Merge remote-tracking branch 'Kernel/mb2_32_64_test' into Kernel-mb2_32_64_test

This commit is contained in:
EnderIce2
2024-11-20 05:15:06 +02:00
parent 47cf2c24d1
commit b348932172
353 changed files with 77068 additions and 0 deletions

492
Kernel/Core/CPU.cpp Normal file
View File

@ -0,0 +1,492 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include <cpu.hpp>
#include <memory.hpp>
#include <convert.h>
#include <debug.h>
#include <smp.hpp>
#include "../kernel.h"
namespace CPU
{
static bool SSEEnabled = false;
char *Vendor()
{
static char Vendor[13] = {0};
if (Vendor[0] != 0)
return Vendor;
#if defined(a64)
uint32_t eax, ebx, ecx, edx;
x64::cpuid(0x0, &eax, &ebx, &ecx, &edx);
memcpy(Vendor + 0, &ebx, 4);
memcpy(Vendor + 4, &edx, 4);
memcpy(Vendor + 8, &ecx, 4);
#elif defined(a32)
uint32_t eax, ebx, ecx, edx;
x32::cpuid(0x0, &eax, &ebx, &ecx, &edx);
memcpy(Vendor + 0, &ebx, 4);
memcpy(Vendor + 4, &edx, 4);
memcpy(Vendor + 8, &ecx, 4);
#elif defined(aa64)
asmv("mrs %0, MIDR_EL1"
: "=r"(Vendor[0]));
#endif
return Vendor;
}
char *Name()
{
static char Name[49] = {0};
if (Name[0] != 0)
return Name;
#if defined(a64)
uint32_t eax, ebx, ecx, edx;
x64::cpuid(0x80000002, &eax, &ebx, &ecx, &edx);
memcpy(Name + 0, &eax, 4);
memcpy(Name + 4, &ebx, 4);
memcpy(Name + 8, &ecx, 4);
memcpy(Name + 12, &edx, 4);
x64::cpuid(0x80000003, &eax, &ebx, &ecx, &edx);
memcpy(Name + 16, &eax, 4);
memcpy(Name + 20, &ebx, 4);
memcpy(Name + 24, &ecx, 4);
memcpy(Name + 28, &edx, 4);
x64::cpuid(0x80000004, &eax, &ebx, &ecx, &edx);
memcpy(Name + 32, &eax, 4);
memcpy(Name + 36, &ebx, 4);
memcpy(Name + 40, &ecx, 4);
memcpy(Name + 44, &edx, 4);
#elif defined(a32)
uint32_t eax, ebx, ecx, edx;
x32::cpuid(0x80000002, &eax, &ebx, &ecx, &edx);
memcpy(Name + 0, &eax, 4);
memcpy(Name + 4, &ebx, 4);
memcpy(Name + 8, &ecx, 4);
memcpy(Name + 12, &edx, 4);
x32::cpuid(0x80000003, &eax, &ebx, &ecx, &edx);
memcpy(Name + 16, &eax, 4);
memcpy(Name + 20, &ebx, 4);
memcpy(Name + 24, &ecx, 4);
memcpy(Name + 28, &edx, 4);
x32::cpuid(0x80000004, &eax, &ebx, &ecx, &edx);
memcpy(Name + 32, &eax, 4);
memcpy(Name + 36, &ebx, 4);
memcpy(Name + 40, &ecx, 4);
memcpy(Name + 44, &edx, 4);
#elif defined(aa64)
asmv("mrs %0, MIDR_EL1"
: "=r"(Name[0]));
#endif
return Name;
}
char *Hypervisor()
{
static char Hypervisor[13] = {0};
if (Hypervisor[0] != 0)
return Hypervisor;
#if defined(a64)
uint32_t eax, ebx, ecx, edx;
x64::cpuid(0x40000000, &eax, &ebx, &ecx, &edx);
memcpy(Hypervisor + 0, &ebx, 4);
memcpy(Hypervisor + 4, &ecx, 4);
memcpy(Hypervisor + 8, &edx, 4);
#elif defined(a32)
uint32_t eax, ebx, ecx, edx;
x64::cpuid(0x40000000, &eax, &ebx, &ecx, &edx);
memcpy(Hypervisor + 0, &ebx, 4);
memcpy(Hypervisor + 4, &ecx, 4);
memcpy(Hypervisor + 8, &edx, 4);
#elif defined(aa64)
asmv("mrs %0, MIDR_EL1"
: "=r"(Hypervisor[0]));
#endif
return Hypervisor;
}
bool Interrupts(InterruptsType Type)
{
switch (Type)
{
case Check:
{
uintptr_t Flags;
#if defined(a64)
asmv("pushfq");
asmv("popq %0"
: "=r"(Flags));
return Flags & (1 << 9);
#elif defined(a32)
asmv("pushfl");
asmv("popl %0"
: "=r"(Flags));
return Flags & (1 << 9);
#elif defined(aa64)
asmv("mrs %0, daif"
: "=r"(Flags));
return !(Flags & (1 << 2));
#endif
}
case Enable:
{
#if defined(a86)
asmv("sti");
#elif defined(aa64)
asmv("msr daifclr, #2");
#endif
return true;
}
case Disable:
{
#if defined(a86)
asmv("cli");
#elif defined(aa64)
asmv("msr daifset, #2");
#endif
return true;
}
default:
break;
}
return false;
}
void *PageTable(void *PT)
{
#if defined(a64)
if (PT)
asmv("movq %0, %%cr3"
:
: "r"(PT));
else
asmv("movq %%cr3, %0"
: "=r"(PT));
#elif defined(a32)
if (PT)
asmv("movl %0, %%cr3"
:
: "r"(PT));
else
asmv("movl %%cr3, %0"
: "=r"(PT));
#elif defined(aa64)
if (PT)
asmv("msr ttbr0_el1, %0"
:
: "r"(PT));
else
asmv("mrs %0, ttbr0_el1"
: "=r"(PT));
#endif
return PT;
}
void InitializeFeatures(long Core)
{
#if defined(a64)
bool PGESupport = false;
bool SSESupport = false;
bool UMIPSupport = false;
bool SMEPSupport = false;
bool SMAPSupport = false;
static int BSP = 0;
x64::CR0 cr0 = x64::readcr0();
x64::CR4 cr4 = x64::readcr4();
if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_AMD) == 0)
{
CPU::x86::AMD::CPUID0x00000001 cpuid1;
CPU::x86::AMD::CPUID0x00000007 cpuid7;
cpuid1.Get();
cpuid7.Get();
PGESupport = cpuid1.EDX.PGE;
SSESupport = cpuid1.EDX.SSE;
SMEPSupport = cpuid7.EBX.SMEP;
SMAPSupport = cpuid7.EBX.SMAP;
UMIPSupport = cpuid7.ECX.UMIP;
}
else if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_INTEL) == 0)
{
CPU::x86::Intel::CPUID0x00000001 cpuid1;
CPU::x86::Intel::CPUID0x00000007_0 cpuid7_0;
cpuid1.Get();
cpuid7_0.Get();
PGESupport = cpuid1.EDX.PGE;
SSESupport = cpuid1.EDX.SSE;
SMEPSupport = cpuid7_0.EBX.SMEP;
SMAPSupport = cpuid7_0.EBX.SMAP;
UMIPSupport = cpuid7_0.ECX.UMIP;
}
if (Config.SIMD == false)
{
debug("Disabling SSE support...");
SSESupport = false;
}
if (PGESupport)
{
debug("Enabling global pages support...");
if (!BSP)
KPrint("Global Pages is supported.");
cr4.PGE = 1;
}
bool SSEEnableAfter = false;
/* Not sure if my code is not working properly or something else is the issue. */
if ((strcmp(Hypervisor(), x86_CPUID_VENDOR_TCG) != 0 &&
strcmp(Hypervisor(), x86_CPUID_VENDOR_VIRTUALBOX) != 0) &&
SSESupport)
{
debug("Enabling SSE support...");
if (!BSP)
KPrint("SSE is supported.");
cr0.EM = 0;
cr0.MP = 1;
cr4.OSFXSR = 1;
cr4.OSXMMEXCPT = 1;
CPUData *CoreData = GetCPU(Core);
CoreData->Data.FPU = (CPU::x64::FXState *)KernelAllocator.RequestPages(TO_PAGES(sizeof(CPU::x64::FXState) + 1));
memset(CoreData->Data.FPU, 0, FROM_PAGES(TO_PAGES(sizeof(CPU::x64::FXState))));
CoreData->Data.FPU->mxcsr = 0b0001111110000000;
CoreData->Data.FPU->mxcsrmask = 0b1111111110111111;
CoreData->Data.FPU->fcw = 0b0000001100111111;
CPU::x64::fxrstor(CoreData->Data.FPU);
SSEEnableAfter = true;
}
cr0.NW = 0;
cr0.CD = 0;
cr0.WP = 1;
x64::writecr0(cr0);
if (strcmp(Hypervisor(), x86_CPUID_VENDOR_VIRTUALBOX) != 0 &&
strcmp(Hypervisor(), x86_CPUID_VENDOR_TCG) != 0)
{
// FIXME: I don't think this is reporting correctly. This has to be fixed asap.
debug("Enabling UMIP, SMEP & SMAP support...");
if (UMIPSupport)
{
if (!BSP)
KPrint("UMIP is supported.");
debug("UMIP is supported.");
// cr4.UMIP = 1;
}
if (SMEPSupport)
{
if (!BSP)
KPrint("SMEP is supported.");
debug("SMEP is supported.");
// cr4.SMEP = 1;
}
if (SMAPSupport)
{
if (!BSP)
KPrint("SMAP is supported.");
debug("SMAP is supported.");
// cr4.SMAP = 1;
}
}
else
{
if (!BSP)
{
if (strcmp(Hypervisor(), x86_CPUID_VENDOR_VIRTUALBOX) == 0)
KPrint("VirtualBox detected. Not using UMIP, SMEP & SMAP");
else if (strcmp(Hypervisor(), x86_CPUID_VENDOR_TCG) == 0)
KPrint("QEMU (TCG) detected. Not using UMIP, SMEP & SMAP");
}
}
debug("Writing CR4...");
x64::writecr4(cr4);
debug("Wrote CR4.");
debug("Enabling PAT support...");
x64::wrmsr(x64::MSR_CR_PAT, 0x6 | (0x0 << 8) | (0x1 << 16));
if (!BSP++)
trace("Features for BSP initialized.");
if (SSEEnableAfter)
SSEEnabled = true;
#elif defined(a32)
#elif defined(aa64)
#endif
}
uintptr_t Counter()
{
// TODO: Get the counter from the x2APIC or any other timer that is available. (TSC is not available on all CPUs)
uintptr_t Counter;
#if defined(a64)
asmv("rdtsc"
: "=A"(Counter));
#elif defined(a32)
asmv("rdtsc"
: "=A"(Counter));
#elif defined(aa64)
asmv("mrs %0, cntvct_el0"
: "=r"(Counter));
#endif
return Counter;
}
uint64_t CheckSIMD()
{
#if defined(a32)
return SIMD_NONE; /* TODO: Support x86 SIMD on x32 */
#endif
if (unlikely(!SSEEnabled))
return SIMD_NONE;
// return SIMD_SSE;
#if defined(a86)
static uint64_t SIMDType = SIMD_NONE;
if (likely(SIMDType != SIMD_NONE))
return SIMDType;
if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_AMD) == 0)
{
CPU::x86::AMD::CPUID0x00000001 cpuid;
asmv("cpuid"
: "=a"(cpuid.EAX.raw), "=b"(cpuid.EBX.raw), "=c"(cpuid.ECX.raw), "=d"(cpuid.EDX.raw)
: "a"(0x1));
if (cpuid.ECX.SSE42)
SIMDType |= SIMD_SSE42;
else if (cpuid.ECX.SSE41)
SIMDType |= SIMD_SSE41;
else if (cpuid.ECX.SSE3)
SIMDType |= SIMD_SSE3;
else if (cpuid.EDX.SSE2)
SIMDType |= SIMD_SSE2;
else if (cpuid.EDX.SSE)
SIMDType |= SIMD_SSE;
#ifdef DEBUG
if (cpuid.ECX.SSE42)
debug("SSE4.2 is supported.");
if (cpuid.ECX.SSE41)
debug("SSE4.1 is supported.");
if (cpuid.ECX.SSE3)
debug("SSE3 is supported.");
if (cpuid.EDX.SSE2)
debug("SSE2 is supported.");
if (cpuid.EDX.SSE)
debug("SSE is supported.");
#endif
return SIMDType;
}
else if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_INTEL) == 0)
{
CPU::x86::Intel::CPUID0x00000001 cpuid;
asmv("cpuid"
: "=a"(cpuid.EAX.raw), "=b"(cpuid.EBX.raw), "=c"(cpuid.ECX.raw), "=d"(cpuid.EDX.raw)
: "a"(0x1));
if (cpuid.ECX.SSE4_2)
SIMDType |= SIMD_SSE42;
else if (cpuid.ECX.SSE4_1)
SIMDType |= SIMD_SSE41;
else if (cpuid.ECX.SSE3)
SIMDType |= SIMD_SSE3;
else if (cpuid.EDX.SSE2)
SIMDType |= SIMD_SSE2;
else if (cpuid.EDX.SSE)
SIMDType |= SIMD_SSE;
#ifdef DEBUG
if (cpuid.ECX.SSE4_2)
debug("SSE4.2 is supported.");
if (cpuid.ECX.SSE4_1)
debug("SSE4.1 is supported.");
if (cpuid.ECX.SSE3)
debug("SSE3 is supported.");
if (cpuid.EDX.SSE2)
debug("SSE2 is supported.");
if (cpuid.EDX.SSE)
debug("SSE is supported.");
#endif
return SIMDType;
}
debug("No SIMD support.");
#endif // a64 || a32
return SIMD_NONE;
}
bool CheckSIMD(x86SIMDType Type)
{
if (unlikely(!SSEEnabled))
return false;
#if defined(a86)
if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_AMD) == 0)
{
CPU::x86::AMD::CPUID0x00000001 cpuid;
asmv("cpuid"
: "=a"(cpuid.EAX.raw), "=b"(cpuid.EBX.raw), "=c"(cpuid.ECX.raw), "=d"(cpuid.EDX.raw)
: "a"(0x1));
if (Type == SIMD_SSE42)
return cpuid.ECX.SSE42;
else if (Type == SIMD_SSE41)
return cpuid.ECX.SSE41;
else if (Type == SIMD_SSE3)
return cpuid.ECX.SSE3;
else if (Type == SIMD_SSE2)
return cpuid.EDX.SSE2;
else if (Type == SIMD_SSE)
return cpuid.EDX.SSE;
}
else if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_INTEL) == 0)
{
CPU::x86::Intel::CPUID0x00000001 cpuid;
asmv("cpuid"
: "=a"(cpuid.EAX.raw), "=b"(cpuid.EBX.raw), "=c"(cpuid.ECX.raw), "=d"(cpuid.EDX.raw)
: "a"(0x1));
if (Type == SIMD_SSE42)
return cpuid.ECX.SSE4_2;
else if (Type == SIMD_SSE41)
return cpuid.ECX.SSE4_1;
else if (Type == SIMD_SSE3)
return cpuid.ECX.SSE3;
else if (Type == SIMD_SSE2)
return cpuid.EDX.SSE2;
else if (Type == SIMD_SSE)
return cpuid.EDX.SSE;
}
#endif // a64 || a32
return false;
}
}

View File

@ -0,0 +1,346 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../crashhandler.hpp"
#include "chfcts.hpp"
#include <display.hpp>
#include <printf.h>
#include <debug.h>
#include <smp.hpp>
#include <cpu.hpp>
#if defined(a64)
#include "../../Architecture/amd64/cpu/gdt.hpp"
#elif defined(a32)
#elif defined(aa64)
#endif
#include "../../kernel.h"
static const char *PageFaultDescriptions[8] = {
"Supervisory process tried to read a non-present page entry\n",
"Supervisory process tried to read a page and caused a protection fault\n",
"Supervisory process tried to write to a non-present page entry\n",
"Supervisory process tried to write a page and caused a protection fault\n",
"User process tried to read a non-present page entry\n",
"User process tried to read a page and caused a protection fault\n",
"User process tried to write to a non-present page entry\n",
"User process tried to write a page and caused a protection fault\n"};
SafeFunction void DivideByZeroExceptionHandler(CHArchTrapFrame *Frame)
{
fixme("Divide by zero exception\n");
UNUSED(Frame);
}
SafeFunction void DebugExceptionHandler(CHArchTrapFrame *Frame)
{
CrashHandler::EHPrint("Kernel triggered debug exception.\n");
UNUSED(Frame);
}
SafeFunction void NonMaskableInterruptExceptionHandler(CHArchTrapFrame *Frame)
{
fixme("NMI exception");
UNUSED(Frame);
}
SafeFunction void BreakpointExceptionHandler(CHArchTrapFrame *Frame)
{
fixme("Breakpoint exception");
UNUSED(Frame);
}
SafeFunction void OverflowExceptionHandler(CHArchTrapFrame *Frame)
{
fixme("Overflow exception");
UNUSED(Frame);
}
SafeFunction void BoundRangeExceptionHandler(CHArchTrapFrame *Frame)
{
fixme("Bound range exception");
UNUSED(Frame);
}
SafeFunction void InvalidOpcodeExceptionHandler(CHArchTrapFrame *Frame)
{
CrashHandler::EHPrint("Kernel tried to execute an invalid opcode.\n");
UNUSED(Frame);
}
SafeFunction void DeviceNotAvailableExceptionHandler(CHArchTrapFrame *Frame)
{
fixme("Device not available exception");
UNUSED(Frame);
}
SafeFunction void DoubleFaultExceptionHandler(CHArchTrapFrame *Frame)
{
fixme("Double fault exception");
UNUSED(Frame);
}
SafeFunction void CoprocessorSegmentOverrunExceptionHandler(CHArchTrapFrame *Frame)
{
fixme("Coprocessor segment overrun exception");
UNUSED(Frame);
}
SafeFunction void InvalidTSSExceptionHandler(CHArchTrapFrame *Frame)
{
fixme("Invalid TSS exception");
UNUSED(Frame);
}
SafeFunction void SegmentNotPresentExceptionHandler(CHArchTrapFrame *Frame)
{
fixme("Segment not present exception");
UNUSED(Frame);
}
SafeFunction void StackFaultExceptionHandler(CHArchTrapFrame *Frame)
{
CPU::x64::SelectorErrorCode SelCode = {.raw = Frame->ErrorCode};
#if defined(a64)
CrashHandler::EHPrint("Stack segment fault at address %#lx\n", Frame->rip);
#elif defined(a32)
CrashHandler::EHPrint("Stack segment fault at address %#lx\n", Frame->eip);
#elif defined(aa64)
#endif
CrashHandler::EHPrint("External: %d\n", SelCode.External);
CrashHandler::EHPrint("Table: %d\n", SelCode.Table);
CrashHandler::EHPrint("Index: %#x\n", SelCode.Idx);
CrashHandler::EHPrint("Error code: %#lx\n", Frame->ErrorCode);
}
SafeFunction void GeneralProtectionExceptionHandler(CHArchTrapFrame *Frame)
{
CPU::x64::SelectorErrorCode SelCode = {.raw = Frame->ErrorCode};
// switch (SelCode.Table)
// {
// case CPU::x64::0b00:
// memcpy(desc_tmp, "GDT", 3);
// break;
// case CPU::x64::0b01:
// memcpy(desc_tmp, "IDT", 3);
// break;
// case CPU::x64::0b10:
// memcpy(desc_tmp, "LDT", 3);
// break;
// case CPU::x64::0b11:
// memcpy(desc_tmp, "IDT", 3);
// break;
// default:
// memcpy(desc_tmp, "Unknown", 7);
// break;
// }
CrashHandler::EHPrint("Kernel performed an illegal operation.\n");
CrashHandler::EHPrint("External: %d\n", SelCode.External);
CrashHandler::EHPrint("Table: %d\n", SelCode.Table);
CrashHandler::EHPrint("Index: %#x\n", SelCode.Idx);
}
SafeFunction void PageFaultExceptionHandler(CHArchTrapFrame *Frame)
{
CPU::x64::PageFaultErrorCode params = {.raw = (uint32_t)Frame->ErrorCode};
#if defined(a64)
CrashHandler::EHPrint("\eAFAFAFAn exception occurred at %#lx by %#lx\n", CrashHandler::PageFaultAddress, Frame->rip);
#elif defined(a32)
CrashHandler::EHPrint("\eAFAFAFAn exception occurred at %#lx by %#lx\n", CrashHandler::PageFaultAddress, Frame->eip);
#elif defined(aa64)
#endif
CrashHandler::EHPrint("Page: %s\n", params.P ? "Present" : "Not Present");
CrashHandler::EHPrint("Write Operation: %s\n", params.W ? "Read-Only" : "Read-Write");
CrashHandler::EHPrint("Processor Mode: %s\n", params.U ? "User-Mode" : "Kernel-Mode");
CrashHandler::EHPrint("CPU Reserved Bits: %s\n", params.R ? "Reserved" : "Unreserved");
CrashHandler::EHPrint("Caused By An Instruction Fetch: %s\n", params.I ? "Yes" : "No");
CrashHandler::EHPrint("Caused By A Protection-Key Violation: %s\n", params.PK ? "Yes" : "No");
CrashHandler::EHPrint("Caused By A Shadow Stack Access: %s\n", params.SS ? "Yes" : "No");
CrashHandler::EHPrint("Caused By An SGX Violation: %s\n", params.SGX ? "Yes" : "No");
if (Frame->ErrorCode & 0x00000008)
CrashHandler::EHPrint("One or more page directory entries contain reserved bits which are set to 1.\n");
else
CrashHandler::EHPrint(PageFaultDescriptions[Frame->ErrorCode & 0b111]);
#ifdef DEBUG
uintptr_t CheckPageFaultAddress = 0;
CheckPageFaultAddress = CrashHandler::PageFaultAddress;
if (CheckPageFaultAddress == 0)
#ifdef a64
CheckPageFaultAddress = Frame->rip;
#elif defined(a32)
CheckPageFaultAddress = Frame->eip;
#elif defined(aa64)
CheckPageFaultAddress = 0;
#endif
#if defined(a64)
Memory::Virtual vma = Memory::Virtual(((Memory::PageTable4 *)CPU::x64::readcr3().raw));
#elif defined(a32)
Memory::Virtual vma = Memory::Virtual(((Memory::PageTable4 *)CPU::x32::readcr3().raw));
#elif defined(aa64)
Memory::Virtual vma = Memory::Virtual();
#warning "TODO: aa64"
#endif
bool PageAvailable = vma.Check((void *)CheckPageFaultAddress);
debug("Page available (Check(...)): %s. %s",
PageAvailable ? "Yes" : "No",
(params.P && !PageAvailable) ? "CR2 == Present; Check() != Present??????" : "CR2 confirms Check() result.");
if (PageAvailable)
{
bool Present = vma.Check((void *)CheckPageFaultAddress);
bool ReadWrite = vma.Check((void *)CheckPageFaultAddress, Memory::PTFlag::RW);
bool User = vma.Check((void *)CheckPageFaultAddress, Memory::PTFlag::US);
bool WriteThrough = vma.Check((void *)CheckPageFaultAddress, Memory::PTFlag::PWT);
bool CacheDisabled = vma.Check((void *)CheckPageFaultAddress, Memory::PTFlag::PCD);
bool Accessed = vma.Check((void *)CheckPageFaultAddress, Memory::PTFlag::A);
bool Dirty = vma.Check((void *)CheckPageFaultAddress, Memory::PTFlag::D);
bool Global = vma.Check((void *)CheckPageFaultAddress, Memory::PTFlag::G);
/* ... */
debug("Page available: %s", Present ? "Yes" : "No");
debug("Page read/write: %s", ReadWrite ? "Yes" : "No");
debug("Page user/kernel: %s", User ? "User" : "Kernel");
debug("Page write-through: %s", WriteThrough ? "Yes" : "No");
debug("Page cache disabled: %s", CacheDisabled ? "Yes" : "No");
debug("Page accessed: %s", Accessed ? "Yes" : "No");
debug("Page dirty: %s", Dirty ? "Yes" : "No");
debug("Page global: %s", Global ? "Yes" : "No");
if (Present)
{
uintptr_t CheckPageFaultLinearAddress = (uintptr_t)CheckPageFaultAddress;
CheckPageFaultLinearAddress &= 0xFFFFFFFFFFFFF000;
debug("%#lx -> %#lx", CheckPageFaultAddress, CheckPageFaultLinearAddress);
Memory::Virtual::PageMapIndexer Index = Memory::Virtual::PageMapIndexer((uintptr_t)CheckPageFaultLinearAddress);
debug("Index for %#lx is PML:%d PDPTE:%d PDE:%d PTE:%d",
CheckPageFaultLinearAddress,
Index.PMLIndex,
Index.PDPTEIndex,
Index.PDEIndex,
Index.PTEIndex);
#if defined(a64)
Memory::PageMapLevel4 PML4 = ((Memory::PageTable4 *)CPU::x64::readcr3().raw)->Entries[Index.PMLIndex];
#elif defined(a32)
Memory::PageMapLevel4 PML4 = ((Memory::PageTable4 *)CPU::x32::readcr3().raw)->Entries[Index.PMLIndex];
#elif defined(aa64)
Memory::PageMapLevel4 PML4 = {.raw = 0};
#warning "TODO: aa64"
#endif
Memory::PageDirectoryPointerTableEntryPtr *PDPTE = (Memory::PageDirectoryPointerTableEntryPtr *)((uintptr_t)PML4.GetAddress() << 12);
Memory::PageDirectoryEntryPtr *PDE = (Memory::PageDirectoryEntryPtr *)((uintptr_t)PDPTE->Entries[Index.PDPTEIndex].GetAddress() << 12);
Memory::PageTableEntryPtr *PTE = (Memory::PageTableEntryPtr *)((uintptr_t)PDE->Entries[Index.PDEIndex].GetAddress() << 12);
debug("# %03d-%03d-%03d-%03d: P:%s RW:%s US:%s PWT:%s PCB:%s A:%s NX:%s Address:%#lx",
Index.PMLIndex, 0, 0, 0,
PML4.Present ? "1" : "0",
PML4.ReadWrite ? "1" : "0",
PML4.UserSupervisor ? "1" : "0",
PML4.WriteThrough ? "1" : "0",
PML4.CacheDisable ? "1" : "0",
PML4.Accessed ? "1" : "0",
PML4.ExecuteDisable ? "1" : "0",
PML4.GetAddress() << 12);
debug("# %03d-%03d-%03d-%03d: P:%s RW:%s US:%s PWT:%s PCB:%s A:%s NX:%s Address:%#lx",
Index.PMLIndex, Index.PDPTEIndex, 0, 0,
PDPTE->Entries[Index.PDPTEIndex].Present ? "1" : "0",
PDPTE->Entries[Index.PDPTEIndex].ReadWrite ? "1" : "0",
PDPTE->Entries[Index.PDPTEIndex].UserSupervisor ? "1" : "0",
PDPTE->Entries[Index.PDPTEIndex].WriteThrough ? "1" : "0",
PDPTE->Entries[Index.PDPTEIndex].CacheDisable ? "1" : "0",
PDPTE->Entries[Index.PDPTEIndex].Accessed ? "1" : "0",
PDPTE->Entries[Index.PDPTEIndex].ExecuteDisable ? "1" : "0",
PDPTE->Entries[Index.PDPTEIndex].GetAddress() << 12);
debug("# %03d-%03d-%03d-%03d: P:%s RW:%s US:%s PWT:%s PCB:%s A:%s NX:%s Address:%#lx",
Index.PMLIndex, Index.PDPTEIndex, Index.PDEIndex, 0,
PDE->Entries[Index.PDEIndex].Present ? "1" : "0",
PDE->Entries[Index.PDEIndex].ReadWrite ? "1" : "0",
PDE->Entries[Index.PDEIndex].UserSupervisor ? "1" : "0",
PDE->Entries[Index.PDEIndex].WriteThrough ? "1" : "0",
PDE->Entries[Index.PDEIndex].CacheDisable ? "1" : "0",
PDE->Entries[Index.PDEIndex].Accessed ? "1" : "0",
PDE->Entries[Index.PDEIndex].ExecuteDisable ? "1" : "0",
PDE->Entries[Index.PDEIndex].GetAddress() << 12);
debug("# %03d-%03d-%03d-%03d: P:%s RW:%s US:%s PWT:%s PCB:%s A:%s D:%s PAT:%s G:%s PK:%d NX:%s Address:%#lx",
Index.PMLIndex, Index.PDPTEIndex, Index.PDEIndex, Index.PTEIndex,
PTE->Entries[Index.PTEIndex].Present ? "1" : "0",
PTE->Entries[Index.PTEIndex].ReadWrite ? "1" : "0",
PTE->Entries[Index.PTEIndex].UserSupervisor ? "1" : "0",
PTE->Entries[Index.PTEIndex].WriteThrough ? "1" : "0",
PTE->Entries[Index.PTEIndex].CacheDisable ? "1" : "0",
PTE->Entries[Index.PTEIndex].Accessed ? "1" : "0",
PTE->Entries[Index.PTEIndex].Dirty ? "1" : "0",
PTE->Entries[Index.PTEIndex].PageAttributeTable ? "1" : "0",
PTE->Entries[Index.PTEIndex].Global ? "1" : "0",
PTE->Entries[Index.PTEIndex].ProtectionKey,
PTE->Entries[Index.PTEIndex].ExecuteDisable ? "1" : "0",
PTE->Entries[Index.PTEIndex].GetAddress() << 12);
}
}
#endif
}
SafeFunction void x87FloatingPointExceptionHandler(CHArchTrapFrame *Frame)
{
fixme("x87 floating point exception");
UNUSED(Frame);
}
SafeFunction void AlignmentCheckExceptionHandler(CHArchTrapFrame *Frame)
{
fixme("Alignment check exception");
UNUSED(Frame);
}
SafeFunction void MachineCheckExceptionHandler(CHArchTrapFrame *Frame)
{
fixme("Machine check exception");
UNUSED(Frame);
}
SafeFunction void SIMDFloatingPointExceptionHandler(CHArchTrapFrame *Frame)
{
fixme("SIMD floating point exception");
UNUSED(Frame);
}
SafeFunction void VirtualizationExceptionHandler(CHArchTrapFrame *Frame)
{
fixme("Virtualization exception");
UNUSED(Frame);
}
SafeFunction void SecurityExceptionHandler(CHArchTrapFrame *Frame)
{
fixme("Security exception");
UNUSED(Frame);
}
SafeFunction void UnknownExceptionHandler(CHArchTrapFrame *Frame)
{
fixme("Unknown exception");
UNUSED(Frame);
}

