(x0, (d + ofs_to_src) + 0 * stbir__simdfX_float_count);
|
|
stbir__simdfX_load(x1, (d + ofs_to_src) + 4 * stbir__simdfX_float_count);
|
|
stbir__simdfX_load(x2, (d + ofs_to_src) + 8 * stbir__simdfX_float_count);
|
|
stbir__simdfX_load(x3, (d + ofs_to_src) + 12 * stbir__simdfX_float_count);
|
|
stbir__simdfX_store(d + 0 * stbir__simdfX_float_count, x0);
|
|
stbir__simdfX_store(d + 4 * stbir__simdfX_float_count, x1);
|
|
stbir__simdfX_store(d + 8 * stbir__simdfX_float_count, x2);
|
|
stbir__simdfX_store(d + 12 * stbir__simdfX_float_count, x3);
|
|
d += (16 * stbir__simdfX_float_count);
|
|
}
|
|
}
|
|
}
|
|
|
|
// memcpy that is specically intentionally overlapping (src is smaller then dest, so can be
|
|
// a normal forward copy, bytes is divisible by 4 and bytes is greater than or equal to
|
|
// the diff between dest and src)
|
|
static void stbir_overlapping_memcpy(void *dest, void const *src, size_t bytes)
|
|
{
|
|
char STBIR_SIMD_STREAMOUT_PTR(*) sd = (char *)src;
|
|
char STBIR_SIMD_STREAMOUT_PTR(*) s_end = ((char *)src) + bytes;
|
|
ptrdiff_t ofs_to_dest = (char *)dest - (char *)src;
|
|
|
|
if (ofs_to_dest >= 16) // is the overlap more than 16 away?
|
|
{
|
|
char STBIR_SIMD_STREAMOUT_PTR(*) s_end16 = ((char *)src) + (bytes & ~15);
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
stbir__simdf x;
|
|
STBIR_SIMD_NO_UNROLL(sd);
|
|
stbir__simdf_load(x, sd);
|
|
stbir__simdf_store((sd + ofs_to_dest), x);
|
|
sd += 16;
|
|
} while (sd < s_end16);
|
|
|
|
if (sd == s_end)
|
|
return;
|
|
}
|
|
|
|
do
|
|
{
|
|
STBIR_SIMD_NO_UNROLL(sd);
|
|
*(int *)(sd + ofs_to_dest) = *(int *)sd;
|
|
sd += 4;
|
|
} while (sd < s_end);
|
|
}
|
|
|
|
#else // no SSE2
|
|
|
|
// when in scalar mode, we let unrolling happen, so this macro just does the __restrict
|
|
#define STBIR_SIMD_STREAMOUT_PTR(star) STBIR_STREAMOUT_PTR(star)
|
|
#define STBIR_SIMD_NO_UNROLL(ptr)
|
|
#define STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
#define STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR
|
|
|
|
#endif // SSE2
|
|
|
|
#ifdef STBIR_PROFILE
|
|
|
|
#ifndef STBIR_PROFILE_FUNC
|
|
|
|
#if defined(_x86_64) || defined(__x86_64__) || defined(_M_X64) || defined(__x86_64) || defined(__SSE2__) || defined(STBIR_SSE) || defined(_M_IX86_FP) || defined(__i386) || defined(__i386__) || defined(_M_IX86) || defined(_X86_)
|
|
|
|
#ifdef _MSC_VER
|
|
|
|
STBIRDEF stbir_uint64 __rdtsc();
|
|
#define STBIR_PROFILE_FUNC() __rdtsc()
|
|
|
|
#else // non msvc
|
|
|
|
static stbir__inline stbir_uint64 STBIR_PROFILE_FUNC()
|
|
{
|
|
stbir_uint32 lo, hi;
|
|
asm volatile("rdtsc" : "=a"(lo), "=d"(hi));
|
|
return (((stbir_uint64)hi) << 32) | ((stbir_uint64)lo);
|
|
}
|
|
|
|
#endif // msvc
|
|
|
|
#elif defined(_M_ARM64) || defined(__aarch64__) || defined(__arm64__) || defined(__ARM_NEON__)
|
|
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
|
|
#define STBIR_PROFILE_FUNC() _ReadStatusReg(ARM64_CNTVCT)
|
|
|
|
#else
|
|
|
|
static stbir__inline stbir_uint64 STBIR_PROFILE_FUNC()
|
|
{
|
|
stbir_uint64 tsc;
|
|
asm volatile("mrs %0, cntvct_el0" : "=r"(tsc));
|
|
return tsc;
|
|
}
|
|
|
|
#endif
|
|
|
|
#else // x64, arm
|
|
|
|
#error Unknown platform for profiling.
|
|
|
|
#endif // x64, arm
|
|
|
|
#endif // STBIR_PROFILE_FUNC
|
|
|
|
#define STBIR_ONLY_PROFILE_GET_SPLIT_INFO , stbir__per_split_info *split_info
|
|
#define STBIR_ONLY_PROFILE_SET_SPLIT_INFO , split_info
|
|
|
|
#define STBIR_ONLY_PROFILE_BUILD_GET_INFO , stbir__info *profile_info
|
|
#define STBIR_ONLY_PROFILE_BUILD_SET_INFO , profile_info
|
|
|
|
// super light-weight micro profiler
|
|
#define STBIR_PROFILE_START_ll(info, wh) \
|
|
{ \
|
|
stbir_uint64 wh##thiszonetime = STBIR_PROFILE_FUNC(); \
|
|
stbir_uint64 *wh##save_parent_excluded_ptr = info->current_zone_excluded_ptr; \
|
|
stbir_uint64 wh##current_zone_excluded = 0; \
|
|
info->current_zone_excluded_ptr = &wh##current_zone_excluded;
|
|
#define STBIR_PROFILE_END_ll(info, wh) \
|
|
wh##thiszonetime = STBIR_PROFILE_FUNC() - wh##thiszonetime; \
|
|
info->profile.named.wh += wh##thiszonetime - wh##current_zone_excluded; \
|
|
*wh##save_parent_excluded_ptr += wh##thiszonetime; \
|
|
info->current_zone_excluded_ptr = wh##save_parent_excluded_ptr; \
|
|
}
|
|
#define STBIR_PROFILE_FIRST_START_ll(info, wh) \
|
|
{ \
|
|
int i; \
|
|
info->current_zone_excluded_ptr = &info->profile.named.total; \
|
|
for (i = 0; i < STBIR__ARRAY_SIZE(info->profile.array); i++) \
|
|
info->profile.array[i] = 0; \
|
|
} \
|
|
STBIR_PROFILE_START_ll(info, wh);
|
|
#define STBIR_PROFILE_CLEAR_EXTRAS_ll(info, num) \
|
|
{ \
|
|
int extra; \
|
|
for (extra = 1; extra < (num); extra++) \
|
|
{ \
|
|
int i; \
|
|
for (i = 0; i < STBIR__ARRAY_SIZE((info)->profile.array); i++) \
|
|
(info)[extra].profile.array[i] = 0; \
|
|
} \
|
|
}
|
|
|
|
// for thread data
|
|
#define STBIR_PROFILE_START(wh) STBIR_PROFILE_START_ll(split_info, wh)
|
|
#define STBIR_PROFILE_END(wh) STBIR_PROFILE_END_ll(split_info, wh)
|
|
#define STBIR_PROFILE_FIRST_START(wh) STBIR_PROFILE_FIRST_START_ll(split_info, wh)
|
|
#define STBIR_PROFILE_CLEAR_EXTRAS() STBIR_PROFILE_CLEAR_EXTRAS_ll(split_info, split_count)
|
|
|
|
// for build data
|
|
#define STBIR_PROFILE_BUILD_START(wh) STBIR_PROFILE_START_ll(profile_info, wh)
|
|
#define STBIR_PROFILE_BUILD_END(wh) STBIR_PROFILE_END_ll(profile_info, wh)
|
|
#define STBIR_PROFILE_BUILD_FIRST_START(wh) STBIR_PROFILE_FIRST_START_ll(profile_info, wh)
|
|
#define STBIR_PROFILE_BUILD_CLEAR(info) \
|
|
{ \
|
|
int i; \
|
|
for (i = 0; i < STBIR__ARRAY_SIZE(info->profile.array); i++) \
|
|
info->profile.array[i] = 0; \
|
|
}
|
|
|
|
#else // no profile
|
|
|
|
#define STBIR_ONLY_PROFILE_GET_SPLIT_INFO
|
|
#define STBIR_ONLY_PROFILE_SET_SPLIT_INFO
|
|
|
|
#define STBIR_ONLY_PROFILE_BUILD_GET_INFO
|
|
#define STBIR_ONLY_PROFILE_BUILD_SET_INFO
|
|
|
|
#define STBIR_PROFILE_START(wh)
|
|
#define STBIR_PROFILE_END(wh)
|
|
#define STBIR_PROFILE_FIRST_START(wh)
|
|
#define STBIR_PROFILE_CLEAR_EXTRAS()
|
|
|
|
#define STBIR_PROFILE_BUILD_START(wh)
|
|
#define STBIR_PROFILE_BUILD_END(wh)
|
|
#define STBIR_PROFILE_BUILD_FIRST_START(wh)
|
|
#define STBIR_PROFILE_BUILD_CLEAR(info)
|
|
|
|
#endif // stbir_profile
|
|
|
|
#ifndef STBIR_CEILF
|
|
#include <math.h>
|
|
#if _MSC_VER <= 1200 // support VC6 for Sean
|
|
#define STBIR_CEILF(x) ((float)ceil((float)(x)))
|
|
#define STBIR_FLOORF(x) ((float)floor((float)(x)))
|
|
#else
|
|
#define STBIR_CEILF(x) ceilf(x)
|
|
#define STBIR_FLOORF(x) floorf(x)
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef STBIR_MEMCPY
|
|
// For memcpy
|
|
#include <string.h>
|
|
#define STBIR_MEMCPY(dest, src, len) memcpy(dest, src, len)
|
|
#endif
|
|
|
|
#ifndef STBIR_SIMD
|
|
|
|
// memcpy that is specifically intentionally overlapping (src is smaller then dest, so can be
|
|
// a normal forward copy, bytes is divisible by 4 and bytes is greater than or equal to
|
|
// the diff between dest and src)
|
|
static void stbir_overlapping_memcpy(void *dest, void const *src, size_t bytes)
|
|
{
|
|
char STBIR_SIMD_STREAMOUT_PTR(*) sd = (char *)src;
|
|
char STBIR_SIMD_STREAMOUT_PTR(*) s_end = ((char *)src) + bytes;
|
|
ptrdiff_t ofs_to_dest = (char *)dest - (char *)src;
|
|
|
|
if (ofs_to_dest >= 8) // is the overlap more than 8 away?
|
|
{
|
|
char STBIR_SIMD_STREAMOUT_PTR(*) s_end8 = ((char *)src) + (bytes & ~7);
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
STBIR_NO_UNROLL(sd);
|
|
*(stbir_uint64 *)(sd + ofs_to_dest) = *(stbir_uint64 *)sd;
|
|
sd += 8;
|
|
} while (sd < s_end8);
|
|
|
|
if (sd == s_end)
|
|
return;
|
|
}
|
|
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
STBIR_NO_UNROLL(sd);
|
|
*(int *)(sd + ofs_to_dest) = *(int *)sd;
|
|
sd += 4;
|
|
} while (sd < s_end);
|
|
}
|
|
|
|
#endif
|
|
|
|
static float stbir__filter_trapezoid(float x, float scale, void *user_data)
|
|
{
|
|
float halfscale = scale / 2;
|
|
float t = 0.5f + halfscale;
|
|
STBIR_ASSERT(scale <= 1);
|
|
STBIR__UNUSED(user_data);
|
|
|
|
if (x < 0.0f)
|
|
x = -x;
|
|
|
|
if (x >= t)
|
|
return 0.0f;
|
|
else
|
|
{
|
|
float r = 0.5f - halfscale;
|
|
if (x <= r)
|
|
return 1.0f;
|
|
else
|
|
return (t - x) / scale;
|
|
}
|
|
}
|
|
|
|
static float stbir__support_trapezoid(float scale, void *user_data)
|
|
{
|
|
STBIR__UNUSED(user_data);
|
|
return 0.5f + scale / 2.0f;
|
|
}
|
|
|
|
static float stbir__filter_triangle(float x, float s, void *user_data)
|
|
{
|
|
STBIR__UNUSED(s);
|
|
STBIR__UNUSED(user_data);
|
|
|
|
if (x < 0.0f)
|
|
x = -x;
|
|
|
|
if (x <= 1.0f)
|
|
return 1.0f - x;
|
|
else
|
|
return 0.0f;
|
|
}
|
|
|
|
static float stbir__filter_point(float x, float s, void *user_data)
|
|
{
|
|
STBIR__UNUSED(x);
|
|
STBIR__UNUSED(s);
|
|
STBIR__UNUSED(user_data);
|
|
|
|
return 1.0f;
|
|
}
|
|
|
|
static float stbir__filter_cubic(float x, float s, void *user_data)
|
|
{
|
|
STBIR__UNUSED(s);
|
|
STBIR__UNUSED(user_data);
|
|
|
|
if (x < 0.0f)
|
|
x = -x;
|
|
|
|
if (x < 1.0f)
|
|
return (4.0f + x * x * (3.0f * x - 6.0f)) / 6.0f;
|
|
else if (x < 2.0f)
|
|
return (8.0f + x * (-12.0f + x * (6.0f - x))) / 6.0f;
|
|
|
|
return (0.0f);
|
|
}
|
|
|
|
static float stbir__filter_catmullrom(float x, float s, void *user_data)
|
|
{
|
|
STBIR__UNUSED(s);
|
|
STBIR__UNUSED(user_data);
|
|
|
|
if (x < 0.0f)
|
|
x = -x;
|
|
|
|
if (x < 1.0f)
|
|
return 1.0f - x * x * (2.5f - 1.5f * x);
|
|
else if (x < 2.0f)
|
|
return 2.0f - x * (4.0f + x * (0.5f * x - 2.5f));
|
|
|
|
return (0.0f);
|
|
}
|
|
|
|
static float stbir__filter_mitchell(float x, float s, void *user_data)
|
|
{
|
|
STBIR__UNUSED(s);
|
|
STBIR__UNUSED(user_data);
|
|
|
|
if (x < 0.0f)
|
|
x = -x;
|
|
|
|
if (x < 1.0f)
|
|
return (16.0f + x * x * (21.0f * x - 36.0f)) / 18.0f;
|
|
else if (x < 2.0f)
|
|
return (32.0f + x * (-60.0f + x * (36.0f - 7.0f * x))) / 18.0f;
|
|
|
|
return (0.0f);
|
|
}
|
|
|
|
static float stbir__support_zeropoint5(float s, void *user_data)
|
|
{
|
|
STBIR__UNUSED(s);
|
|
STBIR__UNUSED(user_data);
|
|
return 0.5f;
|
|
}
|
|
|
|
static float stbir__support_one(float s, void *user_data)
|
|
{
|
|
STBIR__UNUSED(s);
|
|
STBIR__UNUSED(user_data);
|
|
return 1;
|
|
}
|
|
|
|
static float stbir__support_two(float s, void *user_data)
|
|
{
|
|
STBIR__UNUSED(s);
|
|
STBIR__UNUSED(user_data);
|
|
return 2;
|
|
}
|
|
|
|
// This is the maximum number of input samples that can affect an output sample
|
|
// with the given filter from the output pixel's perspective
|
|
static int stbir__get_filter_pixel_width(stbir__support_callback *support, float scale, void *user_data)
|
|
{
|
|
STBIR_ASSERT(support != 0);
|
|
|
|
if (scale >= (1.0f - stbir__small_float)) // upscale
|
|
return (int)STBIR_CEILF(support(1.0f / scale, user_data) * 2.0f);
|
|
else
|
|
return (int)STBIR_CEILF(support(scale, user_data) * 2.0f / scale);
|
|
}
|
|
|
|
// this is how many coefficents per run of the filter (which is different
|
|
// from the filter_pixel_width depending on if we are scattering or gathering)
|
|
static int stbir__get_coefficient_width(stbir__sampler *samp, int is_gather, void *user_data)
|
|
{
|
|
float scale = samp->scale_info.scale;
|
|
stbir__support_callback *support = samp->filter_support;
|
|
|
|
switch (is_gather)
|
|
{
|
|
case 1:
|
|
return (int)STBIR_CEILF(support(1.0f / scale, user_data) * 2.0f);
|
|
case 2:
|
|
return (int)STBIR_CEILF(support(scale, user_data) * 2.0f / scale);
|
|
case 0:
|
|
return (int)STBIR_CEILF(support(scale, user_data) * 2.0f);
|
|
default:
|
|
STBIR_ASSERT((is_gather >= 0) && (is_gather <= 2));
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int stbir__get_contributors(stbir__sampler *samp, int is_gather)
|
|
{
|
|
if (is_gather)
|
|
return samp->scale_info.output_sub_size;
|
|
else
|
|
return (samp->scale_info.input_full_size + samp->filter_pixel_margin * 2);
|
|
}
|
|
|
|
static int stbir__edge_zero_full(int n, int max)
|
|
{
|
|
STBIR__UNUSED(n);
|
|
STBIR__UNUSED(max);
|
|
return 0; // NOTREACHED
|
|
}
|
|
|
|
static int stbir__edge_clamp_full(int n, int max)
|
|
{
|
|
if (n < 0)
|
|
return 0;
|
|
|
|
if (n >= max)
|
|
return max - 1;
|
|
|
|
return n; // NOTREACHED
|
|
}
|
|
|
|
static int stbir__edge_reflect_full(int n, int max)
|
|
{
|
|
if (n < 0)
|
|
{
|
|
if (n > -max)
|
|
return -n;
|
|
else
|
|
return max - 1;
|
|
}
|
|
|
|
if (n >= max)
|
|
{
|
|
int max2 = max * 2;
|
|
if (n >= max2)
|
|
return 0;
|
|
else
|
|
return max2 - n - 1;
|
|
}
|
|
|
|
return n; // NOTREACHED
|
|
}
|
|
|
|
static int stbir__edge_wrap_full(int n, int max)
|
|
{
|
|
if (n >= 0)
|
|
return (n % max);
|
|
else
|
|
{
|
|
int m = (-n) % max;
|
|
|
|
if (m != 0)
|
|
m = max - m;
|
|
|
|
return (m);
|
|
}
|
|
}
|
|
|
|
typedef int stbir__edge_wrap_func(int n, int max);
|
|
static stbir__edge_wrap_func *stbir__edge_wrap_slow[] =
|
|
{
|
|
stbir__edge_clamp_full, // STBIR_EDGE_CLAMP
|
|
stbir__edge_reflect_full, // STBIR_EDGE_REFLECT
|
|
stbir__edge_wrap_full, // STBIR_EDGE_WRAP
|
|
stbir__edge_zero_full, // STBIR_EDGE_ZERO
|
|
};
|
|
|
|
stbir__inline static int stbir__edge_wrap(stbir_edge edge, int n, int max)
|
|
{
|
|
// avoid per-pixel switch
|
|
if (n >= 0 && n < max)
|
|
return n;
|
|
return stbir__edge_wrap_slow[edge](n, max);
|
|
}
|
|
|
|
#define STBIR__MERGE_RUNS_PIXEL_THRESHOLD 16
|
|
|
|
// get information on the extents of a sampler
|
|
static void stbir__get_extents(stbir__sampler *samp, stbir__extents *scanline_extents)
|
|
{
|
|
int j, stop;
|
|
int left_margin, right_margin;
|
|
int min_n = 0x7fffffff, max_n = -0x7fffffff;
|
|
int min_left = 0x7fffffff, max_left = -0x7fffffff;
|
|
int min_right = 0x7fffffff, max_right = -0x7fffffff;
|
|
stbir_edge edge = samp->edge;
|
|
stbir__contributors *contributors = samp->contributors;
|
|
int output_sub_size = samp->scale_info.output_sub_size;
|
|
int input_full_size = samp->scale_info.input_full_size;
|
|
int filter_pixel_margin = samp->filter_pixel_margin;
|
|
|
|
STBIR_ASSERT(samp->is_gather);
|
|
|
|
stop = output_sub_size;
|
|
for (j = 0; j < stop; j++)
|
|
{
|
|
STBIR_ASSERT(contributors[j].n1 >= contributors[j].n0);
|
|
if (contributors[j].n0 < min_n)
|
|
{
|
|
min_n = contributors[j].n0;
|
|
stop = j + filter_pixel_margin; // if we find a new min, only scan another filter width
|
|
if (stop > output_sub_size)
|
|
stop = output_sub_size;
|
|
}
|
|
}
|
|
|
|
stop = 0;
|
|
for (j = output_sub_size - 1; j >= stop; j--)
|
|
{
|
|
STBIR_ASSERT(contributors[j].n1 >= contributors[j].n0);
|
|
if (contributors[j].n1 > max_n)
|
|
{
|
|
max_n = contributors[j].n1;
|
|
stop = j - filter_pixel_margin; // if we find a new max, only scan another filter width
|
|
if (stop < 0)
|
|
stop = 0;
|
|
}
|
|
}
|
|
|
|
STBIR_ASSERT(scanline_extents->conservative.n0 <= min_n);
|
|
STBIR_ASSERT(scanline_extents->conservative.n1 >= max_n);
|
|
|
|
// now calculate how much into the margins we really read
|
|
left_margin = 0;
|
|
if (min_n < 0)
|
|
{
|
|
left_margin = -min_n;
|
|
min_n = 0;
|
|
}
|
|
|
|
right_margin = 0;
|
|
if (max_n >= input_full_size)
|
|
{
|
|
right_margin = max_n - input_full_size + 1;
|
|
max_n = input_full_size - 1;
|
|
}
|
|
|
|
// index 1 is margin pixel extents (how many pixels we hang over the edge)
|
|
scanline_extents->edge_sizes[0] = left_margin;
|
|
scanline_extents->edge_sizes[1] = right_margin;
|
|
|
|
// index 2 is pixels read from the input
|
|
scanline_extents->spans[0].n0 = min_n;
|
|
scanline_extents->spans[0].n1 = max_n;
|
|
scanline_extents->spans[0].pixel_offset_for_input = min_n;
|
|
|
|
// default to no other input range
|
|
scanline_extents->spans[1].n0 = 0;
|
|
scanline_extents->spans[1].n1 = -1;
|
|
scanline_extents->spans[1].pixel_offset_for_input = 0;
|
|
|
|
// don't have to do edge calc for zero clamp
|
|
if (edge == STBIR_EDGE_ZERO)
|
|
return;
|
|
|
|
// convert margin pixels to the pixels within the input (min and max)
|
|
for (j = -left_margin; j < 0; j++)
|
|
{
|
|
int p = stbir__edge_wrap(edge, j, input_full_size);
|
|
if (p < min_left)
|
|
min_left = p;
|
|
if (p > max_left)
|
|
max_left = p;
|
|
}
|
|
|
|
for (j = input_full_size; j < (input_full_size + right_margin); j++)
|
|
{
|
|
int p = stbir__edge_wrap(edge, j, input_full_size);
|
|
if (p < min_right)
|
|
min_right = p;
|
|
if (p > max_right)
|
|
max_right = p;
|
|
}
|
|
|
|
// merge the left margin pixel region if it connects within 4 pixels of main pixel region
|
|
if (min_left != 0x7fffffff)
|
|
{
|
|
if (((min_left <= min_n) && ((max_left + STBIR__MERGE_RUNS_PIXEL_THRESHOLD) >= min_n)) ||
|
|
((min_n <= min_left) && ((max_n + STBIR__MERGE_RUNS_PIXEL_THRESHOLD) >= max_left)))
|
|
{
|
|
scanline_extents->spans[0].n0 = min_n = stbir__min(min_n, min_left);
|
|
scanline_extents->spans[0].n1 = max_n = stbir__max(max_n, max_left);
|
|
scanline_extents->spans[0].pixel_offset_for_input = min_n;
|
|
left_margin = 0;
|
|
}
|
|
}
|
|
|
|
// merge the right margin pixel region if it connects within 4 pixels of main pixel region
|
|
if (min_right != 0x7fffffff)
|
|
{
|
|
if (((min_right <= min_n) && ((max_right + STBIR__MERGE_RUNS_PIXEL_THRESHOLD) >= min_n)) ||
|
|
((min_n <= min_right) && ((max_n + STBIR__MERGE_RUNS_PIXEL_THRESHOLD) >= max_right)))
|
|
{
|
|
scanline_extents->spans[0].n0 = min_n = stbir__min(min_n, min_right);
|
|
scanline_extents->spans[0].n1 = max_n = stbir__max(max_n, max_right);
|
|
scanline_extents->spans[0].pixel_offset_for_input = min_n;
|
|
right_margin = 0;
|
|
}
|
|
}
|
|
|
|
STBIR_ASSERT(scanline_extents->conservative.n0 <= min_n);
|
|
STBIR_ASSERT(scanline_extents->conservative.n1 >= max_n);
|
|
|
|
// you get two ranges when you have the WRAP edge mode and you are doing just the a piece of the resize
|
|
// so you need to get a second run of pixels from the opposite side of the scanline (which you
|
|
// wouldn't need except for WRAP)
|
|
|
|
// if we can't merge the min_left range, add it as a second range
|
|
if ((left_margin) && (min_left != 0x7fffffff))
|
|
{
|
|
stbir__span *newspan = scanline_extents->spans + 1;
|
|
STBIR_ASSERT(right_margin == 0);
|
|
if (min_left < scanline_extents->spans[0].n0)
|
|
{
|
|
scanline_extents->spans[1].pixel_offset_for_input = scanline_extents->spans[0].n0;
|
|
scanline_extents->spans[1].n0 = scanline_extents->spans[0].n0;
|
|
scanline_extents->spans[1].n1 = scanline_extents->spans[0].n1;
|
|
--newspan;
|
|
}
|
|
newspan->pixel_offset_for_input = min_left;
|
|
newspan->n0 = -left_margin;
|
|
newspan->n1 = (max_left - min_left) - left_margin;
|
|
scanline_extents->edge_sizes[0] = 0; // don't need to copy the left margin, since we are directly decoding into the margin
|
|
}
|
|
// if we can't merge the min_left range, add it as a second range
|
|
else if ((right_margin) && (min_right != 0x7fffffff))
|
|
{
|
|
stbir__span *newspan = scanline_extents->spans + 1;
|
|
if (min_right < scanline_extents->spans[0].n0)
|
|
{
|
|
scanline_extents->spans[1].pixel_offset_for_input = scanline_extents->spans[0].n0;
|
|
scanline_extents->spans[1].n0 = scanline_extents->spans[0].n0;
|
|
scanline_extents->spans[1].n1 = scanline_extents->spans[0].n1;
|
|
--newspan;
|
|
}
|
|
newspan->pixel_offset_for_input = min_right;
|
|
newspan->n0 = scanline_extents->spans[1].n1 + 1;
|
|
newspan->n1 = scanline_extents->spans[1].n1 + 1 + (max_right - min_right);
|
|
scanline_extents->edge_sizes[1] = 0; // don't need to copy the right margin, since we are directly decoding into the margin
|
|
}
|
|
|
|
// sort the spans into write output order
|
|
if ((scanline_extents->spans[1].n1 > scanline_extents->spans[1].n0) && (scanline_extents->spans[0].n0 > scanline_extents->spans[1].n0))
|
|
{
|
|
stbir__span tspan = scanline_extents->spans[0];
|
|
scanline_extents->spans[0] = scanline_extents->spans[1];
|
|
scanline_extents->spans[1] = tspan;
|
|
}
|
|
}
|
|
|
|
static void stbir__calculate_in_pixel_range(int *first_pixel, int *last_pixel, float out_pixel_center, float out_filter_radius, float inv_scale, float out_shift, int input_size, stbir_edge edge)
|
|
{
|
|
int first, last;
|
|
float out_pixel_influence_lowerbound = out_pixel_center - out_filter_radius;
|
|
float out_pixel_influence_upperbound = out_pixel_center + out_filter_radius;
|
|
|
|
float in_pixel_influence_lowerbound = (out_pixel_influence_lowerbound + out_shift) * inv_scale;
|
|
float in_pixel_influence_upperbound = (out_pixel_influence_upperbound + out_shift) * inv_scale;
|
|
|
|
first = (int)(STBIR_FLOORF(in_pixel_influence_lowerbound + 0.5f));
|
|
last = (int)(STBIR_FLOORF(in_pixel_influence_upperbound - 0.5f));
|
|
if (last < first)
|
|
last = first; // point sample mode can span a value *right* at 0.5, and cause these to cross
|
|
|
|
if (edge == STBIR_EDGE_WRAP)
|
|
{
|
|
if (first < -input_size)
|
|
first = -input_size;
|
|
if (last >= (input_size * 2))
|
|
last = (input_size * 2) - 1;
|
|
}
|
|
|
|
*first_pixel = first;
|
|
*last_pixel = last;
|
|
}
|
|
|
|
static void stbir__calculate_coefficients_for_gather_upsample(float out_filter_radius, stbir__kernel_callback *kernel, stbir__scale_info *scale_info, int num_contributors, stbir__contributors *contributors, float *coefficient_group, int coefficient_width, stbir_edge edge, void *user_data)
|
|
{
|
|
int n, end;
|
|
float inv_scale = scale_info->inv_scale;
|
|
float out_shift = scale_info->pixel_shift;
|
|
int input_size = scale_info->input_full_size;
|
|
int numerator = scale_info->scale_numerator;
|
|
int polyphase = ((scale_info->scale_is_rational) && (numerator < num_contributors));
|
|
|
|
// Looping through out pixels
|
|
end = num_contributors;
|
|
if (polyphase)
|
|
end = numerator;
|
|
for (n = 0; n < end; n++)
|
|
{
|
|
int i;
|
|
int last_non_zero;
|
|
float out_pixel_center = (float)n + 0.5f;
|
|
float in_center_of_out = (out_pixel_center + out_shift) * inv_scale;
|
|
|
|
int in_first_pixel, in_last_pixel;
|
|
|
|
stbir__calculate_in_pixel_range(&in_first_pixel, &in_last_pixel, out_pixel_center, out_filter_radius, inv_scale, out_shift, input_size, edge);
|
|
|
|
// make sure we never generate a range larger than our precalculated coeff width
|
|
// this only happens in point sample mode, but it's a good safe thing to do anyway
|
|
if ((in_last_pixel - in_first_pixel + 1) > coefficient_width)
|
|
in_last_pixel = in_first_pixel + coefficient_width - 1;
|
|
|
|
last_non_zero = -1;
|
|
for (i = 0; i <= in_last_pixel - in_first_pixel; i++)
|
|
{
|
|
float in_pixel_center = (float)(i + in_first_pixel) + 0.5f;
|
|
float coeff = kernel(in_center_of_out - in_pixel_center, inv_scale, user_data);
|
|
|
|
// kill denormals
|
|
if (((coeff < stbir__small_float) && (coeff > -stbir__small_float)))
|
|
{
|
|
if (i == 0) // if we're at the front, just eat zero contributors
|
|
{
|
|
STBIR_ASSERT((in_last_pixel - in_first_pixel) != 0); // there should be at least one contrib
|
|
++in_first_pixel;
|
|
i--;
|
|
continue;
|
|
}
|
|
coeff = 0; // make sure is fully zero (should keep denormals away)
|
|
}
|
|
else
|
|
last_non_zero = i;
|
|
|
|
coefficient_group[i] = coeff;
|
|
}
|
|
|
|
in_last_pixel = last_non_zero + in_first_pixel; // kills trailing zeros
|
|
contributors->n0 = in_first_pixel;
|
|
contributors->n1 = in_last_pixel;
|
|
|
|
STBIR_ASSERT(contributors->n1 >= contributors->n0);
|
|
|
|
++contributors;
|
|
coefficient_group += coefficient_width;
|
|
}
|
|
}
|
|
|
|
static void stbir__insert_coeff(stbir__contributors *contribs, float *coeffs, int new_pixel, float new_coeff, int max_width)
|
|
{
|
|
if (new_pixel <= contribs->n1) // before the end
|
|
{
|
|
if (new_pixel < contribs->n0) // before the front?
|
|
{
|
|
if ((contribs->n1 - new_pixel + 1) <= max_width)
|
|
{
|
|
int j, o = contribs->n0 - new_pixel;
|
|
for (j = contribs->n1 - contribs->n0; j <= 0; j--)
|
|
coeffs[j + o] = coeffs[j];
|
|
for (j = 1; j < o; j--)
|
|
coeffs[j] = coeffs[0];
|
|
coeffs[0] = new_coeff;
|
|
contribs->n0 = new_pixel;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
coeffs[new_pixel - contribs->n0] += new_coeff;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if ((new_pixel - contribs->n0 + 1) <= max_width)
|
|
{
|
|
int j, e = new_pixel - contribs->n0;
|
|
for (j = (contribs->n1 - contribs->n0) + 1; j < e; j++) // clear in-betweens coeffs if there are any
|
|
coeffs[j] = 0;
|
|
|
|
coeffs[e] = new_coeff;
|
|
contribs->n1 = new_pixel;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void stbir__calculate_out_pixel_range(int *first_pixel, int *last_pixel, float in_pixel_center, float in_pixels_radius, float scale, float out_shift, int out_size)
|
|
{
|
|
float in_pixel_influence_lowerbound = in_pixel_center - in_pixels_radius;
|
|
float in_pixel_influence_upperbound = in_pixel_center + in_pixels_radius;
|
|
float out_pixel_influence_lowerbound = in_pixel_influence_lowerbound * scale - out_shift;
|
|
float out_pixel_influence_upperbound = in_pixel_influence_upperbound * scale - out_shift;
|
|
int out_first_pixel = (int)(STBIR_FLOORF(out_pixel_influence_lowerbound + 0.5f));
|
|
int out_last_pixel = (int)(STBIR_FLOORF(out_pixel_influence_upperbound - 0.5f));
|
|
|
|
if (out_first_pixel < 0)
|
|
out_first_pixel = 0;
|
|
if (out_last_pixel >= out_size)
|
|
out_last_pixel = out_size - 1;
|
|
*first_pixel = out_first_pixel;
|
|
*last_pixel = out_last_pixel;
|
|
}
|
|
|
|
static void stbir__calculate_coefficients_for_gather_downsample(int start, int end, float in_pixels_radius, stbir__kernel_callback *kernel, stbir__scale_info *scale_info, int coefficient_width, int num_contributors, stbir__contributors *contributors, float *coefficient_group, void *user_data)
|
|
{
|
|
int in_pixel;
|
|
int i;
|
|
int first_out_inited = -1;
|
|
float scale = scale_info->scale;
|
|
float out_shift = scale_info->pixel_shift;
|
|
int out_size = scale_info->output_sub_size;
|
|
int numerator = scale_info->scale_numerator;
|
|
int polyphase = ((scale_info->scale_is_rational) && (numerator < out_size));
|
|
|
|
STBIR__UNUSED(num_contributors);
|
|
|
|
// Loop through the input pixels
|
|
for (in_pixel = start; in_pixel < end; in_pixel++)
|
|
{
|
|
float in_pixel_center = (float)in_pixel + 0.5f;
|
|
float out_center_of_in = in_pixel_center * scale - out_shift;
|
|
int out_first_pixel, out_last_pixel;
|
|
|
|
stbir__calculate_out_pixel_range(&out_first_pixel, &out_last_pixel, in_pixel_center, in_pixels_radius, scale, out_shift, out_size);
|
|
|
|
if (out_first_pixel > out_last_pixel)
|
|
continue;
|
|
|
|
// clamp or exit if we are using polyphase filtering, and the limit is up
|
|
if (polyphase)
|
|
{
|
|
// when polyphase, you only have to do coeffs up to the numerator count
|
|
if (out_first_pixel == numerator)
|
|
break;
|
|
|
|
// don't do any extra work, clamp last pixel at numerator too
|
|
if (out_last_pixel >= numerator)
|
|
out_last_pixel = numerator - 1;
|
|
}
|
|
|
|
for (i = 0; i <= out_last_pixel - out_first_pixel; i++)
|
|
{
|
|
float out_pixel_center = (float)(i + out_first_pixel) + 0.5f;
|
|
float x = out_pixel_center - out_center_of_in;
|
|
float coeff = kernel(x, scale, user_data) * scale;
|
|
|
|
// kill the coeff if it's too small (avoid denormals)
|
|
if (((coeff < stbir__small_float) && (coeff > -stbir__small_float)))
|
|
coeff = 0.0f;
|
|
|
|
{
|
|
int out = i + out_first_pixel;
|
|
float *coeffs = coefficient_group + out * coefficient_width;
|
|
stbir__contributors *contribs = contributors + out;
|
|
|
|
// is this the first time this output pixel has been seen? Init it.
|
|
if (out > first_out_inited)
|
|
{
|
|
STBIR_ASSERT(out == (first_out_inited + 1)); // ensure we have only advanced one at time
|
|
first_out_inited = out;
|
|
contribs->n0 = in_pixel;
|
|
contribs->n1 = in_pixel;
|
|
coeffs[0] = coeff;
|
|
}
|
|
else
|
|
{
|
|
// insert on end (always in order)
|
|
if (coeffs[0] == 0.0f) // if the first coefficent is zero, then zap it for this coeffs
|
|
{
|
|
STBIR_ASSERT((in_pixel - contribs->n0) == 1); // ensure that when we zap, we're at the 2nd pos
|
|
contribs->n0 = in_pixel;
|
|
}
|
|
contribs->n1 = in_pixel;
|
|
STBIR_ASSERT((in_pixel - contribs->n0) < coefficient_width);
|
|
coeffs[in_pixel - contribs->n0] = coeff;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef STBIR_RENORMALIZE_IN_FLOAT
|
|
#define STBIR_RENORM_TYPE float
|
|
#else
|
|
#define STBIR_RENORM_TYPE double
|
|
#endif
|
|
|
|
static void stbir__cleanup_gathered_coefficients(stbir_edge edge, stbir__filter_extent_info *filter_info, stbir__scale_info *scale_info, int num_contributors, stbir__contributors *contributors, float *coefficient_group, int coefficient_width)
|
|
{
|
|
int input_size = scale_info->input_full_size;
|
|
int input_last_n1 = input_size - 1;
|
|
int n, end;
|
|
int lowest = 0x7fffffff;
|
|
int highest = -0x7fffffff;
|
|
int widest = -1;
|
|
int numerator = scale_info->scale_numerator;
|
|
int denominator = scale_info->scale_denominator;
|
|
int polyphase = ((scale_info->scale_is_rational) && (numerator < num_contributors));
|
|
float *coeffs;
|
|
stbir__contributors *contribs;
|
|
|
|
// weight all the coeffs for each sample
|
|
coeffs = coefficient_group;
|
|
contribs = contributors;
|
|
end = num_contributors;
|
|
if (polyphase)
|
|
end = numerator;
|
|
for (n = 0; n < end; n++)
|
|
{
|
|
int i;
|
|
STBIR_RENORM_TYPE filter_scale, total_filter = 0;
|
|
int e;
|
|
|
|
// add all contribs
|
|
e = contribs->n1 - contribs->n0;
|
|
for (i = 0; i <= e; i++)
|
|
{
|
|
total_filter += (STBIR_RENORM_TYPE)coeffs[i];
|
|
STBIR_ASSERT((coeffs[i] >= -2.0f) && (coeffs[i] <= 2.0f)); // check for wonky weights
|
|
}
|
|
|
|
// rescale
|
|
if ((total_filter < stbir__small_float) && (total_filter > -stbir__small_float))
|
|
{
|
|
// all coeffs are extremely small, just zero it
|
|
contribs->n1 = contribs->n0;
|
|
coeffs[0] = 0.0f;
|
|
}
|
|
else
|
|
{
|
|
// if the total isn't 1.0, rescale everything
|
|
if ((total_filter < (1.0f - stbir__small_float)) || (total_filter > (1.0f + stbir__small_float)))
|
|
{
|
|
filter_scale = ((STBIR_RENORM_TYPE)1.0) / total_filter;
|
|
|
|
// scale them all
|
|
for (i = 0; i <= e; i++)
|
|
coeffs[i] = (float)(coeffs[i] * filter_scale);
|
|
}
|
|
}
|
|
++contribs;
|
|
coeffs += coefficient_width;
|
|
}
|
|
|
|
// if we have a rational for the scale, we can exploit the polyphaseness to not calculate
|
|
// most of the coefficients, so we copy them here
|
|
if (polyphase)
|
|
{
|
|
stbir__contributors *prev_contribs = contributors;
|
|
stbir__contributors *cur_contribs = contributors + numerator;
|
|
|
|
for (n = numerator; n < num_contributors; n++)
|
|
{
|
|
cur_contribs->n0 = prev_contribs->n0 + denominator;
|
|
cur_contribs->n1 = prev_contribs->n1 + denominator;
|
|
++cur_contribs;
|
|
++prev_contribs;
|
|
}
|
|
stbir_overlapping_memcpy(coefficient_group + numerator * coefficient_width, coefficient_group, (num_contributors - numerator) * coefficient_width * sizeof(coeffs[0]));
|
|
}
|
|
|
|
coeffs = coefficient_group;
|
|
contribs = contributors;
|
|
|
|
for (n = 0; n < num_contributors; n++)
|
|
{
|
|
int i;
|
|
|
|
// in zero edge mode, just remove out of bounds contribs completely (since their weights are accounted for now)
|
|
if (edge == STBIR_EDGE_ZERO)
|
|
{
|
|
// shrink the right side if necessary
|
|
if (contribs->n1 > input_last_n1)
|
|
contribs->n1 = input_last_n1;
|
|
|
|
// shrink the left side
|
|
if (contribs->n0 < 0)
|
|
{
|
|
int j, left, skips = 0;
|
|
|
|
skips = -contribs->n0;
|
|
contribs->n0 = 0;
|
|
|
|
// now move down the weights
|
|
left = contribs->n1 - contribs->n0 + 1;
|
|
if (left > 0)
|
|
{
|
|
for (j = 0; j < left; j++)
|
|
coeffs[j] = coeffs[j + skips];
|
|
}
|
|
}
|
|
}
|
|
else if ((edge == STBIR_EDGE_CLAMP) || (edge == STBIR_EDGE_REFLECT))
|
|
{
|
|
// for clamp and reflect, calculate the true inbounds position (based on edge type) and just add that to the existing weight
|
|
|
|
// right hand side first
|
|
if (contribs->n1 > input_last_n1)
|
|
{
|
|
int start = contribs->n0;
|
|
int endi = contribs->n1;
|
|
contribs->n1 = input_last_n1;
|
|
for (i = input_size; i <= endi; i++)
|
|
stbir__insert_coeff(contribs, coeffs, stbir__edge_wrap_slow[edge](i, input_size), coeffs[i - start], coefficient_width);
|
|
}
|
|
|
|
// now check left hand edge
|
|
if (contribs->n0 < 0)
|
|
{
|
|
int save_n0;
|
|
float save_n0_coeff;
|
|
float *c = coeffs - (contribs->n0 + 1);
|
|
|
|
// reinsert the coeffs with it reflected or clamped (insert accumulates, if the coeffs exist)
|
|
for (i = -1; i > contribs->n0; i--)
|
|
stbir__insert_coeff(contribs, coeffs, stbir__edge_wrap_slow[edge](i, input_size), *c--, coefficient_width);
|
|
save_n0 = contribs->n0;
|
|
save_n0_coeff = c[0]; // save it, since we didn't do the final one (i==n0), because there might be too many coeffs to hold (before we resize)!
|
|
|
|
// now slide all the coeffs down (since we have accumulated them in the positive contribs) and reset the first contrib
|
|
contribs->n0 = 0;
|
|
for (i = 0; i <= contribs->n1; i++)
|
|
coeffs[i] = coeffs[i - save_n0];
|
|
|
|
// now that we have shrunk down the contribs, we insert the first one safely
|
|
stbir__insert_coeff(contribs, coeffs, stbir__edge_wrap_slow[edge](save_n0, input_size), save_n0_coeff, coefficient_width);
|
|
}
|
|
}
|
|
|
|
if (contribs->n0 <= contribs->n1)
|
|
{
|
|
int diff = contribs->n1 - contribs->n0 + 1;
|
|
while (diff && (coeffs[diff - 1] == 0.0f))
|
|
--diff;
|
|
|
|
contribs->n1 = contribs->n0 + diff - 1;
|
|
|
|
if (contribs->n0 <= contribs->n1)
|
|
{
|
|
if (contribs->n0 < lowest)
|
|
lowest = contribs->n0;
|
|
if (contribs->n1 > highest)
|
|
highest = contribs->n1;
|
|
if (diff > widest)
|
|
widest = diff;
|
|
}
|
|
|
|
// re-zero out unused coefficients (if any)
|
|
for (i = diff; i < coefficient_width; i++)
|
|
coeffs[i] = 0.0f;
|
|
}
|
|
|
|
++contribs;
|
|
coeffs += coefficient_width;
|
|
}
|
|
filter_info->lowest = lowest;
|
|
filter_info->highest = highest;
|
|
filter_info->widest = widest;
|
|
}
|
|
|
|
#undef STBIR_RENORM_TYPE
|
|
|
|
static int stbir__pack_coefficients(int num_contributors, stbir__contributors *contributors, float *coefficents, int coefficient_width, int widest, int row0, int row1)
|
|
{
|
|
#define STBIR_MOVE_1(dest, src) \
|
|
{ \
|
|
STBIR_NO_UNROLL(dest); \
|
|
((stbir_uint32 *)(dest))[0] = ((stbir_uint32 *)(src))[0]; \
|
|
}
|
|
#define STBIR_MOVE_2(dest, src) \
|
|
{ \
|
|
STBIR_NO_UNROLL(dest); \
|
|
((stbir_uint64 *)(dest))[0] = ((stbir_uint64 *)(src))[0]; \
|
|
}
|
|
#ifdef STBIR_SIMD
|
|
#define STBIR_MOVE_4(dest, src) \
|
|
{ \
|
|
stbir__simdf t; \
|
|
STBIR_NO_UNROLL(dest); \
|
|
stbir__simdf_load(t, src); \
|
|
stbir__simdf_store(dest, t); \
|
|
}
|
|
#else
|
|
#define STBIR_MOVE_4(dest, src) \
|
|
{ \
|
|
STBIR_NO_UNROLL(dest); \
|
|
((stbir_uint64 *)(dest))[0] = ((stbir_uint64 *)(src))[0]; \
|
|
((stbir_uint64 *)(dest))[1] = ((stbir_uint64 *)(src))[1]; \
|
|
}
|
|
#endif
|
|
|
|
int row_end = row1 + 1;
|
|
STBIR__UNUSED(row0); // only used in an assert
|
|
|
|
if (coefficient_width != widest)
|
|
{
|
|
float *pc = coefficents;
|
|
float *coeffs = coefficents;
|
|
float *pc_end = coefficents + num_contributors * widest;
|
|
switch (widest)
|
|
{
|
|
case 1:
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
STBIR_MOVE_1(pc, coeffs);
|
|
++pc;
|
|
coeffs += coefficient_width;
|
|
} while (pc < pc_end);
|
|
break;
|
|
case 2:
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
STBIR_MOVE_2(pc, coeffs);
|
|
pc += 2;
|
|
coeffs += coefficient_width;
|
|
} while (pc < pc_end);
|
|
break;
|
|
case 3:
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
STBIR_MOVE_2(pc, coeffs);
|
|
STBIR_MOVE_1(pc + 2, coeffs + 2);
|
|
pc += 3;
|
|
coeffs += coefficient_width;
|
|
} while (pc < pc_end);
|
|
break;
|
|
case 4:
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
STBIR_MOVE_4(pc, coeffs);
|
|
pc += 4;
|
|
coeffs += coefficient_width;
|
|
} while (pc < pc_end);
|
|
break;
|
|
case 5:
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
STBIR_MOVE_4(pc, coeffs);
|
|
STBIR_MOVE_1(pc + 4, coeffs + 4);
|
|
pc += 5;
|
|
coeffs += coefficient_width;
|
|
} while (pc < pc_end);
|
|
break;
|
|
case 6:
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
STBIR_MOVE_4(pc, coeffs);
|
|
STBIR_MOVE_2(pc + 4, coeffs + 4);
|
|
pc += 6;
|
|
coeffs += coefficient_width;
|
|
} while (pc < pc_end);
|
|
break;
|
|
case 7:
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
STBIR_MOVE_4(pc, coeffs);
|
|
STBIR_MOVE_2(pc + 4, coeffs + 4);
|
|
STBIR_MOVE_1(pc + 6, coeffs + 6);
|
|
pc += 7;
|
|
coeffs += coefficient_width;
|
|
} while (pc < pc_end);
|
|
break;
|
|
case 8:
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
STBIR_MOVE_4(pc, coeffs);
|
|
STBIR_MOVE_4(pc + 4, coeffs + 4);
|
|
pc += 8;
|
|
coeffs += coefficient_width;
|
|
} while (pc < pc_end);
|
|
break;
|
|
case 9:
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
STBIR_MOVE_4(pc, coeffs);
|
|
STBIR_MOVE_4(pc + 4, coeffs + 4);
|
|
STBIR_MOVE_1(pc + 8, coeffs + 8);
|
|
pc += 9;
|
|
coeffs += coefficient_width;
|
|
} while (pc < pc_end);
|
|
break;
|
|
case 10:
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
STBIR_MOVE_4(pc, coeffs);
|
|
STBIR_MOVE_4(pc + 4, coeffs + 4);
|
|
STBIR_MOVE_2(pc + 8, coeffs + 8);
|
|
pc += 10;
|
|
coeffs += coefficient_width;
|
|
} while (pc < pc_end);
|
|
break;
|
|
case 11:
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
STBIR_MOVE_4(pc, coeffs);
|
|
STBIR_MOVE_4(pc + 4, coeffs + 4);
|
|
STBIR_MOVE_2(pc + 8, coeffs + 8);
|
|
STBIR_MOVE_1(pc + 10, coeffs + 10);
|
|
pc += 11;
|
|
coeffs += coefficient_width;
|
|
} while (pc < pc_end);
|
|
break;
|
|
case 12:
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
STBIR_MOVE_4(pc, coeffs);
|
|
STBIR_MOVE_4(pc + 4, coeffs + 4);
|
|
STBIR_MOVE_4(pc + 8, coeffs + 8);
|
|
pc += 12;
|
|
coeffs += coefficient_width;
|
|
} while (pc < pc_end);
|
|
break;
|
|
default:
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
float *copy_end = pc + widest - 4;
|
|
float *c = coeffs;
|
|
do
|
|
{
|
|
STBIR_NO_UNROLL(pc);
|
|
STBIR_MOVE_4(pc, c);
|
|
pc += 4;
|
|
c += 4;
|
|
} while (pc <= copy_end);
|
|
copy_end += 4;
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
while (pc < copy_end)
|
|
{
|
|
STBIR_MOVE_1(pc, c);
|
|
++pc;
|
|
++c;
|
|
}
|
|
coeffs += coefficient_width;
|
|
} while (pc < pc_end);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// some horizontal routines read one float off the end (which is then masked off), so put in a sentinal so we don't read an snan or denormal
|
|
coefficents[widest * num_contributors] = 8888.0f;
|
|
|
|
// the minimum we might read for unrolled filters widths is 12. So, we need to
|
|
// make sure we never read outside the decode buffer, by possibly moving
|
|
// the sample area back into the scanline, and putting zeros weights first.
|
|
// we start on the right edge and check until we're well past the possible
|
|
// clip area (2*widest).