File diff suppressed because it is too large Load Diff

194
Kernel/Core/Crash/KBDrv.cpp Normal file
View File

@ -0,0 +1,194 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../crashhandler.hpp"
#include "chfcts.hpp"
#include <display.hpp>
#include <convert.h>
#include <printf.h>
#include <debug.h>
#include <smp.hpp>
#include <cpu.hpp>
#include <io.h>
#if defined(a64)
#include "../../Architecture/amd64/cpu/gdt.hpp"
#elif defined(a32)
#elif defined(aa64)
#endif
#include "../../kernel.h"
const char sc_ascii_low[] = {'?', '?', '1', '2', '3', '4', '5', '6',
'7', '8', '9', '0', '-', '=', '?', '?', 'q', 'w', 'e', 'r', 't', 'y',
'u', 'i', 'o', 'p', '[', ']', '?', '?', 'a', 's', 'd', 'f', 'g',
'h', 'j', 'k', 'l', ';', '\'', '`', '?', '\\', 'z', 'x', 'c', 'v',
'b', 'n', 'm', ',', '.', '/', '?', '?', '?', ' '};
const char sc_ascii_high[] = {'?', '?', '!', '@', '#', '$', '%', '^',
'&', '*', '(', ')', '_', '+', '?', '?', 'Q', 'W', 'E', 'R', 'T', 'Y',
'U', 'I', 'O', 'P', '{', '}', '?', '?', 'A', 'S', 'D', 'F', 'G',
'H', 'J', 'K', 'L', ';', '\"', '~', '?', '|', 'Z', 'X', 'C', 'V',
'B', 'N', 'M', '<', '>', '?', '?', '?', '?', ' '};
static int LowerCase = true;
static inline int GetLetterFromScanCode(uint8_t ScanCode)
{
if (ScanCode & 0x80)
{
switch (ScanCode)
{
case KEY_U_LSHIFT:
LowerCase = true;
return KEY_INVALID;
case KEY_U_RSHIFT:
LowerCase = true;
return KEY_INVALID;
default:
return KEY_INVALID;
}
}
else
{
switch (ScanCode)
{
case KEY_D_RETURN:
return '\n';
case KEY_D_LSHIFT:
LowerCase = false;
return KEY_INVALID;
case KEY_D_RSHIFT:
LowerCase = false;
return KEY_INVALID;
case KEY_D_BACKSPACE:
return ScanCode;
default:
{
if (ScanCode > 0x39)
break;
if (LowerCase)
return sc_ascii_low[ScanCode];
else
return sc_ascii_high[ScanCode];
}
}
}
return KEY_INVALID;
}
namespace CrashHandler
{
CrashKeyboardDriver::CrashKeyboardDriver() : Interrupts::Handler(1) /* IRQ1 */
{
#if defined(a86)
while (inb(0x64) & 0x1)
inb(0x60);
outb(0x64, 0xAE);
outb(0x64, 0x20);
uint8_t ret = (inb(0x60) | 1) & ~0x10;
outb(0x64, 0x60);
outb(0x60, ret);
outb(0x60, 0xF4);
outb(0x21, 0xFD);
outb(0xA1, 0xFF);
#endif // defined(a86)
CPU::Interrupts(CPU::Enable); // Just to be sure.
}
CrashKeyboardDriver::~CrashKeyboardDriver()
{
error("CrashKeyboardDriver::~CrashKeyboardDriver() called!");
}
int BackSpaceLimit = 0;
static char UserInputBuffer[1024];
#if defined(a64)
SafeFunction void CrashKeyboardDriver::OnInterruptReceived(CPU::x64::TrapFrame *Frame)
#elif defined(a32)
SafeFunction void CrashKeyboardDriver::OnInterruptReceived(CPU::x32::TrapFrame *Frame)
#elif defined(aa64)
SafeFunction void CrashKeyboardDriver::OnInterruptReceived(CPU::aarch64::TrapFrame *Frame)
#endif
{
#if defined(a86)
UNUSED(Frame);
uint8_t scanCode = inb(0x60);
if (scanCode == KEY_D_TAB ||
scanCode == KEY_D_LCTRL ||
scanCode == KEY_D_LALT ||
scanCode == KEY_U_LCTRL ||
scanCode == KEY_U_LALT)
return;
switch (scanCode)
{
case KEY_D_UP:
case KEY_D_LEFT:
case KEY_D_RIGHT:
case KEY_D_DOWN:
ArrowInput(scanCode);
break;
default:
break;
}
int key = GetLetterFromScanCode(scanCode);
if (key != KEY_INVALID)
{
if (key == KEY_D_BACKSPACE)
{
if (BackSpaceLimit > 0)
{
Display->Print('\b', SBIdx);
backspace(UserInputBuffer);
BackSpaceLimit--;
}
}
else if (key == '\n')
{
UserInput(UserInputBuffer);
BackSpaceLimit = 0;
UserInputBuffer[0] = '\0';
}
else
{
append(UserInputBuffer, s_cst(char, key));
Display->Print((char)key, SBIdx);
BackSpaceLimit++;
}
Display->SetBuffer(SBIdx); // Update as we type.
}
#endif // a64 || a32
}
SafeFunction void HookKeyboard()
{
CrashKeyboardDriver kbd; // We don't want to allocate memory.
#if defined(a86)
asmv("KeyboardHookLoop: nop; jmp KeyboardHookLoop;");
#elif defined(aa64)
asmv("KeyboardHookLoop: nop; b KeyboardHookLoop;");
#endif
// CPU::Halt(true); // This is an infinite loop.
}
}

View File

@ -0,0 +1,148 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../crashhandler.hpp"
#include "chfcts.hpp"
#include <display.hpp>
#include <printf.h>
#include <debug.h>
#include <smp.hpp>
#include <cpu.hpp>
#if defined(a64)
#include "../../Architecture/amd64/cpu/gdt.hpp"
#elif defined(a32)
#elif defined(aa64)
#endif
#include "../../kernel.h"
namespace CrashHandler
{
struct StackFrame
{
struct StackFrame *rbp;
uintptr_t rip;
};
SafeFunction void TraceFrames(CRData data, int Count, SymbolResolver::Symbols *SymHandle, bool Kernel)
{
if (!Memory::Virtual().Check(data.Frame))
{
EHPrint("Invalid frame pointer: %p\n", data.Frame);
return;
}
if (!Memory::Virtual().Check(SymHandle))
{
EHPrint("Invalid symbol handle: %p\n", SymHandle);
return;
}
bool TriedRetryBP = false;
struct StackFrame *frames = nullptr;
RetryBP:
#if defined(a64)
if (TriedRetryBP == false)
frames = (struct StackFrame *)data.Frame->rbp;
#elif defined(a32)
if (TriedRetryBP == false)
frames = (struct StackFrame *)data.Frame->ebp;
#elif defined(aa64)
#endif
if (!Memory::Virtual().Check((void *)frames))
{
if (TriedRetryBP == false)
{
frames = (struct StackFrame *)Memory::Virtual(data.Process->PageTable).GetPhysical((void *)frames);
TriedRetryBP = true;
goto RetryBP;
}
#if defined(a64)
EHPrint("Invalid rbp pointer: %p\n", data.Frame->rbp);
#elif defined(a32)
EHPrint("Invalid ebp pointer: %p\n", data.Frame->ebp);
#elif defined(aa64)
#endif
return;
}
debug("\nStack tracing... %p %d %p %d", data.Frame, Count, frames, Kernel);
EHPrint("\e7981FC\nStack Trace:\n");
if (!frames || !frames->rip || !frames->rbp)
{
#if defined(a64)
EHPrint("\e2565CC%p", (void *)data.Frame->rip);
#elif defined(a32)
EHPrint("\e2565CC%p", (void *)data.Frame->eip);
#elif defined(aa64)
#endif
EHPrint("\e7925CC-");
#if defined(a64)
EHPrint("\eAA25CC%s", SymHandle->GetSymbolFromAddress(data.Frame->rip));
#elif defined(a32)
EHPrint("\eAA25CC%s", SymHandle->GetSymbolFromAddress(data.Frame->eip));
#elif defined(aa64)
#endif
EHPrint("\e7981FC <- Exception");
EHPrint("\eFF0000\n< No stack trace available. >\n");
}
else
{
#if defined(a64)
EHPrint("\e2565CC%p", (void *)data.Frame->rip);
EHPrint("\e7925CC-");
if ((data.Frame->rip >= 0xFFFFFFFF80000000 && data.Frame->rip <= (uintptr_t)&_kernel_end) || !Kernel)
EHPrint("\eAA25CC%s", SymHandle->GetSymbolFromAddress(data.Frame->rip));
else
EHPrint("Outside Kernel");
#elif defined(a32)
EHPrint("\e2565CC%p", (void *)data.Frame->eip);
EHPrint("\e7925CC-");
if ((data.Frame->eip >= 0xC0000000 && data.Frame->eip <= (uintptr_t)&_kernel_end) || !Kernel)
EHPrint("\eAA25CC%s", SymHandle->GetSymbolFromAddress(data.Frame->eip));
else
EHPrint("Outside Kernel");
#elif defined(aa64)
#endif
EHPrint("\e7981FC <- Exception");
for (int frame = 0; frame < Count; ++frame)
{
if (!frames->rip)
break;
EHPrint("\n\e2565CC%p", (void *)frames->rip);
EHPrint("\e7925CC-");
#if defined(a64)
if ((frames->rip >= 0xFFFFFFFF80000000 && frames->rip <= (uintptr_t)&_kernel_end) || !Kernel)
#elif defined(a32)
if ((frames->rip >= 0xC0000000 && frames->rip <= (uintptr_t)&_kernel_end) || !Kernel)
#elif defined(aa64)
if ((frames->rip >= 0xFFFFFFFF80000000 && frames->rip <= (uintptr_t)&_kernel_end) || !Kernel)
#endif
EHPrint("\e25CCC9%s", SymHandle->GetSymbolFromAddress(frames->rip));
else
EHPrint("\eFF4CA9Outside Kernel");
if (!Memory::Virtual().Check(frames->rbp))
return;
frames = frames->rbp;
}
}
EHPrint("\n");
}
}

View File

@ -0,0 +1,42 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../../crashhandler.hpp"
#include "../chfcts.hpp"
#include <display.hpp>
#include <printf.h>
#include <debug.h>
#include <smp.hpp>
#include <cpu.hpp>
#if defined(a64)
#include "../../../Architecture/amd64/cpu/gdt.hpp"
#elif defined(a32)
#elif defined(aa64)
#endif
#include "../../../kernel.h"
namespace CrashHandler
{
SafeFunction void DisplayConsoleScreen(CRData data)
{
EHPrint("TODO");
UNUSED(data);
}
}

View File

@ -0,0 +1,267 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../../crashhandler.hpp"
#include "../chfcts.hpp"
#include <display.hpp>
#include <printf.h>
#include <debug.h>
#include <smp.hpp>
#include <cpu.hpp>
#if defined(a64)
#include "../../../Architecture/amd64/cpu/gdt.hpp"
#elif defined(a32)
#elif defined(aa64)
#endif
#include "../../../kernel.h"
namespace CrashHandler
{
SafeFunction void DisplayDetailsScreen(CRData data)
{
if (data.Process)
EHPrint("\e7981FCCurrent Process: %s(%ld)\n",
data.Process->Name,
data.Process->ID);
if (data.Thread)
EHPrint("\e7981FCCurrent Thread: %s(%ld)\n",
data.Thread->Name,
data.Thread->ID);
EHPrint("\e7981FCTechnical Informations on CPU %lld:\n", data.ID);
uintptr_t ds;
#if defined(a64)
CPUData *cpu = (CPUData *)data.CPUData;
if (cpu)
{
EHPrint("\eE46CEBCPU Data Address: %#lx\n", cpu);
EHPrint("Syscalls Stack: %#lx, TempStack: %#lx\n", cpu->SystemCallStack, cpu->TempStack);
EHPrint("Core Stack: %#lx, Core ID: %ld, Error Code: %ld\n", cpu->Stack, cpu->ID, cpu->ErrorCode);
EHPrint("Is Active: %s\n", cpu->IsActive ? "true" : "false");
EHPrint("Current Process: %#lx, Current Thread: %#lx\n", cpu->CurrentProcess, cpu->CurrentThread);
EHPrint("Arch Specific Data: %#lx\n", cpu->Data);
EHPrint("Checksum: 0x%X\n", cpu->Checksum);
}
asmv("mov %%ds, %0"
: "=r"(ds));
#elif defined(a32)
asmv("mov %%ds, %0"
: "=r"(ds));
#elif defined(aa64)
#endif
#if defined(a64)
EHPrint("\e7981FCFS=%#llx GS=%#llx SS=%#llx CS=%#llx DS=%#llx\n",
CPU::x64::rdmsr(CPU::x64::MSR_FS_BASE), CPU::x64::rdmsr(CPU::x64::MSR_GS_BASE),
data.Frame->ss, data.Frame->cs, ds);
EHPrint("R8=%#llx R9=%#llx R10=%#llx R11=%#llx\n", data.Frame->r8, data.Frame->r9, data.Frame->r10, data.Frame->r11);
EHPrint("R12=%#llx R13=%#llx R14=%#llx R15=%#llx\n", data.Frame->r12, data.Frame->r13, data.Frame->r14, data.Frame->r15);
EHPrint("RAX=%#llx RBX=%#llx RCX=%#llx RDX=%#llx\n", data.Frame->rax, data.Frame->rbx, data.Frame->rcx, data.Frame->rdx);
EHPrint("RSI=%#llx RDI=%#llx RBP=%#llx RSP=%#llx\n", data.Frame->rsi, data.Frame->rdi, data.Frame->rbp, data.Frame->rsp);
EHPrint("RIP=%#llx RFL=%#llx INT=%#llx ERR=%#llx EFER=%#llx\n", data.Frame->rip, data.Frame->rflags.raw, data.Frame->InterruptNumber, data.Frame->ErrorCode, data.efer.raw);
#elif defined(a32)
EHPrint("\e7981FCFS=%#llx GS=%#llx SS=%#llx CS=%#llx DS=%#llx\n",
CPU::x32::rdmsr(CPU::x32::MSR_FS_BASE), CPU::x32::rdmsr(CPU::x32::MSR_GS_BASE),
data.Frame->ss, data.Frame->cs, ds);
EHPrint("EAX=%#llx EBX=%#llx ECX=%#llx EDX=%#llx\n", data.Frame->eax, data.Frame->ebx, data.Frame->ecx, data.Frame->edx);
EHPrint("ESI=%#llx EDI=%#llx EBP=%#llx ESP=%#llx\n", data.Frame->esi, data.Frame->edi, data.Frame->ebp, data.Frame->esp);
EHPrint("EIP=%#llx EFL=%#llx INT=%#llx ERR=%#llx EFER=%#llx\n", data.Frame->eip, data.Frame->eflags.raw, data.Frame->InterruptNumber, data.Frame->ErrorCode, data.efer.raw);
#elif defined(aa64)
#endif
#if defined(a86)
EHPrint("CR0=%#llx CR2=%#llx CR3=%#llx CR4=%#llx CR8=%#llx\n", data.cr0.raw, data.cr2.raw, data.cr3.raw, data.cr4.raw, data.cr8.raw);
EHPrint("DR0=%#llx DR1=%#llx DR2=%#llx DR3=%#llx DR6=%#llx DR7=%#llx\n", data.dr0, data.dr1, data.dr2, data.dr3, data.dr6, data.dr7.raw);
EHPrint("\eFC797BCR0: PE:%s MP:%s EM:%s TS:%s\n ET:%s NE:%s WP:%s AM:%s\n NW:%s CD:%s PG:%s\n R0:%#x R1:%#x R2:%#x\n",
data.cr0.PE ? "True " : "False", data.cr0.MP ? "True " : "False", data.cr0.EM ? "True " : "False", data.cr0.TS ? "True " : "False",
data.cr0.ET ? "True " : "False", data.cr0.NE ? "True " : "False", data.cr0.WP ? "True " : "False", data.cr0.AM ? "True " : "False",
data.cr0.NW ? "True " : "False", data.cr0.CD ? "True " : "False", data.cr0.PG ? "True " : "False",
data.cr0.Reserved0, data.cr0.Reserved1, data.cr0.Reserved2);
EHPrint("\eFCBD79CR2: PFLA: %#llx\n",
data.cr2.PFLA);
EHPrint("\e79FC84CR3: PWT:%s PCD:%s PDBR:%#llx\n",
data.cr3.PWT ? "True " : "False", data.cr3.PCD ? "True " : "False", data.cr3.PDBR);
EHPrint("\eBD79FCCR4: VME:%s PVI:%s TSD:%s DE:%s\n PSE:%s PAE:%s MCE:%s PGE:%s\n PCE:%s UMIP:%s OSFXSR:%s OSXMMEXCPT:%s\n LA57:%s VMXE:%s SMXE:%s PCIDE:%s\n OSXSAVE:%s SMEP:%s SMAP:%s PKE:%s\n R0:%#x R1:%#x R2:%#x\n",
data.cr4.VME ? "True " : "False", data.cr4.PVI ? "True " : "False", data.cr4.TSD ? "True " : "False", data.cr4.DE ? "True " : "False",
data.cr4.PSE ? "True " : "False", data.cr4.PAE ? "True " : "False", data.cr4.MCE ? "True " : "False", data.cr4.PGE ? "True " : "False",
data.cr4.PCE ? "True " : "False", data.cr4.UMIP ? "True " : "False", data.cr4.OSFXSR ? "True " : "False", data.cr4.OSXMMEXCPT ? "True " : "False",
data.cr4.LA57 ? "True " : "False", data.cr4.VMXE ? "True " : "False", data.cr4.SMXE ? "True " : "False", data.cr4.PCIDE ? "True " : "False",
data.cr4.OSXSAVE ? "True " : "False", data.cr4.SMEP ? "True " : "False", data.cr4.SMAP ? "True " : "False", data.cr4.PKE ? "True " : "False",
#if defined(a64)
data.cr4.Reserved0, data.cr4.Reserved1, data.cr4.Reserved2);
#elif defined(a32)
data.cr4.Reserved0, data.cr4.Reserved1, 0);
#endif
EHPrint("\e79FCF5CR8: TPL:%d\n", data.cr8.TPL);
#endif // a64 || a32
#if defined(a64)
EHPrint("\eFCFC02RFL: CF:%s PF:%s AF:%s ZF:%s\n SF:%s TF:%s IF:%s DF:%s\n OF:%s IOPL:%s NT:%s RF:%s\n VM:%s AC:%s VIF:%s VIP:%s\n ID:%s AlwaysOne:%d\n R0:%#x R1:%#x R2:%#x R3:%#x\n",
data.Frame->rflags.CF ? "True " : "False", data.Frame->rflags.PF ? "True " : "False", data.Frame->rflags.AF ? "True " : "False", data.Frame->rflags.ZF ? "True " : "False",
data.Frame->rflags.SF ? "True " : "False", data.Frame->rflags.TF ? "True " : "False", data.Frame->rflags.IF ? "True " : "False", data.Frame->rflags.DF ? "True " : "False",
data.Frame->rflags.OF ? "True " : "False", data.Frame->rflags.IOPL ? "True " : "False", data.Frame->rflags.NT ? "True " : "False", data.Frame->rflags.RF ? "True " : "False",
data.Frame->rflags.VM ? "True " : "False", data.Frame->rflags.AC ? "True " : "False", data.Frame->rflags.VIF ? "True " : "False", data.Frame->rflags.VIP ? "True " : "False",
data.Frame->rflags.ID ? "True " : "False", data.Frame->rflags.AlwaysOne,
data.Frame->rflags.Reserved0, data.Frame->rflags.Reserved1, data.Frame->rflags.Reserved2, data.Frame->rflags.Reserved3);
#elif defined(a32)
EHPrint("\eFCFC02EFL: CF:%s PF:%s AF:%s ZF:%s\n SF:%s TF:%s IF:%s DF:%s\n OF:%s IOPL:%s NT:%s RF:%s\n VM:%s AC:%s VIF:%s VIP:%s\n ID:%s AlwaysOne:%d\n R0:%#x R1:%#x R2:%#x\n",
data.Frame->eflags.CF ? "True " : "False", data.Frame->eflags.PF ? "True " : "False", data.Frame->eflags.AF ? "True " : "False", data.Frame->eflags.ZF ? "True " : "False",
data.Frame->eflags.SF ? "True " : "False", data.Frame->eflags.TF ? "True " : "False", data.Frame->eflags.IF ? "True " : "False", data.Frame->eflags.DF ? "True " : "False",
data.Frame->eflags.OF ? "True " : "False", data.Frame->eflags.IOPL ? "True " : "False", data.Frame->eflags.NT ? "True " : "False", data.Frame->eflags.RF ? "True " : "False",
data.Frame->eflags.VM ? "True " : "False", data.Frame->eflags.AC ? "True " : "False", data.Frame->eflags.VIF ? "True " : "False", data.Frame->eflags.VIP ? "True " : "False",
data.Frame->eflags.ID ? "True " : "False", data.Frame->eflags.AlwaysOne,
data.Frame->eflags.Reserved0, data.Frame->eflags.Reserved1, data.Frame->eflags.Reserved2);
#elif defined(aa64)
#endif
#if defined(a86)
EHPrint("\eA0F0F0DR7: LDR0:%s GDR0:%s LDR1:%s GDR1:%s\n LDR2:%s GDR2:%s LDR3:%s GDR3:%s\n CDR0:%s SDR0:%s CDR1:%s SDR1:%s\n CDR2:%s SDR2:%s CDR3:%s SDR3:%s\n R:%#x\n",
data.dr7.LocalDR0 ? "True " : "False", data.dr7.GlobalDR0 ? "True " : "False", data.dr7.LocalDR1 ? "True " : "False", data.dr7.GlobalDR1 ? "True " : "False",
data.dr7.LocalDR2 ? "True " : "False", data.dr7.GlobalDR2 ? "True " : "False", data.dr7.LocalDR3 ? "True " : "False", data.dr7.GlobalDR3 ? "True " : "False",
data.dr7.ConditionsDR0 ? "True " : "False", data.dr7.SizeDR0 ? "True " : "False", data.dr7.ConditionsDR1 ? "True " : "False", data.dr7.SizeDR1 ? "True " : "False",
data.dr7.ConditionsDR2 ? "True " : "False", data.dr7.SizeDR2 ? "True " : "False", data.dr7.ConditionsDR3 ? "True " : "False", data.dr7.SizeDR3 ? "True " : "False",
data.dr7.Reserved);
EHPrint("\e009FF0EFER: SCE:%s LME:%s LMA:%s NXE:%s\n SVME:%s LMSLE:%s FFXSR:%s TCE:%s\n R0:%#x R1:%#x R2:%#x\n",
data.efer.SCE ? "True " : "False", data.efer.LME ? "True " : "False", data.efer.LMA ? "True " : "False", data.efer.NXE ? "True " : "False",
data.efer.SVME ? "True " : "False", data.efer.LMSLE ? "True " : "False", data.efer.FFXSR ? "True " : "False", data.efer.TCE ? "True " : "False",
data.efer.Reserved0, data.efer.Reserved1, data.efer.Reserved2);
#endif
switch (data.Frame->InterruptNumber)
{
case CPU::x86::DivideByZero:
{
DivideByZeroExceptionHandler(data.Frame);
break;
}
case CPU::x86::Debug:
{
DebugExceptionHandler(data.Frame);
break;
}
case CPU::x86::NonMaskableInterrupt:
{
NonMaskableInterruptExceptionHandler(data.Frame);
break;
}
case CPU::x86::Breakpoint:
{
BreakpointExceptionHandler(data.Frame);
break;
}
case CPU::x86::Overflow:
{
OverflowExceptionHandler(data.Frame);
break;
}
case CPU::x86::BoundRange:
{
BoundRangeExceptionHandler(data.Frame);
break;
}
case CPU::x86::InvalidOpcode:
{
InvalidOpcodeExceptionHandler(data.Frame);
break;
}
case CPU::x86::DeviceNotAvailable:
{
DeviceNotAvailableExceptionHandler(data.Frame);
break;
}
case CPU::x86::DoubleFault:
{
DoubleFaultExceptionHandler(data.Frame);
break;
}
case CPU::x86::CoprocessorSegmentOverrun:
{
CoprocessorSegmentOverrunExceptionHandler(data.Frame);
break;
}
case CPU::x86::InvalidTSS:
{
InvalidTSSExceptionHandler(data.Frame);
break;
}
case CPU::x86::SegmentNotPresent:
{
SegmentNotPresentExceptionHandler(data.Frame);
break;
}
case CPU::x86::StackSegmentFault:
{
StackFaultExceptionHandler(data.Frame);
break;
}
case CPU::x86::GeneralProtectionFault:
{
GeneralProtectionExceptionHandler(data.Frame);
break;
}
case CPU::x86::PageFault:
{
PageFaultExceptionHandler(data.Frame);
break;
}
case CPU::x86::x87FloatingPoint:
{
x87FloatingPointExceptionHandler(data.Frame);
break;
}
case CPU::x86::AlignmentCheck:
{
AlignmentCheckExceptionHandler(data.Frame);
break;
}
case CPU::x86::MachineCheck:
{
MachineCheckExceptionHandler(data.Frame);
break;
}
case CPU::x86::SIMDFloatingPoint:
{
SIMDFloatingPointExceptionHandler(data.Frame);
break;
}
case CPU::x86::Virtualization:
{
VirtualizationExceptionHandler(data.Frame);
break;
}
case CPU::x86::Security:
{
SecurityExceptionHandler(data.Frame);
break;
}
default:
{
UnknownExceptionHandler(data.Frame);
break;
}
}
}
}