|
|
{
|
|
stbir__contributors *contribs = contributors + num_contributors - 1;
|
|
float *coeffs = coefficents + widest * (num_contributors - 1);
|
|
|
|
// go until no chance of clipping (this is usually less than 8 lops)
|
|
while ((contribs >= contributors) && ((contribs->n0 + widest * 2) >= row_end))
|
|
{
|
|
// might we clip??
|
|
if ((contribs->n0 + widest) > row_end)
|
|
{
|
|
int stop_range = widest;
|
|
|
|
// if range is larger than 12, it will be handled by generic loops that can terminate on the exact length
|
|
// of this contrib n1, instead of a fixed widest amount - so calculate this
|
|
if (widest > 12)
|
|
{
|
|
int mod;
|
|
|
|
// how far will be read in the n_coeff loop (which depends on the widest count mod4);
|
|
mod = widest & 3;
|
|
stop_range = (((contribs->n1 - contribs->n0 + 1) - mod + 3) & ~3) + mod;
|
|
|
|
// the n_coeff loops do a minimum amount of coeffs, so factor that in!
|
|
if (stop_range < (8 + mod))
|
|
stop_range = 8 + mod;
|
|
}
|
|
|
|
// now see if we still clip with the refined range
|
|
if ((contribs->n0 + stop_range) > row_end)
|
|
{
|
|
int new_n0 = row_end - stop_range;
|
|
int num = contribs->n1 - contribs->n0 + 1;
|
|
int backup = contribs->n0 - new_n0;
|
|
float *from_co = coeffs + num - 1;
|
|
float *to_co = from_co + backup;
|
|
|
|
STBIR_ASSERT((new_n0 >= row0) && (new_n0 < contribs->n0));
|
|
|
|
// move the coeffs over
|
|
while (num)
|
|
{
|
|
*to_co-- = *from_co--;
|
|
--num;
|
|
}
|
|
// zero new positions
|
|
while (to_co >= coeffs)
|
|
*to_co-- = 0;
|
|
// set new start point
|
|
contribs->n0 = new_n0;
|
|
if (widest > 12)
|
|
{
|
|
int mod;
|
|
|
|
// how far will be read in the n_coeff loop (which depends on the widest count mod4);
|
|
mod = widest & 3;
|
|
stop_range = (((contribs->n1 - contribs->n0 + 1) - mod + 3) & ~3) + mod;
|
|
|
|
// the n_coeff loops do a minimum amount of coeffs, so factor that in!
|
|
if (stop_range < (8 + mod))
|
|
stop_range = 8 + mod;
|
|
}
|
|
}
|
|
}
|
|
--contribs;
|
|
coeffs -= widest;
|
|
}
|
|
}
|
|
|
|
return widest;
|
|
#undef STBIR_MOVE_1
|
|
#undef STBIR_MOVE_2
|
|
#undef STBIR_MOVE_4
|
|
}
|
|
|
|
static void stbir__calculate_filters(stbir__sampler *samp, stbir__sampler *other_axis_for_pivot, void *user_data STBIR_ONLY_PROFILE_BUILD_GET_INFO)
|
|
{
|
|
int n;
|
|
float scale = samp->scale_info.scale;
|
|
stbir__kernel_callback *kernel = samp->filter_kernel;
|
|
stbir__support_callback *support = samp->filter_support;
|
|
float inv_scale = samp->scale_info.inv_scale;
|
|
int input_full_size = samp->scale_info.input_full_size;
|
|
int gather_num_contributors = samp->num_contributors;
|
|
stbir__contributors *gather_contributors = samp->contributors;
|
|
float *gather_coeffs = samp->coefficients;
|
|
int gather_coefficient_width = samp->coefficient_width;
|
|
|
|
switch (samp->is_gather)
|
|
{
|
|
case 1: // gather upsample
|
|
{
|
|
float out_pixels_radius = support(inv_scale, user_data) * scale;
|
|
|
|
stbir__calculate_coefficients_for_gather_upsample(out_pixels_radius, kernel, &samp->scale_info, gather_num_contributors, gather_contributors, gather_coeffs, gather_coefficient_width, samp->edge, user_data);
|
|
|
|
STBIR_PROFILE_BUILD_START(cleanup);
|
|
stbir__cleanup_gathered_coefficients(samp->edge, &samp->extent_info, &samp->scale_info, gather_num_contributors, gather_contributors, gather_coeffs, gather_coefficient_width);
|
|
STBIR_PROFILE_BUILD_END(cleanup);
|
|
}
|
|
break;
|
|
|
|
case 0: // scatter downsample (only on vertical)
|
|
case 2: // gather downsample
|
|
{
|
|
float in_pixels_radius = support(scale, user_data) * inv_scale;
|
|
int filter_pixel_margin = samp->filter_pixel_margin;
|
|
int input_end = input_full_size + filter_pixel_margin;
|
|
|
|
// if this is a scatter, we do a downsample gather to get the coeffs, and then pivot after
|
|
if (!samp->is_gather)
|
|
{
|
|
// check if we are using the same gather downsample on the horizontal as this vertical,
|
|
// if so, then we don't have to generate them, we can just pivot from the horizontal.
|
|
if (other_axis_for_pivot)
|
|
{
|
|
gather_contributors = other_axis_for_pivot->contributors;
|
|
gather_coeffs = other_axis_for_pivot->coefficients;
|
|
gather_coefficient_width = other_axis_for_pivot->coefficient_width;
|
|
gather_num_contributors = other_axis_for_pivot->num_contributors;
|
|
samp->extent_info.lowest = other_axis_for_pivot->extent_info.lowest;
|
|
samp->extent_info.highest = other_axis_for_pivot->extent_info.highest;
|
|
samp->extent_info.widest = other_axis_for_pivot->extent_info.widest;
|
|
goto jump_right_to_pivot;
|
|
}
|
|
|
|
gather_contributors = samp->gather_prescatter_contributors;
|
|
gather_coeffs = samp->gather_prescatter_coefficients;
|
|
gather_coefficient_width = samp->gather_prescatter_coefficient_width;
|
|
gather_num_contributors = samp->gather_prescatter_num_contributors;
|
|
}
|
|
|
|
stbir__calculate_coefficients_for_gather_downsample(-filter_pixel_margin, input_end, in_pixels_radius, kernel, &samp->scale_info, gather_coefficient_width, gather_num_contributors, gather_contributors, gather_coeffs, user_data);
|
|
|
|
STBIR_PROFILE_BUILD_START(cleanup);
|
|
stbir__cleanup_gathered_coefficients(samp->edge, &samp->extent_info, &samp->scale_info, gather_num_contributors, gather_contributors, gather_coeffs, gather_coefficient_width);
|
|
STBIR_PROFILE_BUILD_END(cleanup);
|
|
|
|
if (!samp->is_gather)
|
|
{
|
|
// if this is a scatter (vertical only), then we need to pivot the coeffs
|
|
stbir__contributors *scatter_contributors;
|
|
int highest_set;
|
|
|
|
jump_right_to_pivot:
|
|
|
|
STBIR_PROFILE_BUILD_START(pivot);
|
|
|
|
highest_set = (-filter_pixel_margin) - 1;
|
|
for (n = 0; n < gather_num_contributors; n++)
|
|
{
|
|
int k;
|
|
int gn0 = gather_contributors->n0, gn1 = gather_contributors->n1;
|
|
int scatter_coefficient_width = samp->coefficient_width;
|
|
float *scatter_coeffs = samp->coefficients + (gn0 + filter_pixel_margin) * scatter_coefficient_width;
|
|
float *g_coeffs = gather_coeffs;
|
|
scatter_contributors = samp->contributors + (gn0 + filter_pixel_margin);
|
|
|
|
for (k = gn0; k <= gn1; k++)
|
|
{
|
|
float gc = *g_coeffs++;
|
|
|
|
// skip zero and denormals - must skip zeros to avoid adding coeffs beyond scatter_coefficient_width
|
|
// (which happens when pivoting from horizontal, which might have dummy zeros)
|
|
if (((gc >= stbir__small_float) || (gc <= -stbir__small_float)))
|
|
{
|
|
if ((k > highest_set) || (scatter_contributors->n0 > scatter_contributors->n1))
|
|
{
|
|
{
|
|
// if we are skipping over several contributors, we need to clear the skipped ones
|
|
stbir__contributors *clear_contributors = samp->contributors + (highest_set + filter_pixel_margin + 1);
|
|
while (clear_contributors < scatter_contributors)
|
|
{
|
|
clear_contributors->n0 = 0;
|
|
clear_contributors->n1 = -1;
|
|
++clear_contributors;
|
|
}
|
|
}
|
|
scatter_contributors->n0 = n;
|
|
scatter_contributors->n1 = n;
|
|
scatter_coeffs[0] = gc;
|
|
highest_set = k;
|
|
}
|
|
else
|
|
{
|
|
stbir__insert_coeff(scatter_contributors, scatter_coeffs, n, gc, scatter_coefficient_width);
|
|
}
|
|
STBIR_ASSERT((scatter_contributors->n1 - scatter_contributors->n0 + 1) <= scatter_coefficient_width);
|
|
}
|
|
++scatter_contributors;
|
|
scatter_coeffs += scatter_coefficient_width;
|
|
}
|
|
|
|
++gather_contributors;
|
|
gather_coeffs += gather_coefficient_width;
|
|
}
|
|
|
|
// now clear any unset contribs
|
|
{
|
|
stbir__contributors *clear_contributors = samp->contributors + (highest_set + filter_pixel_margin + 1);
|
|
stbir__contributors *end_contributors = samp->contributors + samp->num_contributors;
|
|
while (clear_contributors < end_contributors)
|
|
{
|
|
clear_contributors->n0 = 0;
|
|
clear_contributors->n1 = -1;
|
|
++clear_contributors;
|
|
}
|
|
}
|
|
|
|
STBIR_PROFILE_BUILD_END(pivot);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
//========================================================================================================
|
|
// scanline decoders and encoders
|
|
|
|
#define stbir__coder_min_num 1
|
|
#define STB_IMAGE_RESIZE_DO_CODERS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define stbir__decode_suffix BGRA
|
|
#define stbir__decode_swizzle
|
|
#define stbir__decode_order0 2
|
|
#define stbir__decode_order1 1
|
|
#define stbir__decode_order2 0
|
|
#define stbir__decode_order3 3
|
|
#define stbir__encode_order0 2
|
|
#define stbir__encode_order1 1
|
|
#define stbir__encode_order2 0
|
|
#define stbir__encode_order3 3
|
|
#define stbir__coder_min_num 4
|
|
#define STB_IMAGE_RESIZE_DO_CODERS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define stbir__decode_suffix ARGB
|
|
#define stbir__decode_swizzle
|
|
#define stbir__decode_order0 1
|
|
#define stbir__decode_order1 2
|
|
#define stbir__decode_order2 3
|
|
#define stbir__decode_order3 0
|
|
#define stbir__encode_order0 3
|
|
#define stbir__encode_order1 0
|
|
#define stbir__encode_order2 1
|
|
#define stbir__encode_order3 2
|
|
#define stbir__coder_min_num 4
|
|
#define STB_IMAGE_RESIZE_DO_CODERS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define stbir__decode_suffix ABGR
|
|
#define stbir__decode_swizzle
|
|
#define stbir__decode_order0 3
|
|
#define stbir__decode_order1 2
|
|
#define stbir__decode_order2 1
|
|
#define stbir__decode_order3 0
|
|
#define stbir__encode_order0 3
|
|
#define stbir__encode_order1 2
|
|
#define stbir__encode_order2 1
|
|
#define stbir__encode_order3 0
|
|
#define stbir__coder_min_num 4
|
|
#define STB_IMAGE_RESIZE_DO_CODERS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define stbir__decode_suffix AR
|
|
#define stbir__decode_swizzle
|
|
#define stbir__decode_order0 1
|
|
#define stbir__decode_order1 0
|
|
#define stbir__decode_order2 3
|
|
#define stbir__decode_order3 2
|
|
#define stbir__encode_order0 1
|
|
#define stbir__encode_order1 0
|
|
#define stbir__encode_order2 3
|
|
#define stbir__encode_order3 2
|
|
#define stbir__coder_min_num 2
|
|
#define STB_IMAGE_RESIZE_DO_CODERS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
// fancy alpha means we expand to keep both premultipied and non-premultiplied color channels
|
|
static void stbir__fancy_alpha_weight_4ch(float *out_buffer, int width_times_channels)
|
|
{
|
|
float STBIR_STREAMOUT_PTR(*) out = out_buffer;
|
|
float const *end_decode = out_buffer + (width_times_channels / 4) * 7; // decode buffer aligned to end of out_buffer
|
|
float STBIR_STREAMOUT_PTR(*) decode = (float *)end_decode - width_times_channels;
|
|
|
|
// fancy alpha is stored internally as R G B A Rpm Gpm Bpm
|
|
|
|
#ifdef STBIR_SIMD
|
|
|
|
#ifdef STBIR_SIMD8
|
|
decode += 16;
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
while (decode <= end_decode)
|
|
{
|
|
stbir__simdf8 d0, d1, a0, a1, p0, p1;
|
|
STBIR_NO_UNROLL(decode);
|
|
stbir__simdf8_load(d0, decode - 16);
|
|
stbir__simdf8_load(d1, decode - 16 + 8);
|
|
stbir__simdf8_0123to33333333(a0, d0);
|
|
stbir__simdf8_0123to33333333(a1, d1);
|
|
stbir__simdf8_mult(p0, a0, d0);
|
|
stbir__simdf8_mult(p1, a1, d1);
|
|
stbir__simdf8_bot4s(a0, d0, p0);
|
|
stbir__simdf8_bot4s(a1, d1, p1);
|
|
stbir__simdf8_top4s(d0, d0, p0);
|
|
stbir__simdf8_top4s(d1, d1, p1);
|
|
stbir__simdf8_store(out, a0);
|
|
stbir__simdf8_store(out + 7, d0);
|
|
stbir__simdf8_store(out + 14, a1);
|
|
stbir__simdf8_store(out + 21, d1);
|
|
decode += 16;
|
|
out += 28;
|
|
}
|
|
decode -= 16;
|
|
#else
|
|
decode += 8;
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
while (decode <= end_decode)
|
|
{
|
|
stbir__simdf d0, a0, d1, a1, p0, p1;
|
|
STBIR_NO_UNROLL(decode);
|
|
stbir__simdf_load(d0, decode - 8);
|
|
stbir__simdf_load(d1, decode - 8 + 4);
|
|
stbir__simdf_0123to3333(a0, d0);
|
|
stbir__simdf_0123to3333(a1, d1);
|
|
stbir__simdf_mult(p0, a0, d0);
|
|
stbir__simdf_mult(p1, a1, d1);
|
|
stbir__simdf_store(out, d0);
|
|
stbir__simdf_store(out + 4, p0);
|
|
stbir__simdf_store(out + 7, d1);
|
|
stbir__simdf_store(out + 7 + 4, p1);
|
|
decode += 8;
|
|
out += 14;
|
|
}
|
|
decode -= 8;
|
|
#endif
|
|
|
|
// might be one last odd pixel
|
|
#ifdef STBIR_SIMD8
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
while (decode < end_decode)
|
|
#else
|
|
if (decode < end_decode)
|
|
#endif
|
|
{
|
|
stbir__simdf d, a, p;
|
|
STBIR_NO_UNROLL(decode);
|
|
stbir__simdf_load(d, decode);
|
|
stbir__simdf_0123to3333(a, d);
|
|
stbir__simdf_mult(p, a, d);
|
|
stbir__simdf_store(out, d);
|
|
stbir__simdf_store(out + 4, p);
|
|
decode += 4;
|
|
out += 7;
|
|
}
|
|
|
|
#else
|
|
|
|
while (decode < end_decode)
|
|
{
|
|
float r = decode[0], g = decode[1], b = decode[2], alpha = decode[3];
|
|
out[0] = r;
|
|
out[1] = g;
|
|
out[2] = b;
|
|
out[3] = alpha;
|
|
out[4] = r * alpha;
|
|
out[5] = g * alpha;
|
|
out[6] = b * alpha;
|
|
out += 7;
|
|
decode += 4;
|
|
}
|
|
|
|
#endif
|
|
}
|
|
|
|
static void stbir__fancy_alpha_weight_2ch(float *out_buffer, int width_times_channels)
|
|
{
|
|
float STBIR_STREAMOUT_PTR(*) out = out_buffer;
|
|
float const *end_decode = out_buffer + (width_times_channels / 2) * 3;
|
|
float STBIR_STREAMOUT_PTR(*) decode = (float *)end_decode - width_times_channels;
|
|
|
|
// for fancy alpha, turns into: [X A Xpm][X A Xpm],etc
|
|
|
|
#ifdef STBIR_SIMD
|
|
|
|
decode += 8;
|
|
if (decode <= end_decode)
|
|
{
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
#ifdef STBIR_SIMD8
|
|
stbir__simdf8 d0, a0, p0;
|
|
STBIR_NO_UNROLL(decode);
|
|
stbir__simdf8_load(d0, decode - 8);
|
|
stbir__simdf8_0123to11331133(p0, d0);
|
|
stbir__simdf8_0123to00220022(a0, d0);
|
|
stbir__simdf8_mult(p0, p0, a0);
|
|
|
|
stbir__simdf_store2(out, stbir__if_simdf8_cast_to_simdf4(d0));
|
|
stbir__simdf_store(out + 2, stbir__if_simdf8_cast_to_simdf4(p0));
|
|
stbir__simdf_store2h(out + 3, stbir__if_simdf8_cast_to_simdf4(d0));
|
|
|
|
stbir__simdf_store2(out + 6, stbir__simdf8_gettop4(d0));
|
|
stbir__simdf_store(out + 8, stbir__simdf8_gettop4(p0));
|
|
stbir__simdf_store2h(out + 9, stbir__simdf8_gettop4(d0));
|
|
#else
|
|
stbir__simdf d0, a0, d1, a1, p0, p1;
|
|
STBIR_NO_UNROLL(decode);
|
|
stbir__simdf_load(d0, decode - 8);
|
|
stbir__simdf_load(d1, decode - 8 + 4);
|
|
stbir__simdf_0123to1133(p0, d0);
|
|
stbir__simdf_0123to1133(p1, d1);
|
|
stbir__simdf_0123to0022(a0, d0);
|
|
stbir__simdf_0123to0022(a1, d1);
|
|
stbir__simdf_mult(p0, p0, a0);
|
|
stbir__simdf_mult(p1, p1, a1);
|
|
|
|
stbir__simdf_store2(out, d0);
|
|
stbir__simdf_store(out + 2, p0);
|
|
stbir__simdf_store2h(out + 3, d0);
|
|
|
|
stbir__simdf_store2(out + 6, d1);
|
|
stbir__simdf_store(out + 8, p1);
|
|
stbir__simdf_store2h(out + 9, d1);
|
|
#endif
|
|
decode += 8;
|
|
out += 12;
|
|
} while (decode <= end_decode);
|
|
}
|
|
decode -= 8;
|
|
#endif
|
|
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
while (decode < end_decode)
|
|
{
|
|
float x = decode[0], y = decode[1];
|
|
STBIR_SIMD_NO_UNROLL(decode);
|
|
out[0] = x;
|
|
out[1] = y;
|
|
out[2] = x * y;
|
|
out += 3;
|
|
decode += 2;
|
|
}
|
|
}
|
|
|
|
static void stbir__fancy_alpha_unweight_4ch(float *encode_buffer, int width_times_channels)
|
|
{
|
|
float STBIR_SIMD_STREAMOUT_PTR(*) encode = encode_buffer;
|
|
float STBIR_SIMD_STREAMOUT_PTR(*) input = encode_buffer;
|
|
float const *end_output = encode_buffer + width_times_channels;
|
|
|
|
// fancy RGBA is stored internally as R G B A Rpm Gpm Bpm
|
|
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
float alpha = input[3];
|
|
#ifdef STBIR_SIMD
|
|
stbir__simdf i, ia;
|
|
STBIR_SIMD_NO_UNROLL(encode);
|
|
if (alpha < stbir__small_float)
|
|
{
|
|
stbir__simdf_load(i, input);
|
|
stbir__simdf_store(encode, i);
|
|
}
|
|
else
|
|
{
|
|
stbir__simdf_load1frep4(ia, 1.0f / alpha);
|
|
stbir__simdf_load(i, input + 4);
|
|
stbir__simdf_mult(i, i, ia);
|
|
stbir__simdf_store(encode, i);
|
|
encode[3] = alpha;
|
|
}
|
|
#else
|
|
if (alpha < stbir__small_float)
|
|
{
|
|
encode[0] = input[0];
|
|
encode[1] = input[1];
|
|
encode[2] = input[2];
|
|
}
|
|
else
|
|
{
|
|
float ialpha = 1.0f / alpha;
|
|
encode[0] = input[4] * ialpha;
|
|
encode[1] = input[5] * ialpha;
|
|
encode[2] = input[6] * ialpha;
|
|
}
|
|
encode[3] = alpha;
|
|
#endif
|
|
|
|
input += 7;
|
|
encode += 4;
|
|
} while (encode < end_output);
|
|
}
|
|
|
|
// format: [X A Xpm][X A Xpm] etc
|
|
static void stbir__fancy_alpha_unweight_2ch(float *encode_buffer, int width_times_channels)
|
|
{
|
|
float STBIR_SIMD_STREAMOUT_PTR(*) encode = encode_buffer;
|
|
float STBIR_SIMD_STREAMOUT_PTR(*) input = encode_buffer;
|
|
float const *end_output = encode_buffer + width_times_channels;
|
|
|
|
do
|
|
{
|
|
float alpha = input[1];
|
|
encode[0] = input[0];
|
|
if (alpha >= stbir__small_float)
|
|
encode[0] = input[2] / alpha;
|
|
encode[1] = alpha;
|
|
|
|
input += 3;
|
|
encode += 2;
|
|
} while (encode < end_output);
|
|
}
|
|
|
|
static void stbir__simple_alpha_weight_4ch(float *decode_buffer, int width_times_channels)
|
|
{
|
|
float STBIR_STREAMOUT_PTR(*) decode = decode_buffer;
|
|
float const *end_decode = decode_buffer + width_times_channels;
|
|
|
|
#ifdef STBIR_SIMD
|
|
{
|
|
decode += 2 * stbir__simdfX_float_count;
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
while (decode <= end_decode)
|
|
{
|
|
stbir__simdfX d0, a0, d1, a1;
|
|
STBIR_NO_UNROLL(decode);
|
|
stbir__simdfX_load(d0, decode - 2 * stbir__simdfX_float_count);
|
|
stbir__simdfX_load(d1, decode - 2 * stbir__simdfX_float_count + stbir__simdfX_float_count);
|
|
stbir__simdfX_aaa1(a0, d0, STBIR_onesX);
|
|
stbir__simdfX_aaa1(a1, d1, STBIR_onesX);
|
|
stbir__simdfX_mult(d0, d0, a0);
|
|
stbir__simdfX_mult(d1, d1, a1);
|
|
stbir__simdfX_store(decode - 2 * stbir__simdfX_float_count, d0);
|
|
stbir__simdfX_store(decode - 2 * stbir__simdfX_float_count + stbir__simdfX_float_count, d1);
|
|
decode += 2 * stbir__simdfX_float_count;
|
|
}
|
|
decode -= 2 * stbir__simdfX_float_count;
|
|
|
|
// few last pixels remnants
|
|
#ifdef STBIR_SIMD8
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
while (decode < end_decode)
|
|
#else
|
|
if (decode < end_decode)
|
|
#endif
|
|
{
|
|
stbir__simdf d, a;
|
|
stbir__simdf_load(d, decode);
|
|
stbir__simdf_aaa1(a, d, STBIR__CONSTF(STBIR_ones));
|
|
stbir__simdf_mult(d, d, a);
|
|
stbir__simdf_store(decode, d);
|
|
decode += 4;
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
while (decode < end_decode)
|
|
{
|
|
float alpha = decode[3];
|
|
decode[0] *= alpha;
|
|
decode[1] *= alpha;
|
|
decode[2] *= alpha;
|
|
decode += 4;
|
|
}
|
|
|
|
#endif
|
|
}
|
|
|
|
static void stbir__simple_alpha_weight_2ch(float *decode_buffer, int width_times_channels)
|
|
{
|
|
float STBIR_STREAMOUT_PTR(*) decode = decode_buffer;
|
|
float const *end_decode = decode_buffer + width_times_channels;
|
|
|
|
#ifdef STBIR_SIMD
|
|
decode += 2 * stbir__simdfX_float_count;
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
while (decode <= end_decode)
|
|
{
|
|
stbir__simdfX d0, a0, d1, a1;
|
|
STBIR_NO_UNROLL(decode);
|
|
stbir__simdfX_load(d0, decode - 2 * stbir__simdfX_float_count);
|
|
stbir__simdfX_load(d1, decode - 2 * stbir__simdfX_float_count + stbir__simdfX_float_count);
|
|
stbir__simdfX_a1a1(a0, d0, STBIR_onesX);
|
|
stbir__simdfX_a1a1(a1, d1, STBIR_onesX);
|
|
stbir__simdfX_mult(d0, d0, a0);
|
|
stbir__simdfX_mult(d1, d1, a1);
|
|
stbir__simdfX_store(decode - 2 * stbir__simdfX_float_count, d0);
|
|
stbir__simdfX_store(decode - 2 * stbir__simdfX_float_count + stbir__simdfX_float_count, d1);
|
|
decode += 2 * stbir__simdfX_float_count;
|
|
}
|
|
decode -= 2 * stbir__simdfX_float_count;
|
|
#endif
|
|
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
while (decode < end_decode)
|
|
{
|
|
float alpha = decode[1];
|
|
STBIR_SIMD_NO_UNROLL(decode);
|
|
decode[0] *= alpha;
|
|
decode += 2;
|
|
}
|
|
}
|
|
|
|
static void stbir__simple_alpha_unweight_4ch(float *encode_buffer, int width_times_channels)
|
|
{
|
|
float STBIR_SIMD_STREAMOUT_PTR(*) encode = encode_buffer;
|
|
float const *end_output = encode_buffer + width_times_channels;
|
|
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
float alpha = encode[3];
|
|
|
|
#ifdef STBIR_SIMD
|
|
stbir__simdf i, ia;
|
|
STBIR_SIMD_NO_UNROLL(encode);
|
|
if (alpha >= stbir__small_float)
|
|
{
|
|
stbir__simdf_load1frep4(ia, 1.0f / alpha);
|
|
stbir__simdf_load(i, encode);
|
|
stbir__simdf_mult(i, i, ia);
|
|
stbir__simdf_store(encode, i);
|
|
encode[3] = alpha;
|
|
}
|
|
#else
|
|
if (alpha >= stbir__small_float)
|
|
{
|
|
float ialpha = 1.0f / alpha;
|
|
encode[0] *= ialpha;
|
|
encode[1] *= ialpha;
|
|
encode[2] *= ialpha;
|
|
}
|
|
#endif
|
|
encode += 4;
|
|
} while (encode < end_output);
|
|
}
|
|
|
|
static void stbir__simple_alpha_unweight_2ch(float *encode_buffer, int width_times_channels)
|
|
{
|
|
float STBIR_SIMD_STREAMOUT_PTR(*) encode = encode_buffer;
|
|
float const *end_output = encode_buffer + width_times_channels;
|
|
|
|
do
|
|
{
|
|
float alpha = encode[1];
|
|
if (alpha >= stbir__small_float)
|
|
encode[0] /= alpha;
|
|
encode += 2;
|
|
} while (encode < end_output);
|
|
}
|
|
|
|
// only used in RGB->BGR or BGR->RGB
|
|
static void stbir__simple_flip_3ch(float *decode_buffer, int width_times_channels)
|
|
{
|
|
float STBIR_STREAMOUT_PTR(*) decode = decode_buffer;
|
|
float const *end_decode = decode_buffer + width_times_channels;
|
|
|
|
#ifdef STBIR_SIMD
|
|
#ifdef stbir__simdf_swiz2 // do we have two argument swizzles?
|
|
end_decode -= 12;
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
while (decode <= end_decode)
|
|
{
|
|
// on arm64 8 instructions, no overlapping stores
|
|
stbir__simdf a, b, c, na, nb;
|
|
STBIR_SIMD_NO_UNROLL(decode);
|
|
stbir__simdf_load(a, decode);
|
|
stbir__simdf_load(b, decode + 4);
|
|
stbir__simdf_load(c, decode + 8);
|
|
|
|
na = stbir__simdf_swiz2(a, b, 2, 1, 0, 5);
|
|
b = stbir__simdf_swiz2(a, b, 4, 3, 6, 7);
|
|
nb = stbir__simdf_swiz2(b, c, 0, 1, 4, 3);
|
|
c = stbir__simdf_swiz2(b, c, 2, 7, 6, 5);
|
|
|
|
stbir__simdf_store(decode, na);
|
|
stbir__simdf_store(decode + 4, nb);
|
|
stbir__simdf_store(decode + 8, c);
|
|
decode += 12;
|
|
}
|
|
end_decode += 12;
|
|
#else
|
|
end_decode -= 24;
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
while (decode <= end_decode)
|
|
{
|
|
// 26 instructions on x64
|
|
stbir__simdf a, b, c, d, e, f, g;
|
|
float i21, i23;
|
|
STBIR_SIMD_NO_UNROLL(decode);
|
|
stbir__simdf_load(a, decode);
|
|
stbir__simdf_load(b, decode + 3);
|
|
stbir__simdf_load(c, decode + 6);
|
|
stbir__simdf_load(d, decode + 9);
|
|
stbir__simdf_load(e, decode + 12);
|
|
stbir__simdf_load(f, decode + 15);
|
|
stbir__simdf_load(g, decode + 18);
|
|
|
|
a = stbir__simdf_swiz(a, 2, 1, 0, 3);
|
|
b = stbir__simdf_swiz(b, 2, 1, 0, 3);
|
|
c = stbir__simdf_swiz(c, 2, 1, 0, 3);
|
|
d = stbir__simdf_swiz(d, 2, 1, 0, 3);
|
|
e = stbir__simdf_swiz(e, 2, 1, 0, 3);
|
|
f = stbir__simdf_swiz(f, 2, 1, 0, 3);
|
|
g = stbir__simdf_swiz(g, 2, 1, 0, 3);
|
|
|
|
// stores overlap, need to be in order,
|
|
stbir__simdf_store(decode, a);
|
|
i21 = decode[21];
|
|
stbir__simdf_store(decode + 3, b);
|
|
i23 = decode[23];
|
|
stbir__simdf_store(decode + 6, c);
|
|
stbir__simdf_store(decode + 9, d);
|
|
stbir__simdf_store(decode + 12, e);
|
|
stbir__simdf_store(decode + 15, f);
|
|
stbir__simdf_store(decode + 18, g);
|
|
decode[21] = i23;
|
|
decode[23] = i21;
|
|
decode += 24;
|
|
}
|
|
end_decode += 24;
|
|
#endif
|
|
#else
|
|
end_decode -= 12;
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
while (decode <= end_decode)
|
|
{
|
|
// 16 instructions
|
|
float t0, t1, t2, t3;
|
|
STBIR_NO_UNROLL(decode);
|
|
t0 = decode[0];
|
|
t1 = decode[3];
|
|
t2 = decode[6];
|
|
t3 = decode[9];
|
|
decode[0] = decode[2];
|
|
decode[3] = decode[5];
|
|
decode[6] = decode[8];
|
|
decode[9] = decode[11];
|
|
decode[2] = t0;
|
|
decode[5] = t1;
|
|
decode[8] = t2;
|
|
decode[11] = t3;
|
|
decode += 12;
|
|
}
|
|
end_decode += 12;
|
|
#endif
|
|
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
while (decode < end_decode)
|
|
{
|
|
float t = decode[0];
|
|
STBIR_NO_UNROLL(decode);
|
|
decode[0] = decode[2];
|
|
decode[2] = t;
|
|
decode += 3;
|
|
}
|
|
}
|
|
|
|
static void stbir__decode_scanline(stbir__info const *stbir_info, int n, float *output_buffer STBIR_ONLY_PROFILE_GET_SPLIT_INFO)
|
|
{
|
|
int channels = stbir_info->channels;
|
|
int effective_channels = stbir_info->effective_channels;
|
|
int input_sample_in_bytes = stbir__type_size[stbir_info->input_type] * channels;
|
|
stbir_edge edge_horizontal = stbir_info->horizontal.edge;
|
|
stbir_edge edge_vertical = stbir_info->vertical.edge;
|
|
int row = stbir__edge_wrap(edge_vertical, n, stbir_info->vertical.scale_info.input_full_size);
|
|
const void *input_plane_data = ((char *)stbir_info->input_data) + (size_t)row * (size_t)stbir_info->input_stride_bytes;
|
|
stbir__span const *spans = stbir_info->scanline_extents.spans;
|
|
float *full_decode_buffer = output_buffer - stbir_info->scanline_extents.conservative.n0 * effective_channels;
|
|
float *last_decoded = 0;
|
|
|
|
// if we are on edge_zero, and we get in here with an out of bounds n, then the calculate filters has failed
|
|
STBIR_ASSERT(!(edge_vertical == STBIR_EDGE_ZERO && (n < 0 || n >= stbir_info->vertical.scale_info.input_full_size)));
|
|
|
|
do
|
|
{
|
|
float *decode_buffer;
|
|
void const *input_data;
|
|
float *end_decode;
|
|
int width_times_channels;
|
|
int width;
|
|
|
|
if (spans->n1 < spans->n0)
|
|
break;
|
|
|
|
width = spans->n1 + 1 - spans->n0;
|
|
decode_buffer = full_decode_buffer + spans->n0 * effective_channels;
|
|
end_decode = full_decode_buffer + (spans->n1 + 1) * effective_channels;
|
|
width_times_channels = width * channels;
|
|
|
|
// read directly out of input plane by default
|
|
input_data = ((char *)input_plane_data) + spans->pixel_offset_for_input * input_sample_in_bytes;
|
|
|
|
// if we have an input callback, call it to get the input data
|
|
if (stbir_info->in_pixels_cb)
|
|
{
|
|
// call the callback with a temp buffer (that they can choose to use or not). the temp is just right aligned memory in the decode_buffer itself
|
|
input_data = stbir_info->in_pixels_cb(((char *)end_decode) - (width * input_sample_in_bytes) + sizeof(float) * STBIR_INPUT_CALLBACK_PADDING, input_plane_data, width, spans->pixel_offset_for_input, row, stbir_info->user_data);
|
|
}
|
|
|
|
STBIR_PROFILE_START(decode);
|
|
// convert the pixels info the float decode_buffer, (we index from end_decode, so that when channels<effective_channels, we are right justified in the buffer)
|
|
last_decoded = stbir_info->decode_pixels((float *)end_decode - width_times_channels, width_times_channels, input_data);
|
|
STBIR_PROFILE_END(decode);
|
|
|
|
if (stbir_info->alpha_weight)
|
|
{
|
|
STBIR_PROFILE_START(alpha);
|
|
stbir_info->alpha_weight(decode_buffer, width_times_channels);
|
|
STBIR_PROFILE_END(alpha);
|
|
}
|
|
|
|
++spans;
|
|
} while (spans <= (&stbir_info->scanline_extents.spans[1]));
|
|
|
|
// handle the edge_wrap filter (all other types are handled back out at the calculate_filter stage)
|
|
// basically the idea here is that if we have the whole scanline in memory, we don't redecode the
|
|
// wrapped edge pixels, and instead just memcpy them from the scanline into the edge positions
|
|
if ((edge_horizontal == STBIR_EDGE_WRAP) && (stbir_info->scanline_extents.edge_sizes[0] | stbir_info->scanline_extents.edge_sizes[1]))
|
|
{
|
|
// this code only runs if we're in edge_wrap, and we're doing the entire scanline
|
|
int e, start_x[2];
|
|
int input_full_size = stbir_info->horizontal.scale_info.input_full_size;
|
|
|
|
start_x[0] = -stbir_info->scanline_extents.edge_sizes[0]; // left edge start x
|
|
start_x[1] = input_full_size; // right edge
|
|
|
|
for (e = 0; e < 2; e++)
|
|
{
|
|
// do each margin
|
|
int margin = stbir_info->scanline_extents.edge_sizes[e];
|
|
if (margin)
|
|
{
|
|
int x = start_x[e];
|
|
float *marg = full_decode_buffer + x * effective_channels;
|
|
float const *src = full_decode_buffer + stbir__edge_wrap(edge_horizontal, x, input_full_size) * effective_channels;
|
|
STBIR_MEMCPY(marg, src, margin * effective_channels * sizeof(float));
|
|
if (e == 1)
|
|
last_decoded = marg + margin * effective_channels;
|
|
}
|
|
}
|
|
}
|
|
|
|
// some of the horizontal gathers read one float off the edge (which is masked out), but we force a zero here to make sure no NaNs leak in
|
|
// (we can't pre-zero it, because the input callback can use that area as padding)
|
|
last_decoded[0] = 0.0f;
|
|
|
|
// we clear this extra float, because the final output pixel filter kernel might have used one less coeff than the max filter width
|
|
// when this happens, we do read that pixel from the input, so it too could be Nan, so just zero an extra one.