View File

@ -0,0 +1,390 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../../crashhandler.hpp"
#include "../chfcts.hpp"
#include <display.hpp>
#include <printf.h>
#include <debug.h>
#include <smp.hpp>
#include <cpu.hpp>
#if defined(a64)
#include "../../../Architecture/amd64/cpu/gdt.hpp"
#elif defined(a32)
#elif defined(aa64)
#endif
#include "../../../kernel.h"
static const char *PagefaultDescriptions[8] = {
"Supervisory process tried to read a non-present page entry\n",
"Supervisory process tried to read a page and caused a protection fault\n",
"Supervisory process tried to write to a non-present page entry\n",
"Supervisory process tried to write a page and caused a protection fault\n",
"User process tried to read a non-present page entry\n",
"User process tried to read a page and caused a protection fault\n",
"User process tried to write to a non-present page entry\n",
"User process tried to write a page and caused a protection fault\n"};
namespace CrashHandler
{
SafeFunction void DisplayMainScreen(CRData data)
{
CHArchTrapFrame *Frame = data.Frame;
/*
_______ ___ ___ _______ _______ _______ _______ ______ ______ _______ _______ _______ _______ _____
| __| | | __|_ _| ___| | | | | __ \ _ | __| | | ___| \
|__ |\ /|__ | | | | ___| | | ---| < |__ | | ___| -- |
|_______| |___| |_______| |___| |_______|__|_|__| |______|___|__|___|___|_______|___|___|_______|_____/
*/
EHPrint("\eFF5500 _______ ___ ___ _______ _______ _______ _______ ______ ______ _______ _______ _______ _______ _____ \n");
EHPrint("| __| | | __|_ _| ___| | | | | __ \\ _ | __| | | ___| \\ \n");
EHPrint("|__ |\\ /|__ | | | | ___| | | ---| < |__ | | ___| -- |\n");
EHPrint("|_______| |___| |_______| |___| |_______|__|_|__| |______|___|__|___|___|_______|___|___|_______|_____/ \n\eFAFAFA");
switch (Frame->InterruptNumber)
{
case CPU::x86::DivideByZero:
{
EHPrint("Exception: Divide By Zero\n");
EHPrint("The processor attempted to divide a number by zero.\n");
break;
}
case CPU::x86::Debug:
{
EHPrint("Exception: Debug\n");
EHPrint("A debug exception has occurred.\n");
break;
}
case CPU::x86::NonMaskableInterrupt:
{
EHPrint("Exception: Non-Maskable Interrupt\n");
EHPrint("A non-maskable interrupt was received.\n");
break;
}
case CPU::x86::Breakpoint:
{
EHPrint("Exception: Breakpoint\n");
EHPrint("The processor encountered a breakpoint.\n");
break;
}
case CPU::x86::Overflow:
{
EHPrint("Exception: Overflow\n");
EHPrint("The processor attempted to add a number to a number that was too large.\n");
break;
}
case CPU::x86::BoundRange:
{
EHPrint("Exception: Bound Range\n");
EHPrint("The processor attempted to access an array element that is out of bounds.\n");
break;
}
case CPU::x86::InvalidOpcode:
{
EHPrint("Exception: Invalid Opcode\n");
EHPrint("The processor attempted to execute an invalid opcode.\n");
break;
}
case CPU::x86::DeviceNotAvailable:
{
EHPrint("Exception: Device Not Available\n");
EHPrint("The processor attempted to use a device that is not available.\n");
break;
}
case CPU::x86::DoubleFault:
{
EHPrint("Exception: Double Fault\n");
EHPrint("The processor encountered a double fault.\n");
break;
}
case CPU::x86::CoprocessorSegmentOverrun:
{
EHPrint("Exception: Coprocessor Segment Overrun\n");
EHPrint("The processor attempted to access a segment that is not available.\n");
break;
}
case CPU::x86::InvalidTSS:
{
EHPrint("Exception: Invalid TSS\n");
EHPrint("The processor attempted to access a task state segment that is not available or valid.\n");
CPU::x64::SelectorErrorCode SelCode = {.raw = Frame->ErrorCode};
EHPrint("External? %s\n", SelCode.External ? "Yes" : "No");
EHPrint("GDT IDT LDT IDT\n");
switch (SelCode.Table)
{
case 0b00:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b01:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b10:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b11:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
default:
{
EHPrint(" ? \n");
EHPrint(" ? \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
}
break;
}
case CPU::x86::SegmentNotPresent:
{
EHPrint("Exception: Segment Not Present\n");
EHPrint("The processor attempted to access a segment that is not present.\n");
CPU::x64::SelectorErrorCode SelCode = {.raw = Frame->ErrorCode};
EHPrint("External? %s\n", SelCode.External ? "Yes" : "No");
EHPrint("GDT IDT LDT IDT\n");
switch (SelCode.Table)
{
case 0b00:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b01:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b10:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b11:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
default:
{
EHPrint(" ? \n");
EHPrint(" ? \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
}
break;
}
case CPU::x86::StackSegmentFault:
{
EHPrint("Exception: Stack Segment Fault\n");
CPU::x64::SelectorErrorCode SelCode = {.raw = Frame->ErrorCode};
EHPrint("External? %s\n", SelCode.External ? "Yes" : "No");
EHPrint("GDT IDT LDT IDT\n");
switch (SelCode.Table)
{
case 0b00:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b01:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b10:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b11:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
default:
{
EHPrint(" ? \n");
EHPrint(" ? \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
}
break;
}
case CPU::x86::GeneralProtectionFault:
{
EHPrint("Exception: General Protection Fault\n");
EHPrint("Kernel performed an illegal operation.\n");
CPU::x64::SelectorErrorCode SelCode = {.raw = Frame->ErrorCode};
EHPrint("External? %s\n", SelCode.External ? "Yes" : "No");
EHPrint("GDT IDT LDT IDT\n");
switch (SelCode.Table)
{
case 0b00:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b01:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b10:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b11:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
default:
{
EHPrint(" ? \n");
EHPrint(" ? \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
}
break;
}
case CPU::x86::PageFault:
{
EHPrint("Exception: Page Fault\n");
EHPrint("The processor attempted to access a page that is not present.\n");
CPU::x64::PageFaultErrorCode params = {.raw = (uint32_t)Frame->ErrorCode};
#if defined(a64)
EHPrint("At \e8888FF%#lx \eFAFAFAby \e8888FF%#lx\eFAFAFA\n", PageFaultAddress, Frame->rip);
#elif defined(a32)
EHPrint("At \e8888FF%#lx \eFAFAFAby \e8888FF%#lx\eFAFAFA\n", PageFaultAddress, Frame->eip);
#elif defined(aa64)
#endif
EHPrint("Page: %s\eFAFAFA\n", params.P ? "\e058C19Present" : "\eE85230Not Present");
EHPrint("Write Operation: \e8888FF%s\eFAFAFA\n", params.W ? "Read-Only" : "Read-Write");
EHPrint("Processor Mode: \e8888FF%s\eFAFAFA\n", params.U ? "User-Mode" : "Kernel-Mode");
EHPrint("CPU Reserved Bits: %s\eFAFAFA\n", params.R ? "\eE85230Reserved" : "\e058C19Unreserved");
EHPrint("Caused By An Instruction Fetch: %s\eFAFAFA\n", params.I ? "\eE85230Yes" : "\e058C19No");
EHPrint("Caused By A Protection-Key Violation: %s\eFAFAFA\n", params.PK ? "\eE85230Yes" : "\e058C19No");
EHPrint("Caused By A Shadow Stack Access: %s\eFAFAFA\n", params.SS ? "\eE85230Yes" : "\e058C19No");
EHPrint("Caused By An SGX Violation: %s\eFAFAFA\n", params.SGX ? "\eE85230Yes" : "\e058C19No");
EHPrint("More Info: \e8888FF");
if (Frame->ErrorCode & 0x00000008)
EHPrint("One or more page directory entries contain reserved bits which are set to 1.\n");
else
EHPrint(PagefaultDescriptions[Frame->ErrorCode & 0b111]);
EHPrint("\eFAFAFA");
break;
}
case CPU::x86::x87FloatingPoint:
{
EHPrint("Exception: x87 Floating Point\n");
EHPrint("The x87 FPU generated an error.\n");
break;
}
case CPU::x86::AlignmentCheck:
{
EHPrint("Exception: Alignment Check\n");
EHPrint("The CPU detected an unaligned memory access.\n");
break;
}
case CPU::x86::MachineCheck:
{
EHPrint("Exception: Machine Check\n");
EHPrint("The CPU detected a hardware error.\n");
break;
}
case CPU::x86::SIMDFloatingPoint:
{
EHPrint("Exception: SIMD Floating Point\n");
EHPrint("The CPU detected an error in the SIMD unit.\n");
break;
}
case CPU::x86::Virtualization:
{
EHPrint("Exception: Virtualization\n");
EHPrint("The CPU detected a virtualization error.\n");
break;
}
case CPU::x86::Security:
{
EHPrint("Exception: Security\n");
EHPrint("The CPU detected a security violation.\n");
break;
}
default:
{
EHPrint("Exception: Unknown\n");
EHPrint("The CPU generated an unknown exception.\n");
break;
}
}
#if defined(a64)
EHPrint("The exception happened at \e8888FF%#lx\eFAFAFA\n", Frame->rip);
#elif defined(a32)
EHPrint("The exception happened at \e8888FF%#lx\eFAFAFA\n", Frame->eip);
#elif defined(aa64)
#endif
}
}

View File

@ -0,0 +1,99 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../../crashhandler.hpp"
#include "../chfcts.hpp"
#include <ints.hpp>
#include <display.hpp>
#include <printf.h>
#include <debug.h>
#include <smp.hpp>
#include <cpu.hpp>
#if defined(a64)
#include "../../../Architecture/amd64/cpu/gdt.hpp"
#elif defined(a32)
#elif defined(aa64)
#endif
#include "../../../kernel.h"
namespace CrashHandler
{
SafeFunction void DisplayStackFrameScreen(CRData data)
{
EHPrint("\eFAFAFATracing 10 frames...");
TraceFrames(data, 10, KernelSymbolTable, true);
if (data.Process)
{
EHPrint("\n\eFAFAFATracing 10 process frames...");
SymbolResolver::Symbols *sh = data.Process->ELFSymbolTable;
if (!sh)
EHPrint("\n\eFF0000< No symbol table available. >\n");
else
TraceFrames(data, 10, sh, false);
}
EHPrint("\n\eFAFAFATracing interrupt frames...");
for (short i = 0; i < 8; i++)
{
if (EHIntFrames[i])
{
if (!Memory::Virtual().Check(EHIntFrames[i]))
continue;
EHPrint("\n\e2565CC%p", EHIntFrames[i]);
EHPrint("\e7925CC-");
#if defined(a64)
if ((uintptr_t)EHIntFrames[i] >= 0xFFFFFFFF80000000 && (uintptr_t)EHIntFrames[i] <= (uintptr_t)&_kernel_end)
#elif defined(a32)
if ((uintptr_t)EHIntFrames[i] >= 0xC0000000 && (uintptr_t)EHIntFrames[i] <= (uintptr_t)&_kernel_end)
#elif defined(aa64)
if ((uintptr_t)EHIntFrames[i] >= 0xFFFFFFFF80000000 && (uintptr_t)EHIntFrames[i] <= (uintptr_t)&_kernel_end)
#endif
EHPrint("\e25CCC9%s", KernelSymbolTable->GetSymbolFromAddress((uintptr_t)EHIntFrames[i]));
else
EHPrint("\eFF4CA9Outside Kernel");
}
}
if (data.Process && data.Thread)
{
EHPrint("\n\n\eFAFAFATracing thread instruction pointer history...");
SymbolResolver::Symbols *sh = data.Process->ELFSymbolTable;
if (!sh)
EHPrint("\n\eFFA500Warning: No symbol table available.");
int SameItr = 0;
uintptr_t LastRIP = 0;
for (size_t i = 0; i < sizeof(data.Thread->IPHistory) / sizeof(data.Thread->IPHistory[0]); i++)
{
if (data.Thread->IPHistory[i] == LastRIP)
{
SameItr++;
if (SameItr > 2)
continue;
}
else
SameItr = 0;
LastRIP = data.Thread->IPHistory[i];
if (!sh)
EHPrint("\n\eCCCCCC%d: \e2565CC%p", i, data.Thread->IPHistory[i]);
else
EHPrint("\n\eCCCCCC%d: \e2565CC%p\e7925CC-\e25CCC9%s", i, data.Thread->IPHistory[i], sh->GetSymbolFromAddress(data.Thread->IPHistory[i]));
}
EHPrint("\n\e7925CCNote: \e2565CCSame instruction pointers are not shown more than 3 times.\n");
}
}
}

View File

@ -0,0 +1,87 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../../crashhandler.hpp"
#include "../chfcts.hpp"
#include <display.hpp>
#include <printf.h>
#include <debug.h>
#include <smp.hpp>
#include <cpu.hpp>
#if defined(a64)
#include "../../../Architecture/amd64/cpu/gdt.hpp"
#elif defined(a32)
#elif defined(aa64)
#endif
#include "../../../kernel.h"
namespace CrashHandler
{
SafeFunction void DisplayTasksScreen(CRData data)
{
const char *StatusColor[7] = {
"FF0000", // Unknown
"AAFF00", // Ready
"00AA00", // Running
"FFAA00", // Sleeping
"FFAA00", // Waiting
"FF0088", // Stopped
"FF0000", // Terminated
};
const char *StatusString[7] = {
"Unknown", // Unknown
"Ready", // Ready
"Running", // Running
"Sleeping", // Sleeping
"Waiting", // Waiting
"Stopped", // Stopped
"Terminated", // Terminated
};
std::vector<Tasking::PCB *> Plist = TaskManager->GetProcessList();
if (TaskManager)
{
if (data.Thread)
#if defined(a64)
EHPrint("\eFAFAFACrash occurred in thread \eAA0F0F%s\eFAFAFA(%ld) at \e00AAAA%#lx\n", data.Thread->Name, data.Thread->ID, data.Frame->rip);
#elif defined(a32)
EHPrint("\eFAFAFACrash occurred in thread \eAA0F0F%s\eFAFAFA(%ld) at \e00AAAA%#lx\n", data.Thread->Name, data.Thread->ID, data.Frame->eip);
#elif defined(aa64)
#endif
EHPrint("\eFAFAFAProcess list (%ld):\n", Plist.size());
foreach (auto Process in Plist)
{
EHPrint("\e%s-> \eFAFAFA%s\eCCCCCC(%ld) \e00AAAA%s\eFAFAFA PT:\e00AAAA%#lx\n",
StatusColor[Process->Status], Process->Name, Process->ID, StatusString[Process->Status],
Process->PageTable);
foreach (auto Thread in Process->Threads)
EHPrint("\e%s -> \eFAFAFA%s\eCCCCCC(%ld) \e00AAAA%s\eFAFAFA Stack:\e00AAAA%#lx\n",
StatusColor[Thread->Status], Thread->Name, Thread->ID, StatusString[Thread->Status],
Thread->Stack);
}
}
else
EHPrint("\eFAFAFATaskManager is not initialized!\n");
}
}

View File

@ -0,0 +1,398 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../crashhandler.hpp"
#include "chfcts.hpp"
#include <display.hpp>
#include <printf.h>
#include <debug.h>
#include <smp.hpp>
#include <cpu.hpp>
#if defined(a64)
#include "../../Architecture/amd64/cpu/gdt.hpp"
#elif defined(a32)
#elif defined(aa64)
#endif
#include "../../kernel.h"
static const char *PageFaultDescriptions[8] = {
"Supervisory process tried to read a non-present page entry\n",
"Supervisory process tried to read a page and caused a protection fault\n",
"Supervisory process tried to write to a non-present page entry\n",
"Supervisory process tried to write a page and caused a protection fault\n",
"User process tried to read a non-present page entry\n",
"User process tried to read a page and caused a protection fault\n",
"User process tried to write to a non-present page entry\n",
"User process tried to write a page and caused a protection fault\n"};
SafeFunction void UserModeExceptionHandler(CHArchTrapFrame *Frame)
{
CriticalSection cs;
debug("Interrupts? %s.", cs.IsInterruptsEnabled() ? "Yes" : "No");
fixme("Handling user mode exception");
TaskManager->GetCurrentThread()->Status = Tasking::TaskStatus::Stopped;
CPUData *CurCPU = GetCurrentCPU();
{
#if defined(a64)
CPU::x64::CR0 cr0 = CPU::x64::readcr0();
CPU::x64::CR2 cr2 = CPU::x64::CR2{.PFLA = CrashHandler::PageFaultAddress};
CPU::x64::CR3 cr3 = CPU::x64::readcr3();
CPU::x64::CR4 cr4 = CPU::x64::readcr4();
CPU::x64::CR8 cr8 = CPU::x64::readcr8();
CPU::x64::EFER efer;
efer.raw = CPU::x64::rdmsr(CPU::x64::MSR_EFER);
error("Technical Informations on CPU %lld:", CurCPU->ID);
uintptr_t ds;
asmv("mov %%ds, %0"
: "=r"(ds));
#elif defined(a32)
CPU::x32::CR0 cr0 = CPU::x32::readcr0();
CPU::x32::CR2 cr2 = CPU::x32::CR2{.PFLA = CrashHandler::PageFaultAddress};
CPU::x32::CR3 cr3 = CPU::x32::readcr3();
CPU::x32::CR4 cr4 = CPU::x32::readcr4();
CPU::x32::CR8 cr8 = CPU::x32::readcr8();
CPU::x32::EFER efer;
efer.raw = CPU::x32::rdmsr(CPU::x32::MSR_EFER);
error("Technical Informations on CPU %lld:", CurCPU->ID);
uintptr_t ds;
asmv("mov %%ds, %0"
: "=r"(ds));
#elif defined(aa64)
#endif
#if defined(a64)
error("FS=%#llx GS=%#llx SS=%#llx CS=%#llx DS=%#llx",
CPU::x64::rdmsr(CPU::x64::MSR_FS_BASE), CPU::x64::rdmsr(CPU::x64::MSR_GS_BASE),
Frame->ss, Frame->cs, ds);
error("R8=%#llx R9=%#llx R10=%#llx R11=%#llx", Frame->r8, Frame->r9, Frame->r10, Frame->r11);
error("R12=%#llx R13=%#llx R14=%#llx R15=%#llx", Frame->r12, Frame->r13, Frame->r14, Frame->r15);
error("RAX=%#llx RBX=%#llx RCX=%#llx RDX=%#llx", Frame->rax, Frame->rbx, Frame->rcx, Frame->rdx);
error("RSI=%#llx RDI=%#llx RBP=%#llx RSP=%#llx", Frame->rsi, Frame->rdi, Frame->rbp, Frame->rsp);
error("RIP=%#llx RFL=%#llx INT=%#llx ERR=%#llx EFER=%#llx", Frame->rip, Frame->rflags.raw, Frame->InterruptNumber, Frame->ErrorCode, efer.raw);
#elif defined(a32)
error("FS=%#llx GS=%#llx SS=%#llx CS=%#llx DS=%#llx",
CPU::x32::rdmsr(CPU::x32::MSR_FS_BASE), CPU::x32::rdmsr(CPU::x32::MSR_GS_BASE),
Frame->ss, Frame->cs, ds);
error("EAX=%#llx EBX=%#llx ECX=%#llx EDX=%#llx", Frame->eax, Frame->ebx, Frame->ecx, Frame->edx);
error("ESI=%#llx EDI=%#llx EBP=%#llx ESP=%#llx", Frame->esi, Frame->edi, Frame->ebp, Frame->esp);
error("EIP=%#llx EFL=%#llx INT=%#llx ERR=%#llx EFER=%#llx", Frame->eip, Frame->eflags.raw, Frame->InterruptNumber, Frame->ErrorCode, efer.raw);
#elif defined(aa64)
#endif
#if defined(a86)
error("CR0=%#llx CR2=%#llx CR3=%#llx CR4=%#llx CR8=%#llx", cr0.raw, cr2.raw, cr3.raw, cr4.raw, cr8.raw);
error("CR0: PE:%s MP:%s EM:%s TS:%s ET:%s NE:%s WP:%s AM:%s NW:%s CD:%s PG:%s R0:%#x R1:%#x R2:%#x",
cr0.PE ? "True " : "False", cr0.MP ? "True " : "False", cr0.EM ? "True " : "False", cr0.TS ? "True " : "False",
cr0.ET ? "True " : "False", cr0.NE ? "True " : "False", cr0.WP ? "True " : "False", cr0.AM ? "True " : "False",
cr0.NW ? "True " : "False", cr0.CD ? "True " : "False", cr0.PG ? "True " : "False",
cr0.Reserved0, cr0.Reserved1, cr0.Reserved2);
error("CR2: PFLA: %#llx",
cr2.PFLA);
error("CR3: PWT:%s PCD:%s PDBR:%#llx",
cr3.PWT ? "True " : "False", cr3.PCD ? "True " : "False", cr3.PDBR);
#endif // defined(a86)
#if defined(a64)
error("CR4: VME:%s PVI:%s TSD:%s DE:%s PSE:%s PAE:%s MCE:%s PGE:%s PCE:%s UMIP:%s OSFXSR:%s OSXMMEXCPT:%s LA57:%s VMXE:%s SMXE:%s PCIDE:%s OSXSAVE:%s SMEP:%s SMAP:%s PKE:%s R0:%#x R1:%#x R2:%#x",
cr4.VME ? "True " : "False", cr4.PVI ? "True " : "False", cr4.TSD ? "True " : "False", cr4.DE ? "True " : "False",
cr4.PSE ? "True " : "False", cr4.PAE ? "True " : "False", cr4.MCE ? "True " : "False", cr4.PGE ? "True " : "False",
cr4.PCE ? "True " : "False", cr4.UMIP ? "True " : "False", cr4.OSFXSR ? "True " : "False", cr4.OSXMMEXCPT ? "True " : "False",
cr4.LA57 ? "True " : "False", cr4.VMXE ? "True " : "False", cr4.SMXE ? "True " : "False", cr4.PCIDE ? "True " : "False",
cr4.OSXSAVE ? "True " : "False", cr4.SMEP ? "True " : "False", cr4.SMAP ? "True " : "False", cr4.PKE ? "True " : "False",
cr4.Reserved0, cr4.Reserved1, cr4.Reserved2);
#elif defined(a32)
error("CR4: VME:%s PVI:%s TSD:%s DE:%s PSE:%s PAE:%s MCE:%s PGE:%s PCE:%s UMIP:%s OSFXSR:%s OSXMMEXCPT:%s LA57:%s VMXE:%s SMXE:%s PCIDE:%s OSXSAVE:%s SMEP:%s SMAP:%s PKE:%s R0:%#x R1:%#x",
cr4.VME ? "True " : "False", cr4.PVI ? "True " : "False", cr4.TSD ? "True " : "False", cr4.DE ? "True " : "False",
cr4.PSE ? "True " : "False", cr4.PAE ? "True " : "False", cr4.MCE ? "True " : "False", cr4.PGE ? "True " : "False",
cr4.PCE ? "True " : "False", cr4.UMIP ? "True " : "False", cr4.OSFXSR ? "True " : "False", cr4.OSXMMEXCPT ? "True " : "False",
cr4.LA57 ? "True " : "False", cr4.VMXE ? "True " : "False", cr4.SMXE ? "True " : "False", cr4.PCIDE ? "True " : "False",
cr4.OSXSAVE ? "True " : "False", cr4.SMEP ? "True " : "False", cr4.SMAP ? "True " : "False", cr4.PKE ? "True " : "False",
cr4.Reserved0, cr4.Reserved1);
#endif
#if defined(a86)
error("CR8: TPL:%d", cr8.TPL);
#endif // defined(a86)
#if defined(a64)
error("RFL: CF:%s PF:%s AF:%s ZF:%s SF:%s TF:%s IF:%s DF:%s OF:%s IOPL:%s NT:%s RF:%s VM:%s AC:%s VIF:%s VIP:%s ID:%s AlwaysOne:%d R0:%#x R1:%#x R2:%#x R3:%#x",
Frame->rflags.CF ? "True " : "False", Frame->rflags.PF ? "True " : "False", Frame->rflags.AF ? "True " : "False", Frame->rflags.ZF ? "True " : "False",
Frame->rflags.SF ? "True " : "False", Frame->rflags.TF ? "True " : "False", Frame->rflags.IF ? "True " : "False", Frame->rflags.DF ? "True " : "False",
Frame->rflags.OF ? "True " : "False", Frame->rflags.IOPL ? "True " : "False", Frame->rflags.NT ? "True " : "False", Frame->rflags.RF ? "True " : "False",
Frame->rflags.VM ? "True " : "False", Frame->rflags.AC ? "True " : "False", Frame->rflags.VIF ? "True " : "False", Frame->rflags.VIP ? "True " : "False",
Frame->rflags.ID ? "True " : "False", Frame->rflags.AlwaysOne,
Frame->rflags.Reserved0, Frame->rflags.Reserved1, Frame->rflags.Reserved2, Frame->rflags.Reserved3);
#elif defined(a32)
error("EFL: CF:%s PF:%s AF:%s ZF:%s SF:%s TF:%s IF:%s DF:%s OF:%s IOPL:%s NT:%s RF:%s VM:%s AC:%s VIF:%s VIP:%s ID:%s AlwaysOne:%d R0:%#x R1:%#x R2:%#x",
Frame->eflags.CF ? "True " : "False", Frame->eflags.PF ? "True " : "False", Frame->eflags.AF ? "True " : "False", Frame->eflags.ZF ? "True " : "False",
Frame->eflags.SF ? "True " : "False", Frame->eflags.TF ? "True " : "False", Frame->eflags.IF ? "True " : "False", Frame->eflags.DF ? "True " : "False",
Frame->eflags.OF ? "True " : "False", Frame->eflags.IOPL ? "True " : "False", Frame->eflags.NT ? "True " : "False", Frame->eflags.RF ? "True " : "False",
Frame->eflags.VM ? "True " : "False", Frame->eflags.AC ? "True " : "False", Frame->eflags.VIF ? "True " : "False", Frame->eflags.VIP ? "True " : "False",
Frame->eflags.ID ? "True " : "False", Frame->eflags.AlwaysOne,
Frame->eflags.Reserved0, Frame->eflags.Reserved1, Frame->eflags.Reserved2);
#elif defined(aa64)
#endif
#if defined(a86)
error("EFER: SCE:%s LME:%s LMA:%s NXE:%s SVME:%s LMSLE:%s FFXSR:%s TCE:%s R0:%#x R1:%#x R2:%#x",
efer.SCE ? "True " : "False", efer.LME ? "True " : "False", efer.LMA ? "True " : "False", efer.NXE ? "True " : "False",
efer.SVME ? "True " : "False", efer.LMSLE ? "True " : "False", efer.FFXSR ? "True " : "False", efer.TCE ? "True " : "False",
efer.Reserved0, efer.Reserved1, efer.Reserved2);
#endif // a64 || a32
}
switch (Frame->InterruptNumber)
{
case CPU::x86::DivideByZero:
{
break;
}
case CPU::x86::Debug:
{
break;
}
case CPU::x86::NonMaskableInterrupt:
{
break;
}
case CPU::x86::Breakpoint:
{
break;
}
case CPU::x86::Overflow:
{
break;
}
case CPU::x86::BoundRange:
{
break;
}
case CPU::x86::InvalidOpcode:
{
break;
}
case CPU::x86::DeviceNotAvailable:
{
break;
}
case CPU::x86::DoubleFault:
{
break;
}
case CPU::x86::CoprocessorSegmentOverrun:
{
break;
}
case CPU::x86::InvalidTSS:
{
break;
}
case CPU::x86::SegmentNotPresent:
{
break;
}
case CPU::x86::StackSegmentFault:
{
break;
}
case CPU::x86::GeneralProtectionFault:
{
break;
}
case CPU::x86::PageFault:
{
uintptr_t CheckPageFaultAddress = 0;
CPU::x64::PageFaultErrorCode params = {.raw = (uint32_t)Frame->ErrorCode};
#if defined(a64)
CheckPageFaultAddress = CrashHandler::PageFaultAddress;
if (CheckPageFaultAddress == 0)
CheckPageFaultAddress = Frame->rip;
error("An exception occurred at %#lx by %#lx", CrashHandler::PageFaultAddress, Frame->rip);
#elif defined(a32)
error("An exception occurred at %#lx by %#lx", CrashHandler::PageFaultAddress, Frame->eip);
#elif defined(aa64)
#endif
error("Page: %s", params.P ? "Present" : "Not Present");
error("Write Operation: %s", params.W ? "Read-Only" : "Read-Write");
error("Processor Mode: %s", params.U ? "User-Mode" : "Kernel-Mode");
error("CPU Reserved Bits: %s", params.R ? "Reserved" : "Unreserved");
error("Caused By An Instruction Fetch: %s", params.I ? "Yes" : "No");
error("Caused By A Protection-Key Violation: %s", params.PK ? "Yes" : "No");
error("Caused By A Shadow Stack Access: %s", params.SS ? "Yes" : "No");
error("Caused By An SGX Violation: %s", params.SGX ? "Yes" : "No");
if (Frame->ErrorCode & 0x00000008)
error("One or more page directory entries contain reserved bits which are set to 1.");
else
error(PageFaultDescriptions[Frame->ErrorCode & 0b111]);
#ifdef DEBUG
if (CurCPU)
{
Memory::Virtual vma = Memory::Virtual(CurCPU->CurrentProcess->PageTable);
bool PageAvailable = vma.Check((void *)CheckPageFaultAddress);
debug("Page available (Check(...)): %s. %s",
PageAvailable ? "Yes" : "No",
(params.P && !PageAvailable) ? "CR2 == Present; Check() != Present??????" : "CR2 confirms Check() result.");
if (PageAvailable)
{
bool Present = vma.Check((void *)CheckPageFaultAddress);
bool ReadWrite = vma.Check((void *)CheckPageFaultAddress, Memory::PTFlag::RW);
bool User = vma.Check((void *)CheckPageFaultAddress, Memory::PTFlag::US);
bool WriteThrough = vma.Check((void *)CheckPageFaultAddress, Memory::PTFlag::PWT);
bool CacheDisabled = vma.Check((void *)CheckPageFaultAddress, Memory::PTFlag::PCD);
bool Accessed = vma.Check((void *)CheckPageFaultAddress, Memory::PTFlag::A);
bool Dirty = vma.Check((void *)CheckPageFaultAddress, Memory::PTFlag::D);
bool Global = vma.Check((void *)CheckPageFaultAddress, Memory::PTFlag::G);
/* ... */
debug("Page available: %s", Present ? "Yes" : "No");
debug("Page read/write: %s", ReadWrite ? "Yes" : "No");
debug("Page user/kernel: %s", User ? "User" : "Kernel");
debug("Page write-through: %s", WriteThrough ? "Yes" : "No");
debug("Page cache disabled: %s", CacheDisabled ? "Yes" : "No");
debug("Page accessed: %s", Accessed ? "Yes" : "No");
debug("Page dirty: %s", Dirty ? "Yes" : "No");
debug("Page global: %s", Global ? "Yes" : "No");
if (Present)
{
uintptr_t CheckPageFaultLinearAddress = (uintptr_t)CheckPageFaultAddress;
CheckPageFaultLinearAddress &= 0xFFFFFFFFFFFFF000;
debug("%#lx -> %#lx", CheckPageFaultAddress, CheckPageFaultLinearAddress);
Memory::Virtual::PageMapIndexer Index = Memory::Virtual::PageMapIndexer((uintptr_t)CheckPageFaultLinearAddress);
debug("Index for %#lx is PML:%d PDPTE:%d PDE:%d PTE:%d",
CheckPageFaultLinearAddress,
Index.PMLIndex,
Index.PDPTEIndex,
Index.PDEIndex,
Index.PTEIndex);
Memory::PageMapLevel4 PML4 = CurCPU->CurrentProcess->PageTable->Entries[Index.PMLIndex];
Memory::PageDirectoryPointerTableEntryPtr *PDPTE = (Memory::PageDirectoryPointerTableEntryPtr *)((uintptr_t)PML4.GetAddress() << 12);
Memory::PageDirectoryEntryPtr *PDE = (Memory::PageDirectoryEntryPtr *)((uintptr_t)PDPTE->Entries[Index.PDPTEIndex].GetAddress() << 12);
Memory::PageTableEntryPtr *PTE = (Memory::PageTableEntryPtr *)((uintptr_t)PDE->Entries[Index.PDEIndex].GetAddress() << 12);
debug("# %03d-%03d-%03d-%03d: P:%s RW:%s US:%s PWT:%s PCB:%s A:%s NX:%s Address:%#lx",
Index.PMLIndex, 0, 0, 0,
PML4.Present ? "1" : "0",
PML4.ReadWrite ? "1" : "0",
PML4.UserSupervisor ? "1" : "0",
PML4.WriteThrough ? "1" : "0",
PML4.CacheDisable ? "1" : "0",
PML4.Accessed ? "1" : "0",
PML4.ExecuteDisable ? "1" : "0",
PML4.GetAddress() << 12);
debug("# %03d-%03d-%03d-%03d: P:%s RW:%s US:%s PWT:%s PCB:%s A:%s NX:%s Address:%#lx",
Index.PMLIndex, Index.PDPTEIndex, 0, 0,
PDPTE->Entries[Index.PDPTEIndex].Present ? "1" : "0",
PDPTE->Entries[Index.PDPTEIndex].ReadWrite ? "1" : "0",
PDPTE->Entries[Index.PDPTEIndex].UserSupervisor ? "1" : "0",
PDPTE->Entries[Index.PDPTEIndex].WriteThrough ? "1" : "0",
PDPTE->Entries[Index.PDPTEIndex].CacheDisable ? "1" : "0",
PDPTE->Entries[Index.PDPTEIndex].Accessed ? "1" : "0",
PDPTE->Entries[Index.PDPTEIndex].ExecuteDisable ? "1" : "0",
PDPTE->Entries[Index.PDPTEIndex].GetAddress() << 12);
debug("# %03d-%03d-%03d-%03d: P:%s RW:%s US:%s PWT:%s PCB:%s A:%s NX:%s Address:%#lx",
Index.PMLIndex, Index.PDPTEIndex, Index.PDEIndex, 0,
PDE->Entries[Index.PDEIndex].Present ? "1" : "0",
PDE->Entries[Index.PDEIndex].ReadWrite ? "1" : "0",
PDE->Entries[Index.PDEIndex].UserSupervisor ? "1" : "0",
PDE->Entries[Index.PDEIndex].WriteThrough ? "1" : "0",
PDE->Entries[Index.PDEIndex].CacheDisable ? "1" : "0",
PDE->Entries[Index.PDEIndex].Accessed ? "1" : "0",
PDE->Entries[Index.PDEIndex].ExecuteDisable ? "1" : "0",
PDE->Entries[Index.PDEIndex].GetAddress() << 12);
debug("# %03d-%03d-%03d-%03d: P:%s RW:%s US:%s PWT:%s PCB:%s A:%s D:%s PAT:%s G:%s PK:%d NX:%s Address:%#lx",
Index.PMLIndex, Index.PDPTEIndex, Index.PDEIndex, Index.PTEIndex,
PTE->Entries[Index.PTEIndex].Present ? "1" : "0",
PTE->Entries[Index.PTEIndex].ReadWrite ? "1" : "0",
PTE->Entries[Index.PTEIndex].UserSupervisor ? "1" : "0",
PTE->Entries[Index.PTEIndex].WriteThrough ? "1" : "0",
PTE->Entries[Index.PTEIndex].CacheDisable ? "1" : "0",
PTE->Entries[Index.PTEIndex].Accessed ? "1" : "0",
PTE->Entries[Index.PTEIndex].Dirty ? "1" : "0",
PTE->Entries[Index.PTEIndex].PageAttributeTable ? "1" : "0",
PTE->Entries[Index.PTEIndex].Global ? "1" : "0",
PTE->Entries[Index.PTEIndex].ProtectionKey,
PTE->Entries[Index.PTEIndex].ExecuteDisable ? "1" : "0",
PTE->Entries[Index.PTEIndex].GetAddress() << 12);
}
}
}
#endif
if (CurCPU)
if (CurCPU->CurrentThread->Stack->Expand(CrashHandler::PageFaultAddress))
{
debug("Stack expanded");
TaskManager->GetCurrentThread()->Status = Tasking::TaskStatus::Ready;
return;
}
break;
}
case CPU::x86::x87FloatingPoint:
{
break;
}
case CPU::x86::AlignmentCheck:
{
break;
}
case CPU::x86::MachineCheck:
{
break;
}
case CPU::x86::SIMDFloatingPoint:
{
break;
}
case CPU::x86::Virtualization:
{
break;
}
case CPU::x86::Security:
{
break;
}
default:
{
break;
}
}
TaskManager->GetCurrentThread()->Status = Tasking::TaskStatus::Terminated;
__sync;
error("End of report.");
CPU::Interrupts(CPU::Enable);
debug("Interrupts enabled back.");
return;
}

View File

@ -0,0 +1,322 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef __FENNIX_KERNEL_CRASH_HANDLERS_FUNCTIONS_H__
#define __FENNIX_KERNEL_CRASH_HANDLERS_FUNCTIONS_H__
#include <types.h>
#include <ints.hpp>
#include <task.hpp>
#include <cpu.hpp>
#if defined(a64)
typedef struct CPU::x64::TrapFrame CHArchTrapFrame;
struct CRData
{
CHArchTrapFrame *Frame;
CPU::x64::CR0 cr0;
CPU::x64::CR2 cr2;
CPU::x64::CR3 cr3;
CPU::x64::CR4 cr4;
CPU::x64::CR8 cr8;
CPU::x64::EFER efer;
uintptr_t dr0, dr1, dr2, dr3, dr6;
CPU::x64::DR7 dr7;
long ID;
void *CPUData;
Tasking::PCB *Process;
Tasking::TCB *Thread;
};
#elif defined(a32)
typedef struct CPU::x32::TrapFrame CHArchTrapFrame;
struct CRData
{
CHArchTrapFrame *Frame;
CPU::x32::CR0 cr0;
CPU::x32::CR2 cr2;
CPU::x32::CR3 cr3;
CPU::x32::CR4 cr4;
CPU::x32::CR8 cr8;
CPU::x32::EFER efer;
uintptr_t dr0, dr1, dr2, dr3, dr6;
CPU::x32::DR7 dr7;
long ID;
Tasking::PCB *Process;
Tasking::TCB *Thread;
};
#elif defined(aa64)
typedef struct CPU::aarch64::TrapFrame CHArchTrapFrame;
struct CRData
{
CHArchTrapFrame *Frame;
long ID;
Tasking::PCB *Process;
Tasking::TCB *Thread;
};
#endif
enum Keys
{
KEY_INVALID = 0x0,
KEY_D_ESCAPE = 0x1,
KEY_D_1 = 0x2,
KEY_D_2 = 0x3,
KEY_D_3 = 0x4,
KEY_D_4 = 0x5,
KEY_D_5 = 0x6,
KEY_D_6 = 0x7,
KEY_D_7 = 0x8,
KEY_D_8 = 0x9,
KEY_D_9 = 0xa,
KEY_D_0 = 0xb,
KEY_D_MINUS = 0xc,
KEY_D_EQUALS = 0xd,
KEY_D_BACKSPACE = 0xe,
KEY_D_TAB = 0xf,
KEY_D_Q = 0x10,
KEY_D_W = 0x11,
KEY_D_E = 0x12,
KEY_D_R = 0x13,
KEY_D_T = 0x14,
KEY_D_Y = 0x15,
KEY_D_U = 0x16,
KEY_D_I = 0x17,
KEY_D_O = 0x18,
KEY_D_P = 0x19,
KEY_D_LBRACKET = 0x1a,
KEY_D_RBRACKET = 0x1b,
KEY_D_RETURN = 0x1c,
KEY_D_LCTRL = 0x1d,
KEY_D_A = 0x1e,
KEY_D_S = 0x1f,
KEY_D_D = 0x20,
KEY_D_F = 0x21,
KEY_D_G = 0x22,
KEY_D_H = 0x23,
KEY_D_J = 0x24,
KEY_D_K = 0x25,
KEY_D_L = 0x26,
KEY_D_SEMICOLON = 0x27,
KEY_D_APOSTROPHE = 0x28,
KEY_D_GRAVE = 0x29,
KEY_D_LSHIFT = 0x2a,
KEY_D_BACKSLASH = 0x2b,
KEY_D_Z = 0x2c,
KEY_D_X = 0x2d,
KEY_D_C = 0x2e,
KEY_D_V = 0x2f,
KEY_D_B = 0x30,
KEY_D_N = 0x31,
KEY_D_M = 0x32,
KEY_D_COMMA = 0x33,
KEY_D_PERIOD = 0x34,
KEY_D_SLASH = 0x35,
KEY_D_RSHIFT = 0x36,
KEY_D_PRTSC = 0x37,
KEY_D_LALT = 0x38,
KEY_D_SPACE = 0x39,
KEY_D_CAPSLOCK = 0x3a,
KEY_D_NUMLOCK = 0x45,
KEY_D_SCROLLLOCK = 0x46,
KEY_D_KP_MULTIPLY = 0x37,
KEY_D_KP_7 = 0x47,
KEY_D_KP_8 = 0x48,
KEY_D_KP_9 = 0x49,
KEY_D_KP_MINUS = 0x4a,
KEY_D_KP_4 = 0x4b,
KEY_D_KP_5 = 0x4c,
KEY_D_KP_6 = 0x4d,
KEY_D_KP_PLUS = 0x4e,
KEY_D_KP_1 = 0x4f,
KEY_D_KP_2 = 0x50,
KEY_D_KP_3 = 0x51,
KEY_D_KP_0 = 0x52,
KEY_D_KP_PERIOD = 0x53,
KEY_D_F1 = 0x3b,
KEY_D_F2 = 0x3c,
KEY_D_F3 = 0x3d,
KEY_D_F4 = 0x3e,
KEY_D_F5 = 0x3f,
KEY_D_F6 = 0x40,
KEY_D_F7 = 0x41,
KEY_D_F8 = 0x42,
KEY_D_F9 = 0x43,
KEY_D_F10 = 0x44,
KEY_D_F11 = 0x57,
KEY_D_F12 = 0x58,
KEY_D_UP = 0x48,
KEY_D_LEFT = 0x4b,
KEY_D_RIGHT = 0x4d,
KEY_D_DOWN = 0x50,
KEY_U_ESCAPE = 0x81,
KEY_U_1 = 0x82,
KEY_U_2 = 0x83,
KEY_U_3 = 0x84,
KEY_U_4 = 0x85,
KEY_U_5 = 0x86,
KEY_U_6 = 0x87,
KEY_U_7 = 0x88,
KEY_U_8 = 0x89,
KEY_U_9 = 0x8a,
KEY_U_0 = 0x8b,
KEY_U_MINUS = 0x8c,
KEY_U_EQUALS = 0x8d,
KEY_U_BACKSPACE = 0x8e,
KEY_U_TAB = 0x8f,
KEY_U_Q = 0x90,
KEY_U_W = 0x91,
KEY_U_E = 0x92,
KEY_U_R = 0x93,
KEY_U_T = 0x94,
KEY_U_Y = 0x95,
KEY_U_U = 0x96,
KEY_U_I = 0x97,
KEY_U_O = 0x98,
KEY_U_P = 0x99,
KEY_U_LBRACKET = 0x9a,
KEY_U_RBRACKET = 0x9b,
KEY_U_RETURN = 0x9c,
KEY_U_LCTRL = 0x9d,
KEY_U_A = 0x9e,
KEY_U_S = 0x9f,
KEY_U_D = 0xa0,
KEY_U_F = 0xa1,
KEY_U_G = 0xa2,
KEY_U_H = 0xa3,
KEY_U_J = 0xa4,
KEY_U_K = 0xa5,
KEY_U_L = 0xa6,
KEY_U_SEMICOLON = 0xa7,
KEY_U_APOSTROPHE = 0xa8,
KEY_U_GRAVE = 0xa9,
KEY_U_LSHIFT = 0xaa,
KEY_U_BACKSLASH = 0xab,
KEY_U_Z = 0xac,
KEY_U_X = 0xad,
KEY_U_C = 0xae,
KEY_U_V = 0xaf,
KEY_U_B = 0xb0,
KEY_U_N = 0xb1,
KEY_U_M = 0xb2,
KEY_U_COMMA = 0xb3,
KEY_U_PERIOD = 0xb4,
KEY_U_SLASH = 0xb5,
KEY_U_RSHIFT = 0xb6,
KEY_U_KP_MULTIPLY = 0xb7,
KEY_U_LALT = 0xb8,
KEY_U_SPACE = 0xb9,
KEY_U_CAPSLOCK = 0xba,
KEY_U_F1 = 0xbb,
KEY_U_F2 = 0xbc,
KEY_U_F3 = 0xbd,
KEY_U_F4 = 0xbe,
KEY_U_F5 = 0xbf,
KEY_U_F6 = 0xc0,
KEY_U_F7 = 0xc1,
KEY_U_F8 = 0xc2,
KEY_U_F9 = 0xc3,
KEY_U_F10 = 0xc4,
KEY_U_NUMLOCK = 0xc5,
KEY_U_SCROLLLOCK = 0xc6,
KEY_U_KP_7 = 0xc7,
KEY_U_KP_8 = 0xc8,
KEY_U_KP_9 = 0xc9,
KEY_U_KP_MINUS = 0xca,
KEY_U_KP_4 = 0xcb,
KEY_U_KP_5 = 0xcc,
KEY_U_KP_6 = 0xcd,
KEY_U_KP_PLUS = 0xce,
KEY_U_KP_1 = 0xcf,
KEY_U_KP_2 = 0xd0,
KEY_U_KP_3 = 0xd1,
KEY_U_KP_0 = 0xd2,
KEY_U_KP_PERIOD = 0xd3,
KEY_U_F11 = 0xd7,
KEY_U_F12 = 0xd8,
};
namespace CrashHandler
{
extern int SBIdx;
class CrashKeyboardDriver : public Interrupts::Handler
{
private:
#if defined(a64)
void OnInterruptReceived(CPU::x64::TrapFrame *Frame);
#elif defined(a32)
void OnInterruptReceived(CPU::x32::TrapFrame *Frame);
#elif defined(aa64)
void OnInterruptReceived(CPU::aarch64::TrapFrame *Frame);
#endif
public:
CrashKeyboardDriver();
~CrashKeyboardDriver();
};
void TraceFrames(CRData data, int Count, SymbolResolver::Symbols *SymHandle, bool Kernel);
void ArrowInput(uint8_t key);
void UserInput(char *Input);
void HookKeyboard();
void DisplayMainScreen(CRData data);
void DisplayDetailsScreen(CRData data);
void DisplayStackFrameScreen(CRData data);
void DisplayTasksScreen(CRData data);
void DisplayConsoleScreen(CRData data);
}
void DivideByZeroExceptionHandler(CHArchTrapFrame *Frame);
void DebugExceptionHandler(CHArchTrapFrame *Frame);
void NonMaskableInterruptExceptionHandler(CHArchTrapFrame *Frame);
void BreakpointExceptionHandler(CHArchTrapFrame *Frame);
void OverflowExceptionHandler(CHArchTrapFrame *Frame);
void BoundRangeExceptionHandler(CHArchTrapFrame *Frame);
void InvalidOpcodeExceptionHandler(CHArchTrapFrame *Frame);
void DeviceNotAvailableExceptionHandler(CHArchTrapFrame *Frame);
void DoubleFaultExceptionHandler(CHArchTrapFrame *Frame);
void CoprocessorSegmentOverrunExceptionHandler(CHArchTrapFrame *Frame);
void InvalidTSSExceptionHandler(CHArchTrapFrame *Frame);
void SegmentNotPresentExceptionHandler(CHArchTrapFrame *Frame);
void StackFaultExceptionHandler(CHArchTrapFrame *Frame);
void GeneralProtectionExceptionHandler(CHArchTrapFrame *Frame);
void PageFaultExceptionHandler(CHArchTrapFrame *Frame);
void x87FloatingPointExceptionHandler(CHArchTrapFrame *Frame);
void AlignmentCheckExceptionHandler(CHArchTrapFrame *Frame);
void MachineCheckExceptionHandler(CHArchTrapFrame *Frame);
void SIMDFloatingPointExceptionHandler(CHArchTrapFrame *Frame);
void VirtualizationExceptionHandler(CHArchTrapFrame *Frame);
void SecurityExceptionHandler(CHArchTrapFrame *Frame);
void UnknownExceptionHandler(CHArchTrapFrame *Frame);
void UserModeExceptionHandler(CHArchTrapFrame *Frame);
#endif // !__FENNIX_KERNEL_CRASH_HANDLERS_FUNCTIONS_H__

155
Kernel/Core/Debugger.cpp Normal file
View File

@ -0,0 +1,155 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include <debug.h>
#include <uart.hpp>
#include <printf.h>
#include <lock.hpp>
NewLock(DebuggerLock);
using namespace UniversalAsynchronousReceiverTransmitter;
static inline NIF void uart_wrapper(char c, void *unused)
{
UART(COM1).Write(c);
UNUSED(unused);
}
static inline NIF void WritePrefix(DebugLevel Level, const char *File, int Line, const char *Function)
{
const char *DbgLvlString;
switch (Level)
{
case DebugLevelError:
DbgLvlString = "ERROR";
break;
case DebugLevelWarning:
DbgLvlString = "WARN ";
break;
case DebugLevelInfo:
DbgLvlString = "INFO ";
break;
case DebugLevelDebug:
DbgLvlString = "DEBUG";
break;
case DebugLevelTrace:
DbgLvlString = "TRACE";
break;
case DebugLevelFixme:
DbgLvlString = "FIXME";
break;
case DebugLevelUbsan:
{
DbgLvlString = "UBSAN";
fctprintf(uart_wrapper, nullptr, "%s|%s: ", DbgLvlString, Function);
return;
}
default:
DbgLvlString = "UNKNW";
break;
}
fctprintf(uart_wrapper, nullptr, "%s|%s->%s:%d: ", DbgLvlString, File, Function, Line);
}
namespace SysDbg
{
NIF void Write(DebugLevel Level, const char *File, int Line, const char *Function, const char *Format, ...)
{
WritePrefix(Level, File, Line, Function);
va_list args;
va_start(args, Format);
vfctprintf(uart_wrapper, nullptr, Format, args);
va_end(args);
}
NIF void WriteLine(DebugLevel Level, const char *File, int Line, const char *Function, const char *Format, ...)
{
WritePrefix(Level, File, Line, Function);
va_list args;
va_start(args, Format);
vfctprintf(uart_wrapper, nullptr, Format, args);
va_end(args);
uart_wrapper('\n', nullptr);
}
NIF void LockedWrite(DebugLevel Level, const char *File, int Line, const char *Function, const char *Format, ...)
{
SmartTimeoutLock(DebuggerLock, 1000);
WritePrefix(Level, File, Line, Function);
va_list args;
va_start(args, Format);
vfctprintf(uart_wrapper, nullptr, Format, args);
va_end(args);
}
NIF void LockedWriteLine(DebugLevel Level, const char *File, int Line, const char *Function, const char *Format, ...)
{
SmartTimeoutLock(DebuggerLock, 1000);
WritePrefix(Level, File, Line, Function);
va_list args;
va_start(args, Format);
vfctprintf(uart_wrapper, nullptr, Format, args);
va_end(args);
uart_wrapper('\n', nullptr);
}
}
// C compatibility
extern "C" NIF void SysDbgWrite(enum DebugLevel Level, const char *File, int Line, const char *Function, const char *Format, ...)
{
WritePrefix(Level, File, Line, Function);
va_list args;
va_start(args, Format);
vfctprintf(uart_wrapper, nullptr, Format, args);
va_end(args);
}
// C compatibility
extern "C" NIF void SysDbgWriteLine(enum DebugLevel Level, const char *File, int Line, const char *Function, const char *Format, ...)
{
WritePrefix(Level, File, Line, Function);
va_list args;
va_start(args, Format);
vfctprintf(uart_wrapper, nullptr, Format, args);
va_end(args);
uart_wrapper('\n', nullptr);
}
// C compatibility
extern "C" NIF void SysDbgLockedWrite(enum DebugLevel Level, const char *File, int Line, const char *Function, const char *Format, ...)
{
SmartTimeoutLock(DebuggerLock, 1000);
WritePrefix(Level, File, Line, Function);
va_list args;
va_start(args, Format);
vfctprintf(uart_wrapper, nullptr, Format, args);
va_end(args);
}
// C compatibility
extern "C" NIF void SysDbgLockedWriteLine(enum DebugLevel Level, const char *File, int Line, const char *Function, const char *Format, ...)
{
SmartTimeoutLock(DebuggerLock, 1000);
WritePrefix(Level, File, Line, Function);
va_list args;
va_start(args, Format);
vfctprintf(uart_wrapper, nullptr, Format, args);
va_end(args);
uart_wrapper('\n', nullptr);
}