|
|
// this fits because each scanline is padded by three floats (STBIR_INPUT_CALLBACK_PADDING)
|
|
last_decoded[1] = 0.0f;
|
|
}
|
|
|
|
//=================
|
|
// Do 1 channel horizontal routines
|
|
|
|
#ifdef STBIR_SIMD
|
|
|
|
#define stbir__1_coeff_only() \
|
|
stbir__simdf tot, c; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load1(c, hc); \
|
|
stbir__simdf_mult1_mem(tot, c, decode);
|
|
|
|
#define stbir__2_coeff_only() \
|
|
stbir__simdf tot, c, d; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load2z(c, hc); \
|
|
stbir__simdf_load2(d, decode); \
|
|
stbir__simdf_mult(tot, c, d); \
|
|
stbir__simdf_0123to1230(c, tot); \
|
|
stbir__simdf_add1(tot, tot, c);
|
|
|
|
#define stbir__3_coeff_only() \
|
|
stbir__simdf tot, c, t; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load(c, hc); \
|
|
stbir__simdf_mult_mem(tot, c, decode); \
|
|
stbir__simdf_0123to1230(c, tot); \
|
|
stbir__simdf_0123to2301(t, tot); \
|
|
stbir__simdf_add1(tot, tot, c); \
|
|
stbir__simdf_add1(tot, tot, t);
|
|
|
|
#define stbir__store_output_tiny() \
|
|
stbir__simdf_store1(output, tot); \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 1;
|
|
|
|
#define stbir__4_coeff_start() \
|
|
stbir__simdf tot, c; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load(c, hc); \
|
|
stbir__simdf_mult_mem(tot, c, decode);
|
|
|
|
#define stbir__4_coeff_continue_from_4(ofs) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load(c, hc + (ofs)); \
|
|
stbir__simdf_madd_mem(tot, tot, c, decode + (ofs));
|
|
|
|
#define stbir__1_coeff_remnant(ofs) \
|
|
{ \
|
|
stbir__simdf d; \
|
|
stbir__simdf_load1z(c, hc + (ofs)); \
|
|
stbir__simdf_load1(d, decode + (ofs)); \
|
|
stbir__simdf_madd(tot, tot, d, c); \
|
|
}
|
|
|
|
#define stbir__2_coeff_remnant(ofs) \
|
|
{ \
|
|
stbir__simdf d; \
|
|
stbir__simdf_load2z(c, hc + (ofs)); \
|
|
stbir__simdf_load2(d, decode + (ofs)); \
|
|
stbir__simdf_madd(tot, tot, d, c); \
|
|
}
|
|
|
|
#define stbir__3_coeff_setup() \
|
|
stbir__simdf mask; \
|
|
stbir__simdf_load(mask, STBIR_mask + 3);
|
|
|
|
#define stbir__3_coeff_remnant(ofs) \
|
|
stbir__simdf_load(c, hc + (ofs)); \
|
|
stbir__simdf_and(c, c, mask); \
|
|
stbir__simdf_madd_mem(tot, tot, c, decode + (ofs));
|
|
|
|
#define stbir__store_output() \
|
|
stbir__simdf_0123to2301(c, tot); \
|
|
stbir__simdf_add(tot, tot, c); \
|
|
stbir__simdf_0123to1230(c, tot); \
|
|
stbir__simdf_add1(tot, tot, c); \
|
|
stbir__simdf_store1(output, tot); \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 1;
|
|
|
|
#else
|
|
|
|
#define stbir__1_coeff_only() \
|
|
float tot; \
|
|
tot = decode[0] * hc[0];
|
|
|
|
#define stbir__2_coeff_only() \
|
|
float tot; \
|
|
tot = decode[0] * hc[0]; \
|
|
tot += decode[1] * hc[1];
|
|
|
|
#define stbir__3_coeff_only() \
|
|
float tot; \
|
|
tot = decode[0] * hc[0]; \
|
|
tot += decode[1] * hc[1]; \
|
|
tot += decode[2] * hc[2];
|
|
|
|
#define stbir__store_output_tiny() \
|
|
output[0] = tot; \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 1;
|
|
|
|
#define stbir__4_coeff_start() \
|
|
float tot0, tot1, tot2, tot3; \
|
|
tot0 = decode[0] * hc[0]; \
|
|
tot1 = decode[1] * hc[1]; \
|
|
tot2 = decode[2] * hc[2]; \
|
|
tot3 = decode[3] * hc[3];
|
|
|
|
#define stbir__4_coeff_continue_from_4(ofs) \
|
|
tot0 += decode[0 + (ofs)] * hc[0 + (ofs)]; \
|
|
tot1 += decode[1 + (ofs)] * hc[1 + (ofs)]; \
|
|
tot2 += decode[2 + (ofs)] * hc[2 + (ofs)]; \
|
|
tot3 += decode[3 + (ofs)] * hc[3 + (ofs)];
|
|
|
|
#define stbir__1_coeff_remnant(ofs) \
|
|
tot0 += decode[0 + (ofs)] * hc[0 + (ofs)];
|
|
|
|
#define stbir__2_coeff_remnant(ofs) \
|
|
tot0 += decode[0 + (ofs)] * hc[0 + (ofs)]; \
|
|
tot1 += decode[1 + (ofs)] * hc[1 + (ofs)];
|
|
|
|
#define stbir__3_coeff_remnant(ofs) \
|
|
tot0 += decode[0 + (ofs)] * hc[0 + (ofs)]; \
|
|
tot1 += decode[1 + (ofs)] * hc[1 + (ofs)]; \
|
|
tot2 += decode[2 + (ofs)] * hc[2 + (ofs)];
|
|
|
|
#define stbir__store_output() \
|
|
output[0] = (tot0 + tot2) + (tot1 + tot3); \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 1;
|
|
|
|
#endif
|
|
|
|
#define STBIR__horizontal_channels 1
|
|
#define STB_IMAGE_RESIZE_DO_HORIZONTALS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
//=================
|
|
// Do 2 channel horizontal routines
|
|
|
|
#ifdef STBIR_SIMD
|
|
|
|
#define stbir__1_coeff_only() \
|
|
stbir__simdf tot, c, d; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load1z(c, hc); \
|
|
stbir__simdf_0123to0011(c, c); \
|
|
stbir__simdf_load2(d, decode); \
|
|
stbir__simdf_mult(tot, d, c);
|
|
|
|
#define stbir__2_coeff_only() \
|
|
stbir__simdf tot, c; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load2(c, hc); \
|
|
stbir__simdf_0123to0011(c, c); \
|
|
stbir__simdf_mult_mem(tot, c, decode);
|
|
|
|
#define stbir__3_coeff_only() \
|
|
stbir__simdf tot, c, cs, d; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load(cs, hc); \
|
|
stbir__simdf_0123to0011(c, cs); \
|
|
stbir__simdf_mult_mem(tot, c, decode); \
|
|
stbir__simdf_0123to2222(c, cs); \
|
|
stbir__simdf_load2z(d, decode + 4); \
|
|
stbir__simdf_madd(tot, tot, d, c);
|
|
|
|
#define stbir__store_output_tiny() \
|
|
stbir__simdf_0123to2301(c, tot); \
|
|
stbir__simdf_add(tot, tot, c); \
|
|
stbir__simdf_store2(output, tot); \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 2;
|
|
|
|
#ifdef STBIR_SIMD8
|
|
|
|
#define stbir__4_coeff_start() \
|
|
stbir__simdf8 tot0, c, cs; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf8_load4b(cs, hc); \
|
|
stbir__simdf8_0123to00112233(c, cs); \
|
|
stbir__simdf8_mult_mem(tot0, c, decode);
|
|
|
|
#define stbir__4_coeff_continue_from_4(ofs) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf8_load4b(cs, hc + (ofs)); \
|
|
stbir__simdf8_0123to00112233(c, cs); \
|
|
stbir__simdf8_madd_mem(tot0, tot0, c, decode + (ofs) * 2);
|
|
|
|
#define stbir__1_coeff_remnant(ofs) \
|
|
{ \
|
|
stbir__simdf t, d; \
|
|
stbir__simdf_load1z(t, hc + (ofs)); \
|
|
stbir__simdf_load2(d, decode + (ofs) * 2); \
|
|
stbir__simdf_0123to0011(t, t); \
|
|
stbir__simdf_mult(t, t, d); \
|
|
stbir__simdf8_add4(tot0, tot0, t); \
|
|
}
|
|
|
|
#define stbir__2_coeff_remnant(ofs) \
|
|
{ \
|
|
stbir__simdf t; \
|
|
stbir__simdf_load2(t, hc + (ofs)); \
|
|
stbir__simdf_0123to0011(t, t); \
|
|
stbir__simdf_mult_mem(t, t, decode + (ofs) * 2); \
|
|
stbir__simdf8_add4(tot0, tot0, t); \
|
|
}
|
|
|
|
#define stbir__3_coeff_remnant(ofs) \
|
|
{ \
|
|
stbir__simdf8 d; \
|
|
stbir__simdf8_load4b(cs, hc + (ofs)); \
|
|
stbir__simdf8_0123to00112233(c, cs); \
|
|
stbir__simdf8_load6z(d, decode + (ofs) * 2); \
|
|
stbir__simdf8_madd(tot0, tot0, c, d); \
|
|
}
|
|
|
|
#define stbir__store_output() \
|
|
{ \
|
|
stbir__simdf t, d; \
|
|
stbir__simdf8_add4halves(t, stbir__if_simdf8_cast_to_simdf4(tot0), tot0); \
|
|
stbir__simdf_0123to2301(d, t); \
|
|
stbir__simdf_add(t, t, d); \
|
|
stbir__simdf_store2(output, t); \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 2; \
|
|
}
|
|
|
|
#else
|
|
|
|
#define stbir__4_coeff_start() \
|
|
stbir__simdf tot0, tot1, c, cs; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load(cs, hc); \
|
|
stbir__simdf_0123to0011(c, cs); \
|
|
stbir__simdf_mult_mem(tot0, c, decode); \
|
|
stbir__simdf_0123to2233(c, cs); \
|
|
stbir__simdf_mult_mem(tot1, c, decode + 4);
|
|
|
|
#define stbir__4_coeff_continue_from_4(ofs) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load(cs, hc + (ofs)); \
|
|
stbir__simdf_0123to0011(c, cs); \
|
|
stbir__simdf_madd_mem(tot0, tot0, c, decode + (ofs) * 2); \
|
|
stbir__simdf_0123to2233(c, cs); \
|
|
stbir__simdf_madd_mem(tot1, tot1, c, decode + (ofs) * 2 + 4);
|
|
|
|
#define stbir__1_coeff_remnant(ofs) \
|
|
{ \
|
|
stbir__simdf d; \
|
|
stbir__simdf_load1z(cs, hc + (ofs)); \
|
|
stbir__simdf_0123to0011(c, cs); \
|
|
stbir__simdf_load2(d, decode + (ofs) * 2); \
|
|
stbir__simdf_madd(tot0, tot0, d, c); \
|
|
}
|
|
|
|
#define stbir__2_coeff_remnant(ofs) \
|
|
stbir__simdf_load2(cs, hc + (ofs)); \
|
|
stbir__simdf_0123to0011(c, cs); \
|
|
stbir__simdf_madd_mem(tot0, tot0, c, decode + (ofs) * 2);
|
|
|
|
#define stbir__3_coeff_remnant(ofs) \
|
|
{ \
|
|
stbir__simdf d; \
|
|
stbir__simdf_load(cs, hc + (ofs)); \
|
|
stbir__simdf_0123to0011(c, cs); \
|
|
stbir__simdf_madd_mem(tot0, tot0, c, decode + (ofs) * 2); \
|
|
stbir__simdf_0123to2222(c, cs); \
|
|
stbir__simdf_load2z(d, decode + (ofs) * 2 + 4); \
|
|
stbir__simdf_madd(tot1, tot1, d, c); \
|
|
}
|
|
|
|
#define stbir__store_output() \
|
|
stbir__simdf_add(tot0, tot0, tot1); \
|
|
stbir__simdf_0123to2301(c, tot0); \
|
|
stbir__simdf_add(tot0, tot0, c); \
|
|
stbir__simdf_store2(output, tot0); \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 2;
|
|
|
|
#endif
|
|
|
|
#else
|
|
|
|
#define stbir__1_coeff_only() \
|
|
float tota, totb, c; \
|
|
c = hc[0]; \
|
|
tota = decode[0] * c; \
|
|
totb = decode[1] * c;
|
|
|
|
#define stbir__2_coeff_only() \
|
|
float tota, totb, c; \
|
|
c = hc[0]; \
|
|
tota = decode[0] * c; \
|
|
totb = decode[1] * c; \
|
|
c = hc[1]; \
|
|
tota += decode[2] * c; \
|
|
totb += decode[3] * c;
|
|
|
|
// this weird order of add matches the simd
|
|
#define stbir__3_coeff_only() \
|
|
float tota, totb, c; \
|
|
c = hc[0]; \
|
|
tota = decode[0] * c; \
|
|
totb = decode[1] * c; \
|
|
c = hc[2]; \
|
|
tota += decode[4] * c; \
|
|
totb += decode[5] * c; \
|
|
c = hc[1]; \
|
|
tota += decode[2] * c; \
|
|
totb += decode[3] * c;
|
|
|
|
#define stbir__store_output_tiny() \
|
|
output[0] = tota; \
|
|
output[1] = totb; \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 2;
|
|
|
|
#define stbir__4_coeff_start() \
|
|
float tota0, tota1, tota2, tota3, totb0, totb1, totb2, totb3, c; \
|
|
c = hc[0]; \
|
|
tota0 = decode[0] * c; \
|
|
totb0 = decode[1] * c; \
|
|
c = hc[1]; \
|
|
tota1 = decode[2] * c; \
|
|
totb1 = decode[3] * c; \
|
|
c = hc[2]; \
|
|
tota2 = decode[4] * c; \
|
|
totb2 = decode[5] * c; \
|
|
c = hc[3]; \
|
|
tota3 = decode[6] * c; \
|
|
totb3 = decode[7] * c;
|
|
|
|
#define stbir__4_coeff_continue_from_4(ofs) \
|
|
c = hc[0 + (ofs)]; \
|
|
tota0 += decode[0 + (ofs) * 2] * c; \
|
|
totb0 += decode[1 + (ofs) * 2] * c; \
|
|
c = hc[1 + (ofs)]; \
|
|
tota1 += decode[2 + (ofs) * 2] * c; \
|
|
totb1 += decode[3 + (ofs) * 2] * c; \
|
|
c = hc[2 + (ofs)]; \
|
|
tota2 += decode[4 + (ofs) * 2] * c; \
|
|
totb2 += decode[5 + (ofs) * 2] * c; \
|
|
c = hc[3 + (ofs)]; \
|
|
tota3 += decode[6 + (ofs) * 2] * c; \
|
|
totb3 += decode[7 + (ofs) * 2] * c;
|
|
|
|
#define stbir__1_coeff_remnant(ofs) \
|
|
c = hc[0 + (ofs)]; \
|
|
tota0 += decode[0 + (ofs) * 2] * c; \
|
|
totb0 += decode[1 + (ofs) * 2] * c;
|
|
|
|
#define stbir__2_coeff_remnant(ofs) \
|
|
c = hc[0 + (ofs)]; \
|
|
tota0 += decode[0 + (ofs) * 2] * c; \
|
|
totb0 += decode[1 + (ofs) * 2] * c; \
|
|
c = hc[1 + (ofs)]; \
|
|
tota1 += decode[2 + (ofs) * 2] * c; \
|
|
totb1 += decode[3 + (ofs) * 2] * c;
|
|
|
|
#define stbir__3_coeff_remnant(ofs) \
|
|
c = hc[0 + (ofs)]; \
|
|
tota0 += decode[0 + (ofs) * 2] * c; \
|
|
totb0 += decode[1 + (ofs) * 2] * c; \
|
|
c = hc[1 + (ofs)]; \
|
|
tota1 += decode[2 + (ofs) * 2] * c; \
|
|
totb1 += decode[3 + (ofs) * 2] * c; \
|
|
c = hc[2 + (ofs)]; \
|
|
tota2 += decode[4 + (ofs) * 2] * c; \
|
|
totb2 += decode[5 + (ofs) * 2] * c;
|
|
|
|
#define stbir__store_output() \
|
|
output[0] = (tota0 + tota2) + (tota1 + tota3); \
|
|
output[1] = (totb0 + totb2) + (totb1 + totb3); \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 2;
|
|
|
|
#endif
|
|
|
|
#define STBIR__horizontal_channels 2
|
|
#define STB_IMAGE_RESIZE_DO_HORIZONTALS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
//=================
|
|
// Do 3 channel horizontal routines
|
|
|
|
#ifdef STBIR_SIMD
|
|
|
|
#define stbir__1_coeff_only() \
|
|
stbir__simdf tot, c, d; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load1z(c, hc); \
|
|
stbir__simdf_0123to0001(c, c); \
|
|
stbir__simdf_load(d, decode); \
|
|
stbir__simdf_mult(tot, d, c);
|
|
|
|
#define stbir__2_coeff_only() \
|
|
stbir__simdf tot, c, cs, d; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load2(cs, hc); \
|
|
stbir__simdf_0123to0000(c, cs); \
|
|
stbir__simdf_load(d, decode); \
|
|
stbir__simdf_mult(tot, d, c); \
|
|
stbir__simdf_0123to1111(c, cs); \
|
|
stbir__simdf_load(d, decode + 3); \
|
|
stbir__simdf_madd(tot, tot, d, c);
|
|
|
|
#define stbir__3_coeff_only() \
|
|
stbir__simdf tot, c, d, cs; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load(cs, hc); \
|
|
stbir__simdf_0123to0000(c, cs); \
|
|
stbir__simdf_load(d, decode); \
|
|
stbir__simdf_mult(tot, d, c); \
|
|
stbir__simdf_0123to1111(c, cs); \
|
|
stbir__simdf_load(d, decode + 3); \
|
|
stbir__simdf_madd(tot, tot, d, c); \
|
|
stbir__simdf_0123to2222(c, cs); \
|
|
stbir__simdf_load(d, decode + 6); \
|
|
stbir__simdf_madd(tot, tot, d, c);
|
|
|
|
#define stbir__store_output_tiny() \
|
|
stbir__simdf_store2(output, tot); \
|
|
stbir__simdf_0123to2301(tot, tot); \
|
|
stbir__simdf_store1(output + 2, tot); \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 3;
|
|
|
|
#ifdef STBIR_SIMD8
|
|
|
|
// we're loading from the XXXYYY decode by -1 to get the XXXYYY into different halves of the AVX reg fyi
|
|
#define stbir__4_coeff_start() \
|
|
stbir__simdf8 tot0, tot1, c, cs; \
|
|
stbir__simdf t; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf8_load4b(cs, hc); \
|
|
stbir__simdf8_0123to00001111(c, cs); \
|
|
stbir__simdf8_mult_mem(tot0, c, decode - 1); \
|
|
stbir__simdf8_0123to22223333(c, cs); \
|
|
stbir__simdf8_mult_mem(tot1, c, decode + 6 - 1);
|
|
|
|
#define stbir__4_coeff_continue_from_4(ofs) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf8_load4b(cs, hc + (ofs)); \
|
|
stbir__simdf8_0123to00001111(c, cs); \
|
|
stbir__simdf8_madd_mem(tot0, tot0, c, decode + (ofs) * 3 - 1); \
|
|
stbir__simdf8_0123to22223333(c, cs); \
|
|
stbir__simdf8_madd_mem(tot1, tot1, c, decode + (ofs) * 3 + 6 - 1);
|
|
|
|
#define stbir__1_coeff_remnant(ofs) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load1rep4(t, hc + (ofs)); \
|
|
stbir__simdf8_madd_mem4(tot0, tot0, t, decode + (ofs) * 3 - 1);
|
|
|
|
#define stbir__2_coeff_remnant(ofs) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf8_load4b(cs, hc + (ofs) - 2); \
|
|
stbir__simdf8_0123to22223333(c, cs); \
|
|
stbir__simdf8_madd_mem(tot0, tot0, c, decode + (ofs) * 3 - 1);
|
|
|
|
#define stbir__3_coeff_remnant(ofs) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf8_load4b(cs, hc + (ofs)); \
|
|
stbir__simdf8_0123to00001111(c, cs); \
|
|
stbir__simdf8_madd_mem(tot0, tot0, c, decode + (ofs) * 3 - 1); \
|
|
stbir__simdf8_0123to2222(t, cs); \
|
|
stbir__simdf8_madd_mem4(tot1, tot1, t, decode + (ofs) * 3 + 6 - 1);
|
|
|
|
#define stbir__store_output() \
|
|
stbir__simdf8_add(tot0, tot0, tot1); \
|
|
stbir__simdf_0123to1230(t, stbir__if_simdf8_cast_to_simdf4(tot0)); \
|
|
stbir__simdf8_add4halves(t, t, tot0); \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 3; \
|
|
if (output < output_end) \
|
|
{ \
|
|
stbir__simdf_store(output - 3, t); \
|
|
continue; \
|
|
} \
|
|
{ \
|
|
stbir__simdf tt; \
|
|
stbir__simdf_0123to2301(tt, t); \
|
|
stbir__simdf_store2(output - 3, t); \
|
|
stbir__simdf_store1(output + 2 - 3, tt); \
|
|
} \
|
|
break;
|
|
|
|
#else
|
|
|
|
#define stbir__4_coeff_start() \
|
|
stbir__simdf tot0, tot1, tot2, c, cs; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load(cs, hc); \
|
|
stbir__simdf_0123to0001(c, cs); \
|
|
stbir__simdf_mult_mem(tot0, c, decode); \
|
|
stbir__simdf_0123to1122(c, cs); \
|
|
stbir__simdf_mult_mem(tot1, c, decode + 4); \
|
|
stbir__simdf_0123to2333(c, cs); \
|
|
stbir__simdf_mult_mem(tot2, c, decode + 8);
|
|
|
|
#define stbir__4_coeff_continue_from_4(ofs) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load(cs, hc + (ofs)); \
|
|
stbir__simdf_0123to0001(c, cs); \
|
|
stbir__simdf_madd_mem(tot0, tot0, c, decode + (ofs) * 3); \
|
|
stbir__simdf_0123to1122(c, cs); \
|
|
stbir__simdf_madd_mem(tot1, tot1, c, decode + (ofs) * 3 + 4); \
|
|
stbir__simdf_0123to2333(c, cs); \
|
|
stbir__simdf_madd_mem(tot2, tot2, c, decode + (ofs) * 3 + 8);
|
|
|
|
#define stbir__1_coeff_remnant(ofs) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load1z(c, hc + (ofs)); \
|
|
stbir__simdf_0123to0001(c, c); \
|
|
stbir__simdf_madd_mem(tot0, tot0, c, decode + (ofs) * 3);
|
|
|
|
#define stbir__2_coeff_remnant(ofs) \
|
|
{ \
|
|
stbir__simdf d; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load2z(cs, hc + (ofs)); \
|
|
stbir__simdf_0123to0001(c, cs); \
|
|
stbir__simdf_madd_mem(tot0, tot0, c, decode + (ofs) * 3); \
|
|
stbir__simdf_0123to1122(c, cs); \
|
|
stbir__simdf_load2z(d, decode + (ofs) * 3 + 4); \
|
|
stbir__simdf_madd(tot1, tot1, c, d); \
|
|
}
|
|
|
|
#define stbir__3_coeff_remnant(ofs) \
|
|
{ \
|
|
stbir__simdf d; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load(cs, hc + (ofs)); \
|
|
stbir__simdf_0123to0001(c, cs); \
|
|
stbir__simdf_madd_mem(tot0, tot0, c, decode + (ofs) * 3); \
|
|
stbir__simdf_0123to1122(c, cs); \
|
|
stbir__simdf_madd_mem(tot1, tot1, c, decode + (ofs) * 3 + 4); \
|
|
stbir__simdf_0123to2222(c, cs); \
|
|
stbir__simdf_load1z(d, decode + (ofs) * 3 + 8); \
|
|
stbir__simdf_madd(tot2, tot2, c, d); \
|
|
}
|
|
|
|
#define stbir__store_output() \
|
|
stbir__simdf_0123ABCDto3ABx(c, tot0, tot1); \
|
|
stbir__simdf_0123ABCDto23Ax(cs, tot1, tot2); \
|
|
stbir__simdf_0123to1230(tot2, tot2); \
|
|
stbir__simdf_add(tot0, tot0, cs); \
|
|
stbir__simdf_add(c, c, tot2); \
|
|
stbir__simdf_add(tot0, tot0, c); \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 3; \
|
|
if (output < output_end) \
|
|
{ \
|
|
stbir__simdf_store(output - 3, tot0); \
|
|
continue; \
|
|
} \
|
|
stbir__simdf_0123to2301(tot1, tot0); \
|
|
stbir__simdf_store2(output - 3, tot0); \
|
|
stbir__simdf_store1(output + 2 - 3, tot1); \
|
|
break;
|
|
|
|
#endif
|
|
|
|
#else
|
|
|
|
#define stbir__1_coeff_only() \
|
|
float tot0, tot1, tot2, c; \
|
|
c = hc[0]; \
|
|
tot0 = decode[0] * c; \
|
|
tot1 = decode[1] * c; \
|
|
tot2 = decode[2] * c;
|
|
|
|
#define stbir__2_coeff_only() \
|
|
float tot0, tot1, tot2, c; \
|
|
c = hc[0]; \
|
|
tot0 = decode[0] * c; \
|
|
tot1 = decode[1] * c; \
|
|
tot2 = decode[2] * c; \
|
|
c = hc[1]; \
|
|
tot0 += decode[3] * c; \
|
|
tot1 += decode[4] * c; \
|
|
tot2 += decode[5] * c;
|
|
|
|
#define stbir__3_coeff_only() \
|
|
float tot0, tot1, tot2, c; \
|
|
c = hc[0]; \
|
|
tot0 = decode[0] * c; \
|
|
tot1 = decode[1] * c; \
|
|
tot2 = decode[2] * c; \
|
|
c = hc[1]; \
|
|
tot0 += decode[3] * c; \
|
|
tot1 += decode[4] * c; \
|
|
tot2 += decode[5] * c; \
|
|
c = hc[2]; \
|
|
tot0 += decode[6] * c; \
|
|
tot1 += decode[7] * c; \
|
|
tot2 += decode[8] * c;
|
|
|
|
#define stbir__store_output_tiny() \
|
|
output[0] = tot0; \
|
|
output[1] = tot1; \
|
|
output[2] = tot2; \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 3;
|
|
|
|
#define stbir__4_coeff_start() \
|
|
float tota0, tota1, tota2, totb0, totb1, totb2, totc0, totc1, totc2, totd0, totd1, totd2, c; \
|
|
c = hc[0]; \
|
|
tota0 = decode[0] * c; \
|
|
tota1 = decode[1] * c; \
|
|
tota2 = decode[2] * c; \
|
|
c = hc[1]; \
|
|
totb0 = decode[3] * c; \
|
|
totb1 = decode[4] * c; \
|
|
totb2 = decode[5] * c; \
|
|
c = hc[2]; \
|
|
totc0 = decode[6] * c; \
|
|
totc1 = decode[7] * c; \
|
|
totc2 = decode[8] * c; \
|
|
c = hc[3]; \
|
|
totd0 = decode[9] * c; \
|
|
totd1 = decode[10] * c; \
|
|
totd2 = decode[11] * c;
|
|
|
|
#define stbir__4_coeff_continue_from_4(ofs) \
|
|
c = hc[0 + (ofs)]; \
|
|
tota0 += decode[0 + (ofs) * 3] * c; \
|
|
tota1 += decode[1 + (ofs) * 3] * c; \
|
|
tota2 += decode[2 + (ofs) * 3] * c; \
|
|
c = hc[1 + (ofs)]; \
|
|
totb0 += decode[3 + (ofs) * 3] * c; \
|
|
totb1 += decode[4 + (ofs) * 3] * c; \
|
|
totb2 += decode[5 + (ofs) * 3] * c; \
|
|
c = hc[2 + (ofs)]; \
|
|
totc0 += decode[6 + (ofs) * 3] * c; \
|
|
totc1 += decode[7 + (ofs) * 3] * c; \
|
|
totc2 += decode[8 + (ofs) * 3] * c; \
|
|
c = hc[3 + (ofs)]; \
|
|
totd0 += decode[9 + (ofs) * 3] * c; \
|
|
totd1 += decode[10 + (ofs) * 3] * c; \
|
|
totd2 += decode[11 + (ofs) * 3] * c;
|
|
|
|
#define stbir__1_coeff_remnant(ofs) \
|
|
c = hc[0 + (ofs)]; \
|
|
tota0 += decode[0 + (ofs) * 3] * c; \
|
|
tota1 += decode[1 + (ofs) * 3] * c; \
|
|
tota2 += decode[2 + (ofs) * 3] * c;
|
|
|
|
#define stbir__2_coeff_remnant(ofs) \
|
|
c = hc[0 + (ofs)]; \
|
|
tota0 += decode[0 + (ofs) * 3] * c; \
|
|
tota1 += decode[1 + (ofs) * 3] * c; \
|
|
tota2 += decode[2 + (ofs) * 3] * c; \
|
|
c = hc[1 + (ofs)]; \
|
|
totb0 += decode[3 + (ofs) * 3] * c; \
|
|
totb1 += decode[4 + (ofs) * 3] * c; \
|
|
totb2 += decode[5 + (ofs) * 3] * c;
|
|
|
|
#define stbir__3_coeff_remnant(ofs) \
|
|
c = hc[0 + (ofs)]; \
|
|
tota0 += decode[0 + (ofs) * 3] * c; \
|
|
tota1 += decode[1 + (ofs) * 3] * c; \
|
|
tota2 += decode[2 + (ofs) * 3] * c; \
|
|
c = hc[1 + (ofs)]; \
|
|
totb0 += decode[3 + (ofs) * 3] * c; \
|
|
totb1 += decode[4 + (ofs) * 3] * c; \
|
|
totb2 += decode[5 + (ofs) * 3] * c; \
|
|
c = hc[2 + (ofs)]; \
|
|
totc0 += decode[6 + (ofs) * 3] * c; \
|
|
totc1 += decode[7 + (ofs) * 3] * c; \
|
|
totc2 += decode[8 + (ofs) * 3] * c;
|
|
|
|
#define stbir__store_output() \
|
|
output[0] = (tota0 + totc0) + (totb0 + totd0); \
|
|
output[1] = (tota1 + totc1) + (totb1 + totd1); \
|
|
output[2] = (tota2 + totc2) + (totb2 + totd2); \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 3;
|
|
|
|
#endif
|
|
|
|
#define STBIR__horizontal_channels 3
|
|
#define STB_IMAGE_RESIZE_DO_HORIZONTALS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
//=================
|
|
// Do 4 channel horizontal routines
|
|
|
|
#ifdef STBIR_SIMD
|
|
|
|
#define stbir__1_coeff_only() \
|
|
stbir__simdf tot, c; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load1(c, hc); \
|
|
stbir__simdf_0123to0000(c, c); \
|
|
stbir__simdf_mult_mem(tot, c, decode);
|
|
|
|
#define stbir__2_coeff_only() \
|
|
stbir__simdf tot, c, cs; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load2(cs, hc); \
|
|
stbir__simdf_0123to0000(c, cs); \
|
|
stbir__simdf_mult_mem(tot, c, decode); \
|
|
stbir__simdf_0123to1111(c, cs); \
|
|
stbir__simdf_madd_mem(tot, tot, c, decode + 4);
|
|
|
|
#define stbir__3_coeff_only() \
|
|
stbir__simdf tot, c, cs; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load(cs, hc); \
|
|
stbir__simdf_0123to0000(c, cs); \
|
|
stbir__simdf_mult_mem(tot, c, decode); \
|
|
stbir__simdf_0123to1111(c, cs); \
|
|
stbir__simdf_madd_mem(tot, tot, c, decode + 4); \
|
|
stbir__simdf_0123to2222(c, cs); \
|
|
stbir__simdf_madd_mem(tot, tot, c, decode + 8);
|
|
|
|
#define stbir__store_output_tiny() \
|
|
stbir__simdf_store(output, tot); \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 4;
|
|
|
|
#ifdef STBIR_SIMD8
|
|
|
|
#define stbir__4_coeff_start() \
|
|
stbir__simdf8 tot0, c, cs; \
|
|
stbir__simdf t; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf8_load4b(cs, hc); \
|
|
stbir__simdf8_0123to00001111(c, cs); \
|
|
stbir__simdf8_mult_mem(tot0, c, decode); \
|
|
stbir__simdf8_0123to22223333(c, cs); \
|
|
stbir__simdf8_madd_mem(tot0, tot0, c, decode + 8);
|
|
|
|
#define stbir__4_coeff_continue_from_4(ofs) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf8_load4b(cs, hc + (ofs)); \
|
|
stbir__simdf8_0123to00001111(c, cs); \
|
|
stbir__simdf8_madd_mem(tot0, tot0, c, decode + (ofs) * 4); \
|
|
stbir__simdf8_0123to22223333(c, cs); \
|
|
stbir__simdf8_madd_mem(tot0, tot0, c, decode + (ofs) * 4 + 8);
|
|
|
|
#define stbir__1_coeff_remnant(ofs) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load1rep4(t, hc + (ofs)); \
|
|
stbir__simdf8_madd_mem4(tot0, tot0, t, decode + (ofs) * 4);
|
|
|
|
#define stbir__2_coeff_remnant(ofs) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf8_load4b(cs, hc + (ofs) - 2); \
|
|
stbir__simdf8_0123to22223333(c, cs); \
|
|
stbir__simdf8_madd_mem(tot0, tot0, c, decode + (ofs) * 4);
|
|
|
|
#define stbir__3_coeff_remnant(ofs) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf8_load4b(cs, hc + (ofs)); \
|
|
stbir__simdf8_0123to00001111(c, cs); \
|
|
stbir__simdf8_madd_mem(tot0, tot0, c, decode + (ofs) * 4); \
|
|
stbir__simdf8_0123to2222(t, cs); \
|
|
stbir__simdf8_madd_mem4(tot0, tot0, t, decode + (ofs) * 4 + 8);
|
|
|
|
#define stbir__store_output() \
|
|
stbir__simdf8_add4halves(t, stbir__if_simdf8_cast_to_simdf4(tot0), tot0); \
|
|
stbir__simdf_store(output, t); \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 4;
|
|
|
|
#else
|
|
|
|
#define stbir__4_coeff_start() \
|
|
stbir__simdf tot0, tot1, c, cs; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load(cs, hc); \
|
|
stbir__simdf_0123to0000(c, cs); \
|
|
stbir__simdf_mult_mem(tot0, c, decode); \
|
|
stbir__simdf_0123to1111(c, cs); \
|
|
stbir__simdf_mult_mem(tot1, c, decode + 4); \
|
|
stbir__simdf_0123to2222(c, cs); \
|
|
stbir__simdf_madd_mem(tot0, tot0, c, decode + 8); \
|
|
stbir__simdf_0123to3333(c, cs); \
|
|
stbir__simdf_madd_mem(tot1, tot1, c, decode + 12);
|
|
|
|
#define stbir__4_coeff_continue_from_4(ofs) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load(cs, hc + (ofs)); \
|
|
stbir__simdf_0123to0000(c, cs); \
|
|
stbir__simdf_madd_mem(tot0, tot0, c, decode + (ofs) * 4); \
|
|
stbir__simdf_0123to1111(c, cs); \
|
|
stbir__simdf_madd_mem(tot1, tot1, c, decode + (ofs) * 4 + 4); \
|
|
stbir__simdf_0123to2222(c, cs); \
|
|
stbir__simdf_madd_mem(tot0, tot0, c, decode + (ofs) * 4 + 8); \
|
|
stbir__simdf_0123to3333(c, cs); \
|
|
stbir__simdf_madd_mem(tot1, tot1, c, decode + (ofs) * 4 + 12);
|
|
|
|
#define stbir__1_coeff_remnant(ofs) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load1(c, hc + (ofs)); \
|
|
stbir__simdf_0123to0000(c, c); \
|
|
stbir__simdf_madd_mem(tot0, tot0, c, decode + (ofs) * 4);
|
|
|
|
#define stbir__2_coeff_remnant(ofs) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load2(cs, hc + (ofs)); \
|
|
stbir__simdf_0123to0000(c, cs); \
|
|
stbir__simdf_madd_mem(tot0, tot0, c, decode + (ofs) * 4); \
|
|
stbir__simdf_0123to1111(c, cs); \
|
|
stbir__simdf_madd_mem(tot1, tot1, c, decode + (ofs) * 4 + 4);
|
|
|
|
#define stbir__3_coeff_remnant(ofs) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load(cs, hc + (ofs)); \
|
|
stbir__simdf_0123to0000(c, cs); \
|
|
stbir__simdf_madd_mem(tot0, tot0, c, decode + (ofs) * 4); \
|
|
stbir__simdf_0123to1111(c, cs); \
|
|
stbir__simdf_madd_mem(tot1, tot1, c, decode + (ofs) * 4 + 4); \
|
|
stbir__simdf_0123to2222(c, cs); \
|
|
stbir__simdf_madd_mem(tot0, tot0, c, decode + (ofs) * 4 + 8);
|
|
|
|
#define stbir__store_output() \
|
|
stbir__simdf_add(tot0, tot0, tot1); \
|
|
stbir__simdf_store(output, tot0); \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 4;
|
|
|
|
#endif
|
|
|
|
#else
|
|
|
|
#define stbir__1_coeff_only() \
|
|
float p0, p1, p2, p3, c; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
c = hc[0]; \
|
|
p0 = decode[0] * c; \
|
|
p1 = decode[1] * c; \
|
|
p2 = decode[2] * c; \
|
|
p3 = decode[3] * c;
|
|
|
|
#define stbir__2_coeff_only() \
|
|
float p0, p1, p2, p3, c; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
c = hc[0]; \
|
|
p0 = decode[0] * c; \
|
|
p1 = decode[1] * c; \
|
|
p2 = decode[2] * c; \
|
|
p3 = decode[3] * c; \
|
|
c = hc[1]; \
|
|
p0 += decode[4] * c; \
|
|
p1 += decode[5] * c; \
|
|
p2 += decode[6] * c; \
|
|
p3 += decode[7] * c;
|
|
|
|
#define stbir__3_coeff_only() \
|
|
float p0, p1, p2, p3, c; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
c = hc[0]; \
|
|
p0 = decode[0] * c; \
|
|
p1 = decode[1] * c; \
|
|
p2 = decode[2] * c; \
|
|
p3 = decode[3] * c; \
|
|
c = hc[1]; \
|
|
p0 += decode[4] * c; \
|
|
p1 += decode[5] * c; \
|
|
p2 += decode[6] * c; \
|
|
p3 += decode[7] * c; \
|
|
c = hc[2]; \
|
|
p0 += decode[8] * c; \
|
|
p1 += decode[9] * c; \
|
|
p2 += decode[10] * c; \
|
|
p3 += decode[11] * c;
|
|
|
|
#define stbir__store_output_tiny() \
|
|
output[0] = p0; \
|
|
output[1] = p1; \
|
|
output[2] = p2; \
|
|
output[3] = p3; \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 4;
|
|
|
|
#define stbir__4_coeff_start() \
|
|
float x0, x1, x2, x3, y0, y1, y2, y3, c; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
c = hc[0]; \
|
|
x0 = decode[0] * c; \
|
|
x1 = decode[1] * c; \
|
|
x2 = decode[2] * c; \
|
|
x3 = decode[3] * c; \
|
|
c = hc[1]; \
|
|
y0 = decode[4] * c; \
|
|
y1 = decode[5] * c; \
|
|
y2 = decode[6] * c; \
|
|
y3 = decode[7] * c; \
|
|
c = hc[2]; \
|
|
x0 += decode[8] * c; \
|
|
x1 += decode[9] * c; \
|
|
x2 += decode[10] * c; \
|
|
x3 += decode[11] * c; \
|
|
c = hc[3]; \
|
|
y0 += decode[12] * c; \
|
|
y1 += decode[13] * c; \
|
|
y2 += decode[14] * c; \
|
|
y3 += decode[15] * c;
|
|
|
|
#define stbir__4_coeff_continue_from_4(ofs) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
c = hc[0 + (ofs)]; \
|
|
x0 += decode[0 + (ofs) * 4] * c; \
|
|
x1 += decode[1 + (ofs) * 4] * c; \
|
|
x2 += decode[2 + (ofs) * 4] * c; \
|
|
x3 += decode[3 + (ofs) * 4] * c; \
|
|
c = hc[1 + (ofs)]; \
|
|
y0 += decode[4 + (ofs) * 4] * c; \
|
|
y1 += decode[5 + (ofs) * 4] * c; \
|
|
y2 += decode[6 + (ofs) * 4] * c; \
|
|
y3 += decode[7 + (ofs) * 4] * c; \
|
|
c = hc[2 + (ofs)]; \
|
|
x0 += decode[8 + (ofs) * 4] * c; \
|
|
x1 += decode[9 + (ofs) * 4] * c; \
|
|
x2 += decode[10 + (ofs) * 4] * c; \
|
|
x3 += decode[11 + (ofs) * 4] * c; \
|
|
c = hc[3 + (ofs)]; \
|
|
y0 += decode[12 + (ofs) * 4] * c; \
|
|
y1 += decode[13 + (ofs) * 4] * c; \
|
|
y2 += decode[14 + (ofs) * 4] * c; \
|
|
y3 += decode[15 + (ofs) * 4] * c;
|
|
|
|
#define stbir__1_coeff_remnant(ofs) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
c = hc[0 + (ofs)]; \
|
|
x0 += decode[0 + (ofs) * 4] * c; \
|
|
x1 += decode[1 + (ofs) * 4] * c; \
|
|
x2 += decode[2 + (ofs) * 4] * c; \
|
|
x3 += decode[3 + (ofs) * 4] * c;
|
|
|
|
#define stbir__2_coeff_remnant(ofs) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
c = hc[0 + (ofs)]; \
|
|
x0 += decode[0 + (ofs) * 4] * c; \
|
|
x1 += decode[1 + (ofs) * 4] * c; \
|
|
x2 += decode[2 + (ofs) * 4] * c; \
|
|
x3 += decode[3 + (ofs) * 4] * c; \
|
|
c = hc[1 + (ofs)]; \
|
|
y0 += decode[4 + (ofs) * 4] * c; \
|
|
y1 += decode[5 + (ofs) * 4] * c; \
|
|
y2 += decode[6 + (ofs) * 4] * c; \
|
|
y3 += decode[7 + (ofs) * 4] * c;
|
|
|
|
#define stbir__3_coeff_remnant(ofs) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
c = hc[0 + (ofs)]; \
|
|
x0 += decode[0 + (ofs) * 4] * c; \
|
|
x1 += decode[1 + (ofs) * 4] * c; \
|
|
x2 += decode[2 + (ofs) * 4] * c; \
|
|
x3 += decode[3 + (ofs) * 4] * c; \
|
|
c = hc[1 + (ofs)]; \
|
|
y0 += decode[4 + (ofs) * 4] * c; \
|
|
y1 += decode[5 + (ofs) * 4] * c; \
|
|
y2 += decode[6 + (ofs) * 4] * c; \
|
|
y3 += decode[7 + (ofs) * 4] * c; \
|
|
c = hc[2 + (ofs)]; \
|
|
x0 += decode[8 + (ofs) * 4] * c; \
|
|
x1 += decode[9 + (ofs) * 4] * c; \
|
|
x2 += decode[10 + (ofs) * 4] * c; \
|
|
x3 += decode[11 + (ofs) * 4] * c;
|
|
|
|
#define stbir__store_output() \
|
|
output[0] = x0 + y0; \
|
|
output[1] = x1 + y1; \
|
|
output[2] = x2 + y2; \
|
|
output[3] = x3 + y3; \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 4;
|
|
|
|
#endif
|
|
|
|
#define STBIR__horizontal_channels 4
|
|
#define STB_IMAGE_RESIZE_DO_HORIZONTALS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
//=================
|
|
// Do 7 channel horizontal routines
|
|
|
|
#ifdef STBIR_SIMD
|
|
|
|
#define stbir__1_coeff_only() \
|
|
stbir__simdf tot0, tot1, c; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load1(c, hc); \
|
|
stbir__simdf_0123to0000(c, c); \
|
|
stbir__simdf_mult_mem(tot0, c, decode); \
|
|
stbir__simdf_mult_mem(tot1, c, decode + 3);
|
|
|
|
#define stbir__2_coeff_only() \
|
|
stbir__simdf tot0, tot1, c, cs; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load2(cs, hc); \
|
|
stbir__simdf_0123to0000(c, cs); \
|
|
stbir__simdf_mult_mem(tot0, c, decode); \
|
|
stbir__simdf_mult_mem(tot1, c, decode + 3); \
|
|
stbir__simdf_0123to1111(c, cs); \
|
|
stbir__simdf_madd_mem(tot0, tot0, c, decode + 7); \
|
|
stbir__simdf_madd_mem(tot1, tot1, c, decode + 10);
|
|
|
|
#define stbir__3_coeff_only() \
|
|
stbir__simdf tot0, tot1, c, cs; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load(cs, hc); \
|
|
stbir__simdf_0123to0000(c, cs); \
|
|
stbir__simdf_mult_mem(tot0, c, decode); \
|
|
stbir__simdf_mult_mem(tot1, c, decode + 3); \
|
|
stbir__simdf_0123to1111(c, cs); \
|
|
stbir__simdf_madd_mem(tot0, tot0, c, decode + 7); \
|
|
stbir__simdf_madd_mem(tot1, tot1, c, decode + 10); \
|
|
stbir__simdf_0123to2222(c, cs); \
|
|
stbir__simdf_madd_mem(tot0, tot0, c, decode + 14); \
|
|
stbir__simdf_madd_mem(tot1, tot1, c, decode + 17);
|
|
|
|
#define stbir__store_output_tiny() \
|
|
stbir__simdf_store(output + 3, tot1); \
|
|
stbir__simdf_store(output, tot0); \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 7;
|
|
|
|
#ifdef STBIR_SIMD8
|
|
|
|
#define stbir__4_coeff_start() \
|
|
stbir__simdf8 tot0, tot1, c, cs; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf8_load4b(cs, hc); \
|
|
stbir__simdf8_0123to00000000(c, cs); \
|
|
stbir__simdf8_mult_mem(tot0, c, decode); \
|
|
stbir__simdf8_0123to11111111(c, cs); \
|
|
stbir__simdf8_mult_mem(tot1, c, decode + 7); \
|
|
stbir__simdf8_0123to22222222(c, cs); \
|
|
stbir__simdf8_madd_mem(tot0, tot0, c, decode + 14); \
|
|
stbir__simdf8_0123to33333333(c, cs); \
|
|
stbir__simdf8_madd_mem(tot1, tot1, c, decode + 21);
|
|
|
|
#define stbir__4_coeff_continue_from_4(ofs) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf8_load4b(cs, hc + (ofs)); \
|
|
stbir__simdf8_0123to00000000(c, cs); \
|
|
stbir__simdf8_madd_mem(tot0, tot0, c, decode + (ofs) * 7); \
|
|
stbir__simdf8_0123to11111111(c, cs); \
|
|
stbir__simdf8_madd_mem(tot1, tot1, c, decode + (ofs) * 7 + 7); \
|
|
stbir__simdf8_0123to22222222(c, cs); \
|
|
stbir__simdf8_madd_mem(tot0, tot0, c, decode + (ofs) * 7 + 14); \
|
|
stbir__simdf8_0123to33333333(c, cs); \
|
|
stbir__simdf8_madd_mem(tot1, tot1, c, decode + (ofs) * 7 + 21);
|
|
|
|
#define stbir__1_coeff_remnant(ofs) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf8_load1b(c, hc + (ofs)); \
|
|
stbir__simdf8_madd_mem(tot0, tot0, c, decode + (ofs) * 7);
|
|
|
|
#define stbir__2_coeff_remnant(ofs) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf8_load1b(c, hc + (ofs)); \
|
|
stbir__simdf8_madd_mem(tot0, tot0, c, decode + (ofs) * 7); \
|
|
stbir__simdf8_load1b(c, hc + (ofs) + 1); \
|
|
stbir__simdf8_madd_mem(tot1, tot1, c, decode + (ofs) * 7 + 7);
|
|
|
|
#define stbir__3_coeff_remnant(ofs) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf8_load4b(cs, hc + (ofs)); \
|
|
stbir__simdf8_0123to00000000(c, cs); \
|
|
stbir__simdf8_madd_mem(tot0, tot0, c, decode + (ofs) * 7); \
|
|
stbir__simdf8_0123to11111111(c, cs); \
|
|
stbir__simdf8_madd_mem(tot1, tot1, c, decode + (ofs) * 7 + 7); \
|
|
stbir__simdf8_0123to22222222(c, cs); \
|
|
stbir__simdf8_madd_mem(tot0, tot0, c, decode + (ofs) * 7 + 14);
|
|
|
|
#define stbir__store_output() \
|
|
stbir__simdf8_add(tot0, tot0, tot1); \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 7; \
|
|
if (output < output_end) \
|
|
{ \
|
|
stbir__simdf8_store(output - 7, tot0); \
|
|
continue; \
|
|
} \
|
|
stbir__simdf_store(output - 7 + 3, stbir__simdf_swiz(stbir__simdf8_gettop4(tot0), 0, 0, 1, 2)); \
|
|
stbir__simdf_store(output - 7, stbir__if_simdf8_cast_to_simdf4(tot0)); \
|
|
break;
|
|
|
|
#else
|
|
|
|
#define stbir__4_coeff_start() \
|
|
stbir__simdf tot0, tot1, tot2, tot3, c, cs; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load(cs, hc); \
|
|
stbir__simdf_0123to0000(c, cs); \
|
|
stbir__simdf_mult_mem(tot0, c, decode); \
|
|
stbir__simdf_mult_mem(tot1, c, decode + 3); \
|
|
stbir__simdf_0123to1111(c, cs); \
|
|
stbir__simdf_mult_mem(tot2, c, decode + 7); \
|
|
stbir__simdf_mult_mem(tot3, c, decode + 10); \
|
|
stbir__simdf_0123to2222(c, cs); \
|
|
stbir__simdf_madd_mem(tot0, tot0, c, decode + 14); \
|
|
stbir__simdf_madd_mem(tot1, tot1, c, decode + 17); \
|
|
stbir__simdf_0123to3333(c, cs); \
|
|
stbir__simdf_madd_mem(tot2, tot2, c, decode + 21); \
|
|
stbir__simdf_madd_mem(tot3, tot3, c, decode + 24);
|
|
|
|
#define stbir__4_coeff_continue_from_4(ofs) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load(cs, hc + (ofs)); \
|
|
stbir__simdf_0123to0000(c, cs); \
|
|
stbir__simdf_madd_mem(tot0, tot0, c, decode + (ofs) * 7); \
|
|
stbir__simdf_madd_mem(tot1, tot1, c, decode + (ofs) * 7 + 3); \
|
|
stbir__simdf_0123to1111(c, cs); \
|
|
stbir__simdf_madd_mem(tot2, tot2, c, decode + (ofs) * 7 + 7); \
|
|
stbir__simdf_madd_mem(tot3, tot3, c, decode + (ofs) * 7 + 10); \
|
|
stbir__simdf_0123to2222(c, cs); \
|
|
stbir__simdf_madd_mem(tot0, tot0, c, decode + (ofs) * 7 + 14); \
|
|
stbir__simdf_madd_mem(tot1, tot1, c, decode + (ofs) * 7 + 17); \
|
|
stbir__simdf_0123to3333(c, cs); \
|
|
stbir__simdf_madd_mem(tot2, tot2, c, decode + (ofs) * 7 + 21); \
|
|
stbir__simdf_madd_mem(tot3, tot3, c, decode + (ofs) * 7 + 24);
|
|
|
|
#define stbir__1_coeff_remnant(ofs) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load1(c, hc + (ofs)); \
|
|
stbir__simdf_0123to0000(c, c); \
|
|
stbir__simdf_madd_mem(tot0, tot0, c, decode + (ofs) * 7); \
|
|
stbir__simdf_madd_mem(tot1, tot1, c, decode + (ofs) * 7 + 3);
|
|
|
|
#define stbir__2_coeff_remnant(ofs) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load2(cs, hc + (ofs)); \
|
|
stbir__simdf_0123to0000(c, cs); \
|
|
stbir__simdf_madd_mem(tot0, tot0, c, decode + (ofs) * 7); \
|
|
stbir__simdf_madd_mem(tot1, tot1, c, decode + (ofs) * 7 + 3); \
|
|
stbir__simdf_0123to1111(c, cs); \
|
|
stbir__simdf_madd_mem(tot2, tot2, c, decode + (ofs) * 7 + 7); \
|
|
stbir__simdf_madd_mem(tot3, tot3, c, decode + (ofs) * 7 + 10);
|
|
|
|
#define stbir__3_coeff_remnant(ofs) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load(cs, hc + (ofs)); \
|
|
stbir__simdf_0123to0000(c, cs); \
|
|
stbir__simdf_madd_mem(tot0, tot0, c, decode + (ofs) * 7); \
|
|
stbir__simdf_madd_mem(tot1, tot1, c, decode + (ofs) * 7 + 3); \
|
|
stbir__simdf_0123to1111(c, cs); \
|
|
stbir__simdf_madd_mem(tot2, tot2, c, decode + (ofs) * 7 + 7); \
|
|
stbir__simdf_madd_mem(tot3, tot3, c, decode + (ofs) * 7 + 10); \
|
|
stbir__simdf_0123to2222(c, cs); \
|
|
stbir__simdf_madd_mem(tot0, tot0, c, decode + (ofs) * 7 + 14); \
|
|
stbir__simdf_madd_mem(tot1, tot1, c, decode + (ofs) * 7 + 17);
|
|
|
|
#define stbir__store_output() \
|
|
stbir__simdf_add(tot0, tot0, tot2); \
|
|
stbir__simdf_add(tot1, tot1, tot3); \
|
|
stbir__simdf_store(output + 3, tot1); \
|
|
stbir__simdf_store(output, tot0); \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 7;
|
|
|
|
#endif
|
|
|
|
#else
|
|
|
|
#define stbir__1_coeff_only() \
|
|
float tot0, tot1, tot2, tot3, tot4, tot5, tot6, c; \
|
|
c = hc[0]; \
|
|
tot0 = decode[0] * c; \
|
|
tot1 = decode[1] * c; \
|
|
tot2 = decode[2] * c; \
|
|
tot3 = decode[3] * c; \
|
|
tot4 = decode[4] * c; \
|
|
tot5 = decode[5] * c; \
|
|
tot6 = decode[6] * c;
|
|
|
|
#define stbir__2_coeff_only() \
|
|
float tot0, tot1, tot2, tot3, tot4, tot5, tot6, c; \
|
|
c = hc[0]; \
|
|
tot0 = decode[0] * c; \
|
|
tot1 = decode[1] * c; \
|
|
tot2 = decode[2] * c; \
|
|
tot3 = decode[3] * c; \
|
|
tot4 = decode[4] * c; \
|
|
tot5 = decode[5] * c; \
|
|
tot6 = decode[6] * c; \
|
|
c = hc[1]; \
|
|
tot0 += decode[7] * c; \
|
|
tot1 += decode[8] * c; \
|
|
tot2 += decode[9] * c; \
|
|
tot3 += decode[10] * c; \
|
|
tot4 += decode[11] * c; \
|
|
tot5 += decode[12] * c; \
|
|
tot6 += decode[13] * c;
|
|
|
|
#define stbir__3_coeff_only() \
|
|
float tot0, tot1, tot2, tot3, tot4, tot5, tot6, c; \
|
|
c = hc[0]; \
|
|
tot0 = decode[0] * c; \
|
|
tot1 = decode[1] * c; \
|
|
tot2 = decode[2] * c; \
|
|
tot3 = decode[3] * c; \
|
|
tot4 = decode[4] * c; \
|
|
tot5 = decode[5] * c; \
|
|
tot6 = decode[6] * c; \
|
|
c = hc[1]; \
|
|
tot0 += decode[7] * c; \
|
|
tot1 += decode[8] * c; \
|
|
tot2 += decode[9] * c; \
|
|
tot3 += decode[10] * c; \
|
|
tot4 += decode[11] * c; \
|
|
tot5 += decode[12] * c; \
|
|
tot6 += decode[13] * c; \
|
|
c = hc[2]; \
|
|
tot0 += decode[14] * c; \
|
|
tot1 += decode[15] * c; \
|
|
tot2 += decode[16] * c; \
|
|
tot3 += decode[17] * c; \
|
|
tot4 += decode[18] * c; \
|
|
tot5 += decode[19] * c; \
|
|
tot6 += decode[20] * c;
|
|
|
|
#define stbir__store_output_tiny() \
|
|
output[0] = tot0; \
|
|
output[1] = tot1; \
|
|
output[2] = tot2; \
|
|
output[3] = tot3; \
|
|
output[4] = tot4; \
|
|
output[5] = tot5; \
|
|
output[6] = tot6; \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 7;
|
|
|
|
#define stbir__4_coeff_start() \
|
|
float x0, x1, x2, x3, x4, x5, x6, y0, y1, y2, y3, y4, y5, y6, c; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
c = hc[0]; \
|
|
x0 = decode[0] * c; \
|
|
x1 = decode[1] * c; \
|
|
x2 = decode[2] * c; \
|
|
x3 = decode[3] * c; \
|
|
x4 = decode[4] * c; \
|
|
x5 = decode[5] * c; \
|
|
x6 = decode[6] * c; \
|
|
c = hc[1]; \
|
|
y0 = decode[7] * c; \
|
|
y1 = decode[8] * c; \
|
|
y2 = decode[9] * c; \
|
|
y3 = decode[10] * c; \
|
|
y4 = decode[11] * c; \
|
|
y5 = decode[12] * c; \
|
|
y6 = decode[13] * c; \
|
|
c = hc[2]; \
|
|
x0 += decode[14] * c; \
|
|
x1 += decode[15] * c; \
|
|
x2 += decode[16] * c; \
|
|
x3 += decode[17] * c; \
|
|
x4 += decode[18] * c; \
|
|
x5 += decode[19] * c; \
|
|
x6 += decode[20] * c; \
|
|
c = hc[3]; \
|
|
y0 += decode[21] * c; \
|
|
y1 += decode[22] * c; \
|
|
y2 += decode[23] * c; \
|
|
y3 += decode[24] * c; \
|
|
y4 += decode[25] * c; \
|
|
y5 += decode[26] * c; \
|
|
y6 += decode[27] * c;
|
|
|
|
#define stbir__4_coeff_continue_from_4(ofs) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
c = hc[0 + (ofs)]; \
|
|
x0 += decode[0 + (ofs) * 7] * c; \
|
|
x1 += decode[1 + (ofs) * 7] * c; \
|
|
x2 += decode[2 + (ofs) * 7] * c; \
|
|
x3 += decode[3 + (ofs) * 7] * c; \
|
|
x4 += decode[4 + (ofs) * 7] * c; \
|
|
x5 += decode[5 + (ofs) * 7] * c; \
|
|
x6 += decode[6 + (ofs) * 7] * c; \
|
|
c = hc[1 + (ofs)]; \
|
|
y0 += decode[7 + (ofs) * 7] * c; \
|
|
y1 += decode[8 + (ofs) * 7] * c; \
|
|
y2 += decode[9 + (ofs) * 7] * c; \
|
|
y3 += decode[10 + (ofs) * 7] * c; \
|
|
y4 += decode[11 + (ofs) * 7] * c; \
|
|
y5 += decode[12 + (ofs) * 7] * c; \
|
|
y6 += decode[13 + (ofs) * 7] * c; \
|
|
c = hc[2 + (ofs)]; \
|
|
x0 += decode[14 + (ofs) * 7] * c; \
|
|
x1 += decode[15 + (ofs) * 7] * c; \
|
|
x2 += decode[16 + (ofs) * 7] * c; \
|
|
x3 += decode[17 + (ofs) * 7] * c; \
|
|
x4 += decode[18 + (ofs) * 7] * c; \
|
|
x5 += decode[19 + (ofs) * 7] * c; \
|
|
x6 += decode[20 + (ofs) * 7] * c; \
|
|
c = hc[3 + (ofs)]; \
|
|
y0 += decode[21 + (ofs) * 7] * c; \
|
|
y1 += decode[22 + (ofs) * 7] * c; \
|
|
y2 += decode[23 + (ofs) * 7] * c; \
|
|
y3 += decode[24 + (ofs) * 7] * c; \
|
|
y4 += decode[25 + (ofs) * 7] * c; \
|
|
y5 += decode[26 + (ofs) * 7] * c; \
|
|
y6 += decode[27 + (ofs) * 7] * c;
|
|
|
|
#define stbir__1_coeff_remnant(ofs) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
c = hc[0 + (ofs)]; \
|
|
x0 += decode[0 + (ofs) * 7] * c; \
|
|
x1 += decode[1 + (ofs) * 7] * c; \
|
|
x2 += decode[2 + (ofs) * 7] * c; \
|
|
x3 += decode[3 + (ofs) * 7] * c; \
|
|
x4 += decode[4 + (ofs) * 7] * c; \
|
|
x5 += decode[5 + (ofs) * 7] * c; \
|
|
x6 += decode[6 + (ofs) * 7] * c;
|
|
|
|
#define stbir__2_coeff_remnant(ofs) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
c = hc[0 + (ofs)]; \
|
|
x0 += decode[0 + (ofs) * 7] * c; \
|
|
x1 += decode[1 + (ofs) * 7] * c; \
|
|
x2 += decode[2 + (ofs) * 7] * c; \
|
|
x3 += decode[3 + (ofs) * 7] * c; \
|
|
x4 += decode[4 + (ofs) * 7] * c; \
|
|
x5 += decode[5 + (ofs) * 7] * c; \
|
|
x6 += decode[6 + (ofs) * 7] * c; \
|
|
c = hc[1 + (ofs)]; \
|
|
y0 += decode[7 + (ofs) * 7] * c; \
|
|
y1 += decode[8 + (ofs) * 7] * c; \
|
|
y2 += decode[9 + (ofs) * 7] * c; \
|
|
y3 += decode[10 + (ofs) * 7] * c; \
|
|
y4 += decode[11 + (ofs) * 7] * c; \
|
|
y5 += decode[12 + (ofs) * 7] * c; \
|
|
y6 += decode[13 + (ofs) * 7] * c;
|
|
|
|
#define stbir__3_coeff_remnant(ofs) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
c = hc[0 + (ofs)]; \
|
|
x0 += decode[0 + (ofs) * 7] * c; \
|
|
x1 += decode[1 + (ofs) * 7] * c; \
|
|
x2 += decode[2 + (ofs) * 7] * c; \
|
|
x3 += decode[3 + (ofs) * 7] * c; \
|
|
x4 += decode[4 + (ofs) * 7] * c; \
|
|
x5 += decode[5 + (ofs) * 7] * c; \
|
|
x6 += decode[6 + (ofs) * 7] * c; \
|
|
c = hc[1 + (ofs)]; \
|
|
y0 += decode[7 + (ofs) * 7] * c; \
|
|
y1 += decode[8 + (ofs) * 7] * c; \
|
|
y2 += decode[9 + (ofs) * 7] * c; \
|
|
y3 += decode[10 + (ofs) * 7] * c; \
|
|
y4 += decode[11 + (ofs) * 7] * c; \
|
|
y5 += decode[12 + (ofs) * 7] * c; \
|
|
y6 += decode[13 + (ofs) * 7] * c; \
|
|
c = hc[2 + (ofs)]; \
|
|
x0 += decode[14 + (ofs) * 7] * c; \
|
|
x1 += decode[15 + (ofs) * 7] * c; \
|
|
x2 += decode[16 + (ofs) * 7] * c; \
|
|
x3 += decode[17 + (ofs) * 7] * c; \
|
|
x4 += decode[18 + (ofs) * 7] * c; \
|
|
x5 += decode[19 + (ofs) * 7] * c; \
|
|
x6 += decode[20 + (ofs) * 7] * c;
|
|
|
|
#define stbir__store_output() \
|
|
output[0] = x0 + y0; \
|
|
output[1] = x1 + y1; \
|
|
output[2] = x2 + y2; \
|
|
output[3] = x3 + y3; \
|
|
output[4] = x4 + y4; \
|
|
output[5] = x5 + y5; \
|
|
output[6] = x6 + y6; \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 7;
|
|
|
|
#endif
|
|
|
|
#define STBIR__horizontal_channels 7
|
|
#define STB_IMAGE_RESIZE_DO_HORIZONTALS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
// include all of the vertical resamplers (both scatter and gather versions)
|
|
|
|
#define STBIR__vertical_channels 1
|
|
#define STB_IMAGE_RESIZE_DO_VERTICALS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define STBIR__vertical_channels 1
|
|
#define STB_IMAGE_RESIZE_DO_VERTICALS
|
|
#define STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define STBIR__vertical_channels 2
|
|
#define STB_IMAGE_RESIZE_DO_VERTICALS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define STBIR__vertical_channels 2
|
|
#define STB_IMAGE_RESIZE_DO_VERTICALS
|
|
#define STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define STBIR__vertical_channels 3
|
|
#define STB_IMAGE_RESIZE_DO_VERTICALS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define STBIR__vertical_channels 3
|
|
#define STB_IMAGE_RESIZE_DO_VERTICALS
|
|
#define STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define STBIR__vertical_channels 4
|
|
#define STB_IMAGE_RESIZE_DO_VERTICALS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define STBIR__vertical_channels 4
|
|
#define STB_IMAGE_RESIZE_DO_VERTICALS
|
|
#define STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define STBIR__vertical_channels 5
|
|
#define STB_IMAGE_RESIZE_DO_VERTICALS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define STBIR__vertical_channels 5
|
|
#define STB_IMAGE_RESIZE_DO_VERTICALS
|
|
#define STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define STBIR__vertical_channels 6
|
|
#define STB_IMAGE_RESIZE_DO_VERTICALS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define STBIR__vertical_channels 6
|
|
#define STB_IMAGE_RESIZE_DO_VERTICALS
|
|
#define STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define STBIR__vertical_channels 7
|
|
#define STB_IMAGE_RESIZE_DO_VERTICALS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define STBIR__vertical_channels 7
|
|
#define STB_IMAGE_RESIZE_DO_VERTICALS
|
|
#define STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define STBIR__vertical_channels 8
|
|
#define STB_IMAGE_RESIZE_DO_VERTICALS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define STBIR__vertical_channels 8
|
|
#define STB_IMAGE_RESIZE_DO_VERTICALS
|
|
#define STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
typedef void STBIR_VERTICAL_GATHERFUNC(float *output, float const *coeffs, float const **inputs, float const *input0_end);
|
|
|
|
static STBIR_VERTICAL_GATHERFUNC *stbir__vertical_gathers[8] =
|
|
{
|
|
stbir__vertical_gather_with_1_coeffs, stbir__vertical_gather_with_2_coeffs, stbir__vertical_gather_with_3_coeffs, stbir__vertical_gather_with_4_coeffs, stbir__vertical_gather_with_5_coeffs, stbir__vertical_gather_with_6_coeffs, stbir__vertical_gather_with_7_coeffs, stbir__vertical_gather_with_8_coeffs};
|
|
|
|
static STBIR_VERTICAL_GATHERFUNC *stbir__vertical_gathers_continues[8] =
|
|
{
|
|
stbir__vertical_gather_with_1_coeffs_cont, stbir__vertical_gather_with_2_coeffs_cont, stbir__vertical_gather_with_3_coeffs_cont, stbir__vertical_gather_with_4_coeffs_cont, stbir__vertical_gather_with_5_coeffs_cont, stbir__vertical_gather_with_6_coeffs_cont, stbir__vertical_gather_with_7_coeffs_cont, stbir__vertical_gather_with_8_coeffs_cont};
|
|
|
|
typedef void STBIR_VERTICAL_SCATTERFUNC(float **outputs, float const *coeffs, float const *input, float const *input_end);
|
|
|
|
static STBIR_VERTICAL_SCATTERFUNC *stbir__vertical_scatter_sets[8] =
|
|
{
|
|
stbir__vertical_scatter_with_1_coeffs, stbir__vertical_scatter_with_2_coeffs, stbir__vertical_scatter_with_3_coeffs, stbir__vertical_scatter_with_4_coeffs, stbir__vertical_scatter_with_5_coeffs, stbir__vertical_scatter_with_6_coeffs, stbir__vertical_scatter_with_7_coeffs, stbir__vertical_scatter_with_8_coeffs};
|
|
|
|
static STBIR_VERTICAL_SCATTERFUNC *stbir__vertical_scatter_blends[8] =
|
|
{
|
|
stbir__vertical_scatter_with_1_coeffs_cont, stbir__vertical_scatter_with_2_coeffs_cont, stbir__vertical_scatter_with_3_coeffs_cont, stbir__vertical_scatter_with_4_coeffs_cont, stbir__vertical_scatter_with_5_coeffs_cont, stbir__vertical_scatter_with_6_coeffs_cont, stbir__vertical_scatter_with_7_coeffs_cont, stbir__vertical_scatter_with_8_coeffs_cont};
|
|
|
|
static void stbir__encode_scanline(stbir__info const *stbir_info, void *output_buffer_data, float *encode_buffer, int row STBIR_ONLY_PROFILE_GET_SPLIT_INFO)
|
|
{
|
|
int num_pixels = stbir_info->horizontal.scale_info.output_sub_size;
|
|
int channels = stbir_info->channels;
|
|
int width_times_channels = num_pixels * channels;
|
|
void *output_buffer;
|
|
|
|
// un-alpha weight if we need to
|
|
if (stbir_info->alpha_unweight)
|
|
{
|
|
STBIR_PROFILE_START(unalpha);
|
|
stbir_info->alpha_unweight(encode_buffer, width_times_channels);
|
|
STBIR_PROFILE_END(unalpha);
|
|
}
|
|
|
|
// write directly into output by default
|
|
output_buffer = output_buffer_data;
|
|
|
|
// if we have an output callback, we first convert the decode buffer in place (and then hand that to the callback)
|
|
if (stbir_info->out_pixels_cb)
|
|
output_buffer = encode_buffer;
|
|
|
|
STBIR_PROFILE_START(encode);
|
|
// convert into the output buffer
|
|
stbir_info->encode_pixels(output_buffer, width_times_channels, encode_buffer);
|
|
STBIR_PROFILE_END(encode);
|
|
|
|
// if we have an output callback, call it to send the data
|
|
if (stbir_info->out_pixels_cb)
|
|
stbir_info->out_pixels_cb(output_buffer, num_pixels, row, stbir_info->user_data);
|
|
}
|
|
|
|
// Get the ring buffer pointer for an index
|
|
static float *stbir__get_ring_buffer_entry(stbir__info const *stbir_info, stbir__per_split_info const *split_info, int index)
|
|
{
|
|
STBIR_ASSERT(index < stbir_info->ring_buffer_num_entries);
|
|
|
|
#ifdef STBIR__SEPARATE_ALLOCATIONS
|
|
return split_info->ring_buffers[index];
|
|
#else
|
|
return (float *)(((char *)split_info->ring_buffer) + (index * stbir_info->ring_buffer_length_bytes));
|
|
#endif
|
|
}
|
|
|
|
// Get the specified scan line from the ring buffer
|
|
static float *stbir__get_ring_buffer_scanline(stbir__info const *stbir_info, stbir__per_split_info const *split_info, int get_scanline)
|
|
{
|
|
int ring_buffer_index = (split_info->ring_buffer_begin_index + (get_scanline - split_info->ring_buffer_first_scanline)) % stbir_info->ring_buffer_num_entries;
|
|
return stbir__get_ring_buffer_entry(stbir_info, split_info, ring_buffer_index);
|
|
}
|
|
|
|
static void stbir__resample_horizontal_gather(stbir__info const *stbir_info, float *output_buffer, float const *input_buffer STBIR_ONLY_PROFILE_GET_SPLIT_INFO)
|
|
{
|
|
float const *decode_buffer = input_buffer - (stbir_info->scanline_extents.conservative.n0 * stbir_info->effective_channels);
|
|
|
|
STBIR_PROFILE_START(horizontal);
|
|
if ((stbir_info->horizontal.filter_enum == STBIR_FILTER_POINT_SAMPLE) && (stbir_info->horizontal.scale_info.scale == 1.0f))
|
|
STBIR_MEMCPY(output_buffer, input_buffer, stbir_info->horizontal.scale_info.output_sub_size * sizeof(float) * stbir_info->effective_channels);
|
|
else
|
|
stbir_info->horizontal_gather_channels(output_buffer, stbir_info->horizontal.scale_info.output_sub_size, decode_buffer, stbir_info->horizontal.contributors, stbir_info->horizontal.coefficients, stbir_info->horizontal.coefficient_width);
|
|
STBIR_PROFILE_END(horizontal);
|
|
}
|
|
|
|
static void stbir__resample_vertical_gather(stbir__info const *stbir_info, stbir__per_split_info *split_info, int n, int contrib_n0, int contrib_n1, float const *vertical_coefficients)
|
|
{
|
|
float *encode_buffer = split_info->vertical_buffer;
|
|
float *decode_buffer = split_info->decode_buffer;
|
|
int vertical_first = stbir_info->vertical_first;
|
|
int width = (vertical_first) ? (stbir_info->scanline_extents.conservative.n1 - stbir_info->scanline_extents.conservative.n0 + 1) : stbir_info->horizontal.scale_info.output_sub_size;
|
|
int width_times_channels = stbir_info->effective_channels * width;
|
|
|
|
STBIR_ASSERT(stbir_info->vertical.is_gather);
|
|
|
|
// loop over the contributing scanlines and scale into the buffer
|
|
STBIR_PROFILE_START(vertical);
|
|
{
|
|
int k = 0, total = contrib_n1 - contrib_n0 + 1;
|
|
STBIR_ASSERT(total > 0);
|
|
do
|
|
{
|
|
float const *inputs[8];
|
|
int i, cnt = total;
|
|
if (cnt > 8)
|
|
cnt = 8;
|
|
for (i = 0; i < cnt; i++)
|
|
inputs[i] = stbir__get_ring_buffer_scanline(stbir_info, split_info, k + i + contrib_n0);
|
|
|
|
// call the N scanlines at a time function (up to 8 scanlines of blending at once)
|
|
((k == 0) ? stbir__vertical_gathers : stbir__vertical_gathers_continues)[cnt - 1]((vertical_first) ? decode_buffer : encode_buffer, vertical_coefficients + k, inputs, inputs[0] + width_times_channels);
|
|
k += cnt;
|
|
total -= cnt;
|
|
} while (total);
|
|
}
|
|
STBIR_PROFILE_END(vertical);
|
|
|
|
if (vertical_first)
|
|
{
|
|
// Now resample the gathered vertical data in the horizontal axis into the encode buffer
|
|
decode_buffer[width_times_channels] = 0.0f; // clear two over for horizontals with a remnant of 3
|
|
decode_buffer[width_times_channels + 1] = 0.0f;
|
|
stbir__resample_horizontal_gather(stbir_info, encode_buffer, decode_buffer STBIR_ONLY_PROFILE_SET_SPLIT_INFO);
|
|
}
|
|
|
|
stbir__encode_scanline(stbir_info, ((char *)stbir_info->output_data) + ((size_t)n * (size_t)stbir_info->output_stride_bytes),
|
|
encode_buffer, n STBIR_ONLY_PROFILE_SET_SPLIT_INFO);
|
|
}
|
|
|
|
static void stbir__decode_and_resample_for_vertical_gather_loop(stbir__info const *stbir_info, stbir__per_split_info *split_info, int n)
|
|
{
|
|
int ring_buffer_index;
|
|
float *ring_buffer;
|
|
|
|
// Decode the nth scanline from the source image into the decode buffer.