169
Kernel/Core/Disk.cpp Normal file
View File

@ -0,0 +1,169 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include <disk.hpp>
#include <memory.hpp>
#include <printf.h>
#include "../kernel.h"
#include "../DAPI.hpp"
#include "../Fex.hpp"
namespace Disk
{
void Manager::FetchDisks(unsigned long DriverUID)
{
KernelCallback callback{};
callback.Reason = FetchReason;
DriverManager->IOCB(DriverUID, &callback);
this->AvailablePorts = callback.DiskCallback.Fetch.Ports;
this->BytesPerSector = callback.DiskCallback.Fetch.BytesPerSector;
debug("AvailablePorts:%ld BytesPerSector:%ld", this->AvailablePorts, this->BytesPerSector);
if (this->AvailablePorts <= 0)
return;
uint8_t *RWBuffer = (uint8_t *)KernelAllocator.RequestPages(TO_PAGES(this->BytesPerSector + 1));
for (unsigned char ItrPort = 0; ItrPort < this->AvailablePorts; ItrPort++)
{
Drive drive{};
sprintf(drive.Name, "sd%ld-%d", DriverUID, this->AvailablePorts);
debug("Drive Name: %s", drive.Name);
// TODO: Implement disk type detection. Very useful in the future.
drive.MechanicalDisk = true;
memset(RWBuffer, 0, this->BytesPerSector);
callback.Reason = ReceiveReason;
callback.DiskCallback.RW = {
.Sector = 0,
.SectorCount = 2,
.Port = ItrPort,
.Buffer = RWBuffer,
.Write = false,
};
DriverManager->IOCB(DriverUID, &callback);
memcpy(&drive.Table, RWBuffer, sizeof(PartitionTable));
/*
TODO: Add to devfs the disk
*/
if (drive.Table.GPT.Signature == GPT_MAGIC)
{
drive.Style = GPT;
uint32_t Entries = 512 / drive.Table.GPT.EntrySize;
uint32_t Sectors = drive.Table.GPT.PartCount / Entries;
for (uint32_t Block = 0; Block < Sectors; Block++)
{
memset(RWBuffer, 0, this->BytesPerSector);
callback.Reason = ReceiveReason;
callback.DiskCallback.RW = {
.Sector = 2 + Block,
.SectorCount = 1,
.Port = ItrPort,
.Buffer = RWBuffer,
.Write = false,
};
DriverManager->IOCB(DriverUID, &callback);
for (uint32_t e = 0; e < Entries; e++)
{
GUIDPartitionTablePartition GPTPartition = reinterpret_cast<GUIDPartitionTablePartition *>(RWBuffer)[e];
if (GPTPartition.TypeLow || GPTPartition.TypeHigh)
{
Partition partition{};
memcpy(partition.Label, GPTPartition.Label, sizeof(partition.Label));
partition.StartLBA = GPTPartition.StartLBA;
partition.EndLBA = GPTPartition.EndLBA;
partition.Sectors = partition.EndLBA - partition.StartLBA;
partition.Port = ItrPort;
partition.Flags = Present;
partition.Style = GPT;
if (GPTPartition.Attributes & 1)
partition.Flags |= EFISystemPartition;
partition.Index = drive.Partitions.size();
// why there is NUL (\0) between every char?????
char PartName[72];
memcpy(PartName, GPTPartition.Label, 72);
for (int i = 0; i < 72; i++)
if (PartName[i] == '\0')
PartName[i] = ' ';
PartName[71] = '\0';
trace("GPT partition \"%s\" found with %lld sectors", PartName, partition.Sectors);
drive.Partitions.push_back(partition);
// char *PartitionName = new char[64];
// sprintf(PartitionName, "sd%ldp%ld", drives.size() - 1, partition.Index);
/*
TODO: Add to devfs the disk
*/
// delete[] PartitionName;
}
}
}
trace("%d GPT partitions found.", drive.Partitions.size());
}
else if (drive.Table.MBR.Signature[0] == MBR_MAGIC0 && drive.Table.MBR.Signature[1] == MBR_MAGIC1)
{
drive.Style = MBR;
for (size_t p = 0; p < 4; p++)
if (drive.Table.MBR.Partitions[p].LBAFirst != 0)
{
Partition partition{};
partition.StartLBA = drive.Table.MBR.Partitions[p].LBAFirst;
partition.EndLBA = drive.Table.MBR.Partitions[p].LBAFirst + drive.Table.MBR.Partitions[p].Sectors;
partition.Sectors = drive.Table.MBR.Partitions[p].Sectors;
partition.Port = ItrPort;
partition.Flags = Present;
partition.Style = MBR;
partition.Index = drive.Partitions.size();
trace("Partition \"%#llx\" found with %lld sectors.", drive.Table.MBR.UniqueID, partition.Sectors);
drive.Partitions.push_back(partition);
// char *PartitionName = new char[64];
// sprintf(PartitionName, "sd%ldp%ld", drives.size() - 1, partition.Index);
/*
TODO: Add to devfs the disk
*/
// delete[] PartitionName;
}
trace("%d MBR partitions found.", drive.Partitions.size());
}
else
warn("No partition table found on port %d!", ItrPort);
drives.push_back(drive);
}
KernelAllocator.FreePages(RWBuffer, TO_PAGES(this->BytesPerSector + 1));
}
Manager::Manager()
{
}
Manager::~Manager()
{
debug("Destructor called");
}
}

View File

@ -0,0 +1,343 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include <driver.hpp>
#include <memory.hpp>
#include <ints.hpp>
#include <task.hpp>
#include <lock.hpp>
#include <printf.h>
#include <cwalk.h>
#include <md5.h>
#include "../../kernel.h"
#include "../../DAPI.hpp"
#include "../../Fex.hpp"
#include "api.hpp"
NewLock(DriverInitLock);
NewLock(DriverInterruptLock);
namespace Driver
{
void Driver::Panic()
{
#ifdef DEBUG
size_t DriversNum = Drivers.size();
debug("%ld drivers loaded, [DUIDs: %ld]", DriversNum, DriverUIDs);
debug("driver size %ld", DriversNum);
#endif
foreach (auto drv in Drivers)
{
KernelCallback callback{};
callback.Reason = StopReason;
DriverManager->IOCB(drv.DriverUID, &callback);
for (size_t j = 0; j < sizeof(drv.InterruptHook) / sizeof(drv.InterruptHook[0]); j++)
{
if (!drv.InterruptHook[j])
continue;
drv.InterruptHook[j]->Disable();
debug("Interrupt hook %#lx disabled", drv.InterruptHook[j]);
}
}
}
void Driver::UnloadAllDrivers()
{
#ifdef DEBUG
size_t DriversNum = Drivers.size();
debug("%ld drivers loaded, [DUIDs: %ld]", DriversNum, DriverUIDs);
debug("driver size %ld", DriversNum);
#endif
foreach (auto drv in Drivers)
{
KernelCallback callback{};
callback.Reason = StopReason;
debug("Stopping & unloading driver %ld [%#lx]", drv.DriverUID, drv.Address);
DriverManager->IOCB(drv.DriverUID, &callback);
for (size_t j = 0; j < sizeof(drv.InterruptHook) / sizeof(drv.InterruptHook[0]); j++)
{
if (!drv.InterruptHook[j])
continue;
debug("Interrupt hook %#lx", drv.InterruptHook[j]);
delete drv.InterruptHook[j], drv.InterruptHook[j] = nullptr;
}
if (drv.MemTrk)
delete drv.MemTrk, drv.MemTrk = nullptr;
}
Drivers.clear();
}
bool Driver::UnloadDriver(unsigned long DUID)
{
debug("Searching for driver %ld", DUID);
foreach (auto drv in Drivers)
{
if (drv.DriverUID == DUID)
{
KernelCallback callback{};
callback.Reason = StopReason;
debug("Stopping and unloading driver %ld [%#lx]", drv.DriverUID, drv.Address);
this->IOCB(drv.DriverUID, &callback);
for (size_t j = 0; j < sizeof(drv.InterruptHook) / sizeof(drv.InterruptHook[0]); j++)
{
if (!drv.InterruptHook[j])
continue;
debug("Interrupt hook %#lx", drv.InterruptHook[j]);
delete drv.InterruptHook[j], drv.InterruptHook[j] = nullptr;
}
delete drv.MemTrk, drv.MemTrk = nullptr;
Drivers.remove(drv);
return true;
}
}
return false;
}
int Driver::IOCB(unsigned long DUID, void *KCB)
{
foreach (auto Drv in Drivers)
{
if (Drv.DriverUID == DUID)
{
FexExtended *DrvExtHdr = (FexExtended *)((uintptr_t)Drv.Address + EXTENDED_SECTION_ADDRESS);
int ret = ((int (*)(void *))((uintptr_t)DrvExtHdr->Driver.Callback + (uintptr_t)Drv.Address))(KCB);
__sync;
return ret;
}
}
return -1;
}
DriverCode Driver::CallDriverEntryPoint(void *fex, void *KAPIAddress)
{
memcpy(KAPIAddress, &KernelAPITemplate, sizeof(KernelAPI));
((KernelAPI *)KAPIAddress)->Info.Offset = (unsigned long)fex;
((KernelAPI *)KAPIAddress)->Info.DriverUID = DriverUIDs++;
((KernelAPI *)KAPIAddress)->Info.KernelDebug = DebuggerIsAttached;
#ifdef DEBUG
FexExtended *fexExtended = (FexExtended *)((uintptr_t)fex + EXTENDED_SECTION_ADDRESS);
debug("DRIVER: %s HAS DRIVER ID %ld", fexExtended->Driver.Name, ((KernelAPI *)KAPIAddress)->Info.DriverUID);
#endif
debug("Calling driver entry point ( %#lx %ld )", (unsigned long)fex, ((KernelAPI *)KAPIAddress)->Info.DriverUID);
int ret = ((int (*)(KernelAPI *))((uintptr_t)((Fex *)fex)->EntryPoint + (uintptr_t)fex))(((KernelAPI *)KAPIAddress));
if (DriverReturnCode::OK != ret)
return DriverCode::DRIVER_RETURNED_ERROR;
return DriverCode::OK;
}
DriverCode Driver::LoadDriver(uintptr_t DriverAddress, uintptr_t Size)
{
Fex *DrvHdr = (Fex *)DriverAddress;
if (DrvHdr->Magic[0] != 'F' || DrvHdr->Magic[1] != 'E' || DrvHdr->Magic[2] != 'X' || DrvHdr->Magic[3] != '\0')
{
if (Size > 0x1000)
{
Fex *ElfDrvHdr = (Fex *)(DriverAddress + 0x1000);
if (ElfDrvHdr->Magic[0] != 'F' || ElfDrvHdr->Magic[1] != 'E' || ElfDrvHdr->Magic[2] != 'X' || ElfDrvHdr->Magic[3] != '\0')
return DriverCode::INVALID_FEX_HEADER;
else
{
debug("Fex Magic: \"%s\"; Type: %d; OS: %d; EntryPoint: %#lx", ElfDrvHdr->Magic, ElfDrvHdr->Type, ElfDrvHdr->OS, ElfDrvHdr->EntryPoint);
if (ElfDrvHdr->Type == FexFormatType::FexFormatType_Driver)
{
FexExtended *ElfDrvExtHdr = (FexExtended *)((uintptr_t)ElfDrvHdr + EXTENDED_SECTION_ADDRESS);
debug("Name: \"%s\"; Type: %d; Callback: %#lx", ElfDrvExtHdr->Driver.Name, ElfDrvExtHdr->Driver.Type, ElfDrvExtHdr->Driver.Callback);
if (ElfDrvExtHdr->Driver.Bind.Type == DriverBindType::BIND_PCI)
return this->DriverLoadBindPCI(ElfDrvExtHdr, DriverAddress, Size, true);
else if (ElfDrvExtHdr->Driver.Bind.Type == DriverBindType::BIND_INTERRUPT)
return this->DriverLoadBindInterrupt(ElfDrvExtHdr, DriverAddress, Size, true);
else if (ElfDrvExtHdr->Driver.Bind.Type == DriverBindType::BIND_PROCESS)
return this->DriverLoadBindProcess(ElfDrvExtHdr, DriverAddress, Size, true);
else if (ElfDrvExtHdr->Driver.Bind.Type == DriverBindType::BIND_INPUT)
return this->DriverLoadBindInput(ElfDrvExtHdr, DriverAddress, Size, true);
else
error("Unknown driver bind type: %d", ElfDrvExtHdr->Driver.Bind.Type);
}
else
return DriverCode::NOT_DRIVER;
}
}
else
return DriverCode::INVALID_FEX_HEADER;
}
debug("Fex Magic: \"%s\"; Type: %d; OS: %d; EntryPoint: %#lx", DrvHdr->Magic, DrvHdr->Type, DrvHdr->OS, DrvHdr->EntryPoint);
if (DrvHdr->Type == FexFormatType::FexFormatType_Driver)
{
FexExtended *DrvExtHdr = (FexExtended *)((uintptr_t)DrvHdr + EXTENDED_SECTION_ADDRESS);
debug("Name: \"%s\"; Type: %d; Callback: %#lx", DrvExtHdr->Driver.Name, DrvExtHdr->Driver.Type, DrvExtHdr->Driver.Callback);
if (DrvExtHdr->Driver.Bind.Type == DriverBindType::BIND_PCI)
return this->DriverLoadBindPCI(DrvExtHdr, DriverAddress, Size);
else if (DrvExtHdr->Driver.Bind.Type == DriverBindType::BIND_INTERRUPT)
return this->DriverLoadBindInterrupt(DrvExtHdr, DriverAddress, Size);
else if (DrvExtHdr->Driver.Bind.Type == DriverBindType::BIND_PROCESS)
return this->DriverLoadBindProcess(DrvExtHdr, DriverAddress, Size);
else if (DrvExtHdr->Driver.Bind.Type == DriverBindType::BIND_INPUT)
return this->DriverLoadBindInput(DrvExtHdr, DriverAddress, Size);
else
error("Unknown driver bind type: %d", DrvExtHdr->Driver.Bind.Type);
}
else
return DriverCode::NOT_DRIVER;
return DriverCode::ERROR;
}
Driver::Driver()
{
SmartCriticalSection(DriverInitLock);
std::string DriverConfigFile = Config.DriverDirectory;
DriverConfigFile << "/config.ini";
fixme("Loading driver config file: %s", DriverConfigFile.c_str());
VirtualFileSystem::File DriverDirectory = vfs->Open(Config.DriverDirectory);
if (DriverDirectory.IsOK())
{
foreach (auto driver in DriverDirectory.node->Children)
if (driver->Flags == VirtualFileSystem::NodeFlags::FILE)
if (cwk_path_has_extension(driver->Name))
{
const char *extension;
size_t extension_length;
cwk_path_get_extension(driver->Name, &extension, &extension_length);
debug("Driver: %s; Extension: %s", driver->Name, extension);
if (strcmp(extension, ".fex") == 0 || strcmp(extension, ".elf") == 0)
{
uintptr_t ret = this->LoadDriver(driver->Address, driver->Length);
char RetString[128];
if (ret == DriverCode::OK)
strncpy(RetString, "\e058C19OK", 10);
else if (ret == DriverCode::NOT_AVAILABLE)
strncpy(RetString, "\eFF7900NOT AVAILABLE", 21);
else
sprintf(RetString, "\eE85230FAILED (%#lx)", ret);
KPrint("%s %s", driver->Name, RetString);
}
}
}
else
{
KPrint("\eE85230Failed to open driver directory: %s! (Status: %#lx)", Config.DriverDirectory, DriverDirectory.Status);
CPU::Stop();
}
vfs->Close(DriverDirectory);
}
Driver::~Driver()
{
debug("Destructor called");
this->UnloadAllDrivers();
}
#if defined(a64)
SafeFunction void DriverInterruptHook::OnInterruptReceived(CPU::x64::TrapFrame *Frame)
#elif defined(a32)
SafeFunction void DriverInterruptHook::OnInterruptReceived(CPU::x32::TrapFrame *Frame)
#elif defined(aa64)
SafeFunction void DriverInterruptHook::OnInterruptReceived(CPU::aarch64::TrapFrame *Frame)
#endif
{
SmartLock(DriverInterruptLock); /* Lock in case of multiple interrupts firing at the same time */
if (!this->Enabled)
{
debug("Interrupt hook is not enabled");
return;
}
if (!Handle.InterruptCallback)
{
#if defined(a86)
uint64_t IntNum = Frame->InterruptNumber - 32;
#elif defined(aa64)
uint64_t IntNum = Frame->InterruptNumber;
#endif
warn("Interrupt callback for %ld is not set for driver %ld!", IntNum, Handle.DriverUID);
return;
}
CPURegisters regs;
#if defined(a64)
regs.r15 = Frame->r15;
regs.r14 = Frame->r14;
regs.r13 = Frame->r13;
regs.r12 = Frame->r12;
regs.r11 = Frame->r11;
regs.r10 = Frame->r10;
regs.r9 = Frame->r9;
regs.r8 = Frame->r8;
regs.rbp = Frame->rbp;
regs.rdi = Frame->rdi;
regs.rsi = Frame->rsi;
regs.rdx = Frame->rdx;
regs.rcx = Frame->rcx;
regs.rbx = Frame->rbx;
regs.rax = Frame->rax;
regs.InterruptNumber = Frame->InterruptNumber;
regs.ErrorCode = Frame->ErrorCode;
regs.rip = Frame->rip;
regs.cs = Frame->cs;
regs.rflags = Frame->rflags.raw;
regs.rsp = Frame->rsp;
regs.ss = Frame->ss;
#elif defined(a32)
regs.ebp = Frame->ebp;
regs.edi = Frame->edi;
regs.esi = Frame->esi;
regs.edx = Frame->edx;
regs.ecx = Frame->ecx;
regs.ebx = Frame->ebx;
regs.eax = Frame->eax;
regs.InterruptNumber = Frame->InterruptNumber;
regs.ErrorCode = Frame->ErrorCode;
regs.eip = Frame->eip;
regs.cs = Frame->cs;
regs.eflags = Frame->eflags.raw;
regs.esp = Frame->esp;
regs.ss = Frame->ss;
#elif defined(aa64)
#endif
((int (*)(void *))(Handle.InterruptCallback))(&regs);
UNUSED(Frame);
}
DriverInterruptHook::DriverInterruptHook(int Interrupt, DriverFile Handle) : Interrupts::Handler(Interrupt)
{
this->Handle = Handle;
#if defined(a86)
trace("Interrupt %d hooked to driver %ld", Interrupt, Handle.DriverUID);
#elif defined(aa64)
trace("Interrupt %d hooked to driver %ld", Interrupt, Handle.DriverUID);
#endif
}
}

View File

@ -0,0 +1,203 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include <driver.hpp>
#include <dumper.hpp>
#include <lock.hpp>
#include "../../kernel.h"
#include "../../Fex.hpp"
#include "api.hpp"
// show debug messages
// #define DEBUG_DRIVER_API 1
#ifdef DEBUG_DRIVER_API
#define drvdbg(m, ...) debug(m, ##__VA_ARGS__)
#else
#define drvdbg(m, ...)
#endif
NewLock(DriverDisplayPrintLock);
void DriverDebugPrint(char *String, unsigned long DriverUID) { trace("[%ld] %s", DriverUID, String); }
void DriverDisplayPrint(char *String)
{
SmartLock(DriverDisplayPrintLock);
for (unsigned long i = 0; i < strlen(String); i++)
Display->Print(String[i], 0, true);
}
void *RequestPage(unsigned long Size)
{
void *ret = KernelAllocator.RequestPages(Size + 1);
drvdbg("Allocated %ld pages (%#lx-%#lx)", Size, (unsigned long)ret, (unsigned long)ret + FROM_PAGES(Size));
return ret;
}
void FreePage(void *Page, unsigned long Size)
{
drvdbg("Freeing %ld pages (%#lx-%#lx)", Size, (unsigned long)Page, (unsigned long)Page + FROM_PAGES(Size));
KernelAllocator.FreePages(Page, Size + 1);
}
void MapMemory(void *VirtualAddress, void *PhysicalAddress, unsigned long Flags)
{
SmartLock(DriverDisplayPrintLock);
drvdbg("Mapping %#lx to %#lx with flags %#lx...", (unsigned long)VirtualAddress, (unsigned long)PhysicalAddress, Flags);
Memory::Virtual(KernelPageTable).Map(VirtualAddress, PhysicalAddress, Flags);
}
void UnmapMemory(void *VirtualAddress)
{
SmartLock(DriverDisplayPrintLock);
drvdbg("Unmapping %#lx...", (unsigned long)VirtualAddress);
Memory::Virtual(KernelPageTable).Unmap(VirtualAddress);
}
void *Drivermemcpy(void *Destination, void *Source, unsigned long Size)
{
SmartLock(DriverDisplayPrintLock);
drvdbg("Copying %ld bytes from %#lx-%#lx to %#lx-%#lx...", Size,
(unsigned long)Source, (unsigned long)Source + Size,
(unsigned long)Destination, (unsigned long)Destination + Size);
return memcpy(Destination, Source, Size);
}
void *Drivermemset(void *Destination, int Value, unsigned long Size)
{
SmartLock(DriverDisplayPrintLock);
drvdbg("Setting value %#x at %#lx-%#lx (%ld bytes)...", Value,
(unsigned long)Destination, (unsigned long)Destination + Size,
Size);
return memset(Destination, Value, Size);
}
void DriverNetSend(unsigned int DriverID, unsigned char *Data, unsigned short Size)
{
// This is useless I guess...
if (NIManager)
NIManager->DrvSend(DriverID, Data, Size);
}
void DriverNetReceive(unsigned int DriverID, unsigned char *Data, unsigned short Size)
{
if (NIManager)
NIManager->DrvReceive(DriverID, Data, Size);
}
void DriverAHCIDiskRead(unsigned int DriverID, unsigned long Sector, unsigned char *Data, unsigned int SectorCount, unsigned char Port)
{
DumpData("DriverDiskRead", Data, SectorCount * 512);
UNUSED(DriverID);
UNUSED(Sector);
UNUSED(Port);
}
void DriverAHCIDiskWrite(unsigned int DriverID, unsigned long Sector, unsigned char *Data, unsigned int SectorCount, unsigned char Port)
{
DumpData("DriverDiskWrite", Data, SectorCount * 512);
UNUSED(DriverID);
UNUSED(Sector);
UNUSED(Port);
}
char *DriverPCIGetDeviceName(unsigned int VendorID, unsigned int DeviceID)
{
UNUSED(VendorID);
UNUSED(DeviceID);
return (char *)"Unknown";
}
unsigned int DriverGetWidth()
{
/* TODO: We won't rely only on display buffers, what about graphics drivers and changing resolutions? */
return Display->GetBuffer(0)->Width;
}
unsigned int DriverGetHeight()
{
/* TODO: We won't rely only on display buffers, what about graphics drivers and changing resolutions? */
return Display->GetBuffer(0)->Height;
}
void DriverSleep(unsigned long Milliseconds)
{
SmartLock(DriverDisplayPrintLock);
drvdbg("Sleeping for %ld milliseconds...", Milliseconds);
if (TaskManager)
TaskManager->Sleep(Milliseconds);
else
TimeManager->Sleep(Milliseconds, Time::Units::Milliseconds);
}
int Driversprintf(char *Buffer, const char *Format, ...)
{
va_list args;
va_start(args, Format);
int ret = vsprintf(Buffer, Format, args);
va_end(args);
return ret;
}
KernelAPI KernelAPITemplate = {
.Version = {
.Major = 0,
.Minor = 0,
.Patch = 1},
.Info = {
.Offset = 0,
.DriverUID = 0,
.KernelDebug = false,
},
.Memory = {
.PageSize = PAGE_SIZE,
.RequestPage = RequestPage,
.FreePage = FreePage,
.Map = MapMemory,
.Unmap = UnmapMemory,
},
.PCI = {
.GetDeviceName = DriverPCIGetDeviceName,
},
.Util = {
.DebugPrint = DriverDebugPrint,
.DisplayPrint = DriverDisplayPrint,
.memcpy = Drivermemcpy,
.memset = Drivermemset,
.Sleep = DriverSleep,
.sprintf = Driversprintf,
},
.Command = {
.Network = {
.SendPacket = DriverNetSend,
.ReceivePacket = DriverNetReceive,
},
.Disk = {
.AHCI = {
.ReadSector = DriverAHCIDiskRead,
.WriteSector = DriverAHCIDiskWrite,
},
},
},
.Display = {
.GetWidth = DriverGetWidth,
.GetHeight = DriverGetHeight,
},
};

View File

@ -0,0 +1,73 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../api.hpp"
#include <ints.hpp>
#include <memory.hpp>
#include <task.hpp>
#include <lock.hpp>
#include <printf.h>
#include <cwalk.h>
#include <md5.h>
#include "../../../kernel.h"
#include "../../../DAPI.hpp"
#include "../../../Fex.hpp"
namespace Driver
{
DriverCode Driver::DriverLoadBindInput(void *DrvExtHdr, uintptr_t DriverAddress, size_t Size, bool IsElf)
{
UNUSED(DrvExtHdr);
UNUSED(IsElf);
Memory::MemMgr *mem = new Memory::MemMgr(nullptr, TaskManager->GetCurrentProcess()->memDirectory);
Fex *fex = (Fex *)mem->RequestPages(TO_PAGES(Size + 1));
memcpy(fex, (void *)DriverAddress, Size);
FexExtended *fexExtended = (FexExtended *)((uintptr_t)fex + EXTENDED_SECTION_ADDRESS);
debug("Driver allocated at %#lx-%#lx", fex, (uintptr_t)fex + Size);
#ifdef DEBUG
uint8_t *result = md5File((uint8_t *)fex, Size);
debug("MD5: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x",
result[0], result[1], result[2], result[3], result[4], result[5], result[6], result[7],
result[8], result[9], result[10], result[11], result[12], result[13], result[14], result[15]);
kfree(result);
#endif
KernelAPI *KAPI = (KernelAPI *)mem->RequestPages(TO_PAGES(sizeof(KernelAPI) + 1));
if (CallDriverEntryPoint(fex, KAPI) != DriverCode::OK)
{
delete mem, mem = nullptr;
return DriverCode::DRIVER_RETURNED_ERROR;
}
debug("Starting driver %s (offset: %#lx)", fexExtended->Driver.Name, fex);
switch (fexExtended->Driver.Type)
{
case FexDriverType::FexDriverType_Input:
return BindInputInput(mem, fex);
default:
{
warn("Unknown driver type: %d", fexExtended->Driver.Type);
delete mem, mem = nullptr;
return DriverCode::UNKNOWN_DRIVER_TYPE;
}
}
return DriverCode::OK;
}
}

View File

@ -0,0 +1,85 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../api.hpp"
#include <ints.hpp>
#include <memory.hpp>
#include <task.hpp>
#include <lock.hpp>
#include <printf.h>
#include <cwalk.h>
#include <md5.h>
#include "../../../kernel.h"
#include "../../../DAPI.hpp"
#include "../../../Fex.hpp"
namespace Driver
{
DriverCode Driver::DriverLoadBindInterrupt(void *DrvExtHdr, uintptr_t DriverAddress, size_t Size, bool IsElf)
{
UNUSED(DrvExtHdr);
UNUSED(IsElf);
Memory::MemMgr *mem = new Memory::MemMgr(nullptr, TaskManager->GetCurrentProcess()->memDirectory);
Fex *fex = (Fex *)mem->RequestPages(TO_PAGES(Size + 1));
memcpy(fex, (void *)DriverAddress, Size);
FexExtended *fexExtended = (FexExtended *)((uintptr_t)fex + EXTENDED_SECTION_ADDRESS);
debug("Driver allocated at %#lx-%#lx", fex, (uintptr_t)fex + Size);
#ifdef DEBUG
uint8_t *result = md5File((uint8_t *)fex, Size);
debug("MD5: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x",
result[0], result[1], result[2], result[3], result[4], result[5], result[6], result[7],
result[8], result[9], result[10], result[11], result[12], result[13], result[14], result[15]);
kfree(result);
#endif
KernelAPI *KAPI = (KernelAPI *)mem->RequestPages(TO_PAGES(sizeof(KernelAPI) + 1));
if (CallDriverEntryPoint(fex, KAPI) != DriverCode::OK)
{
delete mem, mem = nullptr;
return DriverCode::DRIVER_RETURNED_ERROR;
}
debug("Starting driver %s (offset: %#lx)", fexExtended->Driver.Name, fex);
switch (fexExtended->Driver.Type)
{
case FexDriverType::FexDriverType_Generic:
return BindInterruptGeneric(mem, fex);
case FexDriverType::FexDriverType_Display:
return BindInterruptDisplay(mem, fex);
case FexDriverType::FexDriverType_Network:
return BindInterruptNetwork(mem, fex);
case FexDriverType::FexDriverType_Storage:
return BindInterruptStorage(mem, fex);
case FexDriverType::FexDriverType_FileSystem:
return BindInterruptFileSystem(mem, fex);
case FexDriverType::FexDriverType_Input:
return BindInterruptInput(mem, fex);
case FexDriverType::FexDriverType_Audio:
return BindInterruptAudio(mem, fex);
default:
{
warn("Unknown driver type: %d", fexExtended->Driver.Type);
delete mem, mem = nullptr;
return DriverCode::UNKNOWN_DRIVER_TYPE;
}
}
return DriverCode::OK;
}
}

View File

@ -0,0 +1,201 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../api.hpp"
#include <ints.hpp>
#include <memory.hpp>
#include <task.hpp>
#include <lock.hpp>
#include <printf.h>
#include <cwalk.h>
#include <md5.h>
#include "../../../kernel.h"
#include "../../../DAPI.hpp"
#include "../../../Fex.hpp"
namespace Driver
{
void Driver::MapPCIAddresses(PCI::PCIDeviceHeader *PCIDevice)
{
debug("Header Type: %d", PCIDevice->HeaderType);
switch (PCIDevice->HeaderType)
{
case 0: // PCI Header 0
{
uint32_t BAR[6] = {0};
size_t BARsSize[6] = {0};
BAR[0] = ((PCI::PCIHeader0 *)PCIDevice)->BAR0;
BAR[1] = ((PCI::PCIHeader0 *)PCIDevice)->BAR1;
BAR[2] = ((PCI::PCIHeader0 *)PCIDevice)->BAR2;
BAR[3] = ((PCI::PCIHeader0 *)PCIDevice)->BAR3;
BAR[4] = ((PCI::PCIHeader0 *)PCIDevice)->BAR4;
BAR[5] = ((PCI::PCIHeader0 *)PCIDevice)->BAR5;
#ifdef DEBUG
uintptr_t BAR_Type = BAR[0] & 1;
uintptr_t BAR_IOBase = BAR[1] & (~3);
uintptr_t BAR_MemoryBase = BAR[0] & (~15);
debug("Type: %d; IOBase: %#lx; MemoryBase: %#lx", BAR_Type, BAR_IOBase, BAR_MemoryBase);
#endif
/* BARs Size */
for (short i = 0; i < 6; i++)
{
if (BAR[i] == 0)
continue;
if ((BAR[i] & 1) == 0) // Memory Base
{
((PCI::PCIHeader0 *)PCIDevice)->BAR0 = 0xFFFFFFFF;
size_t size = ((PCI::PCIHeader0 *)PCIDevice)->BAR0;
((PCI::PCIHeader0 *)PCIDevice)->BAR0 = BAR[i];
BARsSize[i] = size & (~15);
BARsSize[i] = ~BARsSize[i] + 1;
BARsSize[i] = BARsSize[i] & 0xFFFFFFFF;
debug("BAR%d %#lx size: %d", i, BAR[i], BARsSize[i]);
}
else if ((BAR[i] & 1) == 1) // I/O Base
{
((PCI::PCIHeader0 *)PCIDevice)->BAR1 = 0xFFFFFFFF;
size_t size = ((PCI::PCIHeader0 *)PCIDevice)->BAR1;
((PCI::PCIHeader0 *)PCIDevice)->BAR1 = BAR[i];
BARsSize[i] = size & (~3);
BARsSize[i] = ~BARsSize[i] + 1;
BARsSize[i] = BARsSize[i] & 0xFFFF;
debug("BAR%d %#lx size: %d", i, BAR[i], BARsSize[i]);
}
}
/* Mapping the BARs */
for (short i = 0; i < 6; i++)
{
if (BAR[i] == 0)
continue;
if ((BAR[i] & 1) == 0) // Memory Base
{
uintptr_t BARBase = BAR[i] & (~15);
size_t BARSize = BARsSize[i];
debug("Mapping BAR%d %#lx-%#lx", i, BARBase, BARBase + BARSize);
Memory::Virtual().Map((void *)BARBase, (void *)BARBase, BARSize, Memory::PTFlag::RW | Memory::PTFlag::PWT);
}
else if ((BAR[i] & 1) == 1) // I/O Base
{
uintptr_t BARBase = BAR[i] & (~3);
size_t BARSize = BARsSize[i];
debug("Mapping BAR%d %#x-%#x", i, BARBase, BARBase + BARSize);
Memory::Virtual().Map((void *)BARBase, (void *)BARBase, BARSize, Memory::PTFlag::RW | Memory::PTFlag::PWT);
}
}
break;
}
case 1: // PCI Header 1 (PCI-to-PCI Bridge)
{
fixme("PCI Header 1 (PCI-to-PCI Bridge) not implemented yet");
break;
}
case 2: // PCI Header 2 (PCI-to-CardBus Bridge)
{
fixme("PCI Header 2 (PCI-to-CardBus Bridge) not implemented yet");
break;
}
default:
{
error("Unknown header type %d", PCIDevice->HeaderType);
return;
}
}
}
DriverCode Driver::DriverLoadBindPCI(void *DrvExtHdr, uintptr_t DriverAddress, size_t Size, bool IsElf)
{
UNUSED(IsElf);
for (unsigned long Vidx = 0; Vidx < sizeof(((FexExtended *)DrvExtHdr)->Driver.Bind.PCI.VendorID) / sizeof(((FexExtended *)DrvExtHdr)->Driver.Bind.PCI.VendorID[0]); Vidx++)
{
for (unsigned long Didx = 0; Didx < sizeof(((FexExtended *)DrvExtHdr)->Driver.Bind.PCI.DeviceID) / sizeof(((FexExtended *)DrvExtHdr)->Driver.Bind.PCI.DeviceID[0]); Didx++)
{
if (Vidx >= sizeof(((FexExtended *)DrvExtHdr)->Driver.Bind.PCI.VendorID) && Didx >= sizeof(((FexExtended *)DrvExtHdr)->Driver.Bind.PCI.DeviceID))
break;
if (((FexExtended *)DrvExtHdr)->Driver.Bind.PCI.VendorID[Vidx] == 0 || ((FexExtended *)DrvExtHdr)->Driver.Bind.PCI.DeviceID[Didx] == 0)
continue;
std::vector<PCI::PCIDeviceHeader *> devices = PCIManager->FindPCIDevice(((FexExtended *)DrvExtHdr)->Driver.Bind.PCI.VendorID[Vidx], ((FexExtended *)DrvExtHdr)->Driver.Bind.PCI.DeviceID[Didx]);
if (devices.size() == 0)
continue;
foreach (auto PCIDevice in devices)
{
debug("[%ld] VendorID: %#x; DeviceID: %#x", devices.size(), PCIDevice->VendorID, PCIDevice->DeviceID);
Memory::MemMgr *mem = new Memory::MemMgr(nullptr, TaskManager->GetCurrentProcess()->memDirectory);
Fex *fex = (Fex *)mem->RequestPages(TO_PAGES(Size + 1));
memcpy(fex, (void *)DriverAddress, Size);
FexExtended *fexExtended = (FexExtended *)((uintptr_t)fex + EXTENDED_SECTION_ADDRESS);
debug("Driver allocated at %#lx-%#lx", fex, (uintptr_t)fex + Size);
#ifdef DEBUG
uint8_t *result = md5File((uint8_t *)fex, Size);
debug("MD5: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x",
result[0], result[1], result[2], result[3], result[4], result[5], result[6], result[7],
result[8], result[9], result[10], result[11], result[12], result[13], result[14], result[15]);
kfree(result);
#endif
KernelAPI *KAPI = (KernelAPI *)mem->RequestPages(TO_PAGES(sizeof(KernelAPI) + 1));
if (CallDriverEntryPoint(fex, KAPI) != DriverCode::OK)
{
delete mem, mem = nullptr;
return DriverCode::DRIVER_RETURNED_ERROR;
}
debug("Starting driver %s", fexExtended->Driver.Name);
MapPCIAddresses(PCIDevice);
switch (fexExtended->Driver.Type)
{
case FexDriverType::FexDriverType_Generic:
return BindPCIGeneric(mem, fex, PCIDevice);
case FexDriverType::FexDriverType_Display:
return BindPCIDisplay(mem, fex, PCIDevice);
case FexDriverType::FexDriverType_Network:
return BindPCINetwork(mem, fex, PCIDevice);
case FexDriverType::FexDriverType_Storage:
return BindPCIStorage(mem, fex, PCIDevice);
case FexDriverType::FexDriverType_FileSystem:
return BindPCIFileSystem(mem, fex, PCIDevice);
case FexDriverType::FexDriverType_Input:
return BindPCIInput(mem, fex, PCIDevice);
case FexDriverType::FexDriverType_Audio:
return BindPCIAudio(mem, fex, PCIDevice);
default:
{
warn("Unknown driver type: %d", fexExtended->Driver.Type);
delete mem, mem = nullptr;
return DriverCode::UNKNOWN_DRIVER_TYPE;
}
}
}
}
}
return DriverCode::PCI_DEVICE_NOT_FOUND;
}
}

View File

@ -0,0 +1,42 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../api.hpp"
#include <ints.hpp>
#include <memory.hpp>
#include <task.hpp>
#include <lock.hpp>
#include <printf.h>
#include <cwalk.h>
#include <md5.h>
#include "../../../kernel.h"
#include "../../../DAPI.hpp"
#include "../../../Fex.hpp"
namespace Driver
{
DriverCode Driver::DriverLoadBindProcess(void *DrvExtHdr, uintptr_t DriverAddress, size_t Size, bool IsElf)
{
fixme("Process driver: %s", ((FexExtended *)DrvExtHdr)->Driver.Name);
UNUSED(Size);
UNUSED(DriverAddress);
UNUSED(IsElf);
return DriverCode::NOT_IMPLEMENTED;
}
}

View File

@ -0,0 +1,40 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../../api.hpp"
#include <ints.hpp>
#include <memory.hpp>
#include <task.hpp>
#include <lock.hpp>
#include <printf.h>
#include <cwalk.h>
#include <md5.h>
#include "../../../../kernel.h"
#include "../../../../DAPI.hpp"
#include "../../../../Fex.hpp"
namespace Driver
{
DriverCode Driver::BindInputAudio(Memory::MemMgr *mem, void *fex)
{
UNUSED(mem);
UNUSED(fex);
return DriverCode::NOT_IMPLEMENTED;
}
}

View File

@ -0,0 +1,40 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../../api.hpp"
#include <ints.hpp>
#include <memory.hpp>
#include <task.hpp>
#include <lock.hpp>
#include <printf.h>
#include <cwalk.h>
#include <md5.h>
#include "../../../../kernel.h"
#include "../../../../DAPI.hpp"
#include "../../../../Fex.hpp"
namespace Driver
{
DriverCode Driver::BindInputDisplay(Memory::MemMgr *mem, void *fex)
{
UNUSED(mem);
UNUSED(fex);
return DriverCode::NOT_IMPLEMENTED;
}
}

View File

@ -0,0 +1,40 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../../api.hpp"
#include <ints.hpp>
#include <memory.hpp>
#include <task.hpp>
#include <lock.hpp>
#include <printf.h>
#include <cwalk.h>
#include <md5.h>
#include "../../../../kernel.h"
#include "../../../../DAPI.hpp"
#include "../../../../Fex.hpp"
namespace Driver
{
DriverCode Driver::BindInputFileSystem(Memory::MemMgr *mem, void *fex)
{
UNUSED(mem);
UNUSED(fex);
return DriverCode::NOT_IMPLEMENTED;
}
}

View File

@ -0,0 +1,40 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../../api.hpp"
#include <ints.hpp>
#include <memory.hpp>
#include <task.hpp>
#include <lock.hpp>
#include <printf.h>
#include <cwalk.h>
#include <md5.h>
#include "../../../../kernel.h"
#include "../../../../DAPI.hpp"
#include "../../../../Fex.hpp"
namespace Driver
{
DriverCode Driver::BindInputGeneric(Memory::MemMgr *mem, void *fex)
{
UNUSED(mem);
UNUSED(fex);
return DriverCode::NOT_IMPLEMENTED;
}
}

View File

@ -0,0 +1,67 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../../api.hpp"
#include <ints.hpp>
#include <memory.hpp>
#include <task.hpp>
#include <lock.hpp>
#include <printf.h>
#include <cwalk.h>
#include <md5.h>
#include "../../../../kernel.h"
#include "../../../../DAPI.hpp"
#include "../../../../Fex.hpp"
namespace Driver
{
DriverCode Driver::BindInputInput(Memory::MemMgr *mem, void *fex)
{
FexExtended *fexExtended = (FexExtended *)((uintptr_t)fex + EXTENDED_SECTION_ADDRESS);
KernelCallback KCallback{};
fixme("Input driver: %s", fexExtended->Driver.Name);
KCallback.RawPtr = nullptr;
KCallback.Reason = CallbackReason::ConfigurationReason;
int CallbackRet = ((int (*)(KernelCallback *))((uintptr_t)fexExtended->Driver.Callback + (uintptr_t)fex))(&KCallback);
if (CallbackRet == DriverReturnCode::NOT_IMPLEMENTED)
{
delete mem, mem = nullptr;
error("Driver %s is not implemented", fexExtended->Driver.Name);
return DriverCode::NOT_IMPLEMENTED;
}
else if (CallbackRet != DriverReturnCode::OK)
{
delete mem, mem = nullptr;
error("Driver %s returned error %d", fexExtended->Driver.Name, CallbackRet);
return DriverCode::DRIVER_RETURNED_ERROR;
}
fixme("Input driver: %s", fexExtended->Driver.Name);
DriverFile DrvFile = {
.Enabled = true,
.DriverUID = this->DriverUIDs - 1,
.Address = (void *)fex,
.MemTrk = mem,
};
Drivers.push_back(DrvFile);
return DriverCode::OK;
}
}

View File

@ -0,0 +1,40 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../../api.hpp"
#include <ints.hpp>
#include <memory.hpp>
#include <task.hpp>
#include <lock.hpp>
#include <printf.h>
#include <cwalk.h>
#include <md5.h>
#include "../../../../kernel.h"
#include "../../../../DAPI.hpp"
#include "../../../../Fex.hpp"
namespace Driver
{
DriverCode Driver::BindInputNetwork(Memory::MemMgr *mem, void *fex)
{
UNUSED(mem);
UNUSED(fex);
return DriverCode::NOT_IMPLEMENTED;
}
}

View File

@ -0,0 +1,40 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../../api.hpp"
#include <ints.hpp>
#include <memory.hpp>
#include <task.hpp>
#include <lock.hpp>
#include <printf.h>
#include <cwalk.h>
#include <md5.h>
#include "../../../../kernel.h"
#include "../../../../DAPI.hpp"
#include "../../../../Fex.hpp"
namespace Driver
{
DriverCode Driver::BindInputStorage(Memory::MemMgr *mem, void *fex)
{
UNUSED(mem);
UNUSED(fex);
return DriverCode::NOT_IMPLEMENTED;
}
}

View File

@ -0,0 +1,81 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../../api.hpp"
#include <ints.hpp>
#include <memory.hpp>
#include <task.hpp>
#include <lock.hpp>
#include <printf.h>
#include <cwalk.h>
#include <md5.h>
#include "../../../../kernel.h"
#include "../../../../DAPI.hpp"
#include "../../../../Fex.hpp"
namespace Driver
{
DriverCode Driver::BindInterruptAudio(Memory::MemMgr *mem, void *fex)
{
FexExtended *fexExtended = (FexExtended *)((uintptr_t)fex + EXTENDED_SECTION_ADDRESS);
if (fexExtended->Driver.OverrideOnConflict)
{
std::vector<uint64_t> DriversToRemove = std::vector<uint64_t>();
foreach (auto Drv in Drivers)
{
FexExtended *fe = ((FexExtended *)((uintptr_t)Drv.Address + EXTENDED_SECTION_ADDRESS));
if (fe->Driver.OverrideOnConflict)
{
debug("Driver %s is conflicting with %s", fe->Driver.Name, fexExtended->Driver.Name);
return DriverCode::DRIVER_CONFLICT;
}
DriversToRemove.push_back(Drv.DriverUID);
}
foreach (auto DrvID in DriversToRemove)
{
if (!this->UnloadDriver(DrvID))
{
error("Failed to unload conflicting driver %d", DrvID);
return DriverCode::DRIVER_CONFLICT;
}
}
}
else
{
foreach (auto Drv in Drivers)
{
FexExtended *fe = ((FexExtended *)((uintptr_t)Drv.Address + EXTENDED_SECTION_ADDRESS));
if (fe->Driver.OverrideOnConflict)
{
debug("Driver %s is conflicting with %s", fe->Driver.Name, fexExtended->Driver.Name);
return DriverCode::DRIVER_CONFLICT;
}
}
}
fixme("Audio driver: %s", fexExtended->Driver.Name);
delete mem, mem = nullptr;
return DriverCode::NOT_IMPLEMENTED;
}
}

View File

@ -0,0 +1,81 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../../api.hpp"
#include <ints.hpp>
#include <memory.hpp>
#include <task.hpp>
#include <lock.hpp>
#include <printf.h>
#include <cwalk.h>
#include <md5.h>
#include "../../../../kernel.h"
#include "../../../../DAPI.hpp"
#include "../../../../Fex.hpp"
namespace Driver
{
DriverCode Driver::BindInterruptDisplay(Memory::MemMgr *mem, void *fex)
{
FexExtended *fexExtended = (FexExtended *)((uintptr_t)fex + EXTENDED_SECTION_ADDRESS);
if (fexExtended->Driver.OverrideOnConflict)
{
std::vector<uint64_t> DriversToRemove = std::vector<uint64_t>();
foreach (auto Drv in Drivers)
{
FexExtended *fe = ((FexExtended *)((uintptr_t)Drv.Address + EXTENDED_SECTION_ADDRESS));
if (fe->Driver.OverrideOnConflict)
{
debug("Driver %s is conflicting with %s", fe->Driver.Name, fexExtended->Driver.Name);
return DriverCode::DRIVER_CONFLICT;
}
DriversToRemove.push_back(Drv.DriverUID);
}
foreach (auto DrvID in DriversToRemove)
{
if (!this->UnloadDriver(DrvID))
{
error("Failed to unload conflicting driver %d", DrvID);
return DriverCode::DRIVER_CONFLICT;
}
}
}
else
{
foreach (auto Drv in Drivers)
{
FexExtended *fe = ((FexExtended *)((uintptr_t)Drv.Address + EXTENDED_SECTION_ADDRESS));
if (fe->Driver.OverrideOnConflict)
{
debug("Driver %s is conflicting with %s", fe->Driver.Name, fexExtended->Driver.Name);
return DriverCode::DRIVER_CONFLICT;
}
}
}
fixme("Display driver: %s", fexExtended->Driver.Name);
delete mem, mem = nullptr;
return DriverCode::NOT_IMPLEMENTED;
}
}

View File

@ -0,0 +1,81 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../../api.hpp"
#include <ints.hpp>
#include <memory.hpp>
#include <task.hpp>
#include <lock.hpp>
#include <printf.h>
#include <cwalk.h>
#include <md5.h>
#include "../../../../kernel.h"
#include "../../../../DAPI.hpp"
#include "../../../../Fex.hpp"
namespace Driver
{
DriverCode Driver::BindInterruptFileSystem(Memory::MemMgr *mem, void *fex)
{
FexExtended *fexExtended = (FexExtended *)((uintptr_t)fex + EXTENDED_SECTION_ADDRESS);
if (fexExtended->Driver.OverrideOnConflict)
{
std::vector<uint64_t> DriversToRemove = std::vector<uint64_t>();
foreach (auto Drv in Drivers)
{
FexExtended *fe = ((FexExtended *)((uintptr_t)Drv.Address + EXTENDED_SECTION_ADDRESS));
if (fe->Driver.OverrideOnConflict)
{
debug("Driver %s is conflicting with %s", fe->Driver.Name, fexExtended->Driver.Name);
return DriverCode::DRIVER_CONFLICT;
}
DriversToRemove.push_back(Drv.DriverUID);
}
foreach (auto DrvID in DriversToRemove)
{
if (!this->UnloadDriver(DrvID))
{
error("Failed to unload conflicting driver %d", DrvID);
return DriverCode::DRIVER_CONFLICT;
}
}
}
else
{
foreach (auto Drv in Drivers)
{
FexExtended *fe = ((FexExtended *)((uintptr_t)Drv.Address + EXTENDED_SECTION_ADDRESS));
if (fe->Driver.OverrideOnConflict)
{
debug("Driver %s is conflicting with %s", fe->Driver.Name, fexExtended->Driver.Name);
return DriverCode::DRIVER_CONFLICT;
}
}
}
fixme("Filesystem driver: %s", fexExtended->Driver.Name);
delete mem, mem = nullptr;
return DriverCode::NOT_IMPLEMENTED;
}
}

View File

@ -0,0 +1,88 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../../api.hpp"
#include <ints.hpp>
#include <memory.hpp>
#include <task.hpp>
#include <lock.hpp>
#include <printf.h>
#include <cwalk.h>
#include <md5.h>
#include "../../../../kernel.h"
#include "../../../../DAPI.hpp"
#include "../../../../Fex.hpp"
namespace Driver
{
DriverCode Driver::BindInterruptGeneric(Memory::MemMgr *mem, void *fex)
{
FexExtended *fexExtended = (FexExtended *)((uintptr_t)fex + EXTENDED_SECTION_ADDRESS);
if (fexExtended->Driver.OverrideOnConflict)
{
std::vector<uint64_t> DriversToRemove = std::vector<uint64_t>();
foreach (auto Drv in Drivers)
{
FexExtended *fe = ((FexExtended *)((uintptr_t)Drv.Address + EXTENDED_SECTION_ADDRESS));
if (fe->Driver.OverrideOnConflict)
{
debug("Driver %s is conflicting with %s", fe->Driver.Name, fexExtended->Driver.Name);
return DriverCode::DRIVER_CONFLICT;
}
DriversToRemove.push_back(Drv.DriverUID);
}
foreach (auto DrvID in DriversToRemove)
{
if (!this->UnloadDriver(DrvID))
{
error("Failed to unload conflicting driver %d", DrvID);
return DriverCode::DRIVER_CONFLICT;
}
}
}
else
{
foreach (auto Drv in Drivers)
{
FexExtended *fe = ((FexExtended *)((uintptr_t)Drv.Address + EXTENDED_SECTION_ADDRESS));
if (fe->Driver.OverrideOnConflict)
{
debug("Driver %s is conflicting with %s", fe->Driver.Name, fexExtended->Driver.Name);
return DriverCode::DRIVER_CONFLICT;
}
}
}
fixme("Generic driver: %s", fexExtended->Driver.Name);
DriverFile DrvFile = {
.Enabled = true,
.DriverUID = this->DriverUIDs - 1,
.Address = (void *)fex,
.InterruptCallback = (void *)((uintptr_t)fex + (uintptr_t)fexExtended->Driver.InterruptCallback),
.MemTrk = mem,
};
Drivers.push_back(DrvFile);
return DriverCode::OK;
}
}

View File

@ -0,0 +1,124 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../../api.hpp"
#include <ints.hpp>
#include <memory.hpp>
#include <task.hpp>
#include <lock.hpp>
#include <printf.h>
#include <cwalk.h>
#include <md5.h>
#include "../../../../kernel.h"
#include "../../../../DAPI.hpp"
#include "../../../../Fex.hpp"
namespace Driver
{
DriverCode Driver::BindInterruptInput(Memory::MemMgr *mem, void *fex)
{
FexExtended *fexExtended = (FexExtended *)((uintptr_t)fex + EXTENDED_SECTION_ADDRESS);
debug("Searching for conflicting drivers...");
if (fexExtended->Driver.OverrideOnConflict)
{
std::vector<uint64_t> DriversToRemove = std::vector<uint64_t>();
foreach (auto Drv in Drivers)
{
FexExtended *fe = ((FexExtended *)((uintptr_t)Drv.Address + EXTENDED_SECTION_ADDRESS));
if ((fe->Driver.TypeFlags & FexDriverInputTypes_Mouse &&
fexExtended->Driver.TypeFlags & FexDriverInputTypes_Mouse) ||
(fe->Driver.TypeFlags & FexDriverInputTypes_Keyboard &&
fexExtended->Driver.TypeFlags & FexDriverInputTypes_Keyboard))
{
debug("Driver %s is conflicting with %s", fe->Driver.Name, fexExtended->Driver.Name);
if (fe->Driver.OverrideOnConflict)
return DriverCode::DRIVER_CONFLICT;
DriversToRemove.push_back(Drv.DriverUID);
}
}
foreach (auto DrvID in DriversToRemove)
{
if (!this->UnloadDriver(DrvID))
{
error("Failed to unload conflicting driver %d", DrvID);
return DriverCode::DRIVER_CONFLICT;
}
}
}
else
{
foreach (auto Drv in Drivers)
{
FexExtended *fe = ((FexExtended *)((uintptr_t)Drv.Address + EXTENDED_SECTION_ADDRESS));
if ((fe->Driver.TypeFlags & FexDriverInputTypes_Mouse &&
fexExtended->Driver.TypeFlags & FexDriverInputTypes_Mouse) ||
(fe->Driver.TypeFlags & FexDriverInputTypes_Keyboard &&
fexExtended->Driver.TypeFlags & FexDriverInputTypes_Keyboard))
{
debug("Driver %s is conflicting with %s", fe->Driver.Name, fexExtended->Driver.Name);
if (fe->Driver.OverrideOnConflict)
return DriverCode::DRIVER_CONFLICT;
}
}
}
DriverFile DrvFile = {
.Enabled = true,
.DriverUID = this->DriverUIDs - 1,
.Address = (void *)fex,
.InterruptCallback = (void *)((uintptr_t)fex + (uintptr_t)fexExtended->Driver.InterruptCallback),
.MemTrk = mem,
};
if (fexExtended->Driver.InterruptCallback)
{
for (unsigned long i = 0; i < sizeof(fexExtended->Driver.Bind.Interrupt.Vector) / sizeof(fexExtended->Driver.Bind.Interrupt.Vector[0]); i++)
{
if (fexExtended->Driver.Bind.Interrupt.Vector[i] == 0)
break;
DrvFile.InterruptHook[i] = new DriverInterruptHook(fexExtended->Driver.Bind.Interrupt.Vector[i], DrvFile);
}
}
KernelCallback KCallback{};
KCallback.RawPtr = nullptr;
KCallback.Reason = CallbackReason::ConfigurationReason;
int CallbackRet = ((int (*)(KernelCallback *))((uintptr_t)fexExtended->Driver.Callback + (uintptr_t)fex))(&KCallback);
if (CallbackRet == DriverReturnCode::NOT_IMPLEMENTED)
{
error("Driver %s is not implemented", fexExtended->Driver.Name);
delete mem, mem = nullptr;
return DriverCode::NOT_IMPLEMENTED;
}
else if (CallbackRet != DriverReturnCode::OK)
{
error("Driver %s returned error %d", fexExtended->Driver.Name, CallbackRet);
delete mem, mem = nullptr;
return DriverCode::DRIVER_RETURNED_ERROR;
}
Drivers.push_back(DrvFile);
return DriverCode::OK;
}
}

View File

@ -0,0 +1,81 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../../api.hpp"
#include <ints.hpp>
#include <memory.hpp>
#include <task.hpp>
#include <lock.hpp>
#include <printf.h>
#include <cwalk.h>
#include <md5.h>
#include "../../../../kernel.h"
#include "../../../../DAPI.hpp"
#include "../../../../Fex.hpp"
namespace Driver
{
DriverCode Driver::BindInterruptNetwork(Memory::MemMgr *mem, void *fex)
{
FexExtended *fexExtended = (FexExtended *)((uintptr_t)fex + EXTENDED_SECTION_ADDRESS);
if (fexExtended->Driver.OverrideOnConflict)
{
std::vector<uint64_t> DriversToRemove = std::vector<uint64_t>();
foreach (auto Drv in Drivers)
{
FexExtended *fe = ((FexExtended *)((uintptr_t)Drv.Address + EXTENDED_SECTION_ADDRESS));
if (fe->Driver.OverrideOnConflict)
{
debug("Driver %s is conflicting with %s", fe->Driver.Name, fexExtended->Driver.Name);
return DriverCode::DRIVER_CONFLICT;
}
DriversToRemove.push_back(Drv.DriverUID);
}
foreach (auto DrvID in DriversToRemove)
{
if (!this->UnloadDriver(DrvID))
{
error("Failed to unload conflicting driver %d", DrvID);
return DriverCode::DRIVER_CONFLICT;
}
}
}
else
{
foreach (auto Drv in Drivers)
{
FexExtended *fe = ((FexExtended *)((uintptr_t)Drv.Address + EXTENDED_SECTION_ADDRESS));
if (fe->Driver.OverrideOnConflict)
{
debug("Driver %s is conflicting with %s", fe->Driver.Name, fexExtended->Driver.Name);
return DriverCode::DRIVER_CONFLICT;
}
}
}
fixme("Network driver: %s", fexExtended->Driver.Name);
delete mem, mem = nullptr;
return DriverCode::NOT_IMPLEMENTED;
}
}