|
|
stbir__decode_scanline(stbir_info, n, split_info->decode_buffer STBIR_ONLY_PROFILE_SET_SPLIT_INFO);
|
|
|
|
// update new end scanline
|
|
split_info->ring_buffer_last_scanline = n;
|
|
|
|
// get ring buffer
|
|
ring_buffer_index = (split_info->ring_buffer_begin_index + (split_info->ring_buffer_last_scanline - split_info->ring_buffer_first_scanline)) % stbir_info->ring_buffer_num_entries;
|
|
ring_buffer = stbir__get_ring_buffer_entry(stbir_info, split_info, ring_buffer_index);
|
|
|
|
// Now resample it into the ring buffer.
|
|
stbir__resample_horizontal_gather(stbir_info, ring_buffer, split_info->decode_buffer STBIR_ONLY_PROFILE_SET_SPLIT_INFO);
|
|
|
|
// Now it's sitting in the ring buffer ready to be used as source for the vertical sampling.
|
|
}
|
|
|
|
static void stbir__vertical_gather_loop(stbir__info const *stbir_info, stbir__per_split_info *split_info, int split_count)
|
|
{
|
|
int y, start_output_y, end_output_y;
|
|
stbir__contributors *vertical_contributors = stbir_info->vertical.contributors;
|
|
float const *vertical_coefficients = stbir_info->vertical.coefficients;
|
|
|
|
STBIR_ASSERT(stbir_info->vertical.is_gather);
|
|
|
|
start_output_y = split_info->start_output_y;
|
|
end_output_y = split_info[split_count - 1].end_output_y;
|
|
|
|
vertical_contributors += start_output_y;
|
|
vertical_coefficients += start_output_y * stbir_info->vertical.coefficient_width;
|
|
|
|
// initialize the ring buffer for gathering
|
|
split_info->ring_buffer_begin_index = 0;
|
|
split_info->ring_buffer_first_scanline = vertical_contributors->n0;
|
|
split_info->ring_buffer_last_scanline = split_info->ring_buffer_first_scanline - 1; // means "empty"
|
|
|
|
for (y = start_output_y; y < end_output_y; y++)
|
|
{
|
|
int in_first_scanline, in_last_scanline;
|
|
|
|
in_first_scanline = vertical_contributors->n0;
|
|
in_last_scanline = vertical_contributors->n1;
|
|
|
|
// make sure the indexing hasn't broken
|
|
STBIR_ASSERT(in_first_scanline >= split_info->ring_buffer_first_scanline);
|
|
|
|
// Load in new scanlines
|
|
while (in_last_scanline > split_info->ring_buffer_last_scanline)
|
|
{
|
|
STBIR_ASSERT((split_info->ring_buffer_last_scanline - split_info->ring_buffer_first_scanline + 1) <= stbir_info->ring_buffer_num_entries);
|
|
|
|
// make sure there was room in the ring buffer when we add new scanlines
|
|
if ((split_info->ring_buffer_last_scanline - split_info->ring_buffer_first_scanline + 1) == stbir_info->ring_buffer_num_entries)
|
|
{
|
|
split_info->ring_buffer_first_scanline++;
|
|
split_info->ring_buffer_begin_index++;
|
|
}
|
|
|
|
if (stbir_info->vertical_first)
|
|
{
|
|
float *ring_buffer = stbir__get_ring_buffer_scanline(stbir_info, split_info, ++split_info->ring_buffer_last_scanline);
|
|
// Decode the nth scanline from the source image into the decode buffer.
|
|
stbir__decode_scanline(stbir_info, split_info->ring_buffer_last_scanline, ring_buffer STBIR_ONLY_PROFILE_SET_SPLIT_INFO);
|
|
}
|
|
else
|
|
{
|
|
stbir__decode_and_resample_for_vertical_gather_loop(stbir_info, split_info, split_info->ring_buffer_last_scanline + 1);
|
|
}
|
|
}
|
|
|
|
// Now all buffers should be ready to write a row of vertical sampling, so do it.
|
|
stbir__resample_vertical_gather(stbir_info, split_info, y, in_first_scanline, in_last_scanline, vertical_coefficients);
|
|
|
|
++vertical_contributors;
|
|
vertical_coefficients += stbir_info->vertical.coefficient_width;
|
|
}
|
|
}
|
|
|
|
#define STBIR__FLOAT_EMPTY_MARKER 3.0e+38F
|
|
#define STBIR__FLOAT_BUFFER_IS_EMPTY(ptr) ((ptr)[0] == STBIR__FLOAT_EMPTY_MARKER)
|
|
|
|
static void stbir__encode_first_scanline_from_scatter(stbir__info const *stbir_info, stbir__per_split_info *split_info)
|
|
{
|
|
// evict a scanline out into the output buffer
|
|
float *ring_buffer_entry = stbir__get_ring_buffer_entry(stbir_info, split_info, split_info->ring_buffer_begin_index);
|
|
|
|
// dump the scanline out
|
|
stbir__encode_scanline(stbir_info, ((char *)stbir_info->output_data) + ((size_t)split_info->ring_buffer_first_scanline * (size_t)stbir_info->output_stride_bytes), ring_buffer_entry, split_info->ring_buffer_first_scanline STBIR_ONLY_PROFILE_SET_SPLIT_INFO);
|
|
|
|
// mark it as empty
|
|
ring_buffer_entry[0] = STBIR__FLOAT_EMPTY_MARKER;
|
|
|
|
// advance the first scanline
|
|
split_info->ring_buffer_first_scanline++;
|
|
if (++split_info->ring_buffer_begin_index == stbir_info->ring_buffer_num_entries)
|
|
split_info->ring_buffer_begin_index = 0;
|
|
}
|
|
|
|
static void stbir__horizontal_resample_and_encode_first_scanline_from_scatter(stbir__info const *stbir_info, stbir__per_split_info *split_info)
|
|
{
|
|
// evict a scanline out into the output buffer
|
|
|
|
float *ring_buffer_entry = stbir__get_ring_buffer_entry(stbir_info, split_info, split_info->ring_buffer_begin_index);
|
|
|
|
// Now resample it into the buffer.
|
|
stbir__resample_horizontal_gather(stbir_info, split_info->vertical_buffer, ring_buffer_entry STBIR_ONLY_PROFILE_SET_SPLIT_INFO);
|
|
|
|
// dump the scanline out
|
|
stbir__encode_scanline(stbir_info, ((char *)stbir_info->output_data) + ((size_t)split_info->ring_buffer_first_scanline * (size_t)stbir_info->output_stride_bytes), split_info->vertical_buffer, split_info->ring_buffer_first_scanline STBIR_ONLY_PROFILE_SET_SPLIT_INFO);
|
|
|
|
// mark it as empty
|
|
ring_buffer_entry[0] = STBIR__FLOAT_EMPTY_MARKER;
|
|
|
|
// advance the first scanline
|
|
split_info->ring_buffer_first_scanline++;
|
|
if (++split_info->ring_buffer_begin_index == stbir_info->ring_buffer_num_entries)
|
|
split_info->ring_buffer_begin_index = 0;
|
|
}
|
|
|
|
static void stbir__resample_vertical_scatter(stbir__info const *stbir_info, stbir__per_split_info *split_info, int n0, int n1, float const *vertical_coefficients, float const *vertical_buffer, float const *vertical_buffer_end)
|
|
{
|
|
STBIR_ASSERT(!stbir_info->vertical.is_gather);
|
|
|
|
STBIR_PROFILE_START(vertical);
|
|
{
|
|
int k = 0, total = n1 - n0 + 1;
|
|
STBIR_ASSERT(total > 0);
|
|
do
|
|
{
|
|
float *outputs[8];
|
|
int i, n = total;
|
|
if (n > 8)
|
|
n = 8;
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
outputs[i] = stbir__get_ring_buffer_scanline(stbir_info, split_info, k + i + n0);
|
|
if ((i) && (STBIR__FLOAT_BUFFER_IS_EMPTY(outputs[i]) != STBIR__FLOAT_BUFFER_IS_EMPTY(outputs[0]))) // make sure runs are of the same type
|
|
{
|
|
n = i;
|
|
break;
|
|
}
|
|
}
|
|
// call the scatter to N scanlines at a time function (up to 8 scanlines of scattering at once)
|
|
((STBIR__FLOAT_BUFFER_IS_EMPTY(outputs[0])) ? stbir__vertical_scatter_sets : stbir__vertical_scatter_blends)[n - 1](outputs, vertical_coefficients + k, vertical_buffer, vertical_buffer_end);
|
|
k += n;
|
|
total -= n;
|
|
} while (total);
|
|
}
|
|
|
|
STBIR_PROFILE_END(vertical);
|
|
}
|
|
|
|
typedef void stbir__handle_scanline_for_scatter_func(stbir__info const *stbir_info, stbir__per_split_info *split_info);
|
|
|
|
static void stbir__vertical_scatter_loop(stbir__info const *stbir_info, stbir__per_split_info *split_info, int split_count)
|
|
{
|
|
int y, start_output_y, end_output_y, start_input_y, end_input_y;
|
|
stbir__contributors *vertical_contributors = stbir_info->vertical.contributors;
|
|
float const *vertical_coefficients = stbir_info->vertical.coefficients;
|
|
stbir__handle_scanline_for_scatter_func *handle_scanline_for_scatter;
|
|
void *scanline_scatter_buffer;
|
|
void *scanline_scatter_buffer_end;
|
|
int on_first_input_y, last_input_y;
|
|
int width = (stbir_info->vertical_first) ? (stbir_info->scanline_extents.conservative.n1 - stbir_info->scanline_extents.conservative.n0 + 1) : stbir_info->horizontal.scale_info.output_sub_size;
|
|
int width_times_channels = stbir_info->effective_channels * width;
|
|
|
|
STBIR_ASSERT(!stbir_info->vertical.is_gather);
|
|
|
|
start_output_y = split_info->start_output_y;
|
|
end_output_y = split_info[split_count - 1].end_output_y; // may do multiple split counts
|
|
|
|
start_input_y = split_info->start_input_y;
|
|
end_input_y = split_info[split_count - 1].end_input_y;
|
|
|
|
// adjust for starting offset start_input_y
|
|
y = start_input_y + stbir_info->vertical.filter_pixel_margin;
|
|
vertical_contributors += y;
|
|
vertical_coefficients += stbir_info->vertical.coefficient_width * y;
|
|
|
|
if (stbir_info->vertical_first)
|
|
{
|
|
handle_scanline_for_scatter = stbir__horizontal_resample_and_encode_first_scanline_from_scatter;
|
|
scanline_scatter_buffer = split_info->decode_buffer;
|
|
scanline_scatter_buffer_end = ((char *)scanline_scatter_buffer) + sizeof(float) * stbir_info->effective_channels * (stbir_info->scanline_extents.conservative.n1 - stbir_info->scanline_extents.conservative.n0 + 1);
|
|
}
|
|
else
|
|
{
|
|
handle_scanline_for_scatter = stbir__encode_first_scanline_from_scatter;
|
|
scanline_scatter_buffer = split_info->vertical_buffer;
|
|
scanline_scatter_buffer_end = ((char *)scanline_scatter_buffer) + sizeof(float) * stbir_info->effective_channels * stbir_info->horizontal.scale_info.output_sub_size;
|
|
}
|
|
|
|
// initialize the ring buffer for scattering
|
|
split_info->ring_buffer_first_scanline = start_output_y;
|
|
split_info->ring_buffer_last_scanline = -1;
|
|
split_info->ring_buffer_begin_index = -1;
|
|
|
|
// mark all the buffers as empty to start
|
|
for (y = 0; y < stbir_info->ring_buffer_num_entries; y++)
|
|
{
|
|
float *decode_buffer = stbir__get_ring_buffer_entry(stbir_info, split_info, y);
|
|
decode_buffer[width_times_channels] = 0.0f; // clear two over for horizontals with a remnant of 3
|
|
decode_buffer[width_times_channels + 1] = 0.0f;
|
|
decode_buffer[0] = STBIR__FLOAT_EMPTY_MARKER; // only used on scatter
|
|
}
|
|
|
|
// do the loop in input space
|
|
on_first_input_y = 1;
|
|
last_input_y = start_input_y;
|
|
for (y = start_input_y; y < end_input_y; y++)
|
|
{
|
|
int out_first_scanline, out_last_scanline;
|
|
|
|
out_first_scanline = vertical_contributors->n0;
|
|
out_last_scanline = vertical_contributors->n1;
|
|
|
|
STBIR_ASSERT(out_last_scanline - out_first_scanline + 1 <= stbir_info->ring_buffer_num_entries);
|
|
|
|
if ((out_last_scanline >= out_first_scanline) && (((out_first_scanline >= start_output_y) && (out_first_scanline < end_output_y)) || ((out_last_scanline >= start_output_y) && (out_last_scanline < end_output_y))))
|
|
{
|
|
float const *vc = vertical_coefficients;
|
|
|
|
// keep track of the range actually seen for the next resize
|
|
last_input_y = y;
|
|
if ((on_first_input_y) && (y > start_input_y))
|
|
split_info->start_input_y = y;
|
|
on_first_input_y = 0;
|
|
|
|
// clip the region
|
|
if (out_first_scanline < start_output_y)
|
|
{
|
|
vc += start_output_y - out_first_scanline;
|
|
out_first_scanline = start_output_y;
|
|
}
|
|
|
|
if (out_last_scanline >= end_output_y)
|
|
out_last_scanline = end_output_y - 1;
|
|
|
|
// if very first scanline, init the index
|
|
if (split_info->ring_buffer_begin_index < 0)
|
|
split_info->ring_buffer_begin_index = out_first_scanline - start_output_y;
|
|
|
|
STBIR_ASSERT(split_info->ring_buffer_begin_index <= out_first_scanline);
|
|
|
|
// Decode the nth scanline from the source image into the decode buffer.
|
|
stbir__decode_scanline(stbir_info, y, split_info->decode_buffer STBIR_ONLY_PROFILE_SET_SPLIT_INFO);
|
|
|
|
// When horizontal first, we resample horizontally into the vertical buffer before we scatter it out
|
|
if (!stbir_info->vertical_first)
|
|
stbir__resample_horizontal_gather(stbir_info, split_info->vertical_buffer, split_info->decode_buffer STBIR_ONLY_PROFILE_SET_SPLIT_INFO);
|
|
|
|
// Now it's sitting in the buffer ready to be distributed into the ring buffers.
|
|
|
|
// evict from the ringbuffer, if we need are full
|
|
if (((split_info->ring_buffer_last_scanline - split_info->ring_buffer_first_scanline + 1) == stbir_info->ring_buffer_num_entries) &&
|
|
(out_last_scanline > split_info->ring_buffer_last_scanline))
|
|
handle_scanline_for_scatter(stbir_info, split_info);
|
|
|
|
// Now the horizontal buffer is ready to write to all ring buffer rows, so do it.
|
|
stbir__resample_vertical_scatter(stbir_info, split_info, out_first_scanline, out_last_scanline, vc, (float *)scanline_scatter_buffer, (float *)scanline_scatter_buffer_end);
|
|
|
|
// update the end of the buffer
|
|
if (out_last_scanline > split_info->ring_buffer_last_scanline)
|
|
split_info->ring_buffer_last_scanline = out_last_scanline;
|
|
}
|
|
++vertical_contributors;
|
|
vertical_coefficients += stbir_info->vertical.coefficient_width;
|
|
}
|
|
|
|
// now evict the scanlines that are left over in the ring buffer
|
|
while (split_info->ring_buffer_first_scanline < end_output_y)
|
|
handle_scanline_for_scatter(stbir_info, split_info);
|
|
|
|
// update the end_input_y if we do multiple resizes with the same data
|
|
++last_input_y;
|
|
for (y = 0; y < split_count; y++)
|
|
if (split_info[y].end_input_y > last_input_y)
|
|
split_info[y].end_input_y = last_input_y;
|
|
}
|
|
|
|
static stbir__kernel_callback *stbir__builtin_kernels[] = {0, stbir__filter_trapezoid, stbir__filter_triangle, stbir__filter_cubic, stbir__filter_catmullrom, stbir__filter_mitchell, stbir__filter_point};
|
|
static stbir__support_callback *stbir__builtin_supports[] = {0, stbir__support_trapezoid, stbir__support_one, stbir__support_two, stbir__support_two, stbir__support_two, stbir__support_zeropoint5};
|
|
|
|
static void stbir__set_sampler(stbir__sampler *samp, stbir_filter filter, stbir__kernel_callback *kernel, stbir__support_callback *support, stbir_edge edge, stbir__scale_info *scale_info, int always_gather, void *user_data)
|
|
{
|
|
// set filter
|
|
if (filter == 0)
|
|
{
|
|
filter = STBIR_DEFAULT_FILTER_DOWNSAMPLE; // default to downsample
|
|
if (scale_info->scale >= (1.0f - stbir__small_float))
|
|
{
|
|
if ((scale_info->scale <= (1.0f + stbir__small_float)) && (STBIR_CEILF(scale_info->pixel_shift) == scale_info->pixel_shift))
|
|
filter = STBIR_FILTER_POINT_SAMPLE;
|
|
else
|
|
filter = STBIR_DEFAULT_FILTER_UPSAMPLE;
|
|
}
|
|
}
|
|
samp->filter_enum = filter;
|
|
|
|
STBIR_ASSERT(samp->filter_enum != 0);
|
|
STBIR_ASSERT((unsigned)samp->filter_enum < STBIR_FILTER_OTHER);
|
|
samp->filter_kernel = stbir__builtin_kernels[filter];
|
|
samp->filter_support = stbir__builtin_supports[filter];
|
|
|
|
if (kernel && support)
|
|
{
|
|
samp->filter_kernel = kernel;
|
|
samp->filter_support = support;
|
|
samp->filter_enum = STBIR_FILTER_OTHER;
|
|
}
|
|
|
|
samp->edge = edge;
|
|
samp->filter_pixel_width = stbir__get_filter_pixel_width(samp->filter_support, scale_info->scale, user_data);
|
|
// Gather is always better, but in extreme downsamples, you have to most or all of the data in memory
|
|
// For horizontal, we always have all the pixels, so we always use gather here (always_gather==1).
|
|
// For vertical, we use gather if scaling up (which means we will have samp->filter_pixel_width
|
|
// scanlines in memory at once).
|
|
samp->is_gather = 0;
|
|
if (scale_info->scale >= (1.0f - stbir__small_float))
|
|
samp->is_gather = 1;
|
|
else if ((always_gather) || (samp->filter_pixel_width <= STBIR_FORCE_GATHER_FILTER_SCANLINES_AMOUNT))
|
|
samp->is_gather = 2;
|
|
|
|
// pre calculate stuff based on the above
|
|
samp->coefficient_width = stbir__get_coefficient_width(samp, samp->is_gather, user_data);
|
|
|
|
// filter_pixel_width is the conservative size in pixels of input that affect an output pixel.
|
|
// In rare cases (only with 2 pix to 1 pix with the default filters), it's possible that the
|
|
// filter will extend before or after the scanline beyond just one extra entire copy of the
|
|
// scanline (we would hit the edge twice). We don't let you do that, so we clamp the total
|
|
// width to 3x the total of input pixel (once for the scanline, once for the left side
|
|
// overhang, and once for the right side). We only do this for edge mode, since the other
|
|
// modes can just re-edge clamp back in again.
|
|
if (edge == STBIR_EDGE_WRAP)
|
|
if (samp->filter_pixel_width > (scale_info->input_full_size * 3))
|
|
samp->filter_pixel_width = scale_info->input_full_size * 3;
|
|
|
|
// This is how much to expand buffers to account for filters seeking outside
|
|
// the image boundaries.
|
|
samp->filter_pixel_margin = samp->filter_pixel_width / 2;
|
|
|
|
// filter_pixel_margin is the amount that this filter can overhang on just one side of either
|
|
// end of the scanline (left or the right). Since we only allow you to overhang 1 scanline's
|
|
// worth of pixels, we clamp this one side of overhang to the input scanline size. Again,
|
|
// this clamping only happens in rare cases with the default filters (2 pix to 1 pix).
|
|
if (edge == STBIR_EDGE_WRAP)
|
|
if (samp->filter_pixel_margin > scale_info->input_full_size)
|
|
samp->filter_pixel_margin = scale_info->input_full_size;
|
|
|
|
samp->num_contributors = stbir__get_contributors(samp, samp->is_gather);
|
|
|
|
samp->contributors_size = samp->num_contributors * sizeof(stbir__contributors);
|
|
samp->coefficients_size = samp->num_contributors * samp->coefficient_width * sizeof(float) + sizeof(float) * STBIR_INPUT_CALLBACK_PADDING; // extra sizeof(float) is padding
|
|
|
|
samp->gather_prescatter_contributors = 0;
|
|
samp->gather_prescatter_coefficients = 0;
|
|
if (samp->is_gather == 0)
|
|
{
|
|
samp->gather_prescatter_coefficient_width = samp->filter_pixel_width;
|
|
samp->gather_prescatter_num_contributors = stbir__get_contributors(samp, 2);
|
|
samp->gather_prescatter_contributors_size = samp->gather_prescatter_num_contributors * sizeof(stbir__contributors);
|
|
samp->gather_prescatter_coefficients_size = samp->gather_prescatter_num_contributors * samp->gather_prescatter_coefficient_width * sizeof(float);
|
|
}
|
|
}
|
|
|
|
static void stbir__get_conservative_extents(stbir__sampler *samp, stbir__contributors *range, void *user_data)
|
|
{
|
|
float scale = samp->scale_info.scale;
|
|
float out_shift = samp->scale_info.pixel_shift;
|
|
stbir__support_callback *support = samp->filter_support;
|
|
int input_full_size = samp->scale_info.input_full_size;
|
|
stbir_edge edge = samp->edge;
|
|
float inv_scale = samp->scale_info.inv_scale;
|
|
|
|
STBIR_ASSERT(samp->is_gather != 0);
|
|
|
|
if (samp->is_gather == 1)
|
|
{
|
|
int in_first_pixel, in_last_pixel;
|
|
float out_filter_radius = support(inv_scale, user_data) * scale;
|
|
|
|
stbir__calculate_in_pixel_range(&in_first_pixel, &in_last_pixel, 0.5, out_filter_radius, inv_scale, out_shift, input_full_size, edge);
|
|
range->n0 = in_first_pixel;
|
|
stbir__calculate_in_pixel_range(&in_first_pixel, &in_last_pixel, ((float)(samp->scale_info.output_sub_size - 1)) + 0.5f, out_filter_radius, inv_scale, out_shift, input_full_size, edge);
|
|
range->n1 = in_last_pixel;
|
|
}
|
|
else if (samp->is_gather == 2) // downsample gather, refine
|
|
{
|
|
float in_pixels_radius = support(scale, user_data) * inv_scale;
|
|
int filter_pixel_margin = samp->filter_pixel_margin;
|
|
int output_sub_size = samp->scale_info.output_sub_size;
|
|
int input_end;
|
|
int n;
|
|
int in_first_pixel, in_last_pixel;
|
|
|
|
// get a conservative area of the input range
|
|
stbir__calculate_in_pixel_range(&in_first_pixel, &in_last_pixel, 0, 0, inv_scale, out_shift, input_full_size, edge);
|
|
range->n0 = in_first_pixel;
|
|
stbir__calculate_in_pixel_range(&in_first_pixel, &in_last_pixel, (float)output_sub_size, 0, inv_scale, out_shift, input_full_size, edge);
|
|
range->n1 = in_last_pixel;
|
|
|
|
// now go through the margin to the start of area to find bottom
|
|
n = range->n0 + 1;
|
|
input_end = -filter_pixel_margin;
|
|
while (n >= input_end)
|
|
{
|
|
int out_first_pixel, out_last_pixel;
|
|
stbir__calculate_out_pixel_range(&out_first_pixel, &out_last_pixel, ((float)n) + 0.5f, in_pixels_radius, scale, out_shift, output_sub_size);
|
|
if (out_first_pixel > out_last_pixel)
|
|
break;
|
|
|
|
if ((out_first_pixel < output_sub_size) || (out_last_pixel >= 0))
|
|
range->n0 = n;
|
|
--n;
|
|
}
|
|
|
|
// now go through the end of the area through the margin to find top
|
|
n = range->n1 - 1;
|
|
input_end = n + 1 + filter_pixel_margin;
|
|
while (n <= input_end)
|
|
{
|
|
int out_first_pixel, out_last_pixel;
|
|
stbir__calculate_out_pixel_range(&out_first_pixel, &out_last_pixel, ((float)n) + 0.5f, in_pixels_radius, scale, out_shift, output_sub_size);
|
|
if (out_first_pixel > out_last_pixel)
|
|
break;
|
|
if ((out_first_pixel < output_sub_size) || (out_last_pixel >= 0))
|
|
range->n1 = n;
|
|
++n;
|
|
}
|
|
}
|
|
|
|
if (samp->edge == STBIR_EDGE_WRAP)
|
|
{
|
|
// if we are wrapping, and we are very close to the image size (so the edges might merge), just use the scanline up to the edge
|
|
if ((range->n0 > 0) && (range->n1 >= input_full_size))
|
|
{
|
|
int marg = range->n1 - input_full_size + 1;
|
|
if ((marg + STBIR__MERGE_RUNS_PIXEL_THRESHOLD) >= range->n0)
|
|
range->n0 = 0;
|
|
}
|
|
if ((range->n0 < 0) && (range->n1 < (input_full_size - 1)))
|
|
{
|
|
int marg = -range->n0;
|
|
if ((input_full_size - marg - STBIR__MERGE_RUNS_PIXEL_THRESHOLD - 1) <= range->n1)
|
|
range->n1 = input_full_size - 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// for non-edge-wrap modes, we never read over the edge, so clamp
|
|
if (range->n0 < 0)
|
|
range->n0 = 0;
|
|
if (range->n1 >= input_full_size)
|
|
range->n1 = input_full_size - 1;
|
|
}
|
|
}
|
|
|
|
static void stbir__get_split_info(stbir__per_split_info *split_info, int splits, int output_height, int vertical_pixel_margin, int input_full_height)
|
|
{
|
|
int i, cur;
|
|
int left = output_height;
|
|
|
|
cur = 0;
|
|
for (i = 0; i < splits; i++)
|
|
{
|
|
int each;
|
|
split_info[i].start_output_y = cur;
|
|
each = left / (splits - i);
|
|
split_info[i].end_output_y = cur + each;
|
|
cur += each;
|
|
left -= each;
|
|
|
|
// scatter range (updated to minimum as you run it)
|
|
split_info[i].start_input_y = -vertical_pixel_margin;
|
|
split_info[i].end_input_y = input_full_height + vertical_pixel_margin;
|
|
}
|
|
}
|
|
|
|
static void stbir__free_internal_mem(stbir__info *info)
|
|
{
|
|
#define STBIR__FREE_AND_CLEAR(ptr) \
|
|
{ \
|
|
if (ptr) \
|
|
{ \
|
|
void *p = (ptr); \
|
|
(ptr) = 0; \
|
|
STBIR_FREE(p, info->user_data); \
|
|
} \
|
|
}
|
|
|
|
if (info)
|
|
{
|
|
#ifndef STBIR__SEPARATE_ALLOCATIONS
|
|
STBIR__FREE_AND_CLEAR(info->alloced_mem);
|
|
#else
|
|
int i, j;
|
|
|
|
if ((info->vertical.gather_prescatter_contributors) && ((void *)info->vertical.gather_prescatter_contributors != (void *)info->split_info[0].decode_buffer))
|
|
{
|
|
STBIR__FREE_AND_CLEAR(info->vertical.gather_prescatter_coefficients);
|
|
STBIR__FREE_AND_CLEAR(info->vertical.gather_prescatter_contributors);
|
|
}
|
|
for (i = 0; i < info->splits; i++)
|
|
{
|
|
for (j = 0; j < info->alloc_ring_buffer_num_entries; j++)
|
|
{
|
|
#ifdef STBIR_SIMD8
|
|
if (info->effective_channels == 3)
|
|
--info->split_info[i].ring_buffers[j]; // avx in 3 channel mode needs one float at the start of the buffer
|
|
#endif
|
|
STBIR__FREE_AND_CLEAR(info->split_info[i].ring_buffers[j]);
|
|
}
|
|
|
|
#ifdef STBIR_SIMD8
|
|
if (info->effective_channels == 3)
|
|
--info->split_info[i].decode_buffer; // avx in 3 channel mode needs one float at the start of the buffer
|
|
#endif
|
|
STBIR__FREE_AND_CLEAR(info->split_info[i].decode_buffer);
|
|
STBIR__FREE_AND_CLEAR(info->split_info[i].ring_buffers);
|
|
STBIR__FREE_AND_CLEAR(info->split_info[i].vertical_buffer);
|
|
}
|
|
STBIR__FREE_AND_CLEAR(info->split_info);
|
|
if (info->vertical.coefficients != info->horizontal.coefficients)
|
|
{
|
|
STBIR__FREE_AND_CLEAR(info->vertical.coefficients);
|
|
STBIR__FREE_AND_CLEAR(info->vertical.contributors);
|
|
}
|
|
STBIR__FREE_AND_CLEAR(info->horizontal.coefficients);
|
|
STBIR__FREE_AND_CLEAR(info->horizontal.contributors);
|
|
STBIR__FREE_AND_CLEAR(info->alloced_mem);
|
|
STBIR_FREE(info, info->user_data);
|
|
#endif
|
|
}
|
|
|
|
#undef STBIR__FREE_AND_CLEAR
|
|
}
|
|
|
|
static int stbir__get_max_split(int splits, int height)
|
|
{
|
|
int i;
|
|
int max = 0;
|
|
|
|
for (i = 0; i < splits; i++)
|
|
{
|
|
int each = height / (splits - i);
|
|
if (each > max)
|
|
max = each;
|
|
height -= each;
|
|
}
|
|
return max;
|
|
}
|
|
|
|
static stbir__horizontal_gather_channels_func **stbir__horizontal_gather_n_coeffs_funcs[8] =
|
|
{
|
|
0, stbir__horizontal_gather_1_channels_with_n_coeffs_funcs, stbir__horizontal_gather_2_channels_with_n_coeffs_funcs, stbir__horizontal_gather_3_channels_with_n_coeffs_funcs, stbir__horizontal_gather_4_channels_with_n_coeffs_funcs, 0, 0, stbir__horizontal_gather_7_channels_with_n_coeffs_funcs};
|
|
|
|
static stbir__horizontal_gather_channels_func **stbir__horizontal_gather_channels_funcs[8] =
|
|
{
|
|
0, stbir__horizontal_gather_1_channels_funcs, stbir__horizontal_gather_2_channels_funcs, stbir__horizontal_gather_3_channels_funcs, stbir__horizontal_gather_4_channels_funcs, 0, 0, stbir__horizontal_gather_7_channels_funcs};
|
|
|
|
// there are six resize classifications: 0 == vertical scatter, 1 == vertical gather < 1x scale, 2 == vertical gather 1x-2x scale, 4 == vertical gather < 3x scale, 4 == vertical gather > 3x scale, 5 == <=4 pixel height, 6 == <=4 pixel wide column
|
|
#define STBIR_RESIZE_CLASSIFICATIONS 8
|
|
|
|
static float stbir__compute_weights[5][STBIR_RESIZE_CLASSIFICATIONS][4] = // 5 = 0=1chan, 1=2chan, 2=3chan, 3=4chan, 4=7chan
|
|
{
|
|
{
|
|
{1.00000f, 1.00000f, 0.31250f, 1.00000f},
|
|
{0.56250f, 0.59375f, 0.00000f, 0.96875f},
|
|
{1.00000f, 0.06250f, 0.00000f, 1.00000f},
|
|
{0.00000f, 0.09375f, 1.00000f, 1.00000f},
|
|
{1.00000f, 1.00000f, 1.00000f, 1.00000f},
|
|
{0.03125f, 0.12500f, 1.00000f, 1.00000f},
|
|
{0.06250f, 0.12500f, 0.00000f, 1.00000f},
|
|
{0.00000f, 1.00000f, 0.00000f, 0.03125f},
|
|
},
|
|
{
|
|
{0.00000f, 0.84375f, 0.00000f, 0.03125f},
|
|
{0.09375f, 0.93750f, 0.00000f, 0.78125f},
|
|
{0.87500f, 0.21875f, 0.00000f, 0.96875f},
|
|
{0.09375f, 0.09375f, 1.00000f, 1.00000f},
|
|
{1.00000f, 1.00000f, 1.00000f, 1.00000f},
|
|
{0.03125f, 0.12500f, 1.00000f, 1.00000f},
|
|
{0.06250f, 0.12500f, 0.00000f, 1.00000f},
|
|
{0.00000f, 1.00000f, 0.00000f, 0.53125f},
|
|
},
|
|
{
|
|
{0.00000f, 0.53125f, 0.00000f, 0.03125f},
|
|
{0.06250f, 0.96875f, 0.00000f, 0.53125f},
|
|
{0.87500f, 0.18750f, 0.00000f, 0.93750f},
|
|
{0.00000f, 0.09375f, 1.00000f, 1.00000f},
|
|
{1.00000f, 1.00000f, 1.00000f, 1.00000f},
|
|
{0.03125f, 0.12500f, 1.00000f, 1.00000f},
|
|
{0.06250f, 0.12500f, 0.00000f, 1.00000f},
|
|
{0.00000f, 1.00000f, 0.00000f, 0.56250f},
|
|
},
|
|
{
|
|
{0.00000f, 0.50000f, 0.00000f, 0.71875f},
|
|
{0.06250f, 0.84375f, 0.00000f, 0.87500f},
|
|
{1.00000f, 0.50000f, 0.50000f, 0.96875f},
|
|
{1.00000f, 0.09375f, 0.31250f, 0.50000f},
|
|
{1.00000f, 1.00000f, 1.00000f, 1.00000f},
|
|
{1.00000f, 0.03125f, 0.03125f, 0.53125f},
|
|
{0.18750f, 0.12500f, 0.00000f, 1.00000f},
|
|
{0.00000f, 1.00000f, 0.03125f, 0.18750f},
|
|
},
|
|
{
|
|
{0.00000f, 0.59375f, 0.00000f, 0.96875f},
|
|
{0.06250f, 0.81250f, 0.06250f, 0.59375f},
|
|
{0.75000f, 0.43750f, 0.12500f, 0.96875f},
|
|
{0.87500f, 0.06250f, 0.18750f, 0.43750f},
|
|
{1.00000f, 1.00000f, 1.00000f, 1.00000f},
|
|
{0.15625f, 0.12500f, 1.00000f, 1.00000f},
|
|
{0.06250f, 0.12500f, 0.00000f, 1.00000f},
|
|
{0.00000f, 1.00000f, 0.03125f, 0.34375f},
|
|
}};
|
|
|
|
// structure that allow us to query and override info for training the costs
|
|
typedef struct STBIR__V_FIRST_INFO
|
|
{
|
|
double v_cost, h_cost;
|
|
int control_v_first; // 0 = no control, 1 = force hori, 2 = force vert
|
|
int v_first;
|
|
int v_resize_classification;
|
|
int is_gather;
|
|
} STBIR__V_FIRST_INFO;
|
|
|
|
#ifdef STBIR__V_FIRST_INFO_BUFFER
|
|
static STBIR__V_FIRST_INFO STBIR__V_FIRST_INFO_BUFFER = {0};
|
|
#define STBIR__V_FIRST_INFO_POINTER &STBIR__V_FIRST_INFO_BUFFER
|
|
#else
|
|
#define STBIR__V_FIRST_INFO_POINTER 0
|
|
#endif
|
|
|
|
// Figure out whether to scale along the horizontal or vertical first.
|
|
// This only *super* important when you are scaling by a massively
|
|
// different amount in the vertical vs the horizontal (for example, if
|
|
// you are scaling by 2x in the width, and 0.5x in the height, then you
|
|
// want to do the vertical scale first, because it's around 3x faster
|
|
// in that order.
|
|
//
|
|
// In more normal circumstances, this makes a 20-40% differences, so
|
|
// it's good to get right, but not critical. The normal way that you
|
|
// decide which direction goes first is just figuring out which
|
|
// direction does more multiplies. But with modern CPUs with their
|
|
// fancy caches and SIMD and high IPC abilities, so there's just a lot
|
|
// more that goes into it.
|
|
//
|
|
// My handwavy sort of solution is to have an app that does a whole
|
|
// bunch of timing for both vertical and horizontal first modes,
|
|
// and then another app that can read lots of these timing files
|
|
// and try to search for the best weights to use. Dotimings.c
|
|
// is the app that does a bunch of timings, and vf_train.c is the
|
|
// app that solves for the best weights (and shows how well it
|
|
// does currently).
|
|
|
|
static int stbir__should_do_vertical_first(float weights_table[STBIR_RESIZE_CLASSIFICATIONS][4], int horizontal_filter_pixel_width, float horizontal_scale, int horizontal_output_size, int vertical_filter_pixel_width, float vertical_scale, int vertical_output_size, int is_gather, STBIR__V_FIRST_INFO *info)
|
|
{
|
|
double v_cost, h_cost;
|
|
float *weights;
|
|
int vertical_first;
|
|
int v_classification;
|
|
|
|
// categorize the resize into buckets
|
|
if ((vertical_output_size <= 4) || (horizontal_output_size <= 4))
|
|
v_classification = (vertical_output_size < horizontal_output_size) ? 6 : 7;
|
|
else if (vertical_scale <= 1.0f)
|
|
v_classification = (is_gather) ? 1 : 0;
|
|
else if (vertical_scale <= 2.0f)
|
|
v_classification = 2;
|
|
else if (vertical_scale <= 3.0f)
|
|
v_classification = 3;
|
|
else if (vertical_scale <= 4.0f)
|
|
v_classification = 5;
|
|
else
|
|
v_classification = 6;
|
|
|
|
// use the right weights
|
|
weights = weights_table[v_classification];
|
|
|
|
// this is the costs when you don't take into account modern CPUs with high ipc and simd and caches - wish we had a better estimate
|
|
h_cost = (float)horizontal_filter_pixel_width * weights[0] + horizontal_scale * (float)vertical_filter_pixel_width * weights[1];
|
|
v_cost = (float)vertical_filter_pixel_width * weights[2] + vertical_scale * (float)horizontal_filter_pixel_width * weights[3];
|
|
|
|
// use computation estimate to decide vertical first or not
|
|
vertical_first = (v_cost <= h_cost) ? 1 : 0;
|
|
|
|
// save these, if requested
|
|
if (info)
|
|
{
|
|
info->h_cost = h_cost;
|
|
info->v_cost = v_cost;
|
|
info->v_resize_classification = v_classification;
|
|
info->v_first = vertical_first;
|
|
info->is_gather = is_gather;
|
|
}
|
|
|
|
// and this allows us to override everything for testing (see dotiming.c)
|
|
if ((info) && (info->control_v_first))
|
|
vertical_first = (info->control_v_first == 2) ? 1 : 0;
|
|
|
|
return vertical_first;
|
|
}
|
|
|
|
// layout lookups - must match stbir_internal_pixel_layout
|
|
static unsigned char stbir__pixel_channels[] = {
|
|
1, 2, 3, 3, 4, // 1ch, 2ch, rgb, bgr, 4ch
|
|
4, 4, 4, 4, 2, 2, // RGBA,BGRA,ARGB,ABGR,RA,AR
|
|
4, 4, 4, 4, 2, 2, // RGBA_PM,BGRA_PM,ARGB_PM,ABGR_PM,RA_PM,AR_PM
|
|
};
|
|
|
|
// the internal pixel layout enums are in a different order, so we can easily do range comparisons of types
|
|
// the public pixel layout is ordered in a way that if you cast num_channels (1-4) to the enum, you get something sensible
|
|
static stbir_internal_pixel_layout stbir__pixel_layout_convert_public_to_internal[] = {
|
|
STBIRI_BGR,
|
|
STBIRI_1CHANNEL,
|
|
STBIRI_2CHANNEL,
|
|
STBIRI_RGB,
|
|
STBIRI_RGBA,
|
|
STBIRI_4CHANNEL,
|
|
STBIRI_BGRA,
|
|
STBIRI_ARGB,
|
|
STBIRI_ABGR,
|
|
STBIRI_RA,
|
|
STBIRI_AR,
|
|
STBIRI_RGBA_PM,
|
|
STBIRI_BGRA_PM,
|
|
STBIRI_ARGB_PM,
|
|
STBIRI_ABGR_PM,
|
|
STBIRI_RA_PM,
|
|
STBIRI_AR_PM,
|
|
};
|
|
|
|
static stbir__info *stbir__alloc_internal_mem_and_build_samplers(stbir__sampler *horizontal, stbir__sampler *vertical, stbir__contributors *conservative, stbir_pixel_layout input_pixel_layout_public, stbir_pixel_layout output_pixel_layout_public, int splits, int new_x, int new_y, int fast_alpha, void *user_data STBIR_ONLY_PROFILE_BUILD_GET_INFO)
|
|
{
|
|
static char stbir_channel_count_index[8] = {9, 0, 1, 2, 3, 9, 9, 4};
|
|
|
|
stbir__info *info = 0;
|
|
void *alloced = 0;
|
|
size_t alloced_total = 0;
|
|
int vertical_first;
|
|
size_t decode_buffer_size, ring_buffer_length_bytes, ring_buffer_size, vertical_buffer_size;
|
|
int alloc_ring_buffer_num_entries;
|
|
|
|
int alpha_weighting_type = 0; // 0=none, 1=simple, 2=fancy
|
|
int conservative_split_output_size = stbir__get_max_split(splits, vertical->scale_info.output_sub_size);
|
|
stbir_internal_pixel_layout input_pixel_layout = stbir__pixel_layout_convert_public_to_internal[input_pixel_layout_public];
|
|
stbir_internal_pixel_layout output_pixel_layout = stbir__pixel_layout_convert_public_to_internal[output_pixel_layout_public];
|
|
int channels = stbir__pixel_channels[input_pixel_layout];
|
|
int effective_channels = channels;
|
|
|
|
// first figure out what type of alpha weighting to use (if any)
|
|
if ((horizontal->filter_enum != STBIR_FILTER_POINT_SAMPLE) || (vertical->filter_enum != STBIR_FILTER_POINT_SAMPLE)) // no alpha weighting on point sampling
|
|
{
|
|
if ((input_pixel_layout >= STBIRI_RGBA) && (input_pixel_layout <= STBIRI_AR) && (output_pixel_layout >= STBIRI_RGBA) && (output_pixel_layout <= STBIRI_AR))
|
|
{
|
|
if (fast_alpha)
|
|
{
|
|
alpha_weighting_type = 4;
|
|
}
|
|
else
|
|
{
|
|
static int fancy_alpha_effective_cnts[6] = {7, 7, 7, 7, 3, 3};
|
|
alpha_weighting_type = 2;
|
|
effective_channels = fancy_alpha_effective_cnts[input_pixel_layout - STBIRI_RGBA];
|
|
}
|
|
}
|
|
else if ((input_pixel_layout >= STBIRI_RGBA_PM) && (input_pixel_layout <= STBIRI_AR_PM) && (output_pixel_layout >= STBIRI_RGBA) && (output_pixel_layout <= STBIRI_AR))
|
|
{
|
|
// input premult, output non-premult
|
|
alpha_weighting_type = 3;
|
|
}
|
|
else if ((input_pixel_layout >= STBIRI_RGBA) && (input_pixel_layout <= STBIRI_AR) && (output_pixel_layout >= STBIRI_RGBA_PM) && (output_pixel_layout <= STBIRI_AR_PM))
|
|
{
|
|
// input non-premult, output premult
|
|
alpha_weighting_type = 1;
|
|
}
|
|
}
|
|
|
|
// channel in and out count must match currently
|
|
if (channels != stbir__pixel_channels[output_pixel_layout])
|
|
return 0;
|
|
|
|
// get vertical first
|
|
vertical_first = stbir__should_do_vertical_first(stbir__compute_weights[(int)stbir_channel_count_index[effective_channels]], horizontal->filter_pixel_width, horizontal->scale_info.scale, horizontal->scale_info.output_sub_size, vertical->filter_pixel_width, vertical->scale_info.scale, vertical->scale_info.output_sub_size, vertical->is_gather, STBIR__V_FIRST_INFO_POINTER);
|
|
|
|
// sometimes read one float off in some of the unrolled loops (with a weight of zero coeff, so it doesn't have an effect)
|
|
// we use a few extra floats instead of just 1, so that input callback buffer can overlap with the decode buffer without
|
|
// the conversion routines overwriting the callback input data.
|
|
decode_buffer_size = (conservative->n1 - conservative->n0 + 1) * effective_channels * sizeof(float) + sizeof(float) * STBIR_INPUT_CALLBACK_PADDING; // extra floats for input callback stagger
|
|
|
|
#if defined(STBIR__SEPARATE_ALLOCATIONS) && defined(STBIR_SIMD8)
|
|
if (effective_channels == 3)
|
|
decode_buffer_size += sizeof(float); // avx in 3 channel mode needs one float at the start of the buffer (only with separate allocations)
|
|
#endif
|
|
|
|
ring_buffer_length_bytes = (size_t)horizontal->scale_info.output_sub_size * (size_t)effective_channels * sizeof(float) + sizeof(float) * STBIR_INPUT_CALLBACK_PADDING; // extra floats for padding
|
|
|
|
// if we do vertical first, the ring buffer holds a whole decoded line
|
|
if (vertical_first)
|
|
ring_buffer_length_bytes = (decode_buffer_size + 15) & ~15;
|
|
|
|
if ((ring_buffer_length_bytes & 4095) == 0)
|
|
ring_buffer_length_bytes += 64 * 3; // avoid 4k alias
|
|
|
|
// One extra entry because floating point precision problems sometimes cause an extra to be necessary.
|
|
alloc_ring_buffer_num_entries = vertical->filter_pixel_width + 1;
|
|
|
|
// we never need more ring buffer entries than the scanlines we're outputting when in scatter mode
|
|
if ((!vertical->is_gather) && (alloc_ring_buffer_num_entries > conservative_split_output_size))
|
|
alloc_ring_buffer_num_entries = conservative_split_output_size;
|
|
|
|
ring_buffer_size = (size_t)alloc_ring_buffer_num_entries * (size_t)ring_buffer_length_bytes;
|
|
|
|
// The vertical buffer is used differently, depending on whether we are scattering
|
|
// the vertical scanlines, or gathering them.
|
|
// If scattering, it's used at the temp buffer to accumulate each output.
|
|
// If gathering, it's just the output buffer.
|
|
vertical_buffer_size = (size_t)horizontal->scale_info.output_sub_size * (size_t)effective_channels * sizeof(float) + sizeof(float); // extra float for padding
|
|
|
|
// we make two passes through this loop, 1st to add everything up, 2nd to allocate and init
|
|
for (;;)
|
|
{
|
|
int i;
|
|
void *advance_mem = alloced;
|
|
int copy_horizontal = 0;
|
|
stbir__sampler *possibly_use_horizontal_for_pivot = 0;
|
|
|
|
#ifdef STBIR__SEPARATE_ALLOCATIONS
|
|
#define STBIR__NEXT_PTR(ptr, size, ntype) \
|
|
if (alloced) \
|
|
{ \
|
|
void *p = STBIR_MALLOC(size, user_data); \
|
|
if (p == 0) \
|
|
{ \
|
|
stbir__free_internal_mem(info); \
|
|
return 0; \
|
|
} \
|
|
(ptr) = (ntype *)p; \
|
|
}
|
|
#else
|
|
#define STBIR__NEXT_PTR(ptr, size, ntype) \
|
|
advance_mem = (void *)((((size_t)advance_mem) + 15) & ~15); \
|
|
if (alloced) \
|
|
ptr = (ntype *)advance_mem; \
|
|
advance_mem = ((char *)advance_mem) + (size);
|
|
#endif
|
|
|
|
STBIR__NEXT_PTR(info, sizeof(stbir__info), stbir__info);
|
|
|
|
STBIR__NEXT_PTR(info->split_info, sizeof(stbir__per_split_info) * splits, stbir__per_split_info);
|
|
|
|
if (info)
|
|
{
|
|
static stbir__alpha_weight_func *fancy_alpha_weights[6] = {stbir__fancy_alpha_weight_4ch, stbir__fancy_alpha_weight_4ch, stbir__fancy_alpha_weight_4ch, stbir__fancy_alpha_weight_4ch, stbir__fancy_alpha_weight_2ch, stbir__fancy_alpha_weight_2ch};
|
|
static stbir__alpha_unweight_func *fancy_alpha_unweights[6] = {stbir__fancy_alpha_unweight_4ch, stbir__fancy_alpha_unweight_4ch, stbir__fancy_alpha_unweight_4ch, stbir__fancy_alpha_unweight_4ch, stbir__fancy_alpha_unweight_2ch, stbir__fancy_alpha_unweight_2ch};
|
|
static stbir__alpha_weight_func *simple_alpha_weights[6] = {stbir__simple_alpha_weight_4ch, stbir__simple_alpha_weight_4ch, stbir__simple_alpha_weight_4ch, stbir__simple_alpha_weight_4ch, stbir__simple_alpha_weight_2ch, stbir__simple_alpha_weight_2ch};
|
|
static stbir__alpha_unweight_func *simple_alpha_unweights[6] = {stbir__simple_alpha_unweight_4ch, stbir__simple_alpha_unweight_4ch, stbir__simple_alpha_unweight_4ch, stbir__simple_alpha_unweight_4ch, stbir__simple_alpha_unweight_2ch, stbir__simple_alpha_unweight_2ch};
|
|
|
|
// initialize info fields
|
|
info->alloced_mem = alloced;
|
|
info->alloced_total = alloced_total;
|
|
|
|
info->channels = channels;
|
|
info->effective_channels = effective_channels;
|
|
|
|
info->offset_x = new_x;
|
|
info->offset_y = new_y;
|
|
info->alloc_ring_buffer_num_entries = (int)alloc_ring_buffer_num_entries;
|
|
info->ring_buffer_num_entries = 0;
|
|
info->ring_buffer_length_bytes = (int)ring_buffer_length_bytes;
|
|
info->splits = splits;
|
|
info->vertical_first = vertical_first;
|
|
|
|
info->input_pixel_layout_internal = input_pixel_layout;
|
|
info->output_pixel_layout_internal = output_pixel_layout;
|
|
|
|
// setup alpha weight functions
|
|
info->alpha_weight = 0;
|
|
info->alpha_unweight = 0;
|
|
|
|
// handle alpha weighting functions and overrides
|
|
if (alpha_weighting_type == 2)
|
|
{
|
|
// high quality alpha multiplying on the way in, dividing on the way out
|
|
info->alpha_weight = fancy_alpha_weights[input_pixel_layout - STBIRI_RGBA];
|
|
info->alpha_unweight = fancy_alpha_unweights[output_pixel_layout - STBIRI_RGBA];
|
|
}
|
|
else if (alpha_weighting_type == 4)
|
|
{
|
|
// fast alpha multiplying on the way in, dividing on the way out
|
|
info->alpha_weight = simple_alpha_weights[input_pixel_layout - STBIRI_RGBA];
|
|
info->alpha_unweight = simple_alpha_unweights[output_pixel_layout - STBIRI_RGBA];
|
|
}
|
|
else if (alpha_weighting_type == 1)
|
|
{
|
|
// fast alpha on the way in, leave in premultiplied form on way out
|
|
info->alpha_weight = simple_alpha_weights[input_pixel_layout - STBIRI_RGBA];
|
|
}
|
|
else if (alpha_weighting_type == 3)
|
|
{
|
|
// incoming is premultiplied, fast alpha dividing on the way out - non-premultiplied output
|
|
info->alpha_unweight = simple_alpha_unweights[output_pixel_layout - STBIRI_RGBA];
|
|
}
|
|
|
|
// handle 3-chan color flipping, using the alpha weight path
|
|
if (((input_pixel_layout == STBIRI_RGB) && (output_pixel_layout == STBIRI_BGR)) ||
|
|
((input_pixel_layout == STBIRI_BGR) && (output_pixel_layout == STBIRI_RGB)))
|
|
{
|
|
// do the flipping on the smaller of the two ends
|
|
if (horizontal->scale_info.scale < 1.0f)
|
|
info->alpha_unweight = stbir__simple_flip_3ch;
|
|
else
|
|
info->alpha_weight = stbir__simple_flip_3ch;
|
|
}
|
|
}
|
|
|
|
// get all the per-split buffers
|
|
for (i = 0; i < splits; i++)
|
|
{
|
|
STBIR__NEXT_PTR(info->split_info[i].decode_buffer, decode_buffer_size, float);
|
|
|
|
#ifdef STBIR__SEPARATE_ALLOCATIONS
|
|
|
|
#ifdef STBIR_SIMD8
|
|
if ((info) && (effective_channels == 3))
|
|
++info->split_info[i].decode_buffer; // avx in 3 channel mode needs one float at the start of the buffer
|
|
#endif
|
|
|
|
STBIR__NEXT_PTR(info->split_info[i].ring_buffers, alloc_ring_buffer_num_entries * sizeof(float *), float *);
|
|
{
|
|
int j;
|
|
for (j = 0; j < alloc_ring_buffer_num_entries; j++)
|
|
{
|
|
STBIR__NEXT_PTR(info->split_info[i].ring_buffers[j], ring_buffer_length_bytes, float);
|
|
#ifdef STBIR_SIMD8
|
|
if ((info) && (effective_channels == 3))
|
|
++info->split_info[i].ring_buffers[j]; // avx in 3 channel mode needs one float at the start of the buffer
|
|
#endif
|
|
}
|
|
}
|
|
#else
|
|
STBIR__NEXT_PTR(info->split_info[i].ring_buffer, ring_buffer_size, float);
|
|
#endif
|
|
STBIR__NEXT_PTR(info->split_info[i].vertical_buffer, vertical_buffer_size, float);
|
|
}
|
|
|
|
// alloc memory for to-be-pivoted coeffs (if necessary)
|
|
if (vertical->is_gather == 0)
|
|
{
|
|
size_t both;
|
|
size_t temp_mem_amt;
|
|
|
|
// when in vertical scatter mode, we first build the coefficients in gather mode, and then pivot after,
|
|
// that means we need two buffers, so we try to use the decode buffer and ring buffer for this. if that
|
|
// is too small, we just allocate extra memory to use as this temp.
|
|
|
|
both = (size_t)vertical->gather_prescatter_contributors_size + (size_t)vertical->gather_prescatter_coefficients_size;
|
|
|
|
#ifdef STBIR__SEPARATE_ALLOCATIONS
|
|
temp_mem_amt = decode_buffer_size;
|
|
|
|
#ifdef STBIR_SIMD8
|
|
if (effective_channels == 3)
|
|
--temp_mem_amt; // avx in 3 channel mode needs one float at the start of the buffer
|
|
#endif
|
|
#else
|
|
temp_mem_amt = (size_t)(decode_buffer_size + ring_buffer_size + vertical_buffer_size) * (size_t)splits;
|
|
#endif
|
|
if (temp_mem_amt >= both)
|
|
{
|
|
if (info)
|
|
{
|
|
vertical->gather_prescatter_contributors = (stbir__contributors *)info->split_info[0].decode_buffer;
|
|
vertical->gather_prescatter_coefficients = (float *)(((char *)info->split_info[0].decode_buffer) + vertical->gather_prescatter_contributors_size);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// ring+decode memory is too small, so allocate temp memory
|
|
STBIR__NEXT_PTR(vertical->gather_prescatter_contributors, vertical->gather_prescatter_contributors_size, stbir__contributors);
|
|
STBIR__NEXT_PTR(vertical->gather_prescatter_coefficients, vertical->gather_prescatter_coefficients_size, float);
|
|
}
|
|
}
|
|
|
|
STBIR__NEXT_PTR(horizontal->contributors, horizontal->contributors_size, stbir__contributors);
|
|
STBIR__NEXT_PTR(horizontal->coefficients, horizontal->coefficients_size, float);
|
|
|
|
// are the two filters identical?? (happens a lot with mipmap generation)
|
|
if ((horizontal->filter_kernel == vertical->filter_kernel) && (horizontal->filter_support == vertical->filter_support) && (horizontal->edge == vertical->edge) && (horizontal->scale_info.output_sub_size == vertical->scale_info.output_sub_size))
|
|
{
|
|
float diff_scale = horizontal->scale_info.scale - vertical->scale_info.scale;
|
|
float diff_shift = horizontal->scale_info.pixel_shift - vertical->scale_info.pixel_shift;
|
|
if (diff_scale < 0.0f)
|
|
diff_scale = -diff_scale;
|
|
if (diff_shift < 0.0f)
|
|
diff_shift = -diff_shift;
|
|
if ((diff_scale <= stbir__small_float) && (diff_shift <= stbir__small_float))
|
|
{
|
|
if (horizontal->is_gather == vertical->is_gather)
|
|
{
|
|
copy_horizontal = 1;
|
|
goto no_vert_alloc;
|
|
}
|
|
// everything matches, but vertical is scatter, horizontal is gather, use horizontal coeffs for vertical pivot coeffs
|
|
possibly_use_horizontal_for_pivot = horizontal;
|
|
}
|
|
}
|
|
|
|
STBIR__NEXT_PTR(vertical->contributors, vertical->contributors_size, stbir__contributors);
|
|
STBIR__NEXT_PTR(vertical->coefficients, vertical->coefficients_size, float);
|
|
|
|
no_vert_alloc:
|
|
|
|
if (info)
|
|
{
|
|
STBIR_PROFILE_BUILD_START(horizontal);
|
|
|
|
stbir__calculate_filters(horizontal, 0, user_data STBIR_ONLY_PROFILE_BUILD_SET_INFO);
|
|
|
|
// setup the horizontal gather functions
|
|
// start with defaulting to the n_coeffs functions (specialized on channels and remnant leftover)
|
|
info->horizontal_gather_channels = stbir__horizontal_gather_n_coeffs_funcs[effective_channels][horizontal->extent_info.widest & 3];
|
|
// but if the number of coeffs <= 12, use another set of special cases. <=12 coeffs is any enlarging resize, or shrinking resize down to about 1/3 size
|
|
if (horizontal->extent_info.widest <= 12)
|
|
info->horizontal_gather_channels = stbir__horizontal_gather_channels_funcs[effective_channels][horizontal->extent_info.widest - 1];
|
|
|
|
info->scanline_extents.conservative.n0 = conservative->n0;
|
|
info->scanline_extents.conservative.n1 = conservative->n1;
|
|
|
|
// get exact extents
|
|
stbir__get_extents(horizontal, &info->scanline_extents);
|
|
|
|
// pack the horizontal coeffs
|
|
horizontal->coefficient_width = stbir__pack_coefficients(horizontal->num_contributors, horizontal->contributors, horizontal->coefficients, horizontal->coefficient_width, horizontal->extent_info.widest, info->scanline_extents.conservative.n0, info->scanline_extents.conservative.n1);
|
|
|
|
STBIR_MEMCPY(&info->horizontal, horizontal, sizeof(stbir__sampler));
|
|
|
|
STBIR_PROFILE_BUILD_END(horizontal);
|
|
|
|
if (copy_horizontal)
|
|
{
|
|
STBIR_MEMCPY(&info->vertical, horizontal, sizeof(stbir__sampler));
|
|
}
|
|
else
|
|
{
|
|
STBIR_PROFILE_BUILD_START(vertical);
|
|
|
|
stbir__calculate_filters(vertical, possibly_use_horizontal_for_pivot, user_data STBIR_ONLY_PROFILE_BUILD_SET_INFO);
|
|
STBIR_MEMCPY(&info->vertical, vertical, sizeof(stbir__sampler));
|
|
|
|
STBIR_PROFILE_BUILD_END(vertical);
|
|
}
|
|
|
|
// setup the vertical split ranges
|
|
stbir__get_split_info(info->split_info, info->splits, info->vertical.scale_info.output_sub_size, info->vertical.filter_pixel_margin, info->vertical.scale_info.input_full_size);
|
|
|
|
// now we know precisely how many entries we need
|
|
info->ring_buffer_num_entries = info->vertical.extent_info.widest;
|
|
|
|
// we never need more ring buffer entries than the scanlines we're outputting
|
|
if ((!info->vertical.is_gather) && (info->ring_buffer_num_entries > conservative_split_output_size))
|
|
info->ring_buffer_num_entries = conservative_split_output_size;
|
|
STBIR_ASSERT(info->ring_buffer_num_entries <= info->alloc_ring_buffer_num_entries);
|
|
}
|
|
#undef STBIR__NEXT_PTR
|
|
|
|
// is this the first time through loop?
|
|
if (info == 0)
|
|
{
|
|
alloced_total = (15 + (size_t)advance_mem);
|
|
alloced = STBIR_MALLOC(alloced_total, user_data);
|
|
if (alloced == 0)
|
|
return 0;
|
|
}
|
|
else
|
|
return info; // success
|
|
}
|
|
}
|
|
|
|
static int stbir__perform_resize(stbir__info const *info, int split_start, int split_count)
|
|
{
|
|
stbir__per_split_info *split_info = info->split_info + split_start;
|
|
|
|
STBIR_PROFILE_CLEAR_EXTRAS();
|
|
|
|
STBIR_PROFILE_FIRST_START(looping);
|
|
if (info->vertical.is_gather)
|
|
stbir__vertical_gather_loop(info, split_info, split_count);
|
|
else
|
|
stbir__vertical_scatter_loop(info, split_info, split_count);
|
|
STBIR_PROFILE_END(looping);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void stbir__update_info_from_resize(stbir__info *info, STBIR_RESIZE *resize)
|
|
{
|
|
static stbir__decode_pixels_func *decode_simple[STBIR_TYPE_HALF_FLOAT - STBIR_TYPE_UINT8_SRGB + 1] =
|
|
{
|
|
/* 1ch-4ch */ stbir__decode_uint8_srgb,
|
|
stbir__decode_uint8_srgb,
|
|
0,
|
|
stbir__decode_float_linear,
|
|
stbir__decode_half_float_linear,
|
|
};
|
|
|
|
static stbir__decode_pixels_func *decode_alphas[STBIRI_AR - STBIRI_RGBA + 1][STBIR_TYPE_HALF_FLOAT - STBIR_TYPE_UINT8_SRGB + 1] =
|
|
{
|
|
{/* RGBA */ stbir__decode_uint8_srgb4_linearalpha, stbir__decode_uint8_srgb, 0, stbir__decode_float_linear, stbir__decode_half_float_linear},
|
|
{/* BGRA */ stbir__decode_uint8_srgb4_linearalpha_BGRA, stbir__decode_uint8_srgb_BGRA, 0, stbir__decode_float_linear_BGRA, stbir__decode_half_float_linear_BGRA},
|
|
{/* ARGB */ stbir__decode_uint8_srgb4_linearalpha_ARGB, stbir__decode_uint8_srgb_ARGB, 0, stbir__decode_float_linear_ARGB, stbir__decode_half_float_linear_ARGB},
|
|
{/* ABGR */ stbir__decode_uint8_srgb4_linearalpha_ABGR, stbir__decode_uint8_srgb_ABGR, 0, stbir__decode_float_linear_ABGR, stbir__decode_half_float_linear_ABGR},
|
|
{/* RA */ stbir__decode_uint8_srgb2_linearalpha, stbir__decode_uint8_srgb, 0, stbir__decode_float_linear, stbir__decode_half_float_linear},
|
|
{/* AR */ stbir__decode_uint8_srgb2_linearalpha_AR, stbir__decode_uint8_srgb_AR, 0, stbir__decode_float_linear_AR, stbir__decode_half_float_linear_AR},
|
|
};
|
|
|
|
static stbir__decode_pixels_func *decode_simple_scaled_or_not[2][2] =
|
|
{
|
|
{stbir__decode_uint8_linear_scaled, stbir__decode_uint8_linear},
|
|
{stbir__decode_uint16_linear_scaled, stbir__decode_uint16_linear},
|
|
};
|
|
|
|
static stbir__decode_pixels_func *decode_alphas_scaled_or_not[STBIRI_AR - STBIRI_RGBA + 1][2][2] =
|
|
{
|
|
{/* RGBA */ {stbir__decode_uint8_linear_scaled, stbir__decode_uint8_linear}, {stbir__decode_uint16_linear_scaled, stbir__decode_uint16_linear}},
|
|
{/* BGRA */ {stbir__decode_uint8_linear_scaled_BGRA, stbir__decode_uint8_linear_BGRA}, {stbir__decode_uint16_linear_scaled_BGRA, stbir__decode_uint16_linear_BGRA}},
|
|
{/* ARGB */ {stbir__decode_uint8_linear_scaled_ARGB, stbir__decode_uint8_linear_ARGB}, {stbir__decode_uint16_linear_scaled_ARGB, stbir__decode_uint16_linear_ARGB}},
|
|
{/* ABGR */ {stbir__decode_uint8_linear_scaled_ABGR, stbir__decode_uint8_linear_ABGR}, {stbir__decode_uint16_linear_scaled_ABGR, stbir__decode_uint16_linear_ABGR}},
|
|
{/* RA */ {stbir__decode_uint8_linear_scaled, stbir__decode_uint8_linear}, {stbir__decode_uint16_linear_scaled, stbir__decode_uint16_linear}},
|
|
{/* AR */ {stbir__decode_uint8_linear_scaled_AR, stbir__decode_uint8_linear_AR}, {stbir__decode_uint16_linear_scaled_AR, stbir__decode_uint16_linear_AR}}};
|
|
|
|
static stbir__encode_pixels_func *encode_simple[STBIR_TYPE_HALF_FLOAT - STBIR_TYPE_UINT8_SRGB + 1] =
|
|
{
|
|
/* 1ch-4ch */ stbir__encode_uint8_srgb,
|
|
stbir__encode_uint8_srgb,
|
|
0,
|
|
stbir__encode_float_linear,
|
|
stbir__encode_half_float_linear,
|
|
};
|
|
|
|
static stbir__encode_pixels_func *encode_alphas[STBIRI_AR - STBIRI_RGBA + 1][STBIR_TYPE_HALF_FLOAT - STBIR_TYPE_UINT8_SRGB + 1] =
|
|
{
|
|
{/* RGBA */ stbir__encode_uint8_srgb4_linearalpha, stbir__encode_uint8_srgb, 0, stbir__encode_float_linear, stbir__encode_half_float_linear},
|
|
{/* BGRA */ stbir__encode_uint8_srgb4_linearalpha_BGRA, stbir__encode_uint8_srgb_BGRA, 0, stbir__encode_float_linear_BGRA, stbir__encode_half_float_linear_BGRA},
|
|
{/* ARGB */ stbir__encode_uint8_srgb4_linearalpha_ARGB, stbir__encode_uint8_srgb_ARGB, 0, stbir__encode_float_linear_ARGB, stbir__encode_half_float_linear_ARGB},
|
|
{/* ABGR */ stbir__encode_uint8_srgb4_linearalpha_ABGR, stbir__encode_uint8_srgb_ABGR, 0, stbir__encode_float_linear_ABGR, stbir__encode_half_float_linear_ABGR},
|
|
{/* RA */ stbir__encode_uint8_srgb2_linearalpha, stbir__encode_uint8_srgb, 0, stbir__encode_float_linear, stbir__encode_half_float_linear},
|
|
{/* AR */ stbir__encode_uint8_srgb2_linearalpha_AR, stbir__encode_uint8_srgb_AR, 0, stbir__encode_float_linear_AR, stbir__encode_half_float_linear_AR}};
|
|
|
|
static stbir__encode_pixels_func *encode_simple_scaled_or_not[2][2] =
|
|
{
|
|
{stbir__encode_uint8_linear_scaled, stbir__encode_uint8_linear},
|
|
{stbir__encode_uint16_linear_scaled, stbir__encode_uint16_linear},
|
|
};
|
|
|
|
static stbir__encode_pixels_func *encode_alphas_scaled_or_not[STBIRI_AR - STBIRI_RGBA + 1][2][2] =
|
|
{
|
|
{/* RGBA */ {stbir__encode_uint8_linear_scaled, stbir__encode_uint8_linear}, {stbir__encode_uint16_linear_scaled, stbir__encode_uint16_linear}},
|
|
{/* BGRA */ {stbir__encode_uint8_linear_scaled_BGRA, stbir__encode_uint8_linear_BGRA}, {stbir__encode_uint16_linear_scaled_BGRA, stbir__encode_uint16_linear_BGRA}},
|
|
{/* ARGB */ {stbir__encode_uint8_linear_scaled_ARGB, stbir__encode_uint8_linear_ARGB}, {stbir__encode_uint16_linear_scaled_ARGB, stbir__encode_uint16_linear_ARGB}},
|
|
{/* ABGR */ {stbir__encode_uint8_linear_scaled_ABGR, stbir__encode_uint8_linear_ABGR}, {stbir__encode_uint16_linear_scaled_ABGR, stbir__encode_uint16_linear_ABGR}},
|
|
{/* RA */ {stbir__encode_uint8_linear_scaled, stbir__encode_uint8_linear}, {stbir__encode_uint16_linear_scaled, stbir__encode_uint16_linear}},
|
|
{/* AR */ {stbir__encode_uint8_linear_scaled_AR, stbir__encode_uint8_linear_AR}, {stbir__encode_uint16_linear_scaled_AR, stbir__encode_uint16_linear_AR}}};
|
|
|
|
stbir__decode_pixels_func *decode_pixels = 0;
|
|
stbir__encode_pixels_func *encode_pixels = 0;
|
|
stbir_datatype input_type, output_type;
|
|
|
|
input_type = resize->input_data_type;
|
|
output_type = resize->output_data_type;
|
|
info->input_data = resize->input_pixels;
|
|
info->input_stride_bytes = resize->input_stride_in_bytes;
|
|
info->output_stride_bytes = resize->output_stride_in_bytes;
|
|
|
|
// if we're completely point sampling, then we can turn off SRGB
|
|
if ((info->horizontal.filter_enum == STBIR_FILTER_POINT_SAMPLE) && (info->vertical.filter_enum == STBIR_FILTER_POINT_SAMPLE))
|
|
{
|
|
if (((input_type == STBIR_TYPE_UINT8_SRGB) || (input_type == STBIR_TYPE_UINT8_SRGB_ALPHA)) &&
|
|
((output_type == STBIR_TYPE_UINT8_SRGB) || (output_type == STBIR_TYPE_UINT8_SRGB_ALPHA)))
|
|
{
|
|
input_type = STBIR_TYPE_UINT8;
|
|
output_type = STBIR_TYPE_UINT8;
|
|
}
|
|
}
|
|
|
|
// recalc the output and input strides
|
|
if (info->input_stride_bytes == 0)
|
|
info->input_stride_bytes = info->channels * info->horizontal.scale_info.input_full_size * stbir__type_size[input_type];
|
|
|
|
if (info->output_stride_bytes == 0)
|
|
info->output_stride_bytes = info->channels * info->horizontal.scale_info.output_sub_size * stbir__type_size[output_type];
|
|
|
|
// calc offset
|
|
info->output_data = ((char *)resize->output_pixels) + ((size_t)info->offset_y * (size_t)resize->output_stride_in_bytes) + (info->offset_x * info->channels * stbir__type_size[output_type]);
|
|
|
|
info->in_pixels_cb = resize->input_cb;
|
|
info->user_data = resize->user_data;
|
|
info->out_pixels_cb = resize->output_cb;
|
|
|
|
// setup the input format converters
|
|
if ((input_type == STBIR_TYPE_UINT8) || (input_type == STBIR_TYPE_UINT16))
|
|
{
|
|
int non_scaled = 0;
|
|
|
|
// check if we can run unscaled - 0-255.0/0-65535.0 instead of 0-1.0 (which is a tiny bit faster when doing linear 8->8 or 16->16)
|
|
if ((!info->alpha_weight) && (!info->alpha_unweight)) // don't short circuit when alpha weighting (get everything to 0-1.0 as usual)
|
|
if (((input_type == STBIR_TYPE_UINT8) && (output_type == STBIR_TYPE_UINT8)) || ((input_type == STBIR_TYPE_UINT16) && (output_type == STBIR_TYPE_UINT16)))
|
|
non_scaled = 1;
|
|
|
|
if (info->input_pixel_layout_internal <= STBIRI_4CHANNEL)
|
|
decode_pixels = decode_simple_scaled_or_not[input_type == STBIR_TYPE_UINT16][non_scaled];
|
|
else
|
|
decode_pixels = decode_alphas_scaled_or_not[(info->input_pixel_layout_internal - STBIRI_RGBA) % (STBIRI_AR - STBIRI_RGBA + 1)][input_type == STBIR_TYPE_UINT16][non_scaled];
|
|
}
|
|
else
|
|
{
|
|
if (info->input_pixel_layout_internal <= STBIRI_4CHANNEL)
|
|
decode_pixels = decode_simple[input_type - STBIR_TYPE_UINT8_SRGB];
|
|
else
|
|
decode_pixels = decode_alphas[(info->input_pixel_layout_internal - STBIRI_RGBA) % (STBIRI_AR - STBIRI_RGBA + 1)][input_type - STBIR_TYPE_UINT8_SRGB];
|
|
}
|
|
|
|
// setup the output format converters
|
|
if ((output_type == STBIR_TYPE_UINT8) || (output_type == STBIR_TYPE_UINT16))
|
|
{
|
|
int non_scaled = 0;
|
|
|
|
// check if we can run unscaled - 0-255.0/0-65535.0 instead of 0-1.0 (which is a tiny bit faster when doing linear 8->8 or 16->16)
|
|
if ((!info->alpha_weight) && (!info->alpha_unweight)) // don't short circuit when alpha weighting (get everything to 0-1.0 as usual)
|
|
if (((input_type == STBIR_TYPE_UINT8) && (output_type == STBIR_TYPE_UINT8)) || ((input_type == STBIR_TYPE_UINT16) && (output_type == STBIR_TYPE_UINT16)))
|
|
non_scaled = 1;
|
|
|
|
if (info->output_pixel_layout_internal <= STBIRI_4CHANNEL)
|
|
encode_pixels = encode_simple_scaled_or_not[output_type == STBIR_TYPE_UINT16][non_scaled];
|
|
else
|
|
encode_pixels = encode_alphas_scaled_or_not[(info->output_pixel_layout_internal - STBIRI_RGBA) % (STBIRI_AR - STBIRI_RGBA + 1)][output_type == STBIR_TYPE_UINT16][non_scaled];
|
|
}
|
|
else
|
|
{
|
|
if (info->output_pixel_layout_internal <= STBIRI_4CHANNEL)
|
|
encode_pixels = encode_simple[output_type - STBIR_TYPE_UINT8_SRGB];
|
|
else
|
|
encode_pixels = encode_alphas[(info->output_pixel_layout_internal - STBIRI_RGBA) % (STBIRI_AR - STBIRI_RGBA + 1)][output_type - STBIR_TYPE_UINT8_SRGB];
|
|
}
|
|
|
|
info->input_type = input_type;
|
|
info->output_type = output_type;
|
|
info->decode_pixels = decode_pixels;
|
|
info->encode_pixels = encode_pixels;
|
|
}
|
|
|
|
static void stbir__clip(int *outx, int *outsubw, int outw, double *u0, double *u1)
|
|
{
|
|
double per, adj;
|
|
int over;
|
|
|
|
// do left/top edge
|
|
if (*outx < 0)
|
|
{
|
|
per = ((double)*outx) / ((double)*outsubw); // is negative
|
|
adj = per * (*u1 - *u0);
|
|
*u0 -= adj; // increases u0
|
|
*outx = 0;
|
|
}
|
|
|
|
// do right/bot edge
|
|
over = outw - (*outx + *outsubw);
|
|
if (over < 0)
|
|
{
|
|
per = ((double)over) / ((double)*outsubw); // is negative
|
|
adj = per * (*u1 - *u0);
|
|
*u1 += adj; // decrease u1
|
|
*outsubw = outw - *outx;
|
|
}
|
|
}
|
|
|
|
// converts a double to a rational that has less than one float bit of error (returns 0 if unable to do so)
|
|
static int stbir__double_to_rational(double f, stbir_uint32 limit, stbir_uint32 *numer, stbir_uint32 *denom, int limit_denom) // limit_denom (1) or limit numer (0)
|
|
{
|
|
double err;
|
|
stbir_uint64 top, bot;
|
|
stbir_uint64 numer_last = 0;
|
|
stbir_uint64 denom_last = 1;
|
|
stbir_uint64 numer_estimate = 1;
|
|
stbir_uint64 denom_estimate = 0;
|
|
|
|
// scale to past float error range
|
|
top = (stbir_uint64)(f * (double)(1 << 25));
|
|
bot = 1 << 25;
|
|
|
|
// keep refining, but usually stops in a few loops - usually 5 for bad cases
|
|
for (;;)
|
|
{
|
|
stbir_uint64 est, temp;
|
|
|
|
// hit limit, break out and do best full range estimate
|
|
if (((limit_denom) ? denom_estimate : numer_estimate) >= limit)
|
|
break;
|
|
|
|
// is the current error less than 1 bit of a float? if so, we're done
|
|
if (denom_estimate)
|
|
{
|
|
err = ((double)numer_estimate / (double)denom_estimate) - f;
|
|
if (err < 0.0)
|
|
err = -err;
|
|
if (err < (1.0 / (double)(1 << 24)))
|
|
{
|
|
// yup, found it
|
|
*numer = (stbir_uint32)numer_estimate;
|
|
*denom = (stbir_uint32)denom_estimate;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
// no more refinement bits left? break out and do full range estimate
|
|
if (bot == 0)
|
|
break;
|
|
|
|
// gcd the estimate bits
|
|
est = top / bot;
|
|
temp = top % bot;
|
|
top = bot;
|
|
bot = temp;
|
|
|
|
// move remainders
|
|
temp = est * denom_estimate + denom_last;
|
|
denom_last = denom_estimate;
|
|
denom_estimate = temp;
|
|
|
|
// move remainders
|
|
temp = est * numer_estimate + numer_last;
|
|
numer_last = numer_estimate;
|
|
numer_estimate = temp;
|
|
}
|
|
|
|
// we didn't fine anything good enough for float, use a full range estimate
|
|
if (limit_denom)
|
|
{
|
|
numer_estimate = (stbir_uint64)(f * (double)limit + 0.5);
|
|
denom_estimate = limit;
|
|
}
|
|
else
|
|
{
|
|
numer_estimate = limit;
|
|
denom_estimate = (stbir_uint64)(((double)limit / f) + 0.5);
|
|
}
|
|
|
|
*numer = (stbir_uint32)numer_estimate;
|
|
*denom = (stbir_uint32)denom_estimate;
|
|
|
|
err = (denom_estimate) ? (((double)(stbir_uint32)numer_estimate / (double)(stbir_uint32)denom_estimate) - f) : 1.0;
|
|
if (err < 0.0)
|
|
err = -err;
|
|
return (err < (1.0 / (double)(1 << 24))) ? 1 : 0;
|
|
}
|
|
|
|
static int stbir__calculate_region_transform(stbir__scale_info *scale_info, int output_full_range, int *output_offset, int output_sub_range, int input_full_range, double input_s0, double input_s1)
|
|
{
|
|
double output_range, input_range, output_s, input_s, ratio, scale;
|
|
|
|
input_s = input_s1 - input_s0;
|
|
|
|
// null area
|
|
if ((output_full_range == 0) || (input_full_range == 0) ||
|
|
(output_sub_range == 0) || (input_s <= stbir__small_float))
|
|
return 0;
|
|
|
|
// are either of the ranges completely out of bounds?
|
|
if ((*output_offset >= output_full_range) || ((*output_offset + output_sub_range) <= 0) || (input_s0 >= (1.0f - stbir__small_float)) || (input_s1 <= stbir__small_float))
|
|
return 0;
|
|
|
|
output_range = (double)output_full_range;
|
|
input_range = (double)input_full_range;
|
|
|
|
output_s = ((double)output_sub_range) / output_range;
|
|
|
|
// figure out the scaling to use
|
|
ratio = output_s / input_s;
|
|
|
|
// save scale before clipping
|
|
scale = (output_range / input_range) * ratio;
|
|
scale_info->scale = (float)scale;
|
|
scale_info->inv_scale = (float)(1.0 / scale);
|
|
|
|
// clip output area to left/right output edges (and adjust input area)
|
|
stbir__clip(output_offset, &output_sub_range, output_full_range, &input_s0, &input_s1);
|
|
|
|
// recalc input area
|
|
input_s = input_s1 - input_s0;
|
|
|
|
// after clipping do we have zero input area?
|
|
if (input_s <= stbir__small_float)
|
|
return 0;
|
|
|
|
// calculate and store the starting source offsets in output pixel space
|
|
scale_info->pixel_shift = (float)(input_s0 * ratio * output_range);
|
|
|
|
scale_info->scale_is_rational = stbir__double_to_rational(scale, (scale <= 1.0) ? output_full_range : input_full_range, &scale_info->scale_numerator, &scale_info->scale_denominator, (scale >= 1.0));
|
|
|
|
scale_info->input_full_size = input_full_range;
|
|
scale_info->output_sub_size = output_sub_range;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void stbir__init_and_set_layout(STBIR_RESIZE *resize, stbir_pixel_layout pixel_layout, stbir_datatype data_type)
|
|
{
|
|
resize->input_cb = 0;
|
|
resize->output_cb = 0;
|
|
resize->user_data = resize;
|
|
resize->samplers = 0;
|
|
resize->called_alloc = 0;
|
|
resize->horizontal_filter = STBIR_FILTER_DEFAULT;
|
|
resize->horizontal_filter_kernel = 0;
|
|
resize->horizontal_filter_support = 0;
|
|
resize->vertical_filter = STBIR_FILTER_DEFAULT;
|
|
resize->vertical_filter_kernel = 0;
|
|
resize->vertical_filter_support = 0;
|
|
resize->horizontal_edge = STBIR_EDGE_CLAMP;
|
|
resize->vertical_edge = STBIR_EDGE_CLAMP;
|
|
resize->input_s0 = 0;
|
|
resize->input_t0 = 0;
|
|
resize->input_s1 = 1;
|
|
resize->input_t1 = 1;
|
|
resize->output_subx = 0;
|
|
resize->output_suby = 0;
|
|
resize->output_subw = resize->output_w;
|
|
resize->output_subh = resize->output_h;
|
|
resize->input_data_type = data_type;
|
|
resize->output_data_type = data_type;
|
|
resize->input_pixel_layout_public = pixel_layout;
|
|
resize->output_pixel_layout_public = pixel_layout;
|
|
resize->needs_rebuild = 1;
|
|
}
|
|
|
|
STBIRDEF void stbir_resize_init(STBIR_RESIZE *resize,
|
|
const void *input_pixels, int input_w, int input_h, int input_stride_in_bytes, // stride can be zero
|
|
void *output_pixels, int output_w, int output_h, int output_stride_in_bytes, // stride can be zero
|
|
stbir_pixel_layout pixel_layout, stbir_datatype data_type)
|
|
{
|
|
resize->input_pixels = input_pixels;
|
|
resize->input_w = input_w;
|
|
resize->input_h = input_h;
|
|
resize->input_stride_in_bytes = input_stride_in_bytes;
|
|
resize->output_pixels = output_pixels;
|
|
resize->output_w = output_w;
|
|
resize->output_h = output_h;
|
|
resize->output_stride_in_bytes = output_stride_in_bytes;
|
|
resize->fast_alpha = 0;
|
|
|
|
stbir__init_and_set_layout(resize, pixel_layout, data_type);
|
|
}
|
|
|
|
// You can update parameters any time after resize_init
|
|
STBIRDEF void stbir_set_datatypes(STBIR_RESIZE *resize, stbir_datatype input_type, stbir_datatype output_type) // by default, datatype from resize_init
|
|
{
|
|
resize->input_data_type = input_type;
|
|
resize->output_data_type = output_type;
|
|
if ((resize->samplers) && (!resize->needs_rebuild))
|
|
stbir__update_info_from_resize(resize->samplers, resize);
|
|
}
|
|
|
|
STBIRDEF void stbir_set_pixel_callbacks(STBIR_RESIZE *resize, stbir_input_callback *input_cb, stbir_output_callback *output_cb) // no callbacks by default
|
|
{
|
|
resize->input_cb = input_cb;
|
|
resize->output_cb = output_cb;
|
|
|
|
if ((resize->samplers) && (!resize->needs_rebuild))
|
|
{
|
|
resize->samplers->in_pixels_cb = input_cb;
|
|
resize->samplers->out_pixels_cb = output_cb;
|
|
}
|
|
}
|
|
|
|
STBIRDEF void stbir_set_user_data(STBIR_RESIZE *resize, void *user_data) // pass back STBIR_RESIZE* by default
|
|
{
|
|
resize->user_data = user_data;
|
|
if ((resize->samplers) && (!resize->needs_rebuild))
|
|
resize->samplers->user_data = user_data;
|
|
}
|
|
|
|
STBIRDEF void stbir_set_buffer_ptrs(STBIR_RESIZE *resize, const void *input_pixels, int input_stride_in_bytes, void *output_pixels, int output_stride_in_bytes)
|
|
{
|
|
resize->input_pixels = input_pixels;
|
|
resize->input_stride_in_bytes = input_stride_in_bytes;
|
|
resize->output_pixels = output_pixels;
|
|
resize->output_stride_in_bytes = output_stride_in_bytes;
|
|
if ((resize->samplers) && (!resize->needs_rebuild))
|
|
stbir__update_info_from_resize(resize->samplers, resize);
|
|
}
|
|
|
|
STBIRDEF int stbir_set_edgemodes(STBIR_RESIZE *resize, stbir_edge horizontal_edge, stbir_edge vertical_edge) // CLAMP by default
|
|
{
|
|
resize->horizontal_edge = horizontal_edge;
|
|
resize->vertical_edge = vertical_edge;
|
|
resize->needs_rebuild = 1;
|
|
return 1;
|
|
}
|
|
|
|
STBIRDEF int stbir_set_filters(STBIR_RESIZE *resize, stbir_filter horizontal_filter, stbir_filter vertical_filter) // STBIR_DEFAULT_FILTER_UPSAMPLE/DOWNSAMPLE by default
|
|
{
|
|
resize->horizontal_filter = horizontal_filter;
|
|
resize->vertical_filter = vertical_filter;
|
|
resize->needs_rebuild = 1;
|
|
return 1;
|
|
}
|
|
|
|
STBIRDEF int stbir_set_filter_callbacks(STBIR_RESIZE *resize, stbir__kernel_callback *horizontal_filter, stbir__support_callback *horizontal_support, stbir__kernel_callback *vertical_filter, stbir__support_callback *vertical_support)
|
|
{
|
|
resize->horizontal_filter_kernel = horizontal_filter;
|
|
resize->horizontal_filter_support = horizontal_support;
|
|
resize->vertical_filter_kernel = vertical_filter;
|
|
resize->vertical_filter_support = vertical_support;
|
|
resize->needs_rebuild = 1;
|
|
return 1;
|
|
}
|
|
|
|
STBIRDEF int stbir_set_pixel_layouts(STBIR_RESIZE *resize, stbir_pixel_layout input_pixel_layout, stbir_pixel_layout output_pixel_layout) // sets new pixel layouts
|
|
{
|
|
resize->input_pixel_layout_public = input_pixel_layout;
|
|
resize->output_pixel_layout_public = output_pixel_layout;
|
|
resize->needs_rebuild = 1;
|
|
return 1;
|
|
}
|
|
|
|
STBIRDEF int stbir_set_non_pm_alpha_speed_over_quality(STBIR_RESIZE *resize, int non_pma_alpha_speed_over_quality) // sets alpha speed
|
|
{
|
|
resize->fast_alpha = non_pma_alpha_speed_over_quality;
|
|
resize->needs_rebuild = 1;
|
|
return 1;
|
|
}
|
|
|
|
STBIRDEF int stbir_set_input_subrect(STBIR_RESIZE *resize, double s0, double t0, double s1, double t1) // sets input region (full region by default)
|
|
{
|
|
resize->input_s0 = s0;
|
|
resize->input_t0 = t0;
|
|
resize->input_s1 = s1;
|
|
resize->input_t1 = t1;
|
|
resize->needs_rebuild = 1;
|
|
|
|
// are we inbounds?
|
|
if ((s1 < stbir__small_float) || ((s1 - s0) < stbir__small_float) ||
|
|
(t1 < stbir__small_float) || ((t1 - t0) < stbir__small_float) ||
|
|
(s0 > (1.0f - stbir__small_float)) ||
|
|
(t0 > (1.0f - stbir__small_float)))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
STBIRDEF int stbir_set_output_pixel_subrect(STBIR_RESIZE *resize, int subx, int suby, int subw, int subh) // sets input region (full region by default)
|
|
{
|
|
resize->output_subx = subx;
|
|
resize->output_suby = suby;
|
|
resize->output_subw = subw;
|
|
resize->output_subh = subh;
|
|
resize->needs_rebuild = 1;
|
|
|
|
// are we inbounds?
|
|
if ((subx >= resize->output_w) || ((subx + subw) <= 0) || (suby >= resize->output_h) || ((suby + subh) <= 0) || (subw == 0) || (subh == 0))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
STBIRDEF int stbir_set_pixel_subrect(STBIR_RESIZE *resize, int subx, int suby, int subw, int subh) // sets both regions (full regions by default)
|
|
{
|
|
double s0, t0, s1, t1;
|
|
|
|
s0 = ((double)subx) / ((double)resize->output_w);
|
|
t0 = ((double)suby) / ((double)resize->output_h);
|
|
s1 = ((double)(subx + subw)) / ((double)resize->output_w);
|
|
t1 = ((double)(suby + subh)) / ((double)resize->output_h);
|
|
|
|
resize->input_s0 = s0;
|
|
resize->input_t0 = t0;
|
|
resize->input_s1 = s1;
|
|
resize->input_t1 = t1;
|
|
resize->output_subx = subx;
|
|
resize->output_suby = suby;
|
|
resize->output_subw = subw;
|
|
resize->output_subh = subh;
|
|
resize->needs_rebuild = 1;
|
|
|
|
// are we inbounds?
|
|
if ((subx >= resize->output_w) || ((subx + subw) <= 0) || (suby >= resize->output_h) || ((suby + subh) <= 0) || (subw == 0) || (subh == 0))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int stbir__perform_build(STBIR_RESIZE *resize, int splits)
|
|
{
|
|
stbir__contributors conservative = {0, 0};
|
|
stbir__sampler horizontal, vertical;
|
|
int new_output_subx, new_output_suby;
|
|
stbir__info *out_info;
|
|
#ifdef STBIR_PROFILE
|
|
stbir__info profile_infod; // used to contain building profile info before everything is allocated
|
|
stbir__info *profile_info = &profile_infod;
|
|
#endif
|
|
|
|
// have we already built the samplers?