View File

@ -0,0 +1,115 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../../api.hpp"
#include <ints.hpp>
#include <memory.hpp>
#include <task.hpp>
#include <lock.hpp>
#include <printf.h>
#include <cwalk.h>
#include <md5.h>
#include "../../../../kernel.h"
#include "../../../../DAPI.hpp"
#include "../../../../Fex.hpp"
namespace Driver
{
DriverCode Driver::BindInterruptStorage(Memory::MemMgr *mem, void *fex)
{
FexExtended *fexExtended = (FexExtended *)((uintptr_t)fex + EXTENDED_SECTION_ADDRESS);
if (fexExtended->Driver.OverrideOnConflict)
{
std::vector<uint64_t> DriversToRemove = std::vector<uint64_t>();
foreach (auto Drv in Drivers)
{
FexExtended *fe = ((FexExtended *)((uintptr_t)Drv.Address + EXTENDED_SECTION_ADDRESS));
if (fe->Driver.OverrideOnConflict)
{
debug("Driver %s is conflicting with %s", fe->Driver.Name, fexExtended->Driver.Name);
return DriverCode::DRIVER_CONFLICT;
}
DriversToRemove.push_back(Drv.DriverUID);
}
foreach (auto DrvID in DriversToRemove)
{
if (!this->UnloadDriver(DrvID))
{
error("Failed to unload conflicting driver %d", DrvID);
return DriverCode::DRIVER_CONFLICT;
}
}
}
else
{
foreach (auto Drv in Drivers)
{
FexExtended *fe = ((FexExtended *)((uintptr_t)Drv.Address + EXTENDED_SECTION_ADDRESS));
if (fe->Driver.OverrideOnConflict)
{
debug("Driver %s is conflicting with %s", fe->Driver.Name, fexExtended->Driver.Name);
return DriverCode::DRIVER_CONFLICT;
}
}
}
DriverFile DrvFile = {
.Enabled = true,
.DriverUID = this->DriverUIDs - 1,
.Address = (void *)fex,
.InterruptCallback = (void *)((uintptr_t)fex + (uintptr_t)fexExtended->Driver.InterruptCallback),
.MemTrk = mem,
};
if (fexExtended->Driver.InterruptCallback)
{
for (unsigned long i = 0; i < sizeof(fexExtended->Driver.Bind.Interrupt.Vector) / sizeof(fexExtended->Driver.Bind.Interrupt.Vector[0]); i++)
{
if (fexExtended->Driver.Bind.Interrupt.Vector[i] == 0)
break;
DrvFile.InterruptHook[i] = new DriverInterruptHook(fexExtended->Driver.Bind.Interrupt.Vector[i], DrvFile);
}
}
KernelCallback KCallback{};
KCallback.RawPtr = nullptr;
KCallback.Reason = CallbackReason::ConfigurationReason;
int CallbackRet = ((int (*)(KernelCallback *))((uintptr_t)fexExtended->Driver.Callback + (uintptr_t)fex))(&KCallback);
if (CallbackRet == DriverReturnCode::NOT_IMPLEMENTED)
{
error("Driver %s is not implemented", fexExtended->Driver.Name);
delete mem, mem = nullptr;
return DriverCode::NOT_IMPLEMENTED;
}
else if (CallbackRet != DriverReturnCode::OK)
{
error("Driver %s returned error %d", fexExtended->Driver.Name, CallbackRet);
delete mem, mem = nullptr;
return DriverCode::DRIVER_RETURNED_ERROR;
}
Drivers.push_back(DrvFile);
return DriverCode::OK;
}
}

View File

@ -0,0 +1,110 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../../api.hpp"
#include <ints.hpp>
#include <memory.hpp>
#include <task.hpp>
#include <lock.hpp>
#include <printf.h>
#include <cwalk.h>
#include <md5.h>
#include "../../../../kernel.h"
#include "../../../../DAPI.hpp"
#include "../../../../Fex.hpp"
namespace Driver
{
DriverCode Driver::BindPCIAudio(Memory::MemMgr *mem, void *fex, PCI::PCIDeviceHeader *PCIDevice)
{
FexExtended *fexExtended = (FexExtended *)((uintptr_t)fex + EXTENDED_SECTION_ADDRESS);
if (fexExtended->Driver.OverrideOnConflict)
{
std::vector<uint64_t> DriversToRemove = std::vector<uint64_t>();
foreach (auto Drv in Drivers)
{
FexExtended *fe = ((FexExtended *)((uintptr_t)Drv.Address + EXTENDED_SECTION_ADDRESS));
if (fe->Driver.OverrideOnConflict)
{
debug("Driver %s is conflicting with %s", fe->Driver.Name, fexExtended->Driver.Name);
return DriverCode::DRIVER_CONFLICT;
}
DriversToRemove.push_back(Drv.DriverUID);
}
foreach (auto DrvID in DriversToRemove)
{
if (!this->UnloadDriver(DrvID))
{
error("Failed to unload conflicting driver %d", DrvID);
return DriverCode::DRIVER_CONFLICT;
}
}
}
else
{
foreach (auto Drv in Drivers)
{
FexExtended *fe = ((FexExtended *)((uintptr_t)Drv.Address + EXTENDED_SECTION_ADDRESS));
if (fe->Driver.OverrideOnConflict)
{
debug("Driver %s is conflicting with %s", fe->Driver.Name, fexExtended->Driver.Name);
return DriverCode::DRIVER_CONFLICT;
}
}
}
DriverFile DrvFile = {
.Enabled = true,
.DriverUID = this->DriverUIDs - 1,
.Address = (void *)fex,
.InterruptCallback = (void *)((uintptr_t)fex + (uintptr_t)fexExtended->Driver.InterruptCallback),
.MemTrk = mem,
};
if (fexExtended->Driver.InterruptCallback)
DrvFile.InterruptHook[0] = new DriverInterruptHook(((int)((PCI::PCIHeader0 *)PCIDevice)->InterruptLine), DrvFile);
KernelCallback KCallback{};
KCallback.RawPtr = PCIDevice;
KCallback.Reason = CallbackReason::ConfigurationReason;
int CallbackRet = ((int (*)(KernelCallback *))((uintptr_t)fexExtended->Driver.Callback + (uintptr_t)fex))(&KCallback);
if (CallbackRet == DriverReturnCode::NOT_IMPLEMENTED)
{
error("Driver %s is not implemented", fexExtended->Driver.Name);
delete mem, mem = nullptr;
return DriverCode::NOT_IMPLEMENTED;
}
else if (CallbackRet == DriverReturnCode::OK)
trace("Device found for driver: %s", fexExtended->Driver.Name);
else
{
error("Driver %s returned error %d", fexExtended->Driver.Name, CallbackRet);
delete mem, mem = nullptr;
return DriverCode::DRIVER_RETURNED_ERROR;
}
Drivers.push_back(DrvFile);
return DriverCode::OK;
}
}

View File

@ -0,0 +1,82 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../../api.hpp"
#include <ints.hpp>
#include <memory.hpp>
#include <task.hpp>
#include <lock.hpp>
#include <printf.h>
#include <cwalk.h>
#include <md5.h>
#include "../../../../kernel.h"
#include "../../../../DAPI.hpp"
#include "../../../../Fex.hpp"
namespace Driver
{
DriverCode Driver::BindPCIDisplay(Memory::MemMgr *mem, void *fex, PCI::PCIDeviceHeader *PCIDevice)
{
UNUSED(PCIDevice);
FexExtended *fexExtended = (FexExtended *)((uintptr_t)fex + EXTENDED_SECTION_ADDRESS);
if (fexExtended->Driver.OverrideOnConflict)
{
std::vector<uint64_t> DriversToRemove = std::vector<uint64_t>();
foreach (auto Drv in Drivers)
{
FexExtended *fe = ((FexExtended *)((uintptr_t)Drv.Address + EXTENDED_SECTION_ADDRESS));
if (fe->Driver.OverrideOnConflict)
{
debug("Driver %s is conflicting with %s", fe->Driver.Name, fexExtended->Driver.Name);
return DriverCode::DRIVER_CONFLICT;
}
DriversToRemove.push_back(Drv.DriverUID);
}
foreach (auto DrvID in DriversToRemove)
{
if (!this->UnloadDriver(DrvID))
{
error("Failed to unload conflicting driver %d", DrvID);
return DriverCode::DRIVER_CONFLICT;
}
}
}
else
{
foreach (auto Drv in Drivers)
{
FexExtended *fe = ((FexExtended *)((uintptr_t)Drv.Address + EXTENDED_SECTION_ADDRESS));
if (fe->Driver.OverrideOnConflict)
{
debug("Driver %s is conflicting with %s", fe->Driver.Name, fexExtended->Driver.Name);
return DriverCode::DRIVER_CONFLICT;
}
}
}
fixme("Display driver: %s", fexExtended->Driver.Name);
delete mem, mem = nullptr;
return DriverCode::NOT_IMPLEMENTED;
}
}

View File

@ -0,0 +1,82 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../../api.hpp"
#include <ints.hpp>
#include <memory.hpp>
#include <task.hpp>
#include <lock.hpp>
#include <printf.h>
#include <cwalk.h>
#include <md5.h>
#include "../../../../kernel.h"
#include "../../../../DAPI.hpp"
#include "../../../../Fex.hpp"
namespace Driver
{
DriverCode Driver::BindPCIFileSystem(Memory::MemMgr *mem, void *fex, PCI::PCIDeviceHeader *PCIDevice)
{
UNUSED(PCIDevice);
FexExtended *fexExtended = (FexExtended *)((uintptr_t)fex + EXTENDED_SECTION_ADDRESS);
if (fexExtended->Driver.OverrideOnConflict)
{
std::vector<uint64_t> DriversToRemove = std::vector<uint64_t>();
foreach (auto Drv in Drivers)
{
FexExtended *fe = ((FexExtended *)((uintptr_t)Drv.Address + EXTENDED_SECTION_ADDRESS));
if (fe->Driver.OverrideOnConflict)
{
debug("Driver %s is conflicting with %s", fe->Driver.Name, fexExtended->Driver.Name);
return DriverCode::DRIVER_CONFLICT;
}
DriversToRemove.push_back(Drv.DriverUID);
}
foreach (auto DrvID in DriversToRemove)
{
if (!this->UnloadDriver(DrvID))
{
error("Failed to unload conflicting driver %d", DrvID);
return DriverCode::DRIVER_CONFLICT;
}
}
}
else
{
foreach (auto Drv in Drivers)
{
FexExtended *fe = ((FexExtended *)((uintptr_t)Drv.Address + EXTENDED_SECTION_ADDRESS));
if (fe->Driver.OverrideOnConflict)
{
debug("Driver %s is conflicting with %s", fe->Driver.Name, fexExtended->Driver.Name);
return DriverCode::DRIVER_CONFLICT;
}
}
}
fixme("Filesystem driver: %s", fexExtended->Driver.Name);
delete mem, mem = nullptr;
return DriverCode::NOT_IMPLEMENTED;
}
}

View File

@ -0,0 +1,82 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../../api.hpp"
#include <ints.hpp>
#include <memory.hpp>
#include <task.hpp>
#include <lock.hpp>
#include <printf.h>
#include <cwalk.h>
#include <md5.h>
#include "../../../../kernel.h"
#include "../../../../DAPI.hpp"
#include "../../../../Fex.hpp"
namespace Driver
{
DriverCode Driver::BindPCIGeneric(Memory::MemMgr *mem, void *fex, PCI::PCIDeviceHeader *PCIDevice)
{
UNUSED(PCIDevice);
FexExtended *fexExtended = (FexExtended *)((uintptr_t)fex + EXTENDED_SECTION_ADDRESS);
if (fexExtended->Driver.OverrideOnConflict)
{
std::vector<uint64_t> DriversToRemove = std::vector<uint64_t>();
foreach (auto Drv in Drivers)
{
FexExtended *fe = ((FexExtended *)((uintptr_t)Drv.Address + EXTENDED_SECTION_ADDRESS));
if (fe->Driver.OverrideOnConflict)
{
debug("Driver %s is conflicting with %s", fe->Driver.Name, fexExtended->Driver.Name);
return DriverCode::DRIVER_CONFLICT;
}
DriversToRemove.push_back(Drv.DriverUID);
}
foreach (auto DrvID in DriversToRemove)
{
if (!this->UnloadDriver(DrvID))
{
error("Failed to unload conflicting driver %d", DrvID);
return DriverCode::DRIVER_CONFLICT;
}
}
}
else
{
foreach (auto Drv in Drivers)
{
FexExtended *fe = ((FexExtended *)((uintptr_t)Drv.Address + EXTENDED_SECTION_ADDRESS));
if (fe->Driver.OverrideOnConflict)
{
debug("Driver %s is conflicting with %s", fe->Driver.Name, fexExtended->Driver.Name);
return DriverCode::DRIVER_CONFLICT;
}
}
}
fixme("Generic driver: %s", fexExtended->Driver.Name);
delete mem, mem = nullptr;
return DriverCode::NOT_IMPLEMENTED;
}
}

View File

@ -0,0 +1,82 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../../api.hpp"
#include <ints.hpp>
#include <memory.hpp>
#include <task.hpp>
#include <lock.hpp>
#include <printf.h>
#include <cwalk.h>
#include <md5.h>
#include "../../../../kernel.h"
#include "../../../../DAPI.hpp"
#include "../../../../Fex.hpp"
namespace Driver
{
DriverCode Driver::BindPCIInput(Memory::MemMgr *mem, void *fex, PCI::PCIDeviceHeader *PCIDevice)
{
UNUSED(PCIDevice);
FexExtended *fexExtended = (FexExtended *)((uintptr_t)fex + EXTENDED_SECTION_ADDRESS);
if (fexExtended->Driver.OverrideOnConflict)
{
std::vector<uint64_t> DriversToRemove = std::vector<uint64_t>();
foreach (auto Drv in Drivers)
{
FexExtended *fe = ((FexExtended *)((uintptr_t)Drv.Address + EXTENDED_SECTION_ADDRESS));
if (fe->Driver.OverrideOnConflict)
{
debug("Driver %s is conflicting with %s", fe->Driver.Name, fexExtended->Driver.Name);
return DriverCode::DRIVER_CONFLICT;
}
DriversToRemove.push_back(Drv.DriverUID);
}
foreach (auto DrvID in DriversToRemove)
{
if (!this->UnloadDriver(DrvID))
{
error("Failed to unload conflicting driver %d", DrvID);
return DriverCode::DRIVER_CONFLICT;
}
}
}
else
{
foreach (auto Drv in Drivers)
{
FexExtended *fe = ((FexExtended *)((uintptr_t)Drv.Address + EXTENDED_SECTION_ADDRESS));
if (fe->Driver.OverrideOnConflict)
{
debug("Driver %s is conflicting with %s", fe->Driver.Name, fexExtended->Driver.Name);
return DriverCode::DRIVER_CONFLICT;
}
}
}
fixme("Input driver: %s", fexExtended->Driver.Name);
delete mem, mem = nullptr;
return DriverCode::NOT_IMPLEMENTED;
}
}

View File

@ -0,0 +1,110 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../../api.hpp"
#include <ints.hpp>
#include <memory.hpp>
#include <task.hpp>
#include <lock.hpp>
#include <printf.h>
#include <cwalk.h>
#include <md5.h>
#include "../../../../kernel.h"
#include "../../../../DAPI.hpp"
#include "../../../../Fex.hpp"
namespace Driver
{
DriverCode Driver::BindPCINetwork(Memory::MemMgr *mem, void *fex, PCI::PCIDeviceHeader *PCIDevice)
{
FexExtended *fexExtended = (FexExtended *)((uintptr_t)fex + EXTENDED_SECTION_ADDRESS);
if (fexExtended->Driver.OverrideOnConflict)
{
std::vector<uint64_t> DriversToRemove = std::vector<uint64_t>();
foreach (auto Drv in Drivers)
{
FexExtended *fe = ((FexExtended *)((uintptr_t)Drv.Address + EXTENDED_SECTION_ADDRESS));
if (fe->Driver.OverrideOnConflict)
{
debug("Driver %s is conflicting with %s", fe->Driver.Name, fexExtended->Driver.Name);
return DriverCode::DRIVER_CONFLICT;
}
DriversToRemove.push_back(Drv.DriverUID);
}
foreach (auto DrvID in DriversToRemove)
{
if (!this->UnloadDriver(DrvID))
{
error("Failed to unload conflicting driver %d", DrvID);
return DriverCode::DRIVER_CONFLICT;
}
}
}
else
{
foreach (auto Drv in Drivers)
{
FexExtended *fe = ((FexExtended *)((uintptr_t)Drv.Address + EXTENDED_SECTION_ADDRESS));
if (fe->Driver.OverrideOnConflict)
{
debug("Driver %s is conflicting with %s", fe->Driver.Name, fexExtended->Driver.Name);
return DriverCode::DRIVER_CONFLICT;
}
}
}
DriverFile DrvFile = {
.Enabled = true,
.DriverUID = this->DriverUIDs - 1,
.Address = (void *)fex,
.InterruptCallback = (void *)((uintptr_t)fex + (uintptr_t)fexExtended->Driver.InterruptCallback),
.MemTrk = mem,
};
if (fexExtended->Driver.InterruptCallback)
DrvFile.InterruptHook[0] = new DriverInterruptHook(((int)((PCI::PCIHeader0 *)PCIDevice)->InterruptLine), DrvFile);
KernelCallback KCallback{};
KCallback.RawPtr = PCIDevice;
KCallback.Reason = CallbackReason::ConfigurationReason;
int CallbackRet = ((int (*)(KernelCallback *))((uintptr_t)fexExtended->Driver.Callback + (uintptr_t)fex))(&KCallback);
if (CallbackRet == DriverReturnCode::NOT_IMPLEMENTED)
{
error("Driver %s is not implemented", fexExtended->Driver.Name);
delete mem, mem = nullptr;
return DriverCode::NOT_IMPLEMENTED;
}
else if (CallbackRet == DriverReturnCode::OK)
trace("Device found for driver: %s", fexExtended->Driver.Name);
else
{
error("Driver %s returned error %d", fexExtended->Driver.Name, CallbackRet);
delete mem, mem = nullptr;
return DriverCode::DRIVER_RETURNED_ERROR;
}
Drivers.push_back(DrvFile);
return DriverCode::OK;
}
}

View File

@ -0,0 +1,110 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../../api.hpp"
#include <ints.hpp>
#include <memory.hpp>
#include <task.hpp>
#include <lock.hpp>
#include <printf.h>
#include <cwalk.h>
#include <md5.h>
#include "../../../../kernel.h"
#include "../../../../DAPI.hpp"
#include "../../../../Fex.hpp"
namespace Driver
{
DriverCode Driver::BindPCIStorage(Memory::MemMgr *mem, void *fex, PCI::PCIDeviceHeader *PCIDevice)
{
FexExtended *fexExtended = (FexExtended *)((uintptr_t)fex + EXTENDED_SECTION_ADDRESS);
if (fexExtended->Driver.OverrideOnConflict)
{
std::vector<uint64_t> DriversToRemove = std::vector<uint64_t>();
foreach (auto Drv in Drivers)
{
FexExtended *fe = ((FexExtended *)((uintptr_t)Drv.Address + EXTENDED_SECTION_ADDRESS));
if (fe->Driver.OverrideOnConflict)
{
debug("Driver %s is conflicting with %s", fe->Driver.Name, fexExtended->Driver.Name);
return DriverCode::DRIVER_CONFLICT;
}
DriversToRemove.push_back(Drv.DriverUID);
}
foreach (auto DrvID in DriversToRemove)
{
if (!this->UnloadDriver(DrvID))
{
error("Failed to unload conflicting driver %d", DrvID);
return DriverCode::DRIVER_CONFLICT;
}
}
}
else
{
foreach (auto Drv in Drivers)
{
FexExtended *fe = ((FexExtended *)((uintptr_t)Drv.Address + EXTENDED_SECTION_ADDRESS));
if (fe->Driver.OverrideOnConflict)
{
debug("Driver %s is conflicting with %s", fe->Driver.Name, fexExtended->Driver.Name);
return DriverCode::DRIVER_CONFLICT;
}
}
}
DriverFile DrvFile = {
.Enabled = true,
.DriverUID = this->DriverUIDs - 1,
.Address = (void *)fex,
.InterruptCallback = (void *)((uintptr_t)fex + (uintptr_t)fexExtended->Driver.InterruptCallback),
.MemTrk = mem,
};
if (fexExtended->Driver.InterruptCallback)
DrvFile.InterruptHook[0] = new DriverInterruptHook(((int)((PCI::PCIHeader0 *)PCIDevice)->InterruptLine), DrvFile);
KernelCallback KCallback{};
KCallback.RawPtr = PCIDevice;
KCallback.Reason = CallbackReason::ConfigurationReason;
int CallbackRet = ((int (*)(KernelCallback *))((uintptr_t)fexExtended->Driver.Callback + (uintptr_t)fex))(&KCallback);
if (CallbackRet == DriverReturnCode::NOT_IMPLEMENTED)
{
error("Driver %s is not implemented", fexExtended->Driver.Name);
delete mem, mem = nullptr;
return DriverCode::NOT_IMPLEMENTED;
}
else if (CallbackRet == DriverReturnCode::OK)
trace("Device found for driver: %s", fexExtended->Driver.Name);
else
{
error("Driver %s returned error %d", fexExtended->Driver.Name, CallbackRet);
delete mem, mem = nullptr;
return DriverCode::DRIVER_RETURNED_ERROR;
}
Drivers.push_back(DrvFile);
return DriverCode::OK;
}
}

View File

@ -0,0 +1,40 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../../api.hpp"
#include <ints.hpp>
#include <memory.hpp>
#include <task.hpp>
#include <lock.hpp>
#include <printf.h>
#include <cwalk.h>
#include <md5.h>
#include "../../../../kernel.h"
#include "../../../../DAPI.hpp"
#include "../../../../Fex.hpp"
namespace Driver
{
DriverCode Driver::BindProcessAudio(Memory::MemMgr *mem, void *fex)
{
UNUSED(mem);
UNUSED(fex);
return DriverCode::NOT_IMPLEMENTED;
}
}

View File

@ -0,0 +1,40 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../../api.hpp"
#include <ints.hpp>
#include <memory.hpp>
#include <task.hpp>
#include <lock.hpp>
#include <printf.h>
#include <cwalk.h>
#include <md5.h>
#include "../../../../kernel.h"
#include "../../../../DAPI.hpp"
#include "../../../../Fex.hpp"
namespace Driver
{
DriverCode Driver::BindProcessDisplay(Memory::MemMgr *mem, void *fex)
{
UNUSED(mem);
UNUSED(fex);
return DriverCode::NOT_IMPLEMENTED;
}
}

View File

@ -0,0 +1,40 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../../api.hpp"
#include <ints.hpp>
#include <memory.hpp>
#include <task.hpp>
#include <lock.hpp>
#include <printf.h>
#include <cwalk.h>
#include <md5.h>
#include "../../../../kernel.h"
#include "../../../../DAPI.hpp"
#include "../../../../Fex.hpp"
namespace Driver
{
DriverCode Driver::BindProcessFileSystem(Memory::MemMgr *mem, void *fex)
{
UNUSED(mem);
UNUSED(fex);
return DriverCode::NOT_IMPLEMENTED;
}
}

View File

@ -0,0 +1,40 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../../api.hpp"
#include <ints.hpp>
#include <memory.hpp>
#include <task.hpp>
#include <lock.hpp>
#include <printf.h>
#include <cwalk.h>
#include <md5.h>
#include "../../../../kernel.h"
#include "../../../../DAPI.hpp"
#include "../../../../Fex.hpp"
namespace Driver
{
DriverCode Driver::BindProcessGeneric(Memory::MemMgr *mem, void *fex)
{
UNUSED(mem);
UNUSED(fex);
return DriverCode::NOT_IMPLEMENTED;
}
}

View File

@ -0,0 +1,40 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../../api.hpp"
#include <ints.hpp>
#include <memory.hpp>
#include <task.hpp>
#include <lock.hpp>
#include <printf.h>
#include <cwalk.h>
#include <md5.h>
#include "../../../../kernel.h"
#include "../../../../DAPI.hpp"
#include "../../../../Fex.hpp"
namespace Driver
{
DriverCode Driver::BindProcessInput(Memory::MemMgr *mem, void *fex)
{
UNUSED(mem);
UNUSED(fex);
return DriverCode::NOT_IMPLEMENTED;
}
}

View File

@ -0,0 +1,40 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../../api.hpp"
#include <ints.hpp>
#include <memory.hpp>
#include <task.hpp>
#include <lock.hpp>
#include <printf.h>
#include <cwalk.h>
#include <md5.h>
#include "../../../../kernel.h"
#include "../../../../DAPI.hpp"
#include "../../../../Fex.hpp"
namespace Driver
{
DriverCode Driver::BindProcessNetwork(Memory::MemMgr *mem, void *fex)
{
UNUSED(mem);
UNUSED(fex);
return DriverCode::NOT_IMPLEMENTED;
}
}

View File

@ -0,0 +1,40 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../../api.hpp"
#include <ints.hpp>
#include <memory.hpp>
#include <task.hpp>
#include <lock.hpp>
#include <printf.h>
#include <cwalk.h>
#include <md5.h>
#include "../../../../kernel.h"
#include "../../../../DAPI.hpp"
#include "../../../../Fex.hpp"
namespace Driver
{
DriverCode Driver::BindProcessStorage(Memory::MemMgr *mem, void *fex)
{
UNUSED(mem);
UNUSED(fex);
return DriverCode::NOT_IMPLEMENTED;
}
}

View File

@ -0,0 +1,27 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef __FENNIX_KERNEL_DRIVER_API_H__
#define __FENNIX_KERNEL_DRIVER_API_H__
#include <types.h>
#include "../../DAPI.hpp"
extern KernelAPI KernelAPITemplate;
#endif // !__FENNIX_KERNEL_DRIVER_API_H__