|
|
if (resize->samplers)
|
|
return 0;
|
|
|
|
#define STBIR_RETURN_ERROR_AND_ASSERT(exp) \
|
|
STBIR_ASSERT(!(exp)); \
|
|
if (exp) \
|
|
return 0;
|
|
STBIR_RETURN_ERROR_AND_ASSERT((unsigned)resize->horizontal_filter >= STBIR_FILTER_OTHER)
|
|
STBIR_RETURN_ERROR_AND_ASSERT((unsigned)resize->vertical_filter >= STBIR_FILTER_OTHER)
|
|
#undef STBIR_RETURN_ERROR_AND_ASSERT
|
|
|
|
if (splits <= 0)
|
|
return 0;
|
|
|
|
STBIR_PROFILE_BUILD_FIRST_START(build);
|
|
|
|
new_output_subx = resize->output_subx;
|
|
new_output_suby = resize->output_suby;
|
|
|
|
// do horizontal clip and scale calcs
|
|
if (!stbir__calculate_region_transform(&horizontal.scale_info, resize->output_w, &new_output_subx, resize->output_subw, resize->input_w, resize->input_s0, resize->input_s1))
|
|
return 0;
|
|
|
|
// do vertical clip and scale calcs
|
|
if (!stbir__calculate_region_transform(&vertical.scale_info, resize->output_h, &new_output_suby, resize->output_subh, resize->input_h, resize->input_t0, resize->input_t1))
|
|
return 0;
|
|
|
|
// if nothing to do, just return
|
|
if ((horizontal.scale_info.output_sub_size == 0) || (vertical.scale_info.output_sub_size == 0))
|
|
return 0;
|
|
|
|
stbir__set_sampler(&horizontal, resize->horizontal_filter, resize->horizontal_filter_kernel, resize->horizontal_filter_support, resize->horizontal_edge, &horizontal.scale_info, 1, resize->user_data);
|
|
stbir__get_conservative_extents(&horizontal, &conservative, resize->user_data);
|
|
stbir__set_sampler(&vertical, resize->vertical_filter, resize->horizontal_filter_kernel, resize->vertical_filter_support, resize->vertical_edge, &vertical.scale_info, 0, resize->user_data);
|
|
|
|
if ((vertical.scale_info.output_sub_size / splits) < STBIR_FORCE_MINIMUM_SCANLINES_FOR_SPLITS) // each split should be a minimum of 4 scanlines (handwavey choice)
|
|
{
|
|
splits = vertical.scale_info.output_sub_size / STBIR_FORCE_MINIMUM_SCANLINES_FOR_SPLITS;
|
|
if (splits == 0)
|
|
splits = 1;
|
|
}
|
|
|
|
STBIR_PROFILE_BUILD_START(alloc);
|
|
out_info = stbir__alloc_internal_mem_and_build_samplers(&horizontal, &vertical, &conservative, resize->input_pixel_layout_public, resize->output_pixel_layout_public, splits, new_output_subx, new_output_suby, resize->fast_alpha, resize->user_data STBIR_ONLY_PROFILE_BUILD_SET_INFO);
|
|
STBIR_PROFILE_BUILD_END(alloc);
|
|
STBIR_PROFILE_BUILD_END(build);
|
|
|
|
if (out_info)
|
|
{
|
|
resize->splits = splits;
|
|
resize->samplers = out_info;
|
|
resize->needs_rebuild = 0;
|
|
#ifdef STBIR_PROFILE
|
|
STBIR_MEMCPY(&out_info->profile, &profile_infod.profile, sizeof(out_info->profile));
|
|
#endif
|
|
|
|
// update anything that can be changed without recalcing samplers
|
|
stbir__update_info_from_resize(out_info, resize);
|
|
|
|
return splits;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void stbir_free_samplers(STBIR_RESIZE *resize)
|
|
{
|
|
if (resize->samplers)
|
|
{
|
|
stbir__free_internal_mem(resize->samplers);
|
|
resize->samplers = 0;
|
|
resize->called_alloc = 0;
|
|
}
|
|
}
|
|
|
|
STBIRDEF int stbir_build_samplers_with_splits(STBIR_RESIZE *resize, int splits)
|
|
{
|
|
if ((resize->samplers == 0) || (resize->needs_rebuild))
|
|
{
|
|
if (resize->samplers)
|
|
stbir_free_samplers(resize);
|
|
|
|
resize->called_alloc = 1;
|
|
return stbir__perform_build(resize, splits);
|
|
}
|
|
|
|
STBIR_PROFILE_BUILD_CLEAR(resize->samplers);
|
|
|
|
return 1;
|
|
}
|
|
|
|
STBIRDEF int stbir_build_samplers(STBIR_RESIZE *resize)
|
|
{
|
|
return stbir_build_samplers_with_splits(resize, 1);
|
|
}
|
|
|
|
STBIRDEF int stbir_resize_extended(STBIR_RESIZE *resize)
|
|
{
|
|
int result;
|
|
|
|
if ((resize->samplers == 0) || (resize->needs_rebuild))
|
|
{
|
|
int alloc_state = resize->called_alloc; // remember allocated state
|
|
|
|
if (resize->samplers)
|
|
{
|
|
stbir__free_internal_mem(resize->samplers);
|
|
resize->samplers = 0;
|
|
}
|
|
|
|
if (!stbir_build_samplers(resize))
|
|
return 0;
|
|
|
|
resize->called_alloc = alloc_state;
|
|
|
|
// if build_samplers succeeded (above), but there are no samplers set, then
|
|
// the area to stretch into was zero pixels, so don't do anything and return
|
|
// success
|
|
if (resize->samplers == 0)
|
|
return 1;
|
|
}
|
|
else
|
|
{
|
|
// didn't build anything - clear it
|
|
STBIR_PROFILE_BUILD_CLEAR(resize->samplers);
|
|
}
|
|
|
|
// do resize
|
|
result = stbir__perform_resize(resize->samplers, 0, resize->splits);
|
|
|
|
// if we alloced, then free
|
|
if (!resize->called_alloc)
|
|
{
|
|
stbir_free_samplers(resize);
|
|
resize->samplers = 0;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
STBIRDEF int stbir_resize_extended_split(STBIR_RESIZE *resize, int split_start, int split_count)
|
|
{
|
|
STBIR_ASSERT(resize->samplers);
|
|
|
|
// if we're just doing the whole thing, call full
|
|
if ((split_start == -1) || ((split_start == 0) && (split_count == resize->splits)))
|
|
return stbir_resize_extended(resize);
|
|
|
|
// you **must** build samplers first when using split resize
|
|
if ((resize->samplers == 0) || (resize->needs_rebuild))
|
|
return 0;
|
|
|
|
if ((split_start >= resize->splits) || (split_start < 0) || ((split_start + split_count) > resize->splits) || (split_count <= 0))
|
|
return 0;
|
|
|
|
// do resize
|
|
return stbir__perform_resize(resize->samplers, split_start, split_count);
|
|
}
|
|
|
|
static int stbir__check_output_stuff(void **ret_ptr, int *ret_pitch, void *output_pixels, int type_size, int output_w, int output_h, int output_stride_in_bytes, stbir_internal_pixel_layout pixel_layout)
|
|
{
|
|
size_t size;
|
|
int pitch;
|
|
void *ptr;
|
|
|
|
pitch = output_w * type_size * stbir__pixel_channels[pixel_layout];
|
|
if (pitch == 0)
|
|
return 0;
|
|
|
|
if (output_stride_in_bytes == 0)
|
|
output_stride_in_bytes = pitch;
|
|
|
|
if (output_stride_in_bytes < pitch)
|
|
return 0;
|
|
|
|
size = (size_t)output_stride_in_bytes * (size_t)output_h;
|
|
if (size == 0)
|
|
return 0;
|
|
|
|
*ret_ptr = 0;
|
|
*ret_pitch = output_stride_in_bytes;
|
|
|
|
if (output_pixels == 0)
|
|
{
|
|
ptr = STBIR_MALLOC(size, 0);
|
|
if (ptr == 0)
|
|
return 0;
|
|
|
|
*ret_ptr = ptr;
|
|
*ret_pitch = pitch;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
STBIRDEF unsigned char *stbir_resize_uint8_linear(const unsigned char *input_pixels, int input_w, int input_h, int input_stride_in_bytes,
|
|
unsigned char *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
stbir_pixel_layout pixel_layout)
|
|
{
|
|
STBIR_RESIZE resize;
|
|
unsigned char *optr;
|
|
int opitch;
|
|
|
|
if (!stbir__check_output_stuff((void **)&optr, &opitch, output_pixels, sizeof(unsigned char), output_w, output_h, output_stride_in_bytes, stbir__pixel_layout_convert_public_to_internal[pixel_layout]))
|
|
return 0;
|
|
|
|
stbir_resize_init(&resize,
|
|
input_pixels, input_w, input_h, input_stride_in_bytes,
|
|
(optr) ? optr : output_pixels, output_w, output_h, opitch,
|
|
pixel_layout, STBIR_TYPE_UINT8);
|
|
|
|
if (!stbir_resize_extended(&resize))
|
|
{
|
|
if (optr)
|
|
STBIR_FREE(optr, 0);
|
|
return 0;
|
|
}
|
|
|
|
return (optr) ? optr : output_pixels;
|
|
}
|
|
|
|
STBIRDEF unsigned char *stbir_resize_uint8_srgb(const unsigned char *input_pixels, int input_w, int input_h, int input_stride_in_bytes,
|
|
unsigned char *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
stbir_pixel_layout pixel_layout)
|
|
{
|
|
STBIR_RESIZE resize;
|
|
unsigned char *optr;
|
|
int opitch;
|
|
|
|
if (!stbir__check_output_stuff((void **)&optr, &opitch, output_pixels, sizeof(unsigned char), output_w, output_h, output_stride_in_bytes, stbir__pixel_layout_convert_public_to_internal[pixel_layout]))
|
|
return 0;
|
|
|
|
stbir_resize_init(&resize,
|
|
input_pixels, input_w, input_h, input_stride_in_bytes,
|
|
(optr) ? optr : output_pixels, output_w, output_h, opitch,
|
|
pixel_layout, STBIR_TYPE_UINT8_SRGB);
|
|
|
|
if (!stbir_resize_extended(&resize))
|
|
{
|
|
if (optr)
|
|
STBIR_FREE(optr, 0);
|
|
return 0;
|
|
}
|
|
|
|
return (optr) ? optr : output_pixels;
|
|
}
|
|
|
|
STBIRDEF float *stbir_resize_float_linear(const float *input_pixels, int input_w, int input_h, int input_stride_in_bytes,
|
|
float *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
stbir_pixel_layout pixel_layout)
|
|
{
|
|
STBIR_RESIZE resize;
|
|
float *optr;
|
|
int opitch;
|
|
|
|
if (!stbir__check_output_stuff((void **)&optr, &opitch, output_pixels, sizeof(float), output_w, output_h, output_stride_in_bytes, stbir__pixel_layout_convert_public_to_internal[pixel_layout]))
|
|
return 0;
|
|
|
|
stbir_resize_init(&resize,
|
|
input_pixels, input_w, input_h, input_stride_in_bytes,
|
|
(optr) ? optr : output_pixels, output_w, output_h, opitch,
|
|
pixel_layout, STBIR_TYPE_FLOAT);
|
|
|
|
if (!stbir_resize_extended(&resize))
|
|
{
|
|
if (optr)
|
|
STBIR_FREE(optr, 0);
|
|
return 0;
|
|
}
|
|
|
|
return (optr) ? optr : output_pixels;
|
|
}
|
|
|
|
STBIRDEF void *stbir_resize(const void *input_pixels, int input_w, int input_h, int input_stride_in_bytes,
|
|
void *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
stbir_pixel_layout pixel_layout, stbir_datatype data_type,
|
|
stbir_edge edge, stbir_filter filter)
|
|
{
|
|
STBIR_RESIZE resize;
|
|
float *optr;
|
|
int opitch;
|
|
|
|
if (!stbir__check_output_stuff((void **)&optr, &opitch, output_pixels, stbir__type_size[data_type], output_w, output_h, output_stride_in_bytes, stbir__pixel_layout_convert_public_to_internal[pixel_layout]))
|
|
return 0;
|
|
|
|
stbir_resize_init(&resize,
|
|
input_pixels, input_w, input_h, input_stride_in_bytes,
|
|
(optr) ? optr : output_pixels, output_w, output_h, output_stride_in_bytes,
|
|
pixel_layout, data_type);
|
|
|
|
resize.horizontal_edge = edge;
|
|
resize.vertical_edge = edge;
|
|
resize.horizontal_filter = filter;
|
|
resize.vertical_filter = filter;
|
|
|
|
if (!stbir_resize_extended(&resize))
|
|
{
|
|
if (optr)
|
|
STBIR_FREE(optr, 0);
|
|
return 0;
|
|
}
|
|
|
|
return (optr) ? optr : output_pixels;
|
|
}
|
|
|
|
#ifdef STBIR_PROFILE
|
|
|
|
STBIRDEF void stbir_resize_build_profile_info(STBIR_PROFILE_INFO *info, STBIR_RESIZE const *resize)
|
|
{
|
|
static char const *bdescriptions[6] = {"Building", "Allocating", "Horizontal sampler", "Vertical sampler", "Coefficient cleanup", "Coefficient piovot"};
|
|
stbir__info *samp = resize->samplers;
|
|
int i;
|
|
|
|
typedef int testa[(STBIR__ARRAY_SIZE(bdescriptions) == (STBIR__ARRAY_SIZE(samp->profile.array) - 1)) ? 1 : -1];
|
|
typedef int testb[(sizeof(samp->profile.array) == (sizeof(samp->profile.named))) ? 1 : -1];
|
|
typedef int testc[(sizeof(info->clocks) >= (sizeof(samp->profile.named))) ? 1 : -1];
|
|
|
|
for (i = 0; i < STBIR__ARRAY_SIZE(bdescriptions); i++)
|
|
info->clocks[i] = samp->profile.array[i + 1];
|
|
|
|
info->total_clocks = samp->profile.named.total;
|
|
info->descriptions = bdescriptions;
|
|
info->count = STBIR__ARRAY_SIZE(bdescriptions);
|
|
}
|
|
|
|
STBIRDEF void stbir_resize_split_profile_info(STBIR_PROFILE_INFO *info, STBIR_RESIZE const *resize, int split_start, int split_count)
|
|
{
|
|
static char const *descriptions[7] = {"Looping", "Vertical sampling", "Horizontal sampling", "Scanline input", "Scanline output", "Alpha weighting", "Alpha unweighting"};
|
|
stbir__per_split_info *split_info;
|
|
int s, i;
|
|
|
|
typedef int testa[(STBIR__ARRAY_SIZE(descriptions) == (STBIR__ARRAY_SIZE(split_info->profile.array) - 1)) ? 1 : -1];
|
|
typedef int testb[(sizeof(split_info->profile.array) == (sizeof(split_info->profile.named))) ? 1 : -1];
|
|
typedef int testc[(sizeof(info->clocks) >= (sizeof(split_info->profile.named))) ? 1 : -1];
|
|
|
|
if (split_start == -1)
|
|
{
|
|
split_start = 0;
|
|
split_count = resize->samplers->splits;
|
|
}
|
|
|
|
if ((split_start >= resize->splits) || (split_start < 0) || ((split_start + split_count) > resize->splits) || (split_count <= 0))
|
|
{
|
|
info->total_clocks = 0;
|
|
info->descriptions = 0;
|
|
info->count = 0;
|
|
return;
|
|
}
|
|
|
|
split_info = resize->samplers->split_info + split_start;
|
|
|
|
// sum up the profile from all the splits
|
|
for (i = 0; i < STBIR__ARRAY_SIZE(descriptions); i++)
|
|
{
|
|
stbir_uint64 sum = 0;
|
|
for (s = 0; s < split_count; s++)
|
|
sum += split_info[s].profile.array[i + 1];
|
|
info->clocks[i] = sum;
|
|
}
|
|
|
|
info->total_clocks = split_info->profile.named.total;
|
|
info->descriptions = descriptions;
|
|
info->count = STBIR__ARRAY_SIZE(descriptions);
|
|
}
|
|
|
|
STBIRDEF void stbir_resize_extended_profile_info(STBIR_PROFILE_INFO *info, STBIR_RESIZE const *resize)
|
|
{
|
|
stbir_resize_split_profile_info(info, resize, -1, 0);
|
|
}
|
|
|
|
#endif // STBIR_PROFILE
|
|
|
|
#undef STBIR_BGR
|
|
#undef STBIR_1CHANNEL
|
|
#undef STBIR_2CHANNEL
|
|
#undef STBIR_RGB
|
|
#undef STBIR_RGBA
|
|
#undef STBIR_4CHANNEL
|
|
#undef STBIR_BGRA
|
|
#undef STBIR_ARGB
|
|
#undef STBIR_ABGR
|
|
#undef STBIR_RA
|
|
#undef STBIR_AR
|
|
#undef STBIR_RGBA_PM
|
|
#undef STBIR_BGRA_PM
|
|
#undef STBIR_ARGB_PM
|
|
#undef STBIR_ABGR_PM
|
|
#undef STBIR_RA_PM
|
|
#undef STBIR_AR_PM
|
|
|
|
#endif // STB_IMAGE_RESIZE_IMPLEMENTATION
|
|
|
|
#else // STB_IMAGE_RESIZE_HORIZONTALS&STB_IMAGE_RESIZE_DO_VERTICALS
|
|
|
|
// we reinclude the header file to define all the horizontal functions
|
|
// specializing each function for the number of coeffs is 20-40% faster *OVERALL*
|
|
|
|
// by including the header file again this way, we can still debug the functions
|
|
|
|
#define STBIR_strs_join2(start, mid, end) start##mid##end
|
|
#define STBIR_strs_join1(start, mid, end) STBIR_strs_join2(start, mid, end)
|
|
|
|
#define STBIR_strs_join24(start, mid1, mid2, end) start##mid1##mid2##end
|
|
#define STBIR_strs_join14(start, mid1, mid2, end) STBIR_strs_join24(start, mid1, mid2, end)
|
|
|
|
#ifdef STB_IMAGE_RESIZE_DO_CODERS
|
|
|
|
#ifdef stbir__decode_suffix
|
|
#define STBIR__CODER_NAME(name) STBIR_strs_join1(name, _, stbir__decode_suffix)
|
|
#else
|
|
#define STBIR__CODER_NAME(name) name
|
|
#endif
|
|
|
|
#ifdef stbir__decode_swizzle
|
|
#define stbir__decode_simdf8_flip(reg) STBIR_strs_join1(STBIR_strs_join1(STBIR_strs_join1(STBIR_strs_join1(stbir__simdf8_0123to, stbir__decode_order0, stbir__decode_order1), stbir__decode_order2, stbir__decode_order3), stbir__decode_order0, stbir__decode_order1), stbir__decode_order2, stbir__decode_order3)(reg, reg)
|
|
#define stbir__decode_simdf4_flip(reg) STBIR_strs_join1(STBIR_strs_join1(stbir__simdf_0123to, stbir__decode_order0, stbir__decode_order1), stbir__decode_order2, stbir__decode_order3)(reg, reg)
|
|
#define stbir__encode_simdf8_unflip(reg) STBIR_strs_join1(STBIR_strs_join1(STBIR_strs_join1(STBIR_strs_join1(stbir__simdf8_0123to, stbir__encode_order0, stbir__encode_order1), stbir__encode_order2, stbir__encode_order3), stbir__encode_order0, stbir__encode_order1), stbir__encode_order2, stbir__encode_order3)(reg, reg)
|
|
#define stbir__encode_simdf4_unflip(reg) STBIR_strs_join1(STBIR_strs_join1(stbir__simdf_0123to, stbir__encode_order0, stbir__encode_order1), stbir__encode_order2, stbir__encode_order3)(reg, reg)
|
|
#else
|
|
#define stbir__decode_order0 0
|
|
#define stbir__decode_order1 1
|
|
#define stbir__decode_order2 2
|
|
#define stbir__decode_order3 3
|
|
#define stbir__encode_order0 0
|
|
#define stbir__encode_order1 1
|
|
#define stbir__encode_order2 2
|
|
#define stbir__encode_order3 3
|
|
#define stbir__decode_simdf8_flip(reg)
|
|
#define stbir__decode_simdf4_flip(reg)
|
|
#define stbir__encode_simdf8_unflip(reg)
|
|
#define stbir__encode_simdf4_unflip(reg)
|
|
#endif
|
|
|
|
#ifdef STBIR_SIMD8
|
|
#define stbir__encode_simdfX_unflip stbir__encode_simdf8_unflip
|
|
#else
|
|
#define stbir__encode_simdfX_unflip stbir__encode_simdf4_unflip
|
|
#endif
|
|
|
|
static float *STBIR__CODER_NAME(stbir__decode_uint8_linear_scaled)(float *decodep, int width_times_channels, void const *inputp)
|
|
{
|
|
float STBIR_STREAMOUT_PTR(*) decode = decodep;
|
|
float *decode_end = (float *)decode + width_times_channels;
|
|
unsigned char const *input = (unsigned char const *)inputp;
|
|
|
|
#ifdef STBIR_SIMD
|
|
unsigned char const *end_input_m16 = input + width_times_channels - 16;
|
|
if (width_times_channels >= 16)
|
|
{
|
|
decode_end -= 16;
|
|
STBIR_NO_UNROLL_LOOP_START_INF_FOR
|
|
for (;;)
|
|
{
|
|
#ifdef STBIR_SIMD8
|
|
stbir__simdi i;
|
|
stbir__simdi8 o0, o1;
|
|
stbir__simdf8 of0, of1;
|
|
STBIR_NO_UNROLL(decode);
|
|
stbir__simdi_load(i, input);
|
|
stbir__simdi8_expand_u8_to_u32(o0, o1, i);
|
|
stbir__simdi8_convert_i32_to_float(of0, o0);
|
|
stbir__simdi8_convert_i32_to_float(of1, o1);
|
|
stbir__simdf8_mult(of0, of0, STBIR_max_uint8_as_float_inverted8);
|
|
stbir__simdf8_mult(of1, of1, STBIR_max_uint8_as_float_inverted8);
|
|
stbir__decode_simdf8_flip(of0);
|
|
stbir__decode_simdf8_flip(of1);
|
|
stbir__simdf8_store(decode + 0, of0);
|
|
stbir__simdf8_store(decode + 8, of1);
|
|
#else
|
|
stbir__simdi i, o0, o1, o2, o3;
|
|
stbir__simdf of0, of1, of2, of3;
|
|
STBIR_NO_UNROLL(decode);
|
|
stbir__simdi_load(i, input);
|
|
stbir__simdi_expand_u8_to_u32(o0, o1, o2, o3, i);
|
|
stbir__simdi_convert_i32_to_float(of0, o0);
|
|
stbir__simdi_convert_i32_to_float(of1, o1);
|
|
stbir__simdi_convert_i32_to_float(of2, o2);
|
|
stbir__simdi_convert_i32_to_float(of3, o3);
|
|
stbir__simdf_mult(of0, of0, STBIR__CONSTF(STBIR_max_uint8_as_float_inverted));
|
|
stbir__simdf_mult(of1, of1, STBIR__CONSTF(STBIR_max_uint8_as_float_inverted));
|
|
stbir__simdf_mult(of2, of2, STBIR__CONSTF(STBIR_max_uint8_as_float_inverted));
|
|
stbir__simdf_mult(of3, of3, STBIR__CONSTF(STBIR_max_uint8_as_float_inverted));
|
|
stbir__decode_simdf4_flip(of0);
|
|
stbir__decode_simdf4_flip(of1);
|
|
stbir__decode_simdf4_flip(of2);
|
|
stbir__decode_simdf4_flip(of3);
|
|
stbir__simdf_store(decode + 0, of0);
|
|
stbir__simdf_store(decode + 4, of1);
|
|
stbir__simdf_store(decode + 8, of2);
|
|
stbir__simdf_store(decode + 12, of3);
|
|
#endif
|
|
decode += 16;
|
|
input += 16;
|
|
if (decode <= decode_end)
|
|
continue;
|
|
if (decode == (decode_end + 16))
|
|
break;
|
|
decode = decode_end; // backup and do last couple
|
|
input = end_input_m16;
|
|
}
|
|
return decode_end + 16;
|
|
}
|
|
#endif
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
decode += 4;
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
while (decode <= decode_end)
|
|
{
|
|
STBIR_SIMD_NO_UNROLL(decode);
|
|
decode[0 - 4] = ((float)(input[stbir__decode_order0])) * stbir__max_uint8_as_float_inverted;
|
|
decode[1 - 4] = ((float)(input[stbir__decode_order1])) * stbir__max_uint8_as_float_inverted;
|
|
decode[2 - 4] = ((float)(input[stbir__decode_order2])) * stbir__max_uint8_as_float_inverted;
|
|
decode[3 - 4] = ((float)(input[stbir__decode_order3])) * stbir__max_uint8_as_float_inverted;
|
|
decode += 4;
|
|
input += 4;
|
|
}
|
|
decode -= 4;
|
|
#endif
|
|
|
|
// do the remnants
|
|
#if stbir__coder_min_num < 4
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
while (decode < decode_end)
|
|
{
|
|
STBIR_NO_UNROLL(decode);
|
|
decode[0] = ((float)(input[stbir__decode_order0])) * stbir__max_uint8_as_float_inverted;
|
|
#if stbir__coder_min_num >= 2
|
|
decode[1] = ((float)(input[stbir__decode_order1])) * stbir__max_uint8_as_float_inverted;
|
|
#endif
|
|
#if stbir__coder_min_num >= 3
|
|
decode[2] = ((float)(input[stbir__decode_order2])) * stbir__max_uint8_as_float_inverted;
|
|
#endif
|
|
decode += stbir__coder_min_num;
|
|
input += stbir__coder_min_num;
|
|
}
|
|
#endif
|
|
|
|
return decode_end;
|
|
}
|
|
|
|
static void STBIR__CODER_NAME(stbir__encode_uint8_linear_scaled)(void *outputp, int width_times_channels, float const *encode)
|
|
{
|
|
unsigned char STBIR_SIMD_STREAMOUT_PTR(*) output = (unsigned char *)outputp;
|
|
unsigned char *end_output = ((unsigned char *)output) + width_times_channels;
|
|
|
|
#ifdef STBIR_SIMD
|
|
if (width_times_channels >= stbir__simdfX_float_count * 2)
|
|
{
|
|
float const *end_encode_m8 = encode + width_times_channels - stbir__simdfX_float_count * 2;
|
|
end_output -= stbir__simdfX_float_count * 2;
|
|
STBIR_NO_UNROLL_LOOP_START_INF_FOR
|
|
for (;;)
|
|
{
|
|
stbir__simdfX e0, e1;
|
|
stbir__simdi i;
|
|
STBIR_SIMD_NO_UNROLL(encode);
|
|
stbir__simdfX_madd_mem(e0, STBIR_simd_point5X, STBIR_max_uint8_as_floatX, encode);
|
|
stbir__simdfX_madd_mem(e1, STBIR_simd_point5X, STBIR_max_uint8_as_floatX, encode + stbir__simdfX_float_count);
|
|
stbir__encode_simdfX_unflip(e0);
|
|
stbir__encode_simdfX_unflip(e1);
|
|
#ifdef STBIR_SIMD8
|
|
stbir__simdf8_pack_to_16bytes(i, e0, e1);
|
|
stbir__simdi_store(output, i);
|
|
#else
|
|
stbir__simdf_pack_to_8bytes(i, e0, e1);
|
|
stbir__simdi_store2(output, i);
|
|
#endif
|
|
encode += stbir__simdfX_float_count * 2;
|
|
output += stbir__simdfX_float_count * 2;
|
|
if (output <= end_output)
|
|
continue;
|
|
if (output == (end_output + stbir__simdfX_float_count * 2))
|
|
break;
|
|
output = end_output; // backup and do last couple
|
|
encode = end_encode_m8;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
output += 4;
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
while (output <= end_output)
|
|
{
|
|
stbir__simdf e0;
|
|
stbir__simdi i0;
|
|
STBIR_NO_UNROLL(encode);
|
|
stbir__simdf_load(e0, encode);
|
|
stbir__simdf_madd(e0, STBIR__CONSTF(STBIR_simd_point5), STBIR__CONSTF(STBIR_max_uint8_as_float), e0);
|
|
stbir__encode_simdf4_unflip(e0);
|
|
stbir__simdf_pack_to_8bytes(i0, e0, e0); // only use first 4
|
|
*(int *)(output - 4) = stbir__simdi_to_int(i0);
|
|
output += 4;
|
|
encode += 4;
|
|
}
|
|
output -= 4;
|
|
#endif
|
|
|
|
// do the remnants
|
|
#if stbir__coder_min_num < 4
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
while (output < end_output)
|
|
{
|
|
stbir__simdf e0;
|
|
STBIR_NO_UNROLL(encode);
|
|
stbir__simdf_madd1_mem(e0, STBIR__CONSTF(STBIR_simd_point5), STBIR__CONSTF(STBIR_max_uint8_as_float), encode + stbir__encode_order0);
|
|
output[0] = stbir__simdf_convert_float_to_uint8(e0);
|
|
#if stbir__coder_min_num >= 2
|
|
stbir__simdf_madd1_mem(e0, STBIR__CONSTF(STBIR_simd_point5), STBIR__CONSTF(STBIR_max_uint8_as_float), encode + stbir__encode_order1);
|
|
output[1] = stbir__simdf_convert_float_to_uint8(e0);
|
|
#endif
|
|
#if stbir__coder_min_num >= 3
|
|
stbir__simdf_madd1_mem(e0, STBIR__CONSTF(STBIR_simd_point5), STBIR__CONSTF(STBIR_max_uint8_as_float), encode + stbir__encode_order2);
|
|
output[2] = stbir__simdf_convert_float_to_uint8(e0);
|
|
#endif
|
|
output += stbir__coder_min_num;
|
|
encode += stbir__coder_min_num;
|
|
}
|
|
#endif
|
|
|
|
#else
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
output += 4;
|
|
while (output <= end_output)
|
|
{
|
|
float f;
|
|
f = encode[stbir__encode_order0] * stbir__max_uint8_as_float + 0.5f;
|
|
STBIR_CLAMP(f, 0, 255);
|
|
output[0 - 4] = (unsigned char)f;
|
|
f = encode[stbir__encode_order1] * stbir__max_uint8_as_float + 0.5f;
|
|
STBIR_CLAMP(f, 0, 255);
|
|
output[1 - 4] = (unsigned char)f;
|
|
f = encode[stbir__encode_order2] * stbir__max_uint8_as_float + 0.5f;
|
|
STBIR_CLAMP(f, 0, 255);
|
|
output[2 - 4] = (unsigned char)f;
|
|
f = encode[stbir__encode_order3] * stbir__max_uint8_as_float + 0.5f;
|
|
STBIR_CLAMP(f, 0, 255);
|
|
output[3 - 4] = (unsigned char)f;
|
|
output += 4;
|
|
encode += 4;
|
|
}
|
|
output -= 4;
|
|
#endif
|
|
|
|
// do the remnants
|
|
#if stbir__coder_min_num < 4
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
while (output < end_output)
|
|
{
|
|
float f;
|
|
STBIR_NO_UNROLL(encode);
|
|
f = encode[stbir__encode_order0] * stbir__max_uint8_as_float + 0.5f;
|
|
STBIR_CLAMP(f, 0, 255);
|
|
output[0] = (unsigned char)f;
|
|
#if stbir__coder_min_num >= 2
|
|
f = encode[stbir__encode_order1] * stbir__max_uint8_as_float + 0.5f;
|
|
STBIR_CLAMP(f, 0, 255);
|
|
output[1] = (unsigned char)f;
|
|
#endif
|
|
#if stbir__coder_min_num >= 3
|
|
f = encode[stbir__encode_order2] * stbir__max_uint8_as_float + 0.5f;
|
|
STBIR_CLAMP(f, 0, 255);
|
|
output[2] = (unsigned char)f;
|
|
#endif
|
|
output += stbir__coder_min_num;
|
|
encode += stbir__coder_min_num;
|
|
}
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
static float *STBIR__CODER_NAME(stbir__decode_uint8_linear)(float *decodep, int width_times_channels, void const *inputp)
|
|
{
|
|
float STBIR_STREAMOUT_PTR(*) decode = decodep;
|
|
float *decode_end = (float *)decode + width_times_channels;
|
|
unsigned char const *input = (unsigned char const *)inputp;
|
|
|
|
#ifdef STBIR_SIMD
|
|
unsigned char const *end_input_m16 = input + width_times_channels - 16;
|
|
if (width_times_channels >= 16)
|
|
{
|
|
decode_end -= 16;
|
|
STBIR_NO_UNROLL_LOOP_START_INF_FOR
|
|
for (;;)
|
|
{
|
|
#ifdef STBIR_SIMD8
|
|
stbir__simdi i;
|
|
stbir__simdi8 o0, o1;
|
|
stbir__simdf8 of0, of1;
|
|
STBIR_NO_UNROLL(decode);
|
|
stbir__simdi_load(i, input);
|
|
stbir__simdi8_expand_u8_to_u32(o0, o1, i);
|
|
stbir__simdi8_convert_i32_to_float(of0, o0);
|
|
stbir__simdi8_convert_i32_to_float(of1, o1);
|
|
stbir__decode_simdf8_flip(of0);
|
|
stbir__decode_simdf8_flip(of1);
|
|
stbir__simdf8_store(decode + 0, of0);
|
|
stbir__simdf8_store(decode + 8, of1);
|
|
#else
|
|
stbir__simdi i, o0, o1, o2, o3;
|
|
stbir__simdf of0, of1, of2, of3;
|
|
STBIR_NO_UNROLL(decode);
|
|
stbir__simdi_load(i, input);
|
|
stbir__simdi_expand_u8_to_u32(o0, o1, o2, o3, i);
|
|
stbir__simdi_convert_i32_to_float(of0, o0);
|
|
stbir__simdi_convert_i32_to_float(of1, o1);
|
|
stbir__simdi_convert_i32_to_float(of2, o2);
|
|
stbir__simdi_convert_i32_to_float(of3, o3);
|
|
stbir__decode_simdf4_flip(of0);
|
|
stbir__decode_simdf4_flip(of1);
|
|
stbir__decode_simdf4_flip(of2);
|
|
stbir__decode_simdf4_flip(of3);
|
|
stbir__simdf_store(decode + 0, of0);
|
|
stbir__simdf_store(decode + 4, of1);
|
|
stbir__simdf_store(decode + 8, of2);
|
|
stbir__simdf_store(decode + 12, of3);
|
|
#endif
|
|
decode += 16;
|
|
input += 16;
|
|
if (decode <= decode_end)
|
|
continue;
|
|
if (decode == (decode_end + 16))
|
|
break;
|
|
decode = decode_end; // backup and do last couple
|
|
input = end_input_m16;
|
|
}
|
|
return decode_end + 16;
|
|
}
|
|
#endif
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
decode += 4;
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
while (decode <= decode_end)
|
|
{
|
|
STBIR_SIMD_NO_UNROLL(decode);
|
|
decode[0 - 4] = ((float)(input[stbir__decode_order0]));
|
|
decode[1 - 4] = ((float)(input[stbir__decode_order1]));
|
|
decode[2 - 4] = ((float)(input[stbir__decode_order2]));
|
|
decode[3 - 4] = ((float)(input[stbir__decode_order3]));
|
|
decode += 4;
|
|
input += 4;
|
|
}
|
|
decode -= 4;
|
|
#endif
|
|
|
|
// do the remnants
|
|
#if stbir__coder_min_num < 4
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
while (decode < decode_end)
|
|
{
|
|
STBIR_NO_UNROLL(decode);
|
|
decode[0] = ((float)(input[stbir__decode_order0]));
|
|
#if stbir__coder_min_num >= 2
|
|
decode[1] = ((float)(input[stbir__decode_order1]));
|
|
#endif
|
|
#if stbir__coder_min_num >= 3
|
|
decode[2] = ((float)(input[stbir__decode_order2]));
|
|
#endif
|
|
decode += stbir__coder_min_num;
|
|
input += stbir__coder_min_num;
|
|
}
|
|
#endif
|
|
return decode_end;
|
|
}
|
|
|
|
static void STBIR__CODER_NAME(stbir__encode_uint8_linear)(void *outputp, int width_times_channels, float const *encode)
|
|
{
|
|
unsigned char STBIR_SIMD_STREAMOUT_PTR(*) output = (unsigned char *)outputp;
|
|
unsigned char *end_output = ((unsigned char *)output) + width_times_channels;
|
|
|
|
#ifdef STBIR_SIMD
|
|
if (width_times_channels >= stbir__simdfX_float_count * 2)
|
|
{
|
|
float const *end_encode_m8 = encode + width_times_channels - stbir__simdfX_float_count * 2;
|
|
end_output -= stbir__simdfX_float_count * 2;
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR
|
|
for (;;)
|
|
{
|
|
stbir__simdfX e0, e1;
|
|
stbir__simdi i;
|
|
STBIR_SIMD_NO_UNROLL(encode);
|
|
stbir__simdfX_add_mem(e0, STBIR_simd_point5X, encode);
|
|
stbir__simdfX_add_mem(e1, STBIR_simd_point5X, encode + stbir__simdfX_float_count);
|
|
stbir__encode_simdfX_unflip(e0);
|
|
stbir__encode_simdfX_unflip(e1);
|
|
#ifdef STBIR_SIMD8
|
|
stbir__simdf8_pack_to_16bytes(i, e0, e1);
|
|
stbir__simdi_store(output, i);
|
|
#else
|
|
stbir__simdf_pack_to_8bytes(i, e0, e1);
|
|
stbir__simdi_store2(output, i);
|
|
#endif
|
|
encode += stbir__simdfX_float_count * 2;
|
|
output += stbir__simdfX_float_count * 2;
|
|
if (output <= end_output)
|
|
continue;
|
|
if (output == (end_output + stbir__simdfX_float_count * 2))
|
|
break;
|
|
output = end_output; // backup and do last couple
|
|
encode = end_encode_m8;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
output += 4;
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
while (output <= end_output)
|
|
{
|
|
stbir__simdf e0;
|
|
stbir__simdi i0;
|
|
STBIR_NO_UNROLL(encode);
|
|
stbir__simdf_load(e0, encode);
|
|
stbir__simdf_add(e0, STBIR__CONSTF(STBIR_simd_point5), e0);
|
|
stbir__encode_simdf4_unflip(e0);
|
|
stbir__simdf_pack_to_8bytes(i0, e0, e0); // only use first 4
|
|
*(int *)(output - 4) = stbir__simdi_to_int(i0);
|
|
output += 4;
|
|
encode += 4;
|
|
}
|
|
output -= 4;
|
|
#endif
|
|
|
|
#else
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
output += 4;
|
|
while (output <= end_output)
|
|
{
|
|
float f;
|
|
f = encode[stbir__encode_order0] + 0.5f;
|
|
STBIR_CLAMP(f, 0, 255);
|
|
output[0 - 4] = (unsigned char)f;
|
|
f = encode[stbir__encode_order1] + 0.5f;
|
|
STBIR_CLAMP(f, 0, 255);
|
|
output[1 - 4] = (unsigned char)f;
|
|
f = encode[stbir__encode_order2] + 0.5f;
|
|
STBIR_CLAMP(f, 0, 255);
|
|
output[2 - 4] = (unsigned char)f;
|
|
f = encode[stbir__encode_order3] + 0.5f;
|
|
STBIR_CLAMP(f, 0, 255);
|
|
output[3 - 4] = (unsigned char)f;
|
|
output += 4;
|
|
encode += 4;
|
|
}
|
|
output -= 4;
|
|
#endif
|
|
|
|
#endif
|
|
|
|
// do the remnants
|
|
#if stbir__coder_min_num < 4
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
while (output < end_output)
|
|
{
|
|
float f;
|
|
STBIR_NO_UNROLL(encode);
|
|
f = encode[stbir__encode_order0] + 0.5f;
|
|
STBIR_CLAMP(f, 0, 255);
|
|
output[0] = (unsigned char)f;
|
|
#if stbir__coder_min_num >= 2
|
|
f = encode[stbir__encode_order1] + 0.5f;
|
|
STBIR_CLAMP(f, 0, 255);
|
|
output[1] = (unsigned char)f;
|
|
#endif
|
|
#if stbir__coder_min_num >= 3
|
|
f = encode[stbir__encode_order2] + 0.5f;
|
|
STBIR_CLAMP(f, 0, 255);
|
|
output[2] = (unsigned char)f;
|
|
#endif
|
|
output += stbir__coder_min_num;
|
|
encode += stbir__coder_min_num;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static float *STBIR__CODER_NAME(stbir__decode_uint8_srgb)(float *decodep, int width_times_channels, void const *inputp)
|
|
{
|
|
float STBIR_STREAMOUT_PTR(*) decode = decodep;
|
|
float *decode_end = (float *)decode + width_times_channels;
|
|
unsigned char const *input = (unsigned char const *)inputp;
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
decode += 4;
|
|
while (decode <= decode_end)
|
|
{
|
|
decode[0 - 4] = stbir__srgb_uchar_to_linear_float[input[stbir__decode_order0]];
|
|
decode[1 - 4] = stbir__srgb_uchar_to_linear_float[input[stbir__decode_order1]];
|
|
decode[2 - 4] = stbir__srgb_uchar_to_linear_float[input[stbir__decode_order2]];
|
|
decode[3 - 4] = stbir__srgb_uchar_to_linear_float[input[stbir__decode_order3]];
|
|
decode += 4;
|
|
input += 4;
|
|
}
|
|
decode -= 4;
|
|
#endif
|
|
|
|
// do the remnants
|
|
#if stbir__coder_min_num < 4
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
while (decode < decode_end)
|
|
{
|
|
STBIR_NO_UNROLL(decode);
|
|
decode[0] = stbir__srgb_uchar_to_linear_float[input[stbir__decode_order0]];
|
|
#if stbir__coder_min_num >= 2
|
|
decode[1] = stbir__srgb_uchar_to_linear_float[input[stbir__decode_order1]];
|
|
#endif
|
|
#if stbir__coder_min_num >= 3
|
|
decode[2] = stbir__srgb_uchar_to_linear_float[input[stbir__decode_order2]];
|
|
#endif
|
|
decode += stbir__coder_min_num;
|
|
input += stbir__coder_min_num;
|
|
}
|
|
#endif
|
|
return decode_end;
|
|
}
|
|
|
|
#define stbir__min_max_shift20(i, f) \
|
|
stbir__simdf_max(f, f, stbir_simdf_casti(STBIR__CONSTI(STBIR_almost_zero))); \
|
|
stbir__simdf_min(f, f, stbir_simdf_casti(STBIR__CONSTI(STBIR_almost_one))); \
|
|
stbir__simdi_32shr(i, stbir_simdi_castf(f), 20);
|
|
|
|
#define stbir__scale_and_convert(i, f) \
|
|
stbir__simdf_madd(f, STBIR__CONSTF(STBIR_simd_point5), STBIR__CONSTF(STBIR_max_uint8_as_float), f); \
|
|
stbir__simdf_max(f, f, stbir__simdf_zeroP()); \
|
|
stbir__simdf_min(f, f, STBIR__CONSTF(STBIR_max_uint8_as_float)); \
|
|
stbir__simdf_convert_float_to_i32(i, f);
|
|
|
|
#define stbir__linear_to_srgb_finish(i, f) \
|
|
{ \
|
|
stbir__simdi temp; \
|
|
stbir__simdi_32shr(temp, stbir_simdi_castf(f), 12); \
|
|
stbir__simdi_and(temp, temp, STBIR__CONSTI(STBIR_mastissa_mask)); \
|
|
stbir__simdi_or(temp, temp, STBIR__CONSTI(STBIR_topscale)); \
|
|
stbir__simdi_16madd(i, i, temp); \
|
|
stbir__simdi_32shr(i, i, 16); \
|
|
}
|
|
|
|
#define stbir__simdi_table_lookup2(v0, v1, table) \
|
|
{ \
|
|
stbir__simdi_u32 temp0, temp1; \
|
|
temp0.m128i_i128 = v0; \
|
|
temp1.m128i_i128 = v1; \
|
|
temp0.m128i_u32[0] = table[temp0.m128i_i32[0]]; \
|
|
temp0.m128i_u32[1] = table[temp0.m128i_i32[1]]; \
|
|
temp0.m128i_u32[2] = table[temp0.m128i_i32[2]]; \
|
|
temp0.m128i_u32[3] = table[temp0.m128i_i32[3]]; \
|
|
temp1.m128i_u32[0] = table[temp1.m128i_i32[0]]; \
|
|
temp1.m128i_u32[1] = table[temp1.m128i_i32[1]]; \
|
|
temp1.m128i_u32[2] = table[temp1.m128i_i32[2]]; \
|
|
temp1.m128i_u32[3] = table[temp1.m128i_i32[3]]; \
|
|
v0 = temp0.m128i_i128; \
|
|
v1 = temp1.m128i_i128; \
|
|
}
|
|
|
|
#define stbir__simdi_table_lookup3(v0, v1, v2, table) \
|
|
{ \
|
|
stbir__simdi_u32 temp0, temp1, temp2; \
|
|
temp0.m128i_i128 = v0; \
|
|
temp1.m128i_i128 = v1; \
|
|
temp2.m128i_i128 = v2; \
|
|
temp0.m128i_u32[0] = table[temp0.m128i_i32[0]]; \
|
|
temp0.m128i_u32[1] = table[temp0.m128i_i32[1]]; \
|
|
temp0.m128i_u32[2] = table[temp0.m128i_i32[2]]; \
|
|
temp0.m128i_u32[3] = table[temp0.m128i_i32[3]]; \
|
|
temp1.m128i_u32[0] = table[temp1.m128i_i32[0]]; \
|
|
temp1.m128i_u32[1] = table[temp1.m128i_i32[1]]; \
|
|
temp1.m128i_u32[2] = table[temp1.m128i_i32[2]]; \
|
|
temp1.m128i_u32[3] = table[temp1.m128i_i32[3]]; \
|
|
temp2.m128i_u32[0] = table[temp2.m128i_i32[0]]; \
|
|
temp2.m128i_u32[1] = table[temp2.m128i_i32[1]]; \
|
|
temp2.m128i_u32[2] = table[temp2.m128i_i32[2]]; \
|
|
temp2.m128i_u32[3] = table[temp2.m128i_i32[3]]; \
|
|
v0 = temp0.m128i_i128; \
|
|
v1 = temp1.m128i_i128; \
|
|
v2 = temp2.m128i_i128; \
|
|
}
|
|
|
|
#define stbir__simdi_table_lookup4(v0, v1, v2, v3, table) \
|
|
{ \
|
|
stbir__simdi_u32 temp0, temp1, temp2, temp3; \
|
|
temp0.m128i_i128 = v0; \
|
|
temp1.m128i_i128 = v1; \
|
|
temp2.m128i_i128 = v2; \
|
|
temp3.m128i_i128 = v3; \
|
|
temp0.m128i_u32[0] = table[temp0.m128i_i32[0]]; \
|
|
temp0.m128i_u32[1] = table[temp0.m128i_i32[1]]; \
|
|
temp0.m128i_u32[2] = table[temp0.m128i_i32[2]]; \
|
|
temp0.m128i_u32[3] = table[temp0.m128i_i32[3]]; \
|
|
temp1.m128i_u32[0] = table[temp1.m128i_i32[0]]; \
|
|
temp1.m128i_u32[1] = table[temp1.m128i_i32[1]]; \
|
|
temp1.m128i_u32[2] = table[temp1.m128i_i32[2]]; \
|
|
temp1.m128i_u32[3] = table[temp1.m128i_i32[3]]; \
|
|
temp2.m128i_u32[0] = table[temp2.m128i_i32[0]]; \
|
|
temp2.m128i_u32[1] = table[temp2.m128i_i32[1]]; \
|
|
temp2.m128i_u32[2] = table[temp2.m128i_i32[2]]; \
|
|
temp2.m128i_u32[3] = table[temp2.m128i_i32[3]]; \
|
|
temp3.m128i_u32[0] = table[temp3.m128i_i32[0]]; \
|
|
temp3.m128i_u32[1] = table[temp3.m128i_i32[1]]; \
|
|
temp3.m128i_u32[2] = table[temp3.m128i_i32[2]]; \
|
|
temp3.m128i_u32[3] = table[temp3.m128i_i32[3]]; \
|
|
v0 = temp0.m128i_i128; \
|
|
v1 = temp1.m128i_i128; \
|
|
v2 = temp2.m128i_i128; \
|
|
v3 = temp3.m128i_i128; \
|
|
}
|
|
|
|
static void STBIR__CODER_NAME(stbir__encode_uint8_srgb)(void *outputp, int width_times_channels, float const *encode)
|
|
{
|
|
unsigned char STBIR_SIMD_STREAMOUT_PTR(*) output = (unsigned char *)outputp;
|
|
unsigned char *end_output = ((unsigned char *)output) + width_times_channels;
|
|
|
|
#ifdef STBIR_SIMD
|
|
|
|
if (width_times_channels >= 16)
|
|
{
|
|
float const *end_encode_m16 = encode + width_times_channels - 16;
|
|
end_output -= 16;
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR
|
|
for (;;)
|
|
{
|
|
stbir__simdf f0, f1, f2, f3;
|
|
stbir__simdi i0, i1, i2, i3;
|
|
STBIR_SIMD_NO_UNROLL(encode);
|
|
|
|
stbir__simdf_load4_transposed(f0, f1, f2, f3, encode);
|
|
|
|
stbir__min_max_shift20(i0, f0);
|
|
stbir__min_max_shift20(i1, f1);
|
|
stbir__min_max_shift20(i2, f2);
|
|
stbir__min_max_shift20(i3, f3);
|
|
|
|
stbir__simdi_table_lookup4(i0, i1, i2, i3, (fp32_to_srgb8_tab4 - (127 - 13) * 8));
|
|
|
|
stbir__linear_to_srgb_finish(i0, f0);
|
|
stbir__linear_to_srgb_finish(i1, f1);
|
|
stbir__linear_to_srgb_finish(i2, f2);
|
|
stbir__linear_to_srgb_finish(i3, f3);
|
|
|
|
stbir__interleave_pack_and_store_16_u8(output, STBIR_strs_join1(i, , stbir__encode_order0), STBIR_strs_join1(i, , stbir__encode_order1), STBIR_strs_join1(i, , stbir__encode_order2), STBIR_strs_join1(i, , stbir__encode_order3));
|
|
|
|
encode += 16;
|
|
output += 16;
|
|
if (output <= end_output)
|
|
continue;
|
|
if (output == (end_output + 16))
|
|
break;
|
|
output = end_output; // backup and do last couple
|
|
encode = end_encode_m16;
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
output += 4;
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
while (output <= end_output)
|
|
{
|
|
STBIR_SIMD_NO_UNROLL(encode);
|
|
|
|
output[0 - 4] = stbir__linear_to_srgb_uchar(encode[stbir__encode_order0]);
|
|
output[1 - 4] = stbir__linear_to_srgb_uchar(encode[stbir__encode_order1]);
|
|
output[2 - 4] = stbir__linear_to_srgb_uchar(encode[stbir__encode_order2]);
|
|
output[3 - 4] = stbir__linear_to_srgb_uchar(encode[stbir__encode_order3]);
|
|
|
|
output += 4;
|
|
encode += 4;
|
|
}
|
|
output -= 4;
|
|
#endif
|
|
|
|
// do the remnants
|
|
#if stbir__coder_min_num < 4
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
while (output < end_output)
|
|
{
|
|
STBIR_NO_UNROLL(encode);
|
|
output[0] = stbir__linear_to_srgb_uchar(encode[stbir__encode_order0]);
|
|
#if stbir__coder_min_num >= 2
|
|
output[1] = stbir__linear_to_srgb_uchar(encode[stbir__encode_order1]);
|
|
#endif
|
|
#if stbir__coder_min_num >= 3
|
|
output[2] = stbir__linear_to_srgb_uchar(encode[stbir__encode_order2]);
|
|
#endif
|
|
output += stbir__coder_min_num;
|
|
encode += stbir__coder_min_num;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if (stbir__coder_min_num == 4) || ((stbir__coder_min_num == 1) && (!defined(stbir__decode_swizzle)))
|
|
|
|
static float *STBIR__CODER_NAME(stbir__decode_uint8_srgb4_linearalpha)(float *decodep, int width_times_channels, void const *inputp)
|
|
{
|
|
float STBIR_STREAMOUT_PTR(*) decode = decodep;
|
|
float *decode_end = (float *)decode + width_times_channels;
|
|
unsigned char const *input = (unsigned char const *)inputp;
|
|
|
|
do
|
|
{
|
|
decode[0] = stbir__srgb_uchar_to_linear_float[input[stbir__decode_order0]];
|
|
decode[1] = stbir__srgb_uchar_to_linear_float[input[stbir__decode_order1]];
|
|
decode[2] = stbir__srgb_uchar_to_linear_float[input[stbir__decode_order2]];
|
|
decode[3] = ((float)input[stbir__decode_order3]) * stbir__max_uint8_as_float_inverted;
|
|
input += 4;
|
|
decode += 4;
|
|
} while (decode < decode_end);
|
|
return decode_end;
|
|
}
|
|
|
|
static void STBIR__CODER_NAME(stbir__encode_uint8_srgb4_linearalpha)(void *outputp, int width_times_channels, float const *encode)
|
|
{
|
|
unsigned char STBIR_SIMD_STREAMOUT_PTR(*) output = (unsigned char *)outputp;
|
|
unsigned char *end_output = ((unsigned char *)output) + width_times_channels;
|
|
|
|
#ifdef STBIR_SIMD
|
|
|
|
if (width_times_channels >= 16)
|
|
{
|
|
float const *end_encode_m16 = encode + width_times_channels - 16;
|
|
end_output -= 16;
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR
|
|
for (;;)
|
|
{
|
|
stbir__simdf f0, f1, f2, f3;
|
|
stbir__simdi i0, i1, i2, i3;
|
|
|
|
STBIR_SIMD_NO_UNROLL(encode);
|
|
stbir__simdf_load4_transposed(f0, f1, f2, f3, encode);
|
|
|
|
stbir__min_max_shift20(i0, f0);
|
|
stbir__min_max_shift20(i1, f1);
|
|
stbir__min_max_shift20(i2, f2);
|
|
stbir__scale_and_convert(i3, f3);
|
|
|
|
stbir__simdi_table_lookup3(i0, i1, i2, (fp32_to_srgb8_tab4 - (127 - 13) * 8));
|
|
|
|
stbir__linear_to_srgb_finish(i0, f0);
|
|
stbir__linear_to_srgb_finish(i1, f1);
|
|
stbir__linear_to_srgb_finish(i2, f2);
|
|
|
|
stbir__interleave_pack_and_store_16_u8(output, STBIR_strs_join1(i, , stbir__encode_order0), STBIR_strs_join1(i, , stbir__encode_order1), STBIR_strs_join1(i, , stbir__encode_order2), STBIR_strs_join1(i, , stbir__encode_order3));
|
|
|
|
output += 16;
|
|
encode += 16;
|
|
|
|
if (output <= end_output)
|
|
continue;
|
|
if (output == (end_output + 16))
|
|
break;
|
|
output = end_output; // backup and do last couple
|
|
encode = end_encode_m16;
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
float f;
|
|
STBIR_SIMD_NO_UNROLL(encode);
|
|
|
|
output[stbir__decode_order0] = stbir__linear_to_srgb_uchar(encode[0]);
|
|
output[stbir__decode_order1] = stbir__linear_to_srgb_uchar(encode[1]);
|
|
output[stbir__decode_order2] = stbir__linear_to_srgb_uchar(encode[2]);
|
|
|
|
f = encode[3] * stbir__max_uint8_as_float + 0.5f;
|
|
STBIR_CLAMP(f, 0, 255);
|
|
output[stbir__decode_order3] = (unsigned char)f;
|
|
|
|
output += 4;
|
|
encode += 4;
|
|
} while (output < end_output);
|
|
}
|
|
|
|
#endif
|
|
|
|
#if (stbir__coder_min_num == 2) || ((stbir__coder_min_num == 1) && (!defined(stbir__decode_swizzle)))
|
|
|
|
static float *STBIR__CODER_NAME(stbir__decode_uint8_srgb2_linearalpha)(float *decodep, int width_times_channels, void const *inputp)
|
|
{
|
|
float STBIR_STREAMOUT_PTR(*) decode = decodep;
|
|
float *decode_end = (float *)decode + width_times_channels;
|
|
unsigned char const *input = (unsigned char const *)inputp;
|
|
|
|
decode += 4;
|
|
while (decode <= decode_end)
|
|
{
|
|
decode[0 - 4] = stbir__srgb_uchar_to_linear_float[input[stbir__decode_order0]];
|
|
decode[1 - 4] = ((float)input[stbir__decode_order1]) * stbir__max_uint8_as_float_inverted;
|
|
decode[2 - 4] = stbir__srgb_uchar_to_linear_float[input[stbir__decode_order0 + 2]];
|
|
decode[3 - 4] = ((float)input[stbir__decode_order1 + 2]) * stbir__max_uint8_as_float_inverted;
|
|
input += 4;
|
|
decode += 4;
|
|
}
|
|
decode -= 4;
|
|
if (decode < decode_end)
|
|
{
|
|
decode[0] = stbir__srgb_uchar_to_linear_float[stbir__decode_order0];
|
|
decode[1] = ((float)input[stbir__decode_order1]) * stbir__max_uint8_as_float_inverted;
|
|
}
|
|
return decode_end;
|
|
}
|
|
|
|
static void STBIR__CODER_NAME(stbir__encode_uint8_srgb2_linearalpha)(void *outputp, int width_times_channels, float const *encode)
|
|
{
|
|
unsigned char STBIR_SIMD_STREAMOUT_PTR(*) output = (unsigned char *)outputp;
|
|
unsigned char *end_output = ((unsigned char *)output) + width_times_channels;
|
|
|
|
#ifdef STBIR_SIMD
|
|
|
|
if (width_times_channels >= 16)
|
|
{
|
|
float const *end_encode_m16 = encode + width_times_channels - 16;
|
|
end_output -= 16;
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR
|
|
for (;;)
|
|
{
|
|
stbir__simdf f0, f1, f2, f3;
|
|
stbir__simdi i0, i1, i2, i3;
|
|
|
|
STBIR_SIMD_NO_UNROLL(encode);
|
|
stbir__simdf_load4_transposed(f0, f1, f2, f3, encode);
|
|
|
|
stbir__min_max_shift20(i0, f0);
|
|
stbir__scale_and_convert(i1, f1);
|
|
stbir__min_max_shift20(i2, f2);
|
|
stbir__scale_and_convert(i3, f3);
|
|
|
|
stbir__simdi_table_lookup2(i0, i2, (fp32_to_srgb8_tab4 - (127 - 13) * 8));
|
|
|
|
stbir__linear_to_srgb_finish(i0, f0);
|
|
stbir__linear_to_srgb_finish(i2, f2);
|
|
|
|
stbir__interleave_pack_and_store_16_u8(output, STBIR_strs_join1(i, , stbir__encode_order0), STBIR_strs_join1(i, , stbir__encode_order1), STBIR_strs_join1(i, , stbir__encode_order2), STBIR_strs_join1(i, , stbir__encode_order3));
|
|
|
|
output += 16;
|
|
encode += 16;
|
|
if (output <= end_output)
|
|
continue;
|
|
if (output == (end_output + 16))
|
|
break;
|
|
output = end_output; // backup and do last couple
|
|
encode = end_encode_m16;
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
float f;
|
|
STBIR_SIMD_NO_UNROLL(encode);
|
|
|
|
output[stbir__decode_order0] = stbir__linear_to_srgb_uchar(encode[0]);
|
|
|
|
f = encode[1] * stbir__max_uint8_as_float + 0.5f;
|
|
STBIR_CLAMP(f, 0, 255);
|
|
output[stbir__decode_order1] = (unsigned char)f;
|
|
|
|
output += 2;
|
|
encode += 2;
|
|
} while (output < end_output);
|
|
}
|
|
|
|
#endif
|
|
|
|
static float *STBIR__CODER_NAME(stbir__decode_uint16_linear_scaled)(float *decodep, int width_times_channels, void const *inputp)
|
|
{
|
|
float STBIR_STREAMOUT_PTR(*) decode = decodep;
|
|
float *decode_end = (float *)decode + width_times_channels;
|
|
unsigned short const *input = (unsigned short const *)inputp;
|
|
|
|
#ifdef STBIR_SIMD
|
|
unsigned short const *end_input_m8 = input + width_times_channels - 8;
|
|
if (width_times_channels >= 8)
|
|
{
|
|
decode_end -= 8;
|
|
STBIR_NO_UNROLL_LOOP_START_INF_FOR
|
|
for (;;)
|
|
{
|
|
#ifdef STBIR_SIMD8
|
|
stbir__simdi i;
|
|
stbir__simdi8 o;
|
|
stbir__simdf8 of;
|
|
STBIR_NO_UNROLL(decode);
|
|
stbir__simdi_load(i, input);
|
|
stbir__simdi8_expand_u16_to_u32(o, i);
|
|
stbir__simdi8_convert_i32_to_float(of, o);
|
|
stbir__simdf8_mult(of, of, STBIR_max_uint16_as_float_inverted8);
|
|
stbir__decode_simdf8_flip(of);
|
|
stbir__simdf8_store(decode + 0, of);
|
|
#else
|
|
stbir__simdi i, o0, o1;
|
|
stbir__simdf of0, of1;
|
|
STBIR_NO_UNROLL(decode);
|
|
stbir__simdi_load(i, input);
|
|
stbir__simdi_expand_u16_to_u32(o0, o1, i);
|
|
stbir__simdi_convert_i32_to_float(of0, o0);
|
|
stbir__simdi_convert_i32_to_float(of1, o1);
|
|
stbir__simdf_mult(of0, of0, STBIR__CONSTF(STBIR_max_uint16_as_float_inverted));
|
|
stbir__simdf_mult(of1, of1, STBIR__CONSTF(STBIR_max_uint16_as_float_inverted));
|
|
stbir__decode_simdf4_flip(of0);
|
|
stbir__decode_simdf4_flip(of1);
|
|
stbir__simdf_store(decode + 0, of0);
|
|
stbir__simdf_store(decode + 4, of1);
|
|
#endif
|
|
decode += 8;
|
|
input += 8;
|
|
if (decode <= decode_end)
|
|
continue;
|
|
if (decode == (decode_end + 8))
|
|
break;
|
|
decode = decode_end; // backup and do last couple
|
|
input = end_input_m8;
|
|
}
|
|
return decode_end + 8;
|
|
}
|
|
#endif
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
decode += 4;
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
while (decode <= decode_end)
|
|
{
|
|
STBIR_SIMD_NO_UNROLL(decode);
|
|
decode[0 - 4] = ((float)(input[stbir__decode_order0])) * stbir__max_uint16_as_float_inverted;
|
|
decode[1 - 4] = ((float)(input[stbir__decode_order1])) * stbir__max_uint16_as_float_inverted;
|
|
decode[2 - 4] = ((float)(input[stbir__decode_order2])) * stbir__max_uint16_as_float_inverted;
|
|
decode[3 - 4] = ((float)(input[stbir__decode_order3])) * stbir__max_uint16_as_float_inverted;
|
|
decode += 4;
|
|
input += 4;
|
|
}
|
|
decode -= 4;
|
|
#endif
|
|
|
|
// do the remnants
|
|
#if stbir__coder_min_num < 4
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
while (decode < decode_end)
|
|
{
|
|
STBIR_NO_UNROLL(decode);
|
|
decode[0] = ((float)(input[stbir__decode_order0])) * stbir__max_uint16_as_float_inverted;
|
|
#if stbir__coder_min_num >= 2
|
|
decode[1] = ((float)(input[stbir__decode_order1])) * stbir__max_uint16_as_float_inverted;
|
|
#endif
|
|
#if stbir__coder_min_num >= 3
|
|
decode[2] = ((float)(input[stbir__decode_order2])) * stbir__max_uint16_as_float_inverted;
|
|
#endif
|
|
decode += stbir__coder_min_num;
|
|
input += stbir__coder_min_num;
|
|
}
|
|
#endif
|
|
return decode_end;
|
|
}
|
|
|
|
static void STBIR__CODER_NAME(stbir__encode_uint16_linear_scaled)(void *outputp, int width_times_channels, float const *encode)
|
|
{
|
|
unsigned short STBIR_SIMD_STREAMOUT_PTR(*) output = (unsigned short *)outputp;
|
|
unsigned short *end_output = ((unsigned short *)output) + width_times_channels;
|
|
|
|
#ifdef STBIR_SIMD
|
|
{
|
|
if (width_times_channels >= stbir__simdfX_float_count * 2)
|
|
{
|
|
float const *end_encode_m8 = encode + width_times_channels - stbir__simdfX_float_count * 2;
|
|
end_output -= stbir__simdfX_float_count * 2;
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR
|
|
for (;;)
|
|
{
|
|
stbir__simdfX e0, e1;
|
|
stbir__simdiX i;
|
|
STBIR_SIMD_NO_UNROLL(encode);
|
|
stbir__simdfX_madd_mem(e0, STBIR_simd_point5X, STBIR_max_uint16_as_floatX, encode);
|
|
stbir__simdfX_madd_mem(e1, STBIR_simd_point5X, STBIR_max_uint16_as_floatX, encode + stbir__simdfX_float_count);
|
|
stbir__encode_simdfX_unflip(e0);
|
|
stbir__encode_simdfX_unflip(e1);
|
|
stbir__simdfX_pack_to_words(i, e0, e1);
|
|
stbir__simdiX_store(output, i);
|
|
encode += stbir__simdfX_float_count * 2;
|
|
output += stbir__simdfX_float_count * 2;
|
|
if (output <= end_output)
|
|
continue;
|
|
if (output == (end_output + stbir__simdfX_float_count * 2))
|
|
break;
|
|
output = end_output; // backup and do last couple
|
|
encode = end_encode_m8;
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
output += 4;
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
while (output <= end_output)
|
|
{
|
|
stbir__simdf e;
|
|
stbir__simdi i;
|
|
STBIR_NO_UNROLL(encode);
|
|
stbir__simdf_load(e, encode);
|
|
stbir__simdf_madd(e, STBIR__CONSTF(STBIR_simd_point5), STBIR__CONSTF(STBIR_max_uint16_as_float), e);
|
|
stbir__encode_simdf4_unflip(e);
|
|
stbir__simdf_pack_to_8words(i, e, e); // only use first 4
|
|
stbir__simdi_store2(output - 4, i);
|
|
output += 4;
|
|
encode += 4;
|
|
}
|
|
output -= 4;
|
|
#endif
|
|
|
|
// do the remnants
|
|
#if stbir__coder_min_num < 4
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
while (output < end_output)
|
|
{
|
|
stbir__simdf e;
|
|
STBIR_NO_UNROLL(encode);
|
|
stbir__simdf_madd1_mem(e, STBIR__CONSTF(STBIR_simd_point5), STBIR__CONSTF(STBIR_max_uint16_as_float), encode + stbir__encode_order0);
|
|
output[0] = stbir__simdf_convert_float_to_short(e);
|
|
#if stbir__coder_min_num >= 2
|
|
stbir__simdf_madd1_mem(e, STBIR__CONSTF(STBIR_simd_point5), STBIR__CONSTF(STBIR_max_uint16_as_float), encode + stbir__encode_order1);
|
|
output[1] = stbir__simdf_convert_float_to_short(e);
|
|
#endif
|
|
#if stbir__coder_min_num >= 3
|
|
stbir__simdf_madd1_mem(e, STBIR__CONSTF(STBIR_simd_point5), STBIR__CONSTF(STBIR_max_uint16_as_float), encode + stbir__encode_order2);
|
|
output[2] = stbir__simdf_convert_float_to_short(e);
|
|
#endif
|
|
output += stbir__coder_min_num;
|
|
encode += stbir__coder_min_num;
|
|
}
|
|
#endif
|
|
|
|
#else
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
output += 4;
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
while (output <= end_output)
|
|
{
|
|
float f;
|
|
STBIR_SIMD_NO_UNROLL(encode);
|
|
f = encode[stbir__encode_order0] * stbir__max_uint16_as_float + 0.5f;
|
|
STBIR_CLAMP(f, 0, 65535);
|
|
output[0 - 4] = (unsigned short)f;
|
|
f = encode[stbir__encode_order1] * stbir__max_uint16_as_float + 0.5f;
|
|
STBIR_CLAMP(f, 0, 65535);
|
|
output[1 - 4] = (unsigned short)f;
|
|
f = encode[stbir__encode_order2] * stbir__max_uint16_as_float + 0.5f;
|
|
STBIR_CLAMP(f, 0, 65535);
|
|
output[2 - 4] = (unsigned short)f;
|
|
f = encode[stbir__encode_order3] * stbir__max_uint16_as_float + 0.5f;
|
|
STBIR_CLAMP(f, 0, 65535);
|
|
output[3 - 4] = (unsigned short)f;
|
|
output += 4;
|
|
encode += 4;
|
|
}
|
|
output -= 4;
|
|
#endif
|
|
|
|
// do the remnants
|
|
#if stbir__coder_min_num < 4
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
while (output < end_output)
|
|
{
|
|
float f;
|
|
STBIR_NO_UNROLL(encode);
|
|
f = encode[stbir__encode_order0] * stbir__max_uint16_as_float + 0.5f;
|
|
STBIR_CLAMP(f, 0, 65535);
|
|
output[0] = (unsigned short)f;
|
|
#if stbir__coder_min_num >= 2
|
|
f = encode[stbir__encode_order1] * stbir__max_uint16_as_float + 0.5f;
|
|
STBIR_CLAMP(f, 0, 65535);
|
|
output[1] = (unsigned short)f;
|
|
#endif
|
|
#if stbir__coder_min_num >= 3
|
|
f = encode[stbir__encode_order2] * stbir__max_uint16_as_float + 0.5f;
|
|
STBIR_CLAMP(f, 0, 65535);
|
|
output[2] = (unsigned short)f;
|
|
#endif
|
|
output += stbir__coder_min_num;
|
|
encode += stbir__coder_min_num;
|
|
}
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
static float *STBIR__CODER_NAME(stbir__decode_uint16_linear)(float *decodep, int width_times_channels, void const *inputp)
|
|
{
|
|
float STBIR_STREAMOUT_PTR(*) decode = decodep;
|
|
float *decode_end = (float *)decode + width_times_channels;
|
|
unsigned short const *input = (unsigned short const *)inputp;
|
|
|
|
#ifdef STBIR_SIMD
|
|
unsigned short const *end_input_m8 = input + width_times_channels - 8;
|
|
if (width_times_channels >= 8)
|
|
{
|
|
decode_end -= 8;
|
|
STBIR_NO_UNROLL_LOOP_START_INF_FOR
|
|
for (;;)
|
|
{
|
|
#ifdef STBIR_SIMD8
|
|
stbir__simdi i;
|
|
stbir__simdi8 o;
|
|
stbir__simdf8 of;
|
|
STBIR_NO_UNROLL(decode);
|
|
stbir__simdi_load(i, input);
|
|
stbir__simdi8_expand_u16_to_u32(o, i);
|
|
stbir__simdi8_convert_i32_to_float(of, o);
|
|
stbir__decode_simdf8_flip(of);
|
|
stbir__simdf8_store(decode + 0, of);
|
|
#else
|
|
stbir__simdi i, o0, o1;
|
|
stbir__simdf of0, of1;
|
|
STBIR_NO_UNROLL(decode);
|
|
stbir__simdi_load(i, input);
|
|
stbir__simdi_expand_u16_to_u32(o0, o1, i);
|
|
stbir__simdi_convert_i32_to_float(of0, o0);
|
|
stbir__simdi_convert_i32_to_float(of1, o1);
|
|
stbir__decode_simdf4_flip(of0);
|
|
stbir__decode_simdf4_flip(of1);
|
|
stbir__simdf_store(decode + 0, of0);
|
|
stbir__simdf_store(decode + 4, of1);
|
|
#endif
|
|
decode += 8;
|
|
input += 8;
|
|
if (decode <= decode_end)
|
|
continue;
|
|
if (decode == (decode_end + 8))
|
|
break;
|
|
decode = decode_end; // backup and do last couple
|
|
input = end_input_m8;
|
|
}
|
|
return decode_end + 8;
|
|
}
|
|
#endif
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
decode += 4;
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
while (decode <= decode_end)
|
|
{
|
|
STBIR_SIMD_NO_UNROLL(decode);
|
|
decode[0 - 4] = ((float)(input[stbir__decode_order0]));
|
|
decode[1 - 4] = ((float)(input[stbir__decode_order1]));
|
|
decode[2 - 4] = ((float)(input[stbir__decode_order2]));
|
|
decode[3 - 4] = ((float)(input[stbir__decode_order3]));
|
|
decode += 4;
|
|
input += 4;
|
|
}
|
|
decode -= 4;
|
|
#endif
|
|
|
|
// do the remnants
|
|
#if stbir__coder_min_num < 4
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
while (decode < decode_end)
|
|
{
|
|
STBIR_NO_UNROLL(decode);
|
|
decode[0] = ((float)(input[stbir__decode_order0]));
|
|
#if stbir__coder_min_num >= 2
|
|
decode[1] = ((float)(input[stbir__decode_order1]));
|
|
#endif
|
|
#if stbir__coder_min_num >= 3
|
|
decode[2] = ((float)(input[stbir__decode_order2]));
|
|
#endif
|
|
decode += stbir__coder_min_num;
|
|
input += stbir__coder_min_num;
|
|
}
|
|
#endif
|
|
return decode_end;
|
|
}
|
|
|
|
static void STBIR__CODER_NAME(stbir__encode_uint16_linear)(void *outputp, int width_times_channels, float const *encode)
|
|
{
|
|
unsigned short STBIR_SIMD_STREAMOUT_PTR(*) output = (unsigned short *)outputp;
|
|
unsigned short *end_output = ((unsigned short *)output) + width_times_channels;
|
|
|
|
#ifdef STBIR_SIMD
|
|
{
|
|
if (width_times_channels >= stbir__simdfX_float_count * 2)
|
|
{
|
|
float const *end_encode_m8 = encode + width_times_channels - stbir__simdfX_float_count * 2;
|
|
end_output -= stbir__simdfX_float_count * 2;
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR
|
|
for (;;)
|
|
{
|
|
stbir__simdfX e0, e1;
|
|
stbir__simdiX i;
|
|
STBIR_SIMD_NO_UNROLL(encode);
|
|
stbir__simdfX_add_mem(e0, STBIR_simd_point5X, encode);
|
|
stbir__simdfX_add_mem(e1, STBIR_simd_point5X, encode + stbir__simdfX_float_count);
|
|
stbir__encode_simdfX_unflip(e0);
|
|
stbir__encode_simdfX_unflip(e1);
|
|
stbir__simdfX_pack_to_words(i, e0, e1);
|
|
stbir__simdiX_store(output, i);
|
|
encode += stbir__simdfX_float_count * 2;
|
|
output += stbir__simdfX_float_count * 2;
|
|
if (output <= end_output)
|
|
continue;
|
|
if (output == (end_output + stbir__simdfX_float_count * 2))
|
|
break;
|
|
output = end_output; // backup and do last couple
|
|
encode = end_encode_m8;
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
output += 4;
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
while (output <= end_output)
|
|
{
|
|
stbir__simdf e;
|
|
stbir__simdi i;
|
|
STBIR_NO_UNROLL(encode);
|
|
stbir__simdf_load(e, encode);
|
|
stbir__simdf_add(e, STBIR__CONSTF(STBIR_simd_point5), e);
|
|
stbir__encode_simdf4_unflip(e);
|
|
stbir__simdf_pack_to_8words(i, e, e); // only use first 4
|
|
stbir__simdi_store2(output - 4, i);
|
|
output += 4;
|
|
encode += 4;
|
|
}
|
|
output -= 4;
|
|
#endif
|
|
|
|
#else
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
output += 4;
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
while (output <= end_output)
|
|
{
|
|
float f;
|
|
STBIR_SIMD_NO_UNROLL(encode);
|
|
f = encode[stbir__encode_order0] + 0.5f;
|
|
STBIR_CLAMP(f, 0, 65535);
|
|
output[0 - 4] = (unsigned short)f;
|
|
f = encode[stbir__encode_order1] + 0.5f;
|
|
STBIR_CLAMP(f, 0, 65535);
|
|
output[1 - 4] = (unsigned short)f;
|
|
f = encode[stbir__encode_order2] + 0.5f;
|
|
STBIR_CLAMP(f, 0, 65535);
|
|
output[2 - 4] = (unsigned short)f;
|
|
f = encode[stbir__encode_order3] + 0.5f;
|
|
STBIR_CLAMP(f, 0, 65535);
|
|
output[3 - 4] = (unsigned short)f;
|
|
output += 4;
|
|
encode += 4;
|
|
}
|
|
output -= 4;
|
|
#endif
|
|
|
|
#endif
|
|
|
|
// do the remnants
|
|
#if stbir__coder_min_num < 4
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
while (output < end_output)
|
|
{
|
|
float f;
|
|
STBIR_NO_UNROLL(encode);
|
|
f = encode[stbir__encode_order0] + 0.5f;
|
|
STBIR_CLAMP(f, 0, 65535);
|
|
output[0] = (unsigned short)f;
|
|
#if stbir__coder_min_num >= 2
|
|
f = encode[stbir__encode_order1] + 0.5f;
|
|
STBIR_CLAMP(f, 0, 65535);
|
|
output[1] = (unsigned short)f;
|
|
#endif
|
|
#if stbir__coder_min_num >= 3
|
|
f = encode[stbir__encode_order2] + 0.5f;
|
|
STBIR_CLAMP(f, 0, 65535);
|
|
output[2] = (unsigned short)f;
|
|
#endif
|
|
output += stbir__coder_min_num;
|
|
encode += stbir__coder_min_num;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static float *STBIR__CODER_NAME(stbir__decode_half_float_linear)(float *decodep, int width_times_channels, void const *inputp)
|
|
{
|
|
float STBIR_STREAMOUT_PTR(*) decode = decodep;
|
|
float *decode_end = (float *)decode + width_times_channels;
|
|
stbir__FP16 const *input = (stbir__FP16 const *)inputp;
|
|
|
|
#ifdef STBIR_SIMD
|
|
if (width_times_channels >= 8)
|
|
{
|
|
stbir__FP16 const *end_input_m8 = input + width_times_channels - 8;
|
|
decode_end -= 8;
|
|
STBIR_NO_UNROLL_LOOP_START_INF_FOR
|
|
for (;;)
|
|
{
|
|
STBIR_NO_UNROLL(decode);
|
|
|
|
stbir__half_to_float_SIMD(decode, input);
|
|
#ifdef stbir__decode_swizzle
|
|
#ifdef STBIR_SIMD8
|
|
{
|
|
stbir__simdf8 of;
|
|
stbir__simdf8_load(of, decode);
|
|
stbir__decode_simdf8_flip(of);
|
|
stbir__simdf8_store(decode, of);
|
|
}
|
|
#else
|
|
{
|
|
stbir__simdf of0, of1;
|
|
stbir__simdf_load(of0, decode);
|
|
stbir__simdf_load(of1, decode + 4);
|
|
stbir__decode_simdf4_flip(of0);
|
|
stbir__decode_simdf4_flip(of1);
|
|
stbir__simdf_store(decode, of0);
|
|
stbir__simdf_store(decode + 4, of1);
|
|
}
|
|
#endif
|
|
#endif
|
|
decode += 8;
|
|
input += 8;
|
|
if (decode <= decode_end)
|
|
continue;
|
|
if (decode == (decode_end + 8))
|
|
break;
|
|
decode = decode_end; // backup and do last couple
|
|
input = end_input_m8;
|
|
}
|
|
return decode_end + 8;
|
|
}
|
|
#endif
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
decode += 4;
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
while (decode <= decode_end)
|
|
{
|
|
STBIR_SIMD_NO_UNROLL(decode);
|
|
decode[0 - 4] = stbir__half_to_float(input[stbir__decode_order0]);
|
|
decode[1 - 4] = stbir__half_to_float(input[stbir__decode_order1]);
|
|
decode[2 - 4] = stbir__half_to_float(input[stbir__decode_order2]);
|
|
decode[3 - 4] = stbir__half_to_float(input[stbir__decode_order3]);
|
|
decode += 4;
|
|
input += 4;
|
|
}
|
|
decode -= 4;
|
|
#endif
|
|
|
|
// do the remnants
|
|
#if stbir__coder_min_num < 4
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
while (decode < decode_end)
|
|
{
|
|
STBIR_NO_UNROLL(decode);
|
|
decode[0] = stbir__half_to_float(input[stbir__decode_order0]);
|
|
#if stbir__coder_min_num >= 2
|
|
decode[1] = stbir__half_to_float(input[stbir__decode_order1]);
|
|
#endif
|
|
#if stbir__coder_min_num >= 3
|
|
decode[2] = stbir__half_to_float(input[stbir__decode_order2]);
|
|
#endif
|
|
decode += stbir__coder_min_num;
|
|
input += stbir__coder_min_num;
|
|
}
|
|
#endif
|
|
return decode_end;
|
|
}
|
|
|
|
static void STBIR__CODER_NAME(stbir__encode_half_float_linear)(void *outputp, int width_times_channels, float const *encode)
|
|
{
|
|
stbir__FP16 STBIR_SIMD_STREAMOUT_PTR(*) output = (stbir__FP16 *)outputp;
|
|
stbir__FP16 *end_output = ((stbir__FP16 *)output) + width_times_channels;
|
|
|
|
#ifdef STBIR_SIMD
|
|
if (width_times_channels >= 8)
|
|
{
|
|
float const *end_encode_m8 = encode + width_times_channels - 8;
|
|
end_output -= 8;
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR
|
|
for (;;)
|
|
{
|
|
STBIR_SIMD_NO_UNROLL(encode);
|
|
#ifdef stbir__decode_swizzle
|
|
#ifdef STBIR_SIMD8
|
|
{
|
|
stbir__simdf8 of;
|
|
stbir__simdf8_load(of, encode);
|
|
stbir__encode_simdf8_unflip(of);
|
|
stbir__float_to_half_SIMD(output, (float *)&of);
|
|
}
|
|
#else
|
|
{
|
|
stbir__simdf of[2];
|
|
stbir__simdf_load(of[0], encode);
|
|
stbir__simdf_load(of[1], encode + 4);
|
|
stbir__encode_simdf4_unflip(of[0]);
|
|
stbir__encode_simdf4_unflip(of[1]);
|
|
stbir__float_to_half_SIMD(output, (float *)of);
|
|
}
|
|
#endif
|
|
#else
|
|
stbir__float_to_half_SIMD(output, encode);
|
|
#endif
|
|
encode += 8;
|
|
output += 8;
|
|
if (output <= end_output)
|
|
continue;
|
|
if (output == (end_output + 8))
|
|
break;
|
|
output = end_output; // backup and do last couple
|
|
encode = end_encode_m8;
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
output += 4;
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
while (output <= end_output)
|
|
{
|
|
STBIR_SIMD_NO_UNROLL(output);
|
|
output[0 - 4] = stbir__float_to_half(encode[stbir__encode_order0]);
|
|
output[1 - 4] = stbir__float_to_half(encode[stbir__encode_order1]);
|
|
output[2 - 4] = stbir__float_to_half(encode[stbir__encode_order2]);
|
|
output[3 - 4] = stbir__float_to_half(encode[stbir__encode_order3]);
|
|
output += 4;
|
|
encode += 4;
|
|
}
|
|
output -= 4;
|
|
#endif
|
|
|
|
// do the remnants
|
|
#if stbir__coder_min_num < 4
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
while (output < end_output)
|
|
{
|
|
STBIR_NO_UNROLL(output);
|
|
output[0] = stbir__float_to_half(encode[stbir__encode_order0]);
|
|
#if stbir__coder_min_num >= 2
|
|
output[1] = stbir__float_to_half(encode[stbir__encode_order1]);
|
|
#endif
|
|
#if stbir__coder_min_num >= 3
|
|
output[2] = stbir__float_to_half(encode[stbir__encode_order2]);
|
|
#endif
|
|
output += stbir__coder_min_num;
|
|
encode += stbir__coder_min_num;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static float *STBIR__CODER_NAME(stbir__decode_float_linear)(float *decodep, int width_times_channels, void const *inputp)
|
|
{
|
|
#ifdef stbir__decode_swizzle
|
|
float STBIR_STREAMOUT_PTR(*) decode = decodep;
|
|
float *decode_end = (float *)decode + width_times_channels;
|
|
float const *input = (float const *)inputp;
|
|
|
|
#ifdef STBIR_SIMD
|
|
if (width_times_channels >= 16)
|
|
{
|
|
float const *end_input_m16 = input + width_times_channels - 16;
|
|
decode_end -= 16;
|
|
STBIR_NO_UNROLL_LOOP_START_INF_FOR
|
|
for (;;)
|
|
{
|
|
STBIR_NO_UNROLL(decode);
|
|
#ifdef stbir__decode_swizzle
|
|
#ifdef STBIR_SIMD8
|
|
{
|
|
stbir__simdf8 of0, of1;
|
|
stbir__simdf8_load(of0, input);
|
|
stbir__simdf8_load(of1, input + 8);
|
|
stbir__decode_simdf8_flip(of0);
|
|
stbir__decode_simdf8_flip(of1);
|
|
stbir__simdf8_store(decode, of0);
|
|
stbir__simdf8_store(decode + 8, of1);
|
|
}
|
|
#else
|
|
{
|
|
stbir__simdf of0, of1, of2, of3;
|
|
stbir__simdf_load(of0, input);
|
|
stbir__simdf_load(of1, input + 4);
|
|
stbir__simdf_load(of2, input + 8);
|
|
stbir__simdf_load(of3, input + 12);
|
|
stbir__decode_simdf4_flip(of0);
|
|
stbir__decode_simdf4_flip(of1);
|
|
stbir__decode_simdf4_flip(of2);
|
|
stbir__decode_simdf4_flip(of3);
|
|
stbir__simdf_store(decode, of0);
|
|
stbir__simdf_store(decode + 4, of1);
|
|
stbir__simdf_store(decode + 8, of2);
|
|
stbir__simdf_store(decode + 12, of3);
|
|
}
|
|
#endif
|
|
#endif
|
|
decode += 16;
|
|
input += 16;
|
|
if (decode <= decode_end)
|
|
continue;
|
|
if (decode == (decode_end + 16))
|
|
break;
|
|
decode = decode_end; // backup and do last couple
|
|
input = end_input_m16;
|
|
}
|
|
return decode_end + 16;
|
|
}
|
|
#endif
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
decode += 4;
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
while (decode <= decode_end)
|
|
{
|
|
STBIR_SIMD_NO_UNROLL(decode);
|
|
decode[0 - 4] = input[stbir__decode_order0];
|
|
decode[1 - 4] = input[stbir__decode_order1];
|
|
decode[2 - 4] = input[stbir__decode_order2];
|
|
decode[3 - 4] = input[stbir__decode_order3];
|
|
decode += 4;
|
|
input += 4;
|
|
}
|
|
decode -= 4;
|
|
#endif
|
|
|
|
// do the remnants
|
|
#if stbir__coder_min_num < 4
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
while (decode < decode_end)
|
|
{
|
|
STBIR_NO_UNROLL(decode);
|
|
decode[0] = input[stbir__decode_order0];
|
|
#if stbir__coder_min_num >= 2
|
|
decode[1] = input[stbir__decode_order1];
|
|
#endif
|
|
#if stbir__coder_min_num >= 3
|
|
decode[2] = input[stbir__decode_order2];
|
|
#endif
|
|
decode += stbir__coder_min_num;
|
|
input += stbir__coder_min_num;
|
|
}
|
|
#endif
|
|
return decode_end;
|
|
|
|
#else
|
|
|
|
if ((void *)decodep != inputp)
|
|
STBIR_MEMCPY(decodep, inputp, width_times_channels * sizeof(float));
|
|
|
|
return decodep + width_times_channels;
|
|
|
|
#endif
|
|
}
|
|
|
|
static void STBIR__CODER_NAME(stbir__encode_float_linear)(void *outputp, int width_times_channels, float const *encode)
|
|
{
|
|
#if !defined(STBIR_FLOAT_HIGH_CLAMP) && !defined(STBIR_FLOAT_LO_CLAMP) && !defined(stbir__decode_swizzle)
|
|
|
|
if ((void *)outputp != (void *)encode)
|
|
STBIR_MEMCPY(outputp, encode, width_times_channels * sizeof(float));
|
|
|
|
#else
|
|
|
|
float STBIR_SIMD_STREAMOUT_PTR(*) output = (float *)outputp;
|
|
float *end_output = ((float *)output) + width_times_channels;
|
|
|
|
#ifdef STBIR_FLOAT_HIGH_CLAMP
|
|
#define stbir_scalar_hi_clamp(v) \
|
|
if (v > STBIR_FLOAT_HIGH_CLAMP) \
|
|
v = STBIR_FLOAT_HIGH_CLAMP;
|
|
#else
|
|
#define stbir_scalar_hi_clamp(v)
|
|
#endif
|
|
#ifdef STBIR_FLOAT_LOW_CLAMP
|
|
#define stbir_scalar_lo_clamp(v) \
|
|
if (v < STBIR_FLOAT_LOW_CLAMP) \
|
|
v = STBIR_FLOAT_LOW_CLAMP;
|
|
#else
|
|
#define stbir_scalar_lo_clamp(v)
|
|
#endif
|
|
|
|
#ifdef STBIR_SIMD
|
|
|
|
#ifdef STBIR_FLOAT_HIGH_CLAMP
|
|
const stbir__simdfX high_clamp = stbir__simdf_frepX(STBIR_FLOAT_HIGH_CLAMP);
|
|
#endif
|
|
#ifdef STBIR_FLOAT_LOW_CLAMP
|
|
const stbir__simdfX low_clamp = stbir__simdf_frepX(STBIR_FLOAT_LOW_CLAMP);
|
|
#endif
|
|
|
|
if (width_times_channels >= (stbir__simdfX_float_count * 2))
|
|
{
|
|
float const *end_encode_m8 = encode + width_times_channels - (stbir__simdfX_float_count * 2);
|
|
end_output -= (stbir__simdfX_float_count * 2);
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR
|
|
for (;;)
|
|
{
|
|
stbir__simdfX e0, e1;
|
|
STBIR_SIMD_NO_UNROLL(encode);
|
|
stbir__simdfX_load(e0, encode);
|
|
stbir__simdfX_load(e1, encode + stbir__simdfX_float_count);
|
|
#ifdef STBIR_FLOAT_HIGH_CLAMP
|
|
stbir__simdfX_min(e0, e0, high_clamp);
|
|
stbir__simdfX_min(e1, e1, high_clamp);
|
|
#endif
|
|
#ifdef STBIR_FLOAT_LOW_CLAMP
|
|
stbir__simdfX_max(e0, e0, low_clamp);
|
|
stbir__simdfX_max(e1, e1, low_clamp);
|
|
#endif
|
|
stbir__encode_simdfX_unflip(e0);
|
|
stbir__encode_simdfX_unflip(e1);
|
|
stbir__simdfX_store(output, e0);
|
|
stbir__simdfX_store(output + stbir__simdfX_float_count, e1);
|
|
encode += stbir__simdfX_float_count * 2;
|
|
output += stbir__simdfX_float_count * 2;
|
|
if (output < end_output)
|
|
continue;
|
|
if (output == (end_output + (stbir__simdfX_float_count * 2)))
|
|
break;
|
|
output = end_output; // backup and do last couple
|
|
encode = end_encode_m8;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
output += 4;
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
while (output <= end_output)
|
|
{
|
|
stbir__simdf e0;
|
|
STBIR_NO_UNROLL(encode);
|
|
stbir__simdf_load(e0, encode);
|
|
#ifdef STBIR_FLOAT_HIGH_CLAMP
|
|
stbir__simdf_min(e0, e0, high_clamp);
|
|
#endif
|
|
#ifdef STBIR_FLOAT_LOW_CLAMP
|
|
stbir__simdf_max(e0, e0, low_clamp);
|
|
#endif
|
|
stbir__encode_simdf4_unflip(e0);
|
|
stbir__simdf_store(output - 4, e0);
|
|
output += 4;
|
|
encode += 4;
|
|
}
|
|
output -= 4;
|
|
#endif
|
|
|
|
#else
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
output += 4;
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
while (output <= end_output)
|
|
{
|
|
float e;
|
|
STBIR_SIMD_NO_UNROLL(encode);
|
|
e = encode[stbir__encode_order0];
|
|
stbir_scalar_hi_clamp(e);
|
|
stbir_scalar_lo_clamp(e);
|
|
output[0 - 4] = e;
|
|
e = encode[stbir__encode_order1];
|
|
stbir_scalar_hi_clamp(e);
|
|
stbir_scalar_lo_clamp(e);
|
|
output[1 - 4] = e;
|
|
e = encode[stbir__encode_order2];
|
|
stbir_scalar_hi_clamp(e);
|
|
stbir_scalar_lo_clamp(e);
|
|
output[2 - 4] = e;
|
|
e = encode[stbir__encode_order3];
|
|
stbir_scalar_hi_clamp(e);
|
|
stbir_scalar_lo_clamp(e);
|
|
output[3 - 4] = e;
|
|
output += 4;
|
|
encode += 4;
|
|
}
|
|
output -= 4;
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
// do the remnants
|
|
#if stbir__coder_min_num < 4
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
while (output < end_output)
|
|
{
|
|
float e;
|
|
STBIR_NO_UNROLL(encode);
|
|
e = encode[stbir__encode_order0];
|
|
stbir_scalar_hi_clamp(e);
|
|
stbir_scalar_lo_clamp(e);
|
|
output[0] = e;
|
|
#if stbir__coder_min_num >= 2
|
|
e = encode[stbir__encode_order1];
|
|
stbir_scalar_hi_clamp(e);
|
|
stbir_scalar_lo_clamp(e);
|
|
output[1] = e;
|
|
#endif
|
|
#if stbir__coder_min_num >= 3
|
|
e = encode[stbir__encode_order2];
|
|
stbir_scalar_hi_clamp(e);
|
|
stbir_scalar_lo_clamp(e);
|
|
output[2] = e;
|
|
#endif
|
|
output += stbir__coder_min_num;
|
|
encode += stbir__coder_min_num;
|
|
}
|
|
#endif
|
|
|
|
#endif
|
|
}
|
|
|
|
#undef stbir__decode_suffix
|
|
#undef stbir__decode_simdf8_flip
|
|
#undef stbir__decode_simdf4_flip
|
|
#undef stbir__decode_order0
|
|
#undef stbir__decode_order1
|
|
#undef stbir__decode_order2
|
|
#undef stbir__decode_order3
|
|
#undef stbir__encode_order0
|
|
#undef stbir__encode_order1
|
|
#undef stbir__encode_order2
|
|
#undef stbir__encode_order3
|
|
#undef stbir__encode_simdf8_unflip
|
|
#undef stbir__encode_simdf4_unflip
|
|
#undef stbir__encode_simdfX_unflip
|
|
#undef STBIR__CODER_NAME
|
|
#undef stbir__coder_min_num
|
|
#undef stbir__decode_swizzle
|
|
#undef stbir_scalar_hi_clamp
|
|
#undef stbir_scalar_lo_clamp
|
|
#undef STB_IMAGE_RESIZE_DO_CODERS
|
|
|
|
#elif defined(STB_IMAGE_RESIZE_DO_VERTICALS)
|
|
|
|
#ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
#define STBIR_chans(start, end) STBIR_strs_join14(start, STBIR__vertical_channels, end, _cont)
|
|
#else
|
|
#define STBIR_chans(start, end) STBIR_strs_join1(start, STBIR__vertical_channels, end)
|
|
#endif
|
|
|
|
#if STBIR__vertical_channels >= 1
|
|
#define stbIF0(code) code
|
|
#else
|
|
#define stbIF0(code)
|
|
#endif
|
|
#if STBIR__vertical_channels >= 2
|
|
#define stbIF1(code) code
|
|
#else
|
|
#define stbIF1(code)
|
|
#endif
|
|
#if STBIR__vertical_channels >= 3
|
|
#define stbIF2(code) code
|
|
#else
|
|
#define stbIF2(code)
|
|
#endif
|
|
#if STBIR__vertical_channels >= 4
|
|
#define stbIF3(code) code
|
|
#else
|
|
#define stbIF3(code)
|
|
#endif
|
|
#if STBIR__vertical_channels >= 5
|
|
#define stbIF4(code) code
|
|
#else
|
|
#define stbIF4(code)
|
|
#endif
|
|
#if STBIR__vertical_channels >= 6
|
|
#define stbIF5(code) code
|
|
#else
|
|
#define stbIF5(code)
|
|
#endif
|
|
#if STBIR__vertical_channels >= 7
|
|
#define stbIF6(code) code
|
|
#else
|
|
#define stbIF6(code)
|
|
#endif
|
|
#if STBIR__vertical_channels >= 8
|
|
#define stbIF7(code) code
|
|
#else
|
|
#define stbIF7(code)
|
|
#endif
|
|
|
|
static void STBIR_chans(stbir__vertical_scatter_with_, _coeffs)(float **outputs, float const *vertical_coefficients, float const *input, float const *input_end)
|
|
{
|
|
stbIF0(float STBIR_SIMD_STREAMOUT_PTR(*) output0 = outputs[0]; float c0s = vertical_coefficients[0];)
|
|
stbIF1(float STBIR_SIMD_STREAMOUT_PTR(*) output1 = outputs[1]; float c1s = vertical_coefficients[1];)
|
|
stbIF2(float STBIR_SIMD_STREAMOUT_PTR(*) output2 = outputs[2]; float c2s = vertical_coefficients[2];)
|
|
stbIF3(float STBIR_SIMD_STREAMOUT_PTR(*) output3 = outputs[3]; float c3s = vertical_coefficients[3];)
|
|
stbIF4(float STBIR_SIMD_STREAMOUT_PTR(*) output4 = outputs[4]; float c4s = vertical_coefficients[4];)
|
|
stbIF5(float STBIR_SIMD_STREAMOUT_PTR(*) output5 = outputs[5]; float c5s = vertical_coefficients[5];)
|
|
stbIF6(float STBIR_SIMD_STREAMOUT_PTR(*) output6 = outputs[6]; float c6s = vertical_coefficients[6];)
|
|
stbIF7(float STBIR_SIMD_STREAMOUT_PTR(*) output7 = outputs[7]; float c7s = vertical_coefficients[7];)
|
|
|
|
#ifdef STBIR_SIMD
|
|
{
|
|
stbIF0(stbir__simdfX c0 = stbir__simdf_frepX(c0s);)
|
|
stbIF1(stbir__simdfX c1 = stbir__simdf_frepX(c1s);)
|
|
stbIF2(stbir__simdfX c2 = stbir__simdf_frepX(c2s);)
|
|
stbIF3(stbir__simdfX c3 = stbir__simdf_frepX(c3s);)
|
|
stbIF4(stbir__simdfX c4 = stbir__simdf_frepX(c4s);)
|
|
stbIF5(stbir__simdfX c5 = stbir__simdf_frepX(c5s);)
|
|
stbIF6(stbir__simdfX c6 = stbir__simdf_frepX(c6s);)
|
|
stbIF7(stbir__simdfX c7 = stbir__simdf_frepX(c7s);)
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START while (((char *)input_end - (char *)input) >= (16 * stbir__simdfX_float_count))
|
|
{
|
|
stbir__simdfX o0, o1, o2, o3, r0, r1, r2, r3;
|
|
STBIR_SIMD_NO_UNROLL(output0);
|
|
|
|
stbir__simdfX_load(r0, input);
|
|
stbir__simdfX_load(r1, input + stbir__simdfX_float_count);
|
|
stbir__simdfX_load(r2, input + (2 * stbir__simdfX_float_count));
|
|
stbir__simdfX_load(r3, input + (3 * stbir__simdfX_float_count));
|
|
|
|
#ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
stbIF0(stbir__simdfX_load(o0, output0); stbir__simdfX_load(o1, output0 + stbir__simdfX_float_count); stbir__simdfX_load(o2, output0 + (2 * stbir__simdfX_float_count)); stbir__simdfX_load(o3, output0 + (3 * stbir__simdfX_float_count));
|
|
stbir__simdfX_madd(o0, o0, r0, c0); stbir__simdfX_madd(o1, o1, r1, c0); stbir__simdfX_madd(o2, o2, r2, c0); stbir__simdfX_madd(o3, o3, r3, c0);
|
|
stbir__simdfX_store(output0, o0); stbir__simdfX_store(output0 + stbir__simdfX_float_count, o1); stbir__simdfX_store(output0 + (2 * stbir__simdfX_float_count), o2); stbir__simdfX_store(output0 + (3 * stbir__simdfX_float_count), o3);)
|
|
stbIF1(stbir__simdfX_load(o0, output1); stbir__simdfX_load(o1, output1 + stbir__simdfX_float_count); stbir__simdfX_load(o2, output1 + (2 * stbir__simdfX_float_count)); stbir__simdfX_load(o3, output1 + (3 * stbir__simdfX_float_count));
|
|
stbir__simdfX_madd(o0, o0, r0, c1); stbir__simdfX_madd(o1, o1, r1, c1); stbir__simdfX_madd(o2, o2, r2, c1); stbir__simdfX_madd(o3, o3, r3, c1);
|
|
stbir__simdfX_store(output1, o0); stbir__simdfX_store(output1 + stbir__simdfX_float_count, o1); stbir__simdfX_store(output1 + (2 * stbir__simdfX_float_count), o2); stbir__simdfX_store(output1 + (3 * stbir__simdfX_float_count), o3);)
|
|
stbIF2(stbir__simdfX_load(o0, output2); stbir__simdfX_load(o1, output2 + stbir__simdfX_float_count); stbir__simdfX_load(o2, output2 + (2 * stbir__simdfX_float_count)); stbir__simdfX_load(o3, output2 + (3 * stbir__simdfX_float_count));
|
|
stbir__simdfX_madd(o0, o0, r0, c2); stbir__simdfX_madd(o1, o1, r1, c2); stbir__simdfX_madd(o2, o2, r2, c2); stbir__simdfX_madd(o3, o3, r3, c2);
|
|
stbir__simdfX_store(output2, o0); stbir__simdfX_store(output2 + stbir__simdfX_float_count, o1); stbir__simdfX_store(output2 + (2 * stbir__simdfX_float_count), o2); stbir__simdfX_store(output2 + (3 * stbir__simdfX_float_count), o3);)
|
|
stbIF3(stbir__simdfX_load(o0, output3); stbir__simdfX_load(o1, output3 + stbir__simdfX_float_count); stbir__simdfX_load(o2, output3 + (2 * stbir__simdfX_float_count)); stbir__simdfX_load(o3, output3 + (3 * stbir__simdfX_float_count));
|
|
stbir__simdfX_madd(o0, o0, r0, c3); stbir__simdfX_madd(o1, o1, r1, c3); stbir__simdfX_madd(o2, o2, r2, c3); stbir__simdfX_madd(o3, o3, r3, c3);
|
|
stbir__simdfX_store(output3, o0); stbir__simdfX_store(output3 + stbir__simdfX_float_count, o1); stbir__simdfX_store(output3 + (2 * stbir__simdfX_float_count), o2); stbir__simdfX_store(output3 + (3 * stbir__simdfX_float_count), o3);)
|
|
stbIF4(stbir__simdfX_load(o0, output4); stbir__simdfX_load(o1, output4 + stbir__simdfX_float_count); stbir__simdfX_load(o2, output4 + (2 * stbir__simdfX_float_count)); stbir__simdfX_load(o3, output4 + (3 * stbir__simdfX_float_count));
|
|
stbir__simdfX_madd(o0, o0, r0, c4); stbir__simdfX_madd(o1, o1, r1, c4); stbir__simdfX_madd(o2, o2, r2, c4); stbir__simdfX_madd(o3, o3, r3, c4);
|
|
stbir__simdfX_store(output4, o0); stbir__simdfX_store(output4 + stbir__simdfX_float_count, o1); stbir__simdfX_store(output4 + (2 * stbir__simdfX_float_count), o2); stbir__simdfX_store(output4 + (3 * stbir__simdfX_float_count), o3);)
|
|
stbIF5(stbir__simdfX_load(o0, output5); stbir__simdfX_load(o1, output5 + stbir__simdfX_float_count); stbir__simdfX_load(o2, output5 + (2 * stbir__simdfX_float_count)); stbir__simdfX_load(o3, output5 + (3 * stbir__simdfX_float_count));
|
|
stbir__simdfX_madd(o0, o0, r0, c5); stbir__simdfX_madd(o1, o1, r1, c5); stbir__simdfX_madd(o2, o2, r2, c5); stbir__simdfX_madd(o3, o3, r3, c5);
|
|
stbir__simdfX_store(output5, o0); stbir__simdfX_store(output5 + stbir__simdfX_float_count, o1); stbir__simdfX_store(output5 + (2 * stbir__simdfX_float_count), o2); stbir__simdfX_store(output5 + (3 * stbir__simdfX_float_count), o3);)
|
|
stbIF6(stbir__simdfX_load(o0, output6); stbir__simdfX_load(o1, output6 + stbir__simdfX_float_count); stbir__simdfX_load(o2, output6 + (2 * stbir__simdfX_float_count)); stbir__simdfX_load(o3, output6 + (3 * stbir__simdfX_float_count));
|
|
stbir__simdfX_madd(o0, o0, r0, c6); stbir__simdfX_madd(o1, o1, r1, c6); stbir__simdfX_madd(o2, o2, r2, c6); stbir__simdfX_madd(o3, o3, r3, c6);
|
|
stbir__simdfX_store(output6, o0); stbir__simdfX_store(output6 + stbir__simdfX_float_count, o1); stbir__simdfX_store(output6 + (2 * stbir__simdfX_float_count), o2); stbir__simdfX_store(output6 + (3 * stbir__simdfX_float_count), o3);)
|
|
stbIF7(stbir__simdfX_load(o0, output7); stbir__simdfX_load(o1, output7 + stbir__simdfX_float_count); stbir__simdfX_load(o2, output7 + (2 * stbir__simdfX_float_count)); stbir__simdfX_load(o3, output7 + (3 * stbir__simdfX_float_count));
|
|
stbir__simdfX_madd(o0, o0, r0, c7); stbir__simdfX_madd(o1, o1, r1, c7); stbir__simdfX_madd(o2, o2, r2, c7); stbir__simdfX_madd(o3, o3, r3, c7);
|
|
stbir__simdfX_store(output7, o0); stbir__simdfX_store(output7 + stbir__simdfX_float_count, o1); stbir__simdfX_store(output7 + (2 * stbir__simdfX_float_count), o2); stbir__simdfX_store(output7 + (3 * stbir__simdfX_float_count), o3);)
|
|
#else
|
|
stbIF0(stbir__simdfX_mult(o0, r0, c0); stbir__simdfX_mult(o1, r1, c0); stbir__simdfX_mult(o2, r2, c0); stbir__simdfX_mult(o3, r3, c0);
|
|
stbir__simdfX_store(output0, o0); stbir__simdfX_store(output0 + stbir__simdfX_float_count, o1); stbir__simdfX_store(output0 + (2 * stbir__simdfX_float_count), o2); stbir__simdfX_store(output0 + (3 * stbir__simdfX_float_count), o3);)
|
|
stbIF1(stbir__simdfX_mult(o0, r0, c1); stbir__simdfX_mult(o1, r1, c1); stbir__simdfX_mult(o2, r2, c1); stbir__simdfX_mult(o3, r3, c1);
|
|
stbir__simdfX_store(output1, o0); stbir__simdfX_store(output1 + stbir__simdfX_float_count, o1); stbir__simdfX_store(output1 + (2 * stbir__simdfX_float_count), o2); stbir__simdfX_store(output1 + (3 * stbir__simdfX_float_count), o3);)
|
|
stbIF2(stbir__simdfX_mult(o0, r0, c2); stbir__simdfX_mult(o1, r1, c2); stbir__simdfX_mult(o2, r2, c2); stbir__simdfX_mult(o3, r3, c2);
|
|
stbir__simdfX_store(output2, o0); stbir__simdfX_store(output2 + stbir__simdfX_float_count, o1); stbir__simdfX_store(output2 + (2 * stbir__simdfX_float_count), o2); stbir__simdfX_store(output2 + (3 * stbir__simdfX_float_count), o3);)
|
|
stbIF3(stbir__simdfX_mult(o0, r0, c3); stbir__simdfX_mult(o1, r1, c3); stbir__simdfX_mult(o2, r2, c3); stbir__simdfX_mult(o3, r3, c3);
|
|
stbir__simdfX_store(output3, o0); stbir__simdfX_store(output3 + stbir__simdfX_float_count, o1); stbir__simdfX_store(output3 + (2 * stbir__simdfX_float_count), o2); stbir__simdfX_store(output3 + (3 * stbir__simdfX_float_count), o3);)
|
|
stbIF4(stbir__simdfX_mult(o0, r0, c4); stbir__simdfX_mult(o1, r1, c4); stbir__simdfX_mult(o2, r2, c4); stbir__simdfX_mult(o3, r3, c4);
|
|
stbir__simdfX_store(output4, o0); stbir__simdfX_store(output4 + stbir__simdfX_float_count, o1); stbir__simdfX_store(output4 + (2 * stbir__simdfX_float_count), o2); stbir__simdfX_store(output4 + (3 * stbir__simdfX_float_count), o3);)
|
|
stbIF5(stbir__simdfX_mult(o0, r0, c5); stbir__simdfX_mult(o1, r1, c5); stbir__simdfX_mult(o2, r2, c5); stbir__simdfX_mult(o3, r3, c5);
|
|
stbir__simdfX_store(output5, o0); stbir__simdfX_store(output5 + stbir__simdfX_float_count, o1); stbir__simdfX_store(output5 + (2 * stbir__simdfX_float_count), o2); stbir__simdfX_store(output5 + (3 * stbir__simdfX_float_count), o3);)
|
|
stbIF6(stbir__simdfX_mult(o0, r0, c6); stbir__simdfX_mult(o1, r1, c6); stbir__simdfX_mult(o2, r2, c6); stbir__simdfX_mult(o3, r3, c6);
|
|
stbir__simdfX_store(output6, o0); stbir__simdfX_store(output6 + stbir__simdfX_float_count, o1); stbir__simdfX_store(output6 + (2 * stbir__simdfX_float_count), o2); stbir__simdfX_store(output6 + (3 * stbir__simdfX_float_count), o3);)
|
|
stbIF7(stbir__simdfX_mult(o0, r0, c7); stbir__simdfX_mult(o1, r1, c7); stbir__simdfX_mult(o2, r2, c7); stbir__simdfX_mult(o3, r3, c7);
|
|
stbir__simdfX_store(output7, o0); stbir__simdfX_store(output7 + stbir__simdfX_float_count, o1); stbir__simdfX_store(output7 + (2 * stbir__simdfX_float_count), o2); stbir__simdfX_store(output7 + (3 * stbir__simdfX_float_count), o3);)
|
|
#endif
|
|
|
|
input += (4 * stbir__simdfX_float_count);
|
|
stbIF0(output0 += (4 * stbir__simdfX_float_count);) stbIF1(output1 += (4 * stbir__simdfX_float_count);) stbIF2(output2 += (4 * stbir__simdfX_float_count);) stbIF3(output3 += (4 * stbir__simdfX_float_count);) stbIF4(output4 += (4 * stbir__simdfX_float_count);) stbIF5(output5 += (4 * stbir__simdfX_float_count);) stbIF6(output6 += (4 * stbir__simdfX_float_count);) stbIF7(output7 += (4 * stbir__simdfX_float_count);)
|
|
}
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
while (((char *)input_end - (char *)input) >= 16)
|
|
{
|
|
stbir__simdf o0, r0;
|
|
STBIR_SIMD_NO_UNROLL(output0);
|
|
|
|
stbir__simdf_load(r0, input);
|
|
|
|
#ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
stbIF0(stbir__simdf_load(o0, output0); stbir__simdf_madd(o0, o0, r0, stbir__if_simdf8_cast_to_simdf4(c0)); stbir__simdf_store(output0, o0);)
|
|
stbIF1(stbir__simdf_load(o0, output1); stbir__simdf_madd(o0, o0, r0, stbir__if_simdf8_cast_to_simdf4(c1)); stbir__simdf_store(output1, o0);)
|
|
stbIF2(stbir__simdf_load(o0, output2); stbir__simdf_madd(o0, o0, r0, stbir__if_simdf8_cast_to_simdf4(c2)); stbir__simdf_store(output2, o0);)
|
|
stbIF3(stbir__simdf_load(o0, output3); stbir__simdf_madd(o0, o0, r0, stbir__if_simdf8_cast_to_simdf4(c3)); stbir__simdf_store(output3, o0);)
|
|
stbIF4(stbir__simdf_load(o0, output4); stbir__simdf_madd(o0, o0, r0, stbir__if_simdf8_cast_to_simdf4(c4)); stbir__simdf_store(output4, o0);)
|
|
stbIF5(stbir__simdf_load(o0, output5); stbir__simdf_madd(o0, o0, r0, stbir__if_simdf8_cast_to_simdf4(c5)); stbir__simdf_store(output5, o0);)
|
|
stbIF6(stbir__simdf_load(o0, output6); stbir__simdf_madd(o0, o0, r0, stbir__if_simdf8_cast_to_simdf4(c6)); stbir__simdf_store(output6, o0);)
|
|
stbIF7(stbir__simdf_load(o0, output7); stbir__simdf_madd(o0, o0, r0, stbir__if_simdf8_cast_to_simdf4(c7)); stbir__simdf_store(output7, o0);)
|
|
#else
|
|
stbIF0(stbir__simdf_mult(o0, r0, stbir__if_simdf8_cast_to_simdf4(c0)); stbir__simdf_store(output0, o0);)
|
|
stbIF1(stbir__simdf_mult(o0, r0, stbir__if_simdf8_cast_to_simdf4(c1)); stbir__simdf_store(output1, o0);)
|
|
stbIF2(stbir__simdf_mult(o0, r0, stbir__if_simdf8_cast_to_simdf4(c2)); stbir__simdf_store(output2, o0);)
|
|
stbIF3(stbir__simdf_mult(o0, r0, stbir__if_simdf8_cast_to_simdf4(c3)); stbir__simdf_store(output3, o0);)
|
|
stbIF4(stbir__simdf_mult(o0, r0, stbir__if_simdf8_cast_to_simdf4(c4)); stbir__simdf_store(output4, o0);)
|
|
stbIF5(stbir__simdf_mult(o0, r0, stbir__if_simdf8_cast_to_simdf4(c5)); stbir__simdf_store(output5, o0);)
|
|
stbIF6(stbir__simdf_mult(o0, r0, stbir__if_simdf8_cast_to_simdf4(c6)); stbir__simdf_store(output6, o0);)
|
|
stbIF7(stbir__simdf_mult(o0, r0, stbir__if_simdf8_cast_to_simdf4(c7)); stbir__simdf_store(output7, o0);)
|
|
#endif
|
|
|
|
input += 4;
|
|
stbIF0(output0 += 4;) stbIF1(output1 += 4;) stbIF2(output2 += 4;) stbIF3(output3 += 4;) stbIF4(output4 += 4;) stbIF5(output5 += 4;) stbIF6(output6 += 4;) stbIF7(output7 += 4;)
|
|
}
|
|
}
|
|
#else
|
|
STBIR_NO_UNROLL_LOOP_START while (((char *)input_end - (char *)input) >= 16)
|
|
{
|
|
float r0, r1, r2, r3;
|
|
STBIR_NO_UNROLL(input);
|
|
|
|
r0 = input[0], r1 = input[1], r2 = input[2], r3 = input[3];
|
|
|
|
#ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
stbIF0(output0[0] += (r0 * c0s); output0[1] += (r1 * c0s); output0[2] += (r2 * c0s); output0[3] += (r3 * c0s);)
|
|
stbIF1(output1[0] += (r0 * c1s); output1[1] += (r1 * c1s); output1[2] += (r2 * c1s); output1[3] += (r3 * c1s);)
|
|
stbIF2(output2[0] += (r0 * c2s); output2[1] += (r1 * c2s); output2[2] += (r2 * c2s); output2[3] += (r3 * c2s);)
|
|
stbIF3(output3[0] += (r0 * c3s); output3[1] += (r1 * c3s); output3[2] += (r2 * c3s); output3[3] += (r3 * c3s);)
|
|
stbIF4(output4[0] += (r0 * c4s); output4[1] += (r1 * c4s); output4[2] += (r2 * c4s); output4[3] += (r3 * c4s);)
|
|
stbIF5(output5[0] += (r0 * c5s); output5[1] += (r1 * c5s); output5[2] += (r2 * c5s); output5[3] += (r3 * c5s);)
|
|
stbIF6(output6[0] += (r0 * c6s); output6[1] += (r1 * c6s); output6[2] += (r2 * c6s); output6[3] += (r3 * c6s);)
|
|
stbIF7(output7[0] += (r0 * c7s); output7[1] += (r1 * c7s); output7[2] += (r2 * c7s); output7[3] += (r3 * c7s);)
|
|
#else
|
|
stbIF0(output0[0] = (r0 * c0s); output0[1] = (r1 * c0s); output0[2] = (r2 * c0s); output0[3] = (r3 * c0s);)
|
|
stbIF1(output1[0] = (r0 * c1s); output1[1] = (r1 * c1s); output1[2] = (r2 * c1s); output1[3] = (r3 * c1s);)
|
|
stbIF2(output2[0] = (r0 * c2s); output2[1] = (r1 * c2s); output2[2] = (r2 * c2s); output2[3] = (r3 * c2s);)
|
|
stbIF3(output3[0] = (r0 * c3s); output3[1] = (r1 * c3s); output3[2] = (r2 * c3s); output3[3] = (r3 * c3s);)
|
|
stbIF4(output4[0] = (r0 * c4s); output4[1] = (r1 * c4s); output4[2] = (r2 * c4s); output4[3] = (r3 * c4s);)
|
|
stbIF5(output5[0] = (r0 * c5s); output5[1] = (r1 * c5s); output5[2] = (r2 * c5s); output5[3] = (r3 * c5s);)
|
|
stbIF6(output6[0] = (r0 * c6s); output6[1] = (r1 * c6s); output6[2] = (r2 * c6s); output6[3] = (r3 * c6s);)
|
|
stbIF7(output7[0] = (r0 * c7s); output7[1] = (r1 * c7s); output7[2] = (r2 * c7s); output7[3] = (r3 * c7s);)
|
|
#endif
|
|
|
|
input += 4;
|
|
stbIF0(output0 += 4;) stbIF1(output1 += 4;) stbIF2(output2 += 4;) stbIF3(output3 += 4;) stbIF4(output4 += 4;) stbIF5(output5 += 4;) stbIF6(output6 += 4;) stbIF7(output7 += 4;)
|
|
}
|
|
#endif
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
while (input < input_end)
|
|
{
|
|
float r = input[0];
|
|
STBIR_NO_UNROLL(output0);
|
|
|
|
#ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
stbIF0(output0[0] += (r * c0s);)
|
|
stbIF1(output1[0] += (r * c1s);)
|
|
stbIF2(output2[0] += (r * c2s);)
|
|
stbIF3(output3[0] += (r * c3s);)
|
|
stbIF4(output4[0] += (r * c4s);)
|
|
stbIF5(output5[0] += (r * c5s);)
|
|
stbIF6(output6[0] += (r * c6s);)
|
|
stbIF7(output7[0] += (r * c7s);)
|
|
#else
|
|
stbIF0(output0[0] = (r * c0s);)
|
|
stbIF1(output1[0] = (r * c1s);)
|
|
stbIF2(output2[0] = (r * c2s);)
|
|
stbIF3(output3[0] = (r * c3s);)
|
|
stbIF4(output4[0] = (r * c4s);)
|
|
stbIF5(output5[0] = (r * c5s);)
|
|
stbIF6(output6[0] = (r * c6s);)
|
|
stbIF7(output7[0] = (r * c7s);)
|
|
#endif
|
|
|
|
++ input;
|
|
stbIF0(++output0;) stbIF1(++output1;) stbIF2(++output2;) stbIF3(++output3;) stbIF4(++output4;) stbIF5(++output5;) stbIF6(++output6;) stbIF7(++output7;)
|
|
}
|
|
}
|
|
|
|
static void STBIR_chans(stbir__vertical_gather_with_, _coeffs)(float *outputp, float const *vertical_coefficients, float const **inputs, float const *input0_end)
|
|
{
|
|
float STBIR_SIMD_STREAMOUT_PTR(*) output = outputp;
|
|
|
|
stbIF0(float const *input0 = inputs[0]; float c0s = vertical_coefficients[0];)
|
|
stbIF1(float const *input1 = inputs[1]; float c1s = vertical_coefficients[1];)
|
|
stbIF2(float const *input2 = inputs[2]; float c2s = vertical_coefficients[2];)
|
|
stbIF3(float const *input3 = inputs[3]; float c3s = vertical_coefficients[3];)
|
|
stbIF4(float const *input4 = inputs[4]; float c4s = vertical_coefficients[4];)
|
|
stbIF5(float const *input5 = inputs[5]; float c5s = vertical_coefficients[5];)
|
|
stbIF6(float const *input6 = inputs[6]; float c6s = vertical_coefficients[6];)
|
|
stbIF7(float const *input7 = inputs[7]; float c7s = vertical_coefficients[7];)
|
|
|
|
#if (STBIR__vertical_channels == 1) && !defined(STB_IMAGE_RESIZE_VERTICAL_CONTINUE)
|
|
// check single channel one weight
|
|
if ((c0s >= (1.0f - 0.000001f)) && (c0s <= (1.0f + 0.000001f)))
|
|
{
|
|
STBIR_MEMCPY(output, input0, (char *)input0_end - (char *)input0);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
#ifdef STBIR_SIMD
|
|
{
|
|
stbIF0(stbir__simdfX c0 = stbir__simdf_frepX(c0s);)
|
|
stbIF1(stbir__simdfX c1 = stbir__simdf_frepX(c1s);)
|
|
stbIF2(stbir__simdfX c2 = stbir__simdf_frepX(c2s);)
|
|
stbIF3(stbir__simdfX c3 = stbir__simdf_frepX(c3s);)
|
|
stbIF4(stbir__simdfX c4 = stbir__simdf_frepX(c4s);)
|
|
stbIF5(stbir__simdfX c5 = stbir__simdf_frepX(c5s);)
|
|
stbIF6(stbir__simdfX c6 = stbir__simdf_frepX(c6s);)
|
|
stbIF7(stbir__simdfX c7 = stbir__simdf_frepX(c7s);)
|
|
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START while (((char *)input0_end - (char *)input0) >= (16 * stbir__simdfX_float_count))
|
|
{
|
|
stbir__simdfX o0, o1, o2, o3, r0, r1, r2, r3;
|
|
STBIR_SIMD_NO_UNROLL(output);
|
|
|
|
// prefetch four loop iterations ahead (doesn't affect much for small resizes, but helps with big ones)
|
|
stbIF0(stbir__prefetch(input0 + (16 * stbir__simdfX_float_count));)
|
|
stbIF1(stbir__prefetch(input1 + (16 * stbir__simdfX_float_count));)
|
|
stbIF2(stbir__prefetch(input2 + (16 * stbir__simdfX_float_count));)
|
|
stbIF3(stbir__prefetch(input3 + (16 * stbir__simdfX_float_count));)
|
|
stbIF4(stbir__prefetch(input4 + (16 * stbir__simdfX_float_count));)
|
|
stbIF5(stbir__prefetch(input5 + (16 * stbir__simdfX_float_count));)
|
|
stbIF6(stbir__prefetch(input6 + (16 * stbir__simdfX_float_count));)
|
|
stbIF7(stbir__prefetch(input7 + (16 * stbir__simdfX_float_count));)
|
|
|
|
#ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
stbIF0(stbir__simdfX_load(o0, output); stbir__simdfX_load(o1, output + stbir__simdfX_float_count); stbir__simdfX_load(o2, output + (2 * stbir__simdfX_float_count)); stbir__simdfX_load(o3, output + (3 * stbir__simdfX_float_count));
|
|
stbir__simdfX_load(r0, input0); stbir__simdfX_load(r1, input0 + stbir__simdfX_float_count); stbir__simdfX_load(r2, input0 + (2 * stbir__simdfX_float_count)); stbir__simdfX_load(r3, input0 + (3 * stbir__simdfX_float_count));
|
|
stbir__simdfX_madd(o0, o0, r0, c0); stbir__simdfX_madd(o1, o1, r1, c0); stbir__simdfX_madd(o2, o2, r2, c0); stbir__simdfX_madd(o3, o3, r3, c0);)
|
|
#else
|
|
stbIF0(stbir__simdfX_load(r0, input0); stbir__simdfX_load(r1, input0 + stbir__simdfX_float_count); stbir__simdfX_load(r2, input0 + (2 * stbir__simdfX_float_count)); stbir__simdfX_load(r3, input0 + (3 * stbir__simdfX_float_count));
|
|
stbir__simdfX_mult(o0, r0, c0); stbir__simdfX_mult(o1, r1, c0); stbir__simdfX_mult(o2, r2, c0); stbir__simdfX_mult(o3, r3, c0);)
|
|
#endif
|
|
|
|
stbIF1(stbir__simdfX_load(r0, input1); stbir__simdfX_load(r1, input1 + stbir__simdfX_float_count); stbir__simdfX_load(r2, input1 + (2 * stbir__simdfX_float_count)); stbir__simdfX_load(r3, input1 + (3 * stbir__simdfX_float_count));
|
|
stbir__simdfX_madd(o0, o0, r0, c1); stbir__simdfX_madd(o1, o1, r1, c1); stbir__simdfX_madd(o2, o2, r2, c1); stbir__simdfX_madd(o3, o3, r3, c1);)
|
|
stbIF2(stbir__simdfX_load(r0, input2); stbir__simdfX_load(r1, input2 + stbir__simdfX_float_count); stbir__simdfX_load(r2, input2 + (2 * stbir__simdfX_float_count)); stbir__simdfX_load(r3, input2 + (3 * stbir__simdfX_float_count));
|
|
stbir__simdfX_madd(o0, o0, r0, c2); stbir__simdfX_madd(o1, o1, r1, c2); stbir__simdfX_madd(o2, o2, r2, c2); stbir__simdfX_madd(o3, o3, r3, c2);)
|
|
stbIF3(stbir__simdfX_load(r0, input3); stbir__simdfX_load(r1, input3 + stbir__simdfX_float_count); stbir__simdfX_load(r2, input3 + (2 * stbir__simdfX_float_count)); stbir__simdfX_load(r3, input3 + (3 * stbir__simdfX_float_count));
|
|
stbir__simdfX_madd(o0, o0, r0, c3); stbir__simdfX_madd(o1, o1, r1, c3); stbir__simdfX_madd(o2, o2, r2, c3); stbir__simdfX_madd(o3, o3, r3, c3);)
|
|
stbIF4(stbir__simdfX_load(r0, input4); stbir__simdfX_load(r1, input4 + stbir__simdfX_float_count); stbir__simdfX_load(r2, input4 + (2 * stbir__simdfX_float_count)); stbir__simdfX_load(r3, input4 + (3 * stbir__simdfX_float_count));
|
|
stbir__simdfX_madd(o0, o0, r0, c4); stbir__simdfX_madd(o1, o1, r1, c4); stbir__simdfX_madd(o2, o2, r2, c4); stbir__simdfX_madd(o3, o3, r3, c4);)
|
|
stbIF5(stbir__simdfX_load(r0, input5); stbir__simdfX_load(r1, input5 + stbir__simdfX_float_count); stbir__simdfX_load(r2, input5 + (2 * stbir__simdfX_float_count)); stbir__simdfX_load(r3, input5 + (3 * stbir__simdfX_float_count));
|
|
stbir__simdfX_madd(o0, o0, r0, c5); stbir__simdfX_madd(o1, o1, r1, c5); stbir__simdfX_madd(o2, o2, r2, c5); stbir__simdfX_madd(o3, o3, r3, c5);)
|
|
stbIF6(stbir__simdfX_load(r0, input6); stbir__simdfX_load(r1, input6 + stbir__simdfX_float_count); stbir__simdfX_load(r2, input6 + (2 * stbir__simdfX_float_count)); stbir__simdfX_load(r3, input6 + (3 * stbir__simdfX_float_count));
|
|
stbir__simdfX_madd(o0, o0, r0, c6); stbir__simdfX_madd(o1, o1, r1, c6); stbir__simdfX_madd(o2, o2, r2, c6); stbir__simdfX_madd(o3, o3, r3, c6);)
|
|
stbIF7(stbir__simdfX_load(r0, input7); stbir__simdfX_load(r1, input7 + stbir__simdfX_float_count); stbir__simdfX_load(r2, input7 + (2 * stbir__simdfX_float_count)); stbir__simdfX_load(r3, input7 + (3 * stbir__simdfX_float_count));
|
|
stbir__simdfX_madd(o0, o0, r0, c7); stbir__simdfX_madd(o1, o1, r1, c7); stbir__simdfX_madd(o2, o2, r2, c7); stbir__simdfX_madd(o3, o3, r3, c7);)
|
|
|
|
stbir__simdfX_store(output, o0);
|
|
stbir__simdfX_store(output + stbir__simdfX_float_count, o1);
|
|
stbir__simdfX_store(output + (2 * stbir__simdfX_float_count), o2);
|
|
stbir__simdfX_store(output + (3 * stbir__simdfX_float_count), o3);
|
|
output += (4 * stbir__simdfX_float_count);
|
|
stbIF0(input0 += (4 * stbir__simdfX_float_count);) stbIF1(input1 += (4 * stbir__simdfX_float_count);) stbIF2(input2 += (4 * stbir__simdfX_float_count);) stbIF3(input3 += (4 * stbir__simdfX_float_count);) stbIF4(input4 += (4 * stbir__simdfX_float_count);) stbIF5(input5 += (4 * stbir__simdfX_float_count);) stbIF6(input6 += (4 * stbir__simdfX_float_count);) stbIF7(input7 += (4 * stbir__simdfX_float_count);)
|
|
}
|
|
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
while (((char *)input0_end - (char *)input0) >= 16)
|
|
{
|
|
stbir__simdf o0, r0;
|
|
STBIR_SIMD_NO_UNROLL(output);
|
|
|
|
#ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
stbIF0(stbir__simdf_load(o0, output); stbir__simdf_load(r0, input0); stbir__simdf_madd(o0, o0, r0, stbir__if_simdf8_cast_to_simdf4(c0));)
|
|
#else
|
|
stbIF0(stbir__simdf_load(r0, input0); stbir__simdf_mult(o0, r0, stbir__if_simdf8_cast_to_simdf4(c0));)
|
|
#endif
|
|
stbIF1(stbir__simdf_load(r0, input1); stbir__simdf_madd(o0, o0, r0, stbir__if_simdf8_cast_to_simdf4(c1));)
|
|
stbIF2(stbir__simdf_load(r0, input2); stbir__simdf_madd(o0, o0, r0, stbir__if_simdf8_cast_to_simdf4(c2));)
|
|
stbIF3(stbir__simdf_load(r0, input3); stbir__simdf_madd(o0, o0, r0, stbir__if_simdf8_cast_to_simdf4(c3));)
|
|
stbIF4(stbir__simdf_load(r0, input4); stbir__simdf_madd(o0, o0, r0, stbir__if_simdf8_cast_to_simdf4(c4));)
|
|
stbIF5(stbir__simdf_load(r0, input5); stbir__simdf_madd(o0, o0, r0, stbir__if_simdf8_cast_to_simdf4(c5));)
|
|
stbIF6(stbir__simdf_load(r0, input6); stbir__simdf_madd(o0, o0, r0, stbir__if_simdf8_cast_to_simdf4(c6));)
|
|
stbIF7(stbir__simdf_load(r0, input7); stbir__simdf_madd(o0, o0, r0, stbir__if_simdf8_cast_to_simdf4(c7));)
|
|
|
|
stbir__simdf_store(output, o0);
|
|
output += 4;
|
|
stbIF0(input0 += 4;) stbIF1(input1 += 4;) stbIF2(input2 += 4;) stbIF3(input3 += 4;) stbIF4(input4 += 4;) stbIF5(input5 += 4;) stbIF6(input6 += 4;) stbIF7(input7 += 4;)
|
|
}
|
|
}
|
|
#else
|
|
STBIR_NO_UNROLL_LOOP_START while (((char *)input0_end - (char *)input0) >= 16)
|
|
{
|
|
float o0, o1, o2, o3;
|
|
STBIR_NO_UNROLL(output);
|
|
#ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
stbIF0(o0 = output[0] + input0[0] * c0s; o1 = output[1] + input0[1] * c0s; o2 = output[2] + input0[2] * c0s; o3 = output[3] + input0[3] * c0s;)
|
|
#else
|
|
stbIF0(o0 = input0[0] * c0s; o1 = input0[1] * c0s; o2 = input0[2] * c0s; o3 = input0[3] * c0s;)
|
|
#endif
|
|
stbIF1(o0 += input1[0] * c1s; o1 += input1[1] * c1s; o2 += input1[2] * c1s; o3 += input1[3] * c1s;)
|
|
stbIF2(o0 += input2[0] * c2s; o1 += input2[1] * c2s; o2 += input2[2] * c2s; o3 += input2[3] * c2s;)
|
|
stbIF3(o0 += input3[0] * c3s; o1 += input3[1] * c3s; o2 += input3[2] * c3s; o3 += input3[3] * c3s;)
|
|
stbIF4(o0 += input4[0] * c4s; o1 += input4[1] * c4s; o2 += input4[2] * c4s; o3 += input4[3] * c4s;)
|
|
stbIF5(o0 += input5[0] * c5s; o1 += input5[1] * c5s; o2 += input5[2] * c5s; o3 += input5[3] * c5s;)
|
|
stbIF6(o0 += input6[0] * c6s; o1 += input6[1] * c6s; o2 += input6[2] * c6s; o3 += input6[3] * c6s;)
|
|
stbIF7(o0 += input7[0] * c7s; o1 += input7[1] * c7s; o2 += input7[2] * c7s; o3 += input7[3] * c7s;)
|
|
output[0] = o0;
|
|
output[1] = o1;
|
|
output[2] = o2;
|
|
output[3] = o3;
|
|
output += 4;
|
|
stbIF0(input0 += 4;) stbIF1(input1 += 4;) stbIF2(input2 += 4;) stbIF3(input3 += 4;) stbIF4(input4 += 4;) stbIF5(input5 += 4;) stbIF6(input6 += 4;) stbIF7(input7 += 4;)
|
|
}
|
|
#endif
|
|
STBIR_NO_UNROLL_LOOP_START
|
|
while (input0 < input0_end)
|
|
{
|
|
float o0;
|
|
STBIR_NO_UNROLL(output);
|
|
#ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
stbIF0(o0 = output[0] + input0[0] * c0s;)
|
|
#else
|
|
stbIF0(o0 = input0[0] * c0s;)
|
|
#endif
|
|
stbIF1(o0 += input1[0] * c1s;)
|
|
stbIF2(o0 += input2[0] * c2s;)
|
|
stbIF3(o0 += input3[0] * c3s;)
|
|
stbIF4(o0 += input4[0] * c4s;)
|
|
stbIF5(o0 += input5[0] * c5s;)
|
|
stbIF6(o0 += input6[0] * c6s;)
|
|
stbIF7(o0 += input7[0] * c7s;)
|
|
output[0] = o0;
|
|
++output;
|
|
stbIF0(++input0;) stbIF1(++input1;) stbIF2(++input2;) stbIF3(++input3;) stbIF4(++input4;) stbIF5(++input5;) stbIF6(++input6;) stbIF7(++input7;)
|
|
}
|
|
}
|
|
|
|
#undef stbIF0
|
|
#undef stbIF1
|
|
#undef stbIF2
|
|
#undef stbIF3
|
|
#undef stbIF4
|
|
#undef stbIF5
|
|
#undef stbIF6
|
|
#undef stbIF7
|
|
#undef STB_IMAGE_RESIZE_DO_VERTICALS
|
|
#undef STBIR__vertical_channels
|
|
#undef STB_IMAGE_RESIZE_DO_HORIZONTALS
|
|
#undef STBIR_strs_join24
|
|
#undef STBIR_strs_join14
|
|
#undef STBIR_chans
|
|
#ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
#undef STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
#endif
|
|
|
|
#else // !STB_IMAGE_RESIZE_DO_VERTICALS
|
|
|
|
#define STBIR_chans(start, end) STBIR_strs_join1(start, STBIR__horizontal_channels, end)
|
|
|
|
#ifndef stbir__2_coeff_only
|
|
#define stbir__2_coeff_only() \
|
|
stbir__1_coeff_only(); \
|
|
stbir__1_coeff_remnant(1);
|
|
#endif
|
|
|
|
#ifndef stbir__2_coeff_remnant
|
|
#define stbir__2_coeff_remnant(ofs) \
|
|
stbir__1_coeff_remnant(ofs); \
|
|
stbir__1_coeff_remnant((ofs) + 1);
|
|
#endif
|
|
|
|
#ifndef stbir__3_coeff_only
|
|
#define stbir__3_coeff_only() \
|
|
stbir__2_coeff_only(); \
|
|
stbir__1_coeff_remnant(2);
|
|
#endif
|
|
|
|
#ifndef stbir__3_coeff_remnant
|
|
#define stbir__3_coeff_remnant(ofs) \
|
|
stbir__2_coeff_remnant(ofs); \
|
|
stbir__1_coeff_remnant((ofs) + 2);
|
|
#endif
|
|
|
|
#ifndef stbir__3_coeff_setup
|
|
#define stbir__3_coeff_setup()
|
|
#endif
|
|
|
|
#ifndef stbir__4_coeff_start
|
|
#define stbir__4_coeff_start() \
|
|
stbir__2_coeff_only(); \
|
|
stbir__2_coeff_remnant(2);
|
|
#endif
|
|
|
|
#ifndef stbir__4_coeff_continue_from_4
|
|
#define stbir__4_coeff_continue_from_4(ofs) \
|
|
stbir__2_coeff_remnant(ofs); \
|
|
stbir__2_coeff_remnant((ofs) + 2);
|
|
#endif
|
|
|
|
#ifndef stbir__store_output_tiny
|
|
#define stbir__store_output_tiny stbir__store_output
|
|
#endif
|
|
|
|
static void STBIR_chans(stbir__horizontal_gather_, _channels_with_1_coeff)(float *output_buffer, unsigned int output_sub_size, float const *decode_buffer, stbir__contributors const *horizontal_contributors, float const *horizontal_coefficients, int coefficient_width)
|
|
{
|
|
float const *output_end = output_buffer + output_sub_size * STBIR__horizontal_channels;
|
|
float STBIR_SIMD_STREAMOUT_PTR(*) output = output_buffer;
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
float const *decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels;
|
|
float const *hc = horizontal_coefficients;
|
|
stbir__1_coeff_only();
|
|
stbir__store_output_tiny();
|
|
} while (output < output_end);
|
|
}
|
|
|
|
static void STBIR_chans(stbir__horizontal_gather_, _channels_with_2_coeffs)(float *output_buffer, unsigned int output_sub_size, float const *decode_buffer, stbir__contributors const *horizontal_contributors, float const *horizontal_coefficients, int coefficient_width)
|
|
{
|
|
float const *output_end = output_buffer + output_sub_size * STBIR__horizontal_channels;
|
|
float STBIR_SIMD_STREAMOUT_PTR(*) output = output_buffer;
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
float const *decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels;
|
|
float const *hc = horizontal_coefficients;
|
|
stbir__2_coeff_only();
|
|
stbir__store_output_tiny();
|
|
} while (output < output_end);
|
|
}
|
|
|
|
static void STBIR_chans(stbir__horizontal_gather_, _channels_with_3_coeffs)(float *output_buffer, unsigned int output_sub_size, float const *decode_buffer, stbir__contributors const *horizontal_contributors, float const *horizontal_coefficients, int coefficient_width)
|
|
{
|
|
float const *output_end = output_buffer + output_sub_size * STBIR__horizontal_channels;
|
|
float STBIR_SIMD_STREAMOUT_PTR(*) output = output_buffer;
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
float const *decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels;
|
|
float const *hc = horizontal_coefficients;
|
|
stbir__3_coeff_only();
|
|
stbir__store_output_tiny();
|
|
} while (output < output_end);
|
|
}
|
|
|
|
static void STBIR_chans(stbir__horizontal_gather_, _channels_with_4_coeffs)(float *output_buffer, unsigned int output_sub_size, float const *decode_buffer, stbir__contributors const *horizontal_contributors, float const *horizontal_coefficients, int coefficient_width)
|
|
{
|
|
float const *output_end = output_buffer + output_sub_size * STBIR__horizontal_channels;
|
|
float STBIR_SIMD_STREAMOUT_PTR(*) output = output_buffer;
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
float const *decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels;
|
|
float const *hc = horizontal_coefficients;
|
|
stbir__4_coeff_start();
|
|
stbir__store_output();
|
|
} while (output < output_end);
|
|
}
|
|
|
|
static void STBIR_chans(stbir__horizontal_gather_, _channels_with_5_coeffs)(float *output_buffer, unsigned int output_sub_size, float const *decode_buffer, stbir__contributors const *horizontal_contributors, float const *horizontal_coefficients, int coefficient_width)
|
|
{
|
|
float const *output_end = output_buffer + output_sub_size * STBIR__horizontal_channels;
|
|
float STBIR_SIMD_STREAMOUT_PTR(*) output = output_buffer;
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
float const *decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels;
|
|
float const *hc = horizontal_coefficients;
|
|
stbir__4_coeff_start();
|
|
stbir__1_coeff_remnant(4);
|
|
stbir__store_output();
|
|
} while (output < output_end);
|
|
}
|
|
|
|
static void STBIR_chans(stbir__horizontal_gather_, _channels_with_6_coeffs)(float *output_buffer, unsigned int output_sub_size, float const *decode_buffer, stbir__contributors const *horizontal_contributors, float const *horizontal_coefficients, int coefficient_width)
|
|
{
|
|
float const *output_end = output_buffer + output_sub_size * STBIR__horizontal_channels;
|
|
float STBIR_SIMD_STREAMOUT_PTR(*) output = output_buffer;
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
float const *decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels;
|
|
float const *hc = horizontal_coefficients;
|
|
stbir__4_coeff_start();
|
|
stbir__2_coeff_remnant(4);
|
|
stbir__store_output();
|
|
} while (output < output_end);
|
|
}
|
|
|
|
static void STBIR_chans(stbir__horizontal_gather_, _channels_with_7_coeffs)(float *output_buffer, unsigned int output_sub_size, float const *decode_buffer, stbir__contributors const *horizontal_contributors, float const *horizontal_coefficients, int coefficient_width)
|
|
{
|
|
float const *output_end = output_buffer + output_sub_size * STBIR__horizontal_channels;
|
|
float STBIR_SIMD_STREAMOUT_PTR(*) output = output_buffer;
|
|
stbir__3_coeff_setup();
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
float const *decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels;
|
|
float const *hc = horizontal_coefficients;
|
|
|
|
stbir__4_coeff_start();
|
|
stbir__3_coeff_remnant(4);
|
|
stbir__store_output();
|
|
} while (output < output_end);
|
|
}
|
|
|
|
static void STBIR_chans(stbir__horizontal_gather_, _channels_with_8_coeffs)(float *output_buffer, unsigned int output_sub_size, float const *decode_buffer, stbir__contributors const *horizontal_contributors, float const *horizontal_coefficients, int coefficient_width)
|
|
{
|
|
float const *output_end = output_buffer + output_sub_size * STBIR__horizontal_channels;
|
|
float STBIR_SIMD_STREAMOUT_PTR(*) output = output_buffer;
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
float const *decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels;
|
|
float const *hc = horizontal_coefficients;
|
|
stbir__4_coeff_start();
|
|
stbir__4_coeff_continue_from_4(4);
|
|
stbir__store_output();
|
|
} while (output < output_end);
|
|
}
|
|
|
|
static void STBIR_chans(stbir__horizontal_gather_, _channels_with_9_coeffs)(float *output_buffer, unsigned int output_sub_size, float const *decode_buffer, stbir__contributors const *horizontal_contributors, float const *horizontal_coefficients, int coefficient_width)
|
|
{
|
|
float const *output_end = output_buffer + output_sub_size * STBIR__horizontal_channels;
|
|
float STBIR_SIMD_STREAMOUT_PTR(*) output = output_buffer;
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
float const *decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels;
|
|
float const *hc = horizontal_coefficients;
|
|
stbir__4_coeff_start();
|
|
stbir__4_coeff_continue_from_4(4);
|
|
stbir__1_coeff_remnant(8);
|
|
stbir__store_output();
|
|
} while (output < output_end);
|
|
}
|
|
|
|
static void STBIR_chans(stbir__horizontal_gather_, _channels_with_10_coeffs)(float *output_buffer, unsigned int output_sub_size, float const *decode_buffer, stbir__contributors const *horizontal_contributors, float const *horizontal_coefficients, int coefficient_width)
|
|
{
|
|
float const *output_end = output_buffer + output_sub_size * STBIR__horizontal_channels;
|
|
float STBIR_SIMD_STREAMOUT_PTR(*) output = output_buffer;
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
float const *decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels;
|
|
float const *hc = horizontal_coefficients;
|
|
stbir__4_coeff_start();
|
|
stbir__4_coeff_continue_from_4(4);
|
|
stbir__2_coeff_remnant(8);
|
|
stbir__store_output();
|
|
} while (output < output_end);
|
|
}
|
|
|
|
static void STBIR_chans(stbir__horizontal_gather_, _channels_with_11_coeffs)(float *output_buffer, unsigned int output_sub_size, float const *decode_buffer, stbir__contributors const *horizontal_contributors, float const *horizontal_coefficients, int coefficient_width)
|
|
{
|
|
float const *output_end = output_buffer + output_sub_size * STBIR__horizontal_channels;
|
|
float STBIR_SIMD_STREAMOUT_PTR(*) output = output_buffer;
|
|
stbir__3_coeff_setup();
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
float const *decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels;
|
|
float const *hc = horizontal_coefficients;
|
|
stbir__4_coeff_start();
|
|
stbir__4_coeff_continue_from_4(4);
|
|
stbir__3_coeff_remnant(8);
|
|
stbir__store_output();
|
|
} while (output < output_end);
|
|
}
|
|
|
|
static void STBIR_chans(stbir__horizontal_gather_, _channels_with_12_coeffs)(float *output_buffer, unsigned int output_sub_size, float const *decode_buffer, stbir__contributors const *horizontal_contributors, float const *horizontal_coefficients, int coefficient_width)
|
|
{
|
|
float const *output_end = output_buffer + output_sub_size * STBIR__horizontal_channels;
|
|
float STBIR_SIMD_STREAMOUT_PTR(*) output = output_buffer;
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
float const *decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels;
|
|
float const *hc = horizontal_coefficients;
|
|
stbir__4_coeff_start();
|
|
stbir__4_coeff_continue_from_4(4);
|
|
stbir__4_coeff_continue_from_4(8);
|
|
stbir__store_output();
|
|
} while (output < output_end);
|
|
}
|
|
|
|
static void STBIR_chans(stbir__horizontal_gather_, _channels_with_n_coeffs_mod0)(float *output_buffer, unsigned int output_sub_size, float const *decode_buffer, stbir__contributors const *horizontal_contributors, float const *horizontal_coefficients, int coefficient_width)
|
|
{
|
|
float const *output_end = output_buffer + output_sub_size * STBIR__horizontal_channels;
|
|
float STBIR_SIMD_STREAMOUT_PTR(*) output = output_buffer;
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
float const *decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels;
|
|
int n = ((horizontal_contributors->n1 - horizontal_contributors->n0 + 1) - 4 + 3) >> 2;
|
|
float const *hc = horizontal_coefficients;
|
|
|
|
stbir__4_coeff_start();
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
hc += 4;
|
|
decode += STBIR__horizontal_channels * 4;
|
|
stbir__4_coeff_continue_from_4(0);
|
|
--n;
|
|
} while (n > 0);
|
|
stbir__store_output();
|
|
} while (output < output_end);
|
|
}
|
|
|
|
static void STBIR_chans(stbir__horizontal_gather_, _channels_with_n_coeffs_mod1)(float *output_buffer, unsigned int output_sub_size, float const *decode_buffer, stbir__contributors const *horizontal_contributors, float const *horizontal_coefficients, int coefficient_width)
|
|
{
|
|
float const *output_end = output_buffer + output_sub_size * STBIR__horizontal_channels;
|
|
float STBIR_SIMD_STREAMOUT_PTR(*) output = output_buffer;
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
float const *decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels;
|
|
int n = ((horizontal_contributors->n1 - horizontal_contributors->n0 + 1) - 5 + 3) >> 2;
|
|
float const *hc = horizontal_coefficients;
|
|
|
|
stbir__4_coeff_start();
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
hc += 4;
|
|
decode += STBIR__horizontal_channels * 4;
|
|
stbir__4_coeff_continue_from_4(0);
|
|
--n;
|
|
} while (n > 0);
|
|
stbir__1_coeff_remnant(4);
|
|
stbir__store_output();
|
|
} while (output < output_end);
|
|
}
|
|
|
|
static void STBIR_chans(stbir__horizontal_gather_, _channels_with_n_coeffs_mod2)(float *output_buffer, unsigned int output_sub_size, float const *decode_buffer, stbir__contributors const *horizontal_contributors, float const *horizontal_coefficients, int coefficient_width)
|
|
{
|
|
float const *output_end = output_buffer + output_sub_size * STBIR__horizontal_channels;
|
|
float STBIR_SIMD_STREAMOUT_PTR(*) output = output_buffer;
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
float const *decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels;
|
|
int n = ((horizontal_contributors->n1 - horizontal_contributors->n0 + 1) - 6 + 3) >> 2;
|
|
float const *hc = horizontal_coefficients;
|
|
|
|
stbir__4_coeff_start();
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
hc += 4;
|
|
decode += STBIR__horizontal_channels * 4;
|
|
stbir__4_coeff_continue_from_4(0);
|
|
--n;
|
|
} while (n > 0);
|
|
stbir__2_coeff_remnant(4);
|
|
|
|
stbir__store_output();
|
|
} while (output < output_end);
|
|
}
|
|
|
|
static void STBIR_chans(stbir__horizontal_gather_, _channels_with_n_coeffs_mod3)(float *output_buffer, unsigned int output_sub_size, float const *decode_buffer, stbir__contributors const *horizontal_contributors, float const *horizontal_coefficients, int coefficient_width)
|
|
{
|
|
float const *output_end = output_buffer + output_sub_size * STBIR__horizontal_channels;
|
|
float STBIR_SIMD_STREAMOUT_PTR(*) output = output_buffer;
|
|
stbir__3_coeff_setup();
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
float const *decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels;
|
|
int n = ((horizontal_contributors->n1 - horizontal_contributors->n0 + 1) - 7 + 3) >> 2;
|
|
float const *hc = horizontal_coefficients;
|
|
|
|
stbir__4_coeff_start();
|
|
STBIR_SIMD_NO_UNROLL_LOOP_START
|
|
do
|
|
{
|
|
hc += 4;
|
|
decode += STBIR__horizontal_channels * 4;
|
|
stbir__4_coeff_continue_from_4(0);
|
|
--n;
|
|
} while (n > 0);
|
|
stbir__3_coeff_remnant(4);
|
|
|
|
stbir__store_output();
|
|
} while (output < output_end);
|
|
}
|
|
|
|
static stbir__horizontal_gather_channels_func *STBIR_chans(stbir__horizontal_gather_, _channels_with_n_coeffs_funcs)[4] =
|
|
{
|
|
STBIR_chans(stbir__horizontal_gather_, _channels_with_n_coeffs_mod0),
|
|
STBIR_chans(stbir__horizontal_gather_, _channels_with_n_coeffs_mod1),
|
|
STBIR_chans(stbir__horizontal_gather_, _channels_with_n_coeffs_mod2),
|
|
STBIR_chans(stbir__horizontal_gather_, _channels_with_n_coeffs_mod3),
|
|
};
|
|
|
|
static stbir__horizontal_gather_channels_func *STBIR_chans(stbir__horizontal_gather_, _channels_funcs)[12] =
|
|
{
|
|
STBIR_chans(stbir__horizontal_gather_, _channels_with_1_coeff),
|
|
STBIR_chans(stbir__horizontal_gather_, _channels_with_2_coeffs),
|
|
STBIR_chans(stbir__horizontal_gather_, _channels_with_3_coeffs),
|
|
STBIR_chans(stbir__horizontal_gather_, _channels_with_4_coeffs),
|
|
STBIR_chans(stbir__horizontal_gather_, _channels_with_5_coeffs),
|
|
STBIR_chans(stbir__horizontal_gather_, _channels_with_6_coeffs),
|
|
STBIR_chans(stbir__horizontal_gather_, _channels_with_7_coeffs),
|
|
STBIR_chans(stbir__horizontal_gather_, _channels_with_8_coeffs),
|
|
STBIR_chans(stbir__horizontal_gather_, _channels_with_9_coeffs),
|
|
STBIR_chans(stbir__horizontal_gather_, _channels_with_10_coeffs),
|
|
STBIR_chans(stbir__horizontal_gather_, _channels_with_11_coeffs),
|
|
STBIR_chans(stbir__horizontal_gather_, _channels_with_12_coeffs),
|
|
};
|
|
|
|
#undef STBIR__horizontal_channels
|
|
#undef STB_IMAGE_RESIZE_DO_HORIZONTALS
|
|
#undef stbir__1_coeff_only
|
|
#undef stbir__1_coeff_remnant
|
|
#undef stbir__2_coeff_only
|
|
#undef stbir__2_coeff_remnant
|
|
#undef stbir__3_coeff_only
|
|
#undef stbir__3_coeff_remnant
|
|
#undef stbir__3_coeff_setup
|
|
#undef stbir__4_coeff_start
|
|
#undef stbir__4_coeff_continue_from_4
|
|
#undef stbir__store_output
|
|
#undef stbir__store_output_tiny
|
|
#undef STBIR_chans
|
|
|
|
#endif // HORIZONALS
|
|
|
|
#undef STBIR_strs_join2
|
|
#undef STBIR_strs_join1
|
|
|
|
#endif // STB_IMAGE_RESIZE_DO_HORIZONTALS/VERTICALS/CODERS
|
|
|
|
/*
|
|
------------------------------------------------------------------------------
|
|
This software is available under 2 licenses -- choose whichever you prefer.
|
|
------------------------------------------------------------------------------
|
|
ALTERNATIVE A - MIT License
|
|
Copyright (c) 2017 Sean Barrett
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
this software and associated documentation files (the "Software"), to deal in
|
|
the Software without restriction, including without limitation the rights to
|
|
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
|
|
of the Software, and to permit persons to whom the Software is furnished to do
|
|
so, subject to the following conditions:
|
|
The above copyright notice and this permission notice shall be included in all
|
|
copies or substantial portions of the Software.
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
SOFTWARE.
|
|
------------------------------------------------------------------------------
|
|
ALTERNATIVE B - Public Domain (www.unlicense.org)
|
|
This is free and unencumbered software released into the public domain.
|
|
Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
|
|
software, either in source code form or as a compiled binary, for any purpose,
|
|
commercial or non-commercial, and by any means.
|
|
In jurisdictions that recognize copyright laws, the author or authors of this
|
|
software dedicate any and all copyright interest in the software to the public
|
|
domain. We make this dedication for the benefit of the public at large and to
|
|
the detriment of our heirs and successors. We intend this dedication to be an
|
|
overt act of relinquishment in perpetuity of all present and future rights to
|
|
this software under copyright law.
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
|
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
------------------------------------------------------------------------------
|
|
*/
|