View File

@ -0,0 +1,235 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include <ints.hpp>
#include <syscalls.hpp>
#include <smp.hpp>
#include <vector>
#include <io.h>
#if defined(a64)
#include "../Architecture/amd64/cpu/gdt.hpp"
#include "../Architecture/amd64/cpu/idt.hpp"
#include "../Architecture/amd64/acpi.hpp"
#include "../Architecture/amd64/cpu/apic.hpp"
#elif defined(a32)
#include "../Architecture/i386/cpu/gdt.hpp"
#include "../Architecture/i386/cpu/idt.hpp"
#elif defined(aa64)
#endif
#include "crashhandler.hpp"
#include "../kernel.h"
extern "C" SafeFunction void ExceptionHandler(void *Data) { CrashHandler::Handle(Data); }
namespace Interrupts
{
struct Event
{
int ID;
void *Data;
};
std::vector<Event> RegisteredEvents;
#if defined(a64)
/* APIC::APIC */ void *apic[MAX_CPU];
/* APIC::Timer */ void *apicTimer[MAX_CPU];
#elif defined(a32)
/* APIC::APIC */ void *apic[MAX_CPU];
#elif defined(aa64)
#endif
void *InterruptFrames[INT_FRAMES_MAX];
void Initialize(int Core)
{
#if defined(a64)
GlobalDescriptorTable::Init(Core);
InterruptDescriptorTable::Init(Core);
CPUData *CoreData = GetCPU(Core);
CoreData->Checksum = CPU_DATA_CHECKSUM;
CPU::x64::wrmsr(CPU::x64::MSR_GS_BASE, (uint64_t)CoreData);
CPU::x64::wrmsr(CPU::x64::MSR_SHADOW_GS_BASE, (uint64_t)CoreData);
CoreData->ID = Core;
CoreData->IsActive = true;
CoreData->SystemCallStack = (uint8_t *)((uintptr_t)KernelAllocator.RequestPages(TO_PAGES(STACK_SIZE + 1)) + STACK_SIZE);
CoreData->Stack = (uintptr_t)KernelAllocator.RequestPages(TO_PAGES(STACK_SIZE + 1)) + STACK_SIZE;
if (CoreData->Checksum != CPU_DATA_CHECKSUM)
{
KPrint("CPU %d checksum mismatch! %x != %x", Core, CoreData->Checksum, CPU_DATA_CHECKSUM);
CPU::Stop();
}
debug("Stack for core %d is %#lx (Address: %#lx)", Core, CoreData->Stack, CoreData->Stack - STACK_SIZE);
InitializeSystemCalls();
#elif defined(a32)
warn("i386 is not supported yet");
#elif defined(aa64)
warn("aarch64 is not supported yet");
#endif
}
void Enable(int Core)
{
#if defined(a64)
if (((ACPI::MADT *)PowerManager->GetMADT())->LAPICAddress != nullptr)
{
// TODO: This function is called by SMP too. Do not initialize timers that doesn't support multiple cores.
apic[Core] = new APIC::APIC(Core);
if (Core == Config.IOAPICInterruptCore) // Redirect IRQs to the specified core.
((APIC::APIC *)apic[Core])->RedirectIRQs(Core);
}
else
{
error("LAPIC not found");
// TODO: PIC
}
#elif defined(a32)
warn("i386 is not supported yet");
#elif defined(aa64)
warn("aarch64 is not supported yet");
#endif
}
void InitializeTimer(int Core)
{
// TODO: This function is called by SMP too. Do not initialize timers that doesn't support multiple cores.
#if defined(a64)
if (apic[Core] != nullptr)
apicTimer[Core] = new APIC::Timer((APIC::APIC *)apic[Core]);
else
{
fixme("apic not found");
}
#elif defined(a32)
warn("i386 is not supported yet");
#elif defined(aa64)
warn("aarch64 is not supported yet");
#endif
}
SafeFunction void RemoveAll()
{
RegisteredEvents.clear();
}
extern "C" SafeFunction void MainInterruptHandler(void *Data)
{
#if defined(a64)
CPU::x64::TrapFrame *Frame = (CPU::x64::TrapFrame *)Data;
// debug("IRQ%ld", Frame->InterruptNumber - 32);
memmove(InterruptFrames + 1, InterruptFrames, sizeof(InterruptFrames) - sizeof(InterruptFrames[0]));
InterruptFrames[0] = (void *)Frame->rip;
CPUData *CoreData = GetCurrentCPU();
int Core = 0;
if (likely(CoreData != nullptr))
Core = CoreData->ID;
/* If this is false, we have a big problem. */
if (likely(Frame->InterruptNumber < CPU::x86::IRQ223 && Frame->InterruptNumber > CPU::x86::ISR0))
{
/* Halt core interrupt */
if (unlikely(Frame->InterruptNumber == CPU::x86::IRQ29))
CPU::Stop();
bool InterruptHandled = false;
foreach (auto ev in RegisteredEvents)
{
#if defined(a86)
if ((ev.ID + CPU::x86::IRQ0) == static_cast<int>(Frame->InterruptNumber))
#elif defined(aa64)
if (ev.ID == static_cast<int>(Frame->InterruptNumber))
#endif
{
((Handler *)ev.Data)->OnInterruptReceived(Frame);
InterruptHandled = true;
}
}
if (!InterruptHandled)
{
error("IRQ%ld is unhandled on CPU %d.", Frame->InterruptNumber - 32, Core);
if (Frame->InterruptNumber == CPU::x86::IRQ1)
{
uint8_t scancode = inb(0x60);
warn("IRQ1 is the keyboard interrupt. Scancode: %#x", scancode);
}
}
if (likely(apic[Core]))
{
((APIC::APIC *)Interrupts::apic[Core])->EOI();
// TODO: Handle PIC too
return;
}
// TODO: PIC
}
#elif defined(a32)
void *Frame = Data;
#elif defined(aa64)
CPU::aarch64::TrapFrame *Frame = (CPU::aarch64::TrapFrame *)Data;
#endif
error("HALT HALT HALT HALT HALT HALT HALT HALT HALT");
CPU::Stop();
}
Handler::Handler(int InterruptNumber)
{
foreach (auto ev in RegisteredEvents)
{
if (ev.ID == InterruptNumber)
{
warn("IRQ%d is already registered.", InterruptNumber);
}
}
debug("Registering interrupt handler for IRQ%d.", InterruptNumber);
this->InterruptNumber = InterruptNumber;
RegisteredEvents.push_back({InterruptNumber, this});
}
Handler::~Handler()
{
debug("Unregistering interrupt handler for IRQ%d.", this->InterruptNumber);
for (size_t i = 0; i < RegisteredEvents.size(); i++)
{
if (RegisteredEvents[i].ID == this->InterruptNumber)
{
RegisteredEvents.remove(i);
return;
}
}
warn("Event %d not found.", this->InterruptNumber);
}
#if defined(a64)
void Handler::OnInterruptReceived(CPU::x64::TrapFrame *Frame)
{
trace("Unhandled interrupt IRQ%d", Frame->InterruptNumber - 32);
#elif defined(a32)
void Handler::OnInterruptReceived(CPU::x32::TrapFrame *Frame)
{
trace("Unhandled interrupt received");
#elif defined(aa64)
void Handler::OnInterruptReceived(CPU::aarch64::TrapFrame *Frame)
{
trace("Unhandled interrupt received");
#endif
}
}

207
Kernel/Core/Lock.cpp Normal file
View File

@ -0,0 +1,207 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include <lock.hpp>
#include <debug.h>
#include <smp.hpp>
#include "../kernel.h"
// #define PRINT_BACKTRACE
#ifdef PRINT_BACKTRACE
#pragma GCC diagnostic ignored "-Wframe-address"
#endif
bool ForceUnlock = false;
std::atomic_size_t LocksCount = 0;
size_t GetLocksCount() { return LocksCount.load(); }
void LockClass::DeadLock(SpinLockData Lock)
{
if (ForceUnlock)
{
warn("Unlocking lock '%s' which it was held by '%s'...", Lock.AttemptingToGet, Lock.CurrentHolder);
this->DeadLocks = 0;
this->Unlock();
return;
}
CPUData *CoreData = GetCurrentCPU();
long CCore = 0xdead;
if (CoreData != nullptr)
CCore = CoreData->ID;
warn("Potential deadlock in lock '%s' held by '%s'! %ld %s in queue. Interrupts are %s. Core %ld held by %ld. (%ld times happened)",
Lock.AttemptingToGet, Lock.CurrentHolder,
Lock.Count, Lock.Count > 1 ? "locks" : "lock",
CPU::Interrupts(CPU::Check) ? "enabled" : "disabled",
CCore, Lock.Core, this->DeadLocks);
#ifdef PRINT_BACKTRACE
if (KernelSymbolTable)
{
debug("\t\t%s<-%s<-%s<-%s<-%s<-%s<-%s<-%s<-%s<-%s",
KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)),
KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(1)),
KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(2)),
KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(3)),
KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(4)),
KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(5)),
KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(6)),
KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(7)),
KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(8)),
KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(9)));
}
#endif
// TODO: Print on screen too.
this->DeadLocks++;
if (Config.UnlockDeadLock && this->DeadLocks.load() > 10)
{
warn("Unlocking lock '%s' to prevent deadlock. (this is enabled in the kernel config)", Lock.AttemptingToGet);
this->DeadLocks = 0;
this->Unlock();
}
if (TaskManager)
TaskManager->Schedule();
}
int LockClass::Lock(const char *FunctionName)
{
LockData.AttemptingToGet = FunctionName;
LockData.StackPointerAttempt = (uintptr_t)__builtin_frame_address(0);
Retry:
int i = 0;
while (IsLocked.exchange(true, std::memory_order_acquire) && ++i < (DebuggerIsAttached ? 0x100000 : 0x10000000))
CPU::Pause();
if (i >= (DebuggerIsAttached ? 0x100000 : 0x10000000))
{
DeadLock(LockData);
goto Retry;
}
LockData.Count++;
LockData.CurrentHolder = FunctionName;
LockData.StackPointerHolder = (uintptr_t)__builtin_frame_address(0);
CPUData *CoreData = GetCurrentCPU();
if (CoreData != nullptr)
LockData.Core = CoreData->ID;
LocksCount++;
__sync;
return 0;
}
int LockClass::Unlock()
{
__sync;
IsLocked.store(false, std::memory_order_release);
LockData.Count--;
LocksCount--;
return 0;
}
void LockClass::TimeoutDeadLock(SpinLockData Lock, uint64_t Timeout)
{
CPUData *CoreData = GetCurrentCPU();
long CCore = 0xdead;
if (CoreData != nullptr)
CCore = CoreData->ID;
uint64_t Counter = TimeManager->GetCounter();
warn("Potential deadlock in lock '%s' held by '%s'! %ld %s in queue. Interrupts are %s. Core %ld held by %ld. Timeout in %ld (%ld ticks remaining).",
Lock.AttemptingToGet, Lock.CurrentHolder,
Lock.Count, Lock.Count > 1 ? "locks" : "lock",
CPU::Interrupts(CPU::Check) ? "enabled" : "disabled",
CCore, Lock.Core, Timeout, Timeout - Counter);
#ifdef PRINT_BACKTRACE
if (KernelSymbolTable)
{
debug("\t\t%s<-%s<-%s<-%s<-%s<-%s<-%s<-%s<-%s<-%s",
KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)),
KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(1)),
KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(2)),
KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(3)),
KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(4)),
KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(5)),
KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(6)),
KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(7)),
KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(8)),
KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(9)));
}
#endif
if (Timeout < Counter)
{
warn("Unlocking lock '%s' because of timeout. (%ld < %ld)", Lock.AttemptingToGet, Timeout, Counter);
this->Unlock();
}
if (TaskManager)
TaskManager->Schedule();
}
int LockClass::TimeoutLock(const char *FunctionName, uint64_t Timeout)
{
if (!TimeManager)
return Lock(FunctionName);
LockData.AttemptingToGet = FunctionName;
LockData.StackPointerAttempt = (uintptr_t)__builtin_frame_address(0);
std::atomic_uint64_t Target = 0;
Retry:
int i = 0;
while (IsLocked.exchange(true, std::memory_order_acquire) && ++i < (DebuggerIsAttached ? 0x100000 : 0x10000000))
CPU::Pause();
if (i >= (DebuggerIsAttached ? 0x100000 : 0x10000000))
{
if (Target.load() == 0)
Target.store(TimeManager->CalculateTarget(Timeout, Time::Units::Milliseconds));
TimeoutDeadLock(LockData, Target.load());
goto Retry;
}
LockData.Count++;
LockData.CurrentHolder = FunctionName;
LockData.StackPointerHolder = (uintptr_t)__builtin_frame_address(0);
CPUData *CoreData = GetCurrentCPU();
if (CoreData != nullptr)
LockData.Core = CoreData->ID;
LocksCount++;
__sync;
return 0;
}

View File

@ -0,0 +1,137 @@
# Xalloc
Xalloc is a custom memory allocator designed for hobby operating systems. It is written in C++ and provides a simple and efficient way to manage memory in your hobby OS.
#### ❗ This project is still in development and is not ready for use in production environments. ❗
---
## Features
- **Simple API** - Xalloc provides a simple API for allocating and freeing memory. It is designed to be easy to use and understand.
- [ ] todo complete this
---
## Getting Started
### Implementing missing functions
You will need to implement the following functions in your OS:
##### Wrapper.cpp
```cpp
extern "C" void *Xalloc_REQUEST_PAGES(Xsize_t Pages)
{
// ...
}
extern "C" void Xalloc_FREE_PAGES(void *Address, Xsize_t Pages)
{
// ...
}
extern "C" void Xalloc_MAP_MEMORY(void *VirtualAddress, void *PhysicalAddress, Xsize_t Flags)
{
// ...
}
extern "C" void Xalloc_UNMAP_MEMORY(void *VirtualAddress)
{
// ...
}
```
##### Xalloc.hpp
```cpp
#define Xalloc_PAGE_SIZE <page size> /* <-- Replace with your page size */
#define Xalloc_trace(m, ...) <trace function>
#define Xalloc_warn(m, ...) <warning function>
#define Xalloc_err(m, ...) <error function>
#define Xalloc_def <define a lock> /* eg. std::mutex Xalloc_lock; */
#define Xalloc_lock <lock function>
#define Xalloc_unlock <unlock function>
```
### Typical usage
```cpp
#include "Xalloc.hpp"
Xalloc::V1 *XallocV1Allocator = nullptr;
int main()
{
/* Virtual Base User SMAP */
XallocV1Allocator = new Xalloc::V1((void *)0xFFFFA00000000000, false, false);
void *p = XallocV1Allocator->malloc(1234);
/* ... */
XallocV1Allocator->free(p);
delete XallocV1Allocator;
return 0;
}
```
or
```cpp
#include "Xalloc.hpp"
int main()
{
/* Virtual Base User SMAP */
Xalloc::V1 XallocV1Allocator((void *)0xFFFFA00000000000, false, false);
void *p = XallocV1Allocator.malloc(1234);
/* ... */
XallocV1Allocator.free(p);
return 0;
}
```
---
## API
### Xalloc::V1
```cpp
void *malloc(Xsize_t Size);
```
Allocates a block of memory of size `Size` bytes.
If `Size` is 0, then `nullptr` is returned.
- `Size` - The size of the block to allocate in bytes.
<br><br>
```cpp
void free(void *Address);
```
Frees the memory block pointed to by `Address`.
If `Address` is `nullptr`, then no operation is performed.
- `Address` - The address of the memory block to free.
<br><br>
```cpp
void *calloc(Xsize_t NumberOfBlocks, Xsize_t Size);
```
Allocates a block of memory for an array of `NumberOfBlocks` elements, each of them `Size` bytes long.
If `NumberOfBlocks` or `Size` is 0, then `nullptr` is returned.
- `NumberOfBlocks` - The number of elements to allocate.
- `Size` - The size of each element in bytes.
<br><br>
```cpp
void *realloc(void *Address, Xsize_t Size);
```
Changes the size of the memory block pointed to by `Address` to `Size` bytes.
If `Address` is `nullptr`, then the call is equivalent to `malloc(Size)`.
If `Size` is equal to zero, and `Address` is not `nullptr`, then the call is equivalent to `free(Address)`.
- `Address` - The address of the memory block to resize.
- `Size` - The new size of the memory block in bytes.
---

View File

@ -0,0 +1,40 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "Xalloc.hpp"
#include <memory.hpp>
extern "C" void *Xalloc_REQUEST_PAGES(Xsize_t Pages)
{
return KernelAllocator.RequestPages(Pages);
}
extern "C" void Xalloc_FREE_PAGES(void *Address, Xsize_t Pages)
{
KernelAllocator.FreePages(Address, Pages);
}
extern "C" void Xalloc_MAP_MEMORY(void *VirtualAddress, void *PhysicalAddress, Xsize_t Flags)
{
Memory::Virtual(KernelPageTable).Map(VirtualAddress, PhysicalAddress, Flags);
}
extern "C" void Xalloc_UNMAP_MEMORY(void *VirtualAddress)
{
Memory::Virtual(KernelPageTable).Unmap(VirtualAddress);
}

View File

@ -0,0 +1,119 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef __FENNIX_KERNEL_Xalloc_H__
#define __FENNIX_KERNEL_Xalloc_H__
#include <memory.hpp>
#include <lock.hpp>
#include <debug.h>
typedef long unsigned Xuint64_t;
typedef long unsigned Xsize_t;
#define Xalloc_StopOnFail true
#define Xalloc_PAGE_SIZE PAGE_SIZE
#define Xalloc_trace(m, ...) trace(m, ##__VA_ARGS__)
#define Xalloc_warn(m, ...) warn(m, ##__VA_ARGS__)
#define Xalloc_err(m, ...) error(m, ##__VA_ARGS__)
#define Xalloc_def NewLock(XallocLock)
#define Xalloc_lock XallocLock.Lock(__FUNCTION__)
#define Xalloc_unlock XallocLock.Unlock()
namespace Xalloc
{
class V1
{
private:
void *BaseVirtualAddress = nullptr;
void *FirstBlock = nullptr;
void *LastBlock = nullptr;
bool UserMapping = false;
bool SMAPUsed = false;
public:
/** @brief Execute "stac" instruction if the kernel has SMAP enabled */
void Xstac();
/** @brief Execute "clac" instruction if the kernel has SMAP enabled */
void Xclac();
/**
* @brief Arrange the blocks to optimize the memory usage
* The allocator is not arranged by default
* to avoid performance issues.
* This function will defragment the memory
* and free the unused blocks.
*
* You should call this function when the
* kernel is idle or when is not using
* the allocator.
*/
void Arrange();
/**
* @brief Allocate a new memory block
*
* @param Size Size of the block to allocate.
* @return void* Pointer to the allocated block.
*/
void *malloc(Xsize_t Size);
/**
* @brief Free a previously allocated block
*
* @param Address Address of the block to free.
*/
void free(void *Address);
/**
* @brief Allocate a new memory block
*
* @param NumberOfBlocks Number of blocks to allocate.
* @param Size Size of the block to allocate.
* @return void* Pointer to the allocated block.
*/
void *calloc(Xsize_t NumberOfBlocks, Xsize_t Size);
/**
* @brief Reallocate a previously allocated block
*
* @param Address Address of the block to reallocate.
* @param Size New size of the block.
* @return void* Pointer to the reallocated block.
*/
void *realloc(void *Address, Xsize_t Size);
/**
* @brief Construct a new Allocator object
*
* @param BaseVirtualAddress Virtual address to map the pages.
* @param UserMode Map the new pages with USER flag?
* @param SMAPEnabled Does the kernel has Supervisor Mode Access Prevention enabled?
*/
V1(void *BaseVirtualAddress, bool UserMode, bool SMAPEnabled);
/**
* @brief Destroy the Allocator object
*
*/
~V1();
};
}
#endif // !__FENNIX_KERNEL_Xalloc_H__

View File

@ -0,0 +1,290 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "Xalloc.hpp"
Xalloc_def;
#define XALLOC_CONCAT(x, y) x##y
#define XStoP(d) (((d) + PAGE_SIZE - 1) / PAGE_SIZE)
#define XPtoS(d) ((d)*PAGE_SIZE)
#define Xalloc_BlockChecksum 0xA110C
extern "C" void *Xalloc_REQUEST_PAGES(Xsize_t Pages);
extern "C" void Xalloc_FREE_PAGES(void *Address, Xsize_t Pages);
extern "C" void Xalloc_MAP_MEMORY(void *VirtualAddress, void *PhysicalAddress, Xsize_t Flags);
extern "C" void Xalloc_UNMAP_MEMORY(void *VirtualAddress);
// TODO: Change memcpy with an optimized version
void *Xmemcpy(void *__restrict__ Destination, const void *__restrict__ Source, Xuint64_t Length)
{
unsigned char *dst = (unsigned char *)Destination;
const unsigned char *src = (const unsigned char *)Source;
for (Xuint64_t i = 0; i < Length; i++)
dst[i] = src[i];
return Destination;
}
// TODO: Change memset with an optimized version
void *Xmemset(void *__restrict__ Destination, int Data, Xuint64_t Length)
{
unsigned char *Buffer = (unsigned char *)Destination;
for (Xuint64_t i = 0; i < Length; i++)
Buffer[i] = (unsigned char)Data;
return Destination;
}
namespace Xalloc
{
class Block
{
public:
void *Address = nullptr;
int Checksum = Xalloc_BlockChecksum;
Xsize_t Size = 0;
Block *Next = nullptr;
Block *Last = nullptr;
bool IsFree = true;
bool Check()
{
if (this->Checksum != Xalloc_BlockChecksum)
return false;
return true;
}
Block(Xsize_t Size)
{
this->Address = Xalloc_REQUEST_PAGES(XStoP(Size + 1));
this->Size = Size;
Xmemset(this->Address, 0, Size);
}
~Block()
{
Xalloc_FREE_PAGES(this->Address, XStoP(this->Size + 1));
}
/**
* @brief Overload new operator to allocate memory from the heap
* @param Size Unused
* @return void* Pointer to the allocated memory
*/
void *operator new(Xsize_t Size)
{
void *ptr = Xalloc_REQUEST_PAGES(XStoP(sizeof(Block)));
return ptr;
(void)(Size);
}
/**
* @brief Overload delete operator to free memory from the heap
* @param Address Pointer to the memory to free
*/
void operator delete(void *Address)
{
Xalloc_FREE_PAGES(Address, XStoP(sizeof(Block)));
}
} __attribute__((packed, aligned((16))));
class SmartSMAPClass
{
private:
V1 *allocator = nullptr;
public:
SmartSMAPClass(V1 *allocator)
{
this->allocator = allocator;
this->allocator->Xstac();
}
~SmartSMAPClass() { this->allocator->Xclac(); }
};
#define SmartSMAP SmartSMAPClass XALLOC_CONCAT(SmartSMAP##_, __COUNTER__)(this)
void V1::Xstac()
{
if (this->SMAPUsed)
{
#if defined(a86)
asm volatile("stac" ::
: "cc");
#endif
}
}
void V1::Xclac()
{
if (this->SMAPUsed)
{
#if defined(a86)
asm volatile("clac" ::
: "cc");
#endif
}
}
void V1::Arrange()
{
Xalloc_err("Arrange() is not implemented yet!");
}
void *V1::malloc(Xsize_t Size)
{
if (Size == 0)
{
Xalloc_warn("Attempted to allocate 0 bytes!");
return nullptr;
}
SmartSMAP;
Xalloc_lock;
if (this->FirstBlock == nullptr)
{
this->FirstBlock = new Block(Size);
((Block *)this->FirstBlock)->IsFree = false;
Xalloc_unlock;
return ((Block *)this->FirstBlock)->Address;
}
Block *CurrentBlock = ((Block *)this->FirstBlock);
while (CurrentBlock != nullptr)
{
if (!CurrentBlock->Check())
{
Xalloc_err("Block %#lx has an invalid checksum! (%#x != %#x)",
(Xuint64_t)CurrentBlock, CurrentBlock->Checksum, Xalloc_BlockChecksum);
while (Xalloc_StopOnFail)
;
}
else if (CurrentBlock->IsFree && CurrentBlock->Size >= Size)
{
CurrentBlock->IsFree = false;
Xmemset(CurrentBlock->Address, 0, Size);
Xalloc_unlock;
return CurrentBlock->Address;
}
CurrentBlock = CurrentBlock->Next;
}
CurrentBlock = ((Block *)this->FirstBlock);
while (CurrentBlock->Next != nullptr)
CurrentBlock = CurrentBlock->Next;
CurrentBlock->Next = new Block(Size);
((Block *)CurrentBlock->Next)->Last = CurrentBlock;
((Block *)CurrentBlock->Next)->IsFree = false;
Xalloc_unlock;
return ((Block *)CurrentBlock->Next)->Address;
}
void V1::free(void *Address)
{
if (Address == nullptr)
{
Xalloc_warn("Attempted to free a null pointer!");
return;
}
SmartSMAP;
Xalloc_lock;
Block *CurrentBlock = ((Block *)this->FirstBlock);
while (CurrentBlock != nullptr)
{
if (!CurrentBlock->Check())
{
Xalloc_err("Block %#lx has an invalid checksum! (%#x != %#x)",
(Xuint64_t)CurrentBlock, CurrentBlock->Checksum, Xalloc_BlockChecksum);
while (Xalloc_StopOnFail)
;
}
else if (CurrentBlock->Address == Address)
{
if (CurrentBlock->IsFree)
{
Xalloc_warn("Attempted to free an already freed pointer!");
Xalloc_unlock;
return;
}
CurrentBlock->IsFree = true;
Xalloc_unlock;
return;
}
CurrentBlock = CurrentBlock->Next;
}
Xalloc_err("Invalid address %#lx.", Address);
Xalloc_unlock;
}
void *V1::calloc(Xsize_t NumberOfBlocks, Xsize_t Size)
{
if (NumberOfBlocks == 0 || Size == 0)
{
Xalloc_warn("The %s%s%s is 0!",
NumberOfBlocks == 0 ? "NumberOfBlocks" : "",
NumberOfBlocks == 0 && Size == 0 ? " and " : "",
Size == 0 ? "Size" : "");
return nullptr;
}
return this->malloc(NumberOfBlocks * Size);
}
void *V1::realloc(void *Address, Xsize_t Size)
{
if (Address == nullptr)
return this->malloc(Size);
if (Size == 0)
{
this->free(Address);
return nullptr;
}
// SmartSMAP;
// Xalloc_lock;
// ...
// Xalloc_unlock;
// TODO: Implement realloc
this->free(Address);
return this->malloc(Size);
}
V1::V1(void *BaseVirtualAddress, bool UserMode, bool SMAPEnabled)
{
SmartSMAP;
Xalloc_lock;
this->SMAPUsed = SMAPEnabled;
this->UserMapping = UserMode;
this->BaseVirtualAddress = BaseVirtualAddress;
Xalloc_unlock;
}
V1::~V1()
{
SmartSMAP;
Xalloc_lock;
Xalloc_trace("Destructor not implemented yet.");
Xalloc_unlock;
}
}

View File

@ -0,0 +1,818 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include <memory.hpp>
#include <convert.h>
#include <lock.hpp>
#include <debug.h>
#ifdef DEBUG
#include <uart.hpp>
#endif
#include "HeapAllocators/Xalloc/Xalloc.hpp"
#include "../Library/liballoc_1_1.h"
#include "../../kernel.h"
// #define DEBUG_ALLOCATIONS_SL 1
// #define DEBUG_ALLOCATIONS 1
#ifdef DEBUG_ALLOCATIONS
#define memdbg(m, ...) \
debug(m, ##__VA_ARGS__); \
__sync
#else
#define memdbg(m, ...)
#endif
#ifdef DEBUG_ALLOCATIONS_SL
NewLock(AllocatorLock);
NewLock(OperatorAllocatorLock);
#endif
using namespace Memory;
Physical KernelAllocator;
PageTable4 *KernelPageTable = nullptr;
bool Page1GBSupport = false;
bool PSESupport = false;
static MemoryAllocatorType AllocatorType = MemoryAllocatorType::Pages;
Xalloc::V1 *XallocV1Allocator = nullptr;
#ifdef DEBUG
NIF void tracepagetable(PageTable4 *pt)
{
for (int i = 0; i < 512; i++)
{
#if defined(a64)
if (pt->Entries[i].Present)
debug("Entry %03d: %x %x %x %x %x %x %x %p-%#llx", i,
pt->Entries[i].Present, pt->Entries[i].ReadWrite,
pt->Entries[i].UserSupervisor, pt->Entries[i].WriteThrough,
pt->Entries[i].CacheDisable, pt->Entries[i].Accessed,
pt->Entries[i].ExecuteDisable, pt->Entries[i].Address << 12,
pt->Entries[i]);
#elif defined(a32)
#elif defined(aa64)
#endif
}
}
#endif
NIF void MapFromZero(PageTable4 *PT, BootInfo *Info)
{
debug("Mapping from 0x0 to %#llx", Info->Memory.Size);
Virtual va = Virtual(PT);
size_t MemSize = Info->Memory.Size;
if (Page1GBSupport && PSESupport)
{
/* Map the first 100MB of memory as 4KB pages */
// uintptr_t Physical4KBSectionStart = 0x10000000;
// va.Map((void *)0,
// (void *)0,
// Physical4KBSectionStart,
// PTFlag::RW);
// va.Map((void *)Physical4KBSectionStart,
// (void *)Physical4KBSectionStart,
// MemSize - Physical4KBSectionStart,
// PTFlag::RW,
// Virtual::MapType::OneGB);
va.Map((void *)0, (void *)0, MemSize, PTFlag::RW);
}
else
va.Map((void *)0, (void *)0, MemSize, PTFlag::RW);
va.Unmap((void *)0);
}
NIF void MapFramebuffer(PageTable4 *PT, BootInfo *Info)
{
debug("Mapping Framebuffer");
Virtual va = Virtual(PT);
int itrfb = 0;
while (1)
{
if (!Info->Framebuffer[itrfb].BaseAddress)
break;
va.OptimizedMap((void *)Info->Framebuffer[itrfb].BaseAddress,
(void *)Info->Framebuffer[itrfb].BaseAddress,
Info->Framebuffer[itrfb].Pitch * Info->Framebuffer[itrfb].Height,
PTFlag::RW | PTFlag::US | PTFlag::G);
itrfb++;
#ifdef DEBUG
if (EnableExternalMemoryTracer)
{
char LockTmpStr[64];
strcpy_unsafe(LockTmpStr, __FUNCTION__);
strcat_unsafe(LockTmpStr, "_memTrk");
mExtTrkLock.TimeoutLock(LockTmpStr, 10000);
sprintf(mExtTrkLog, "Rsrv( %p %ld )\n\r",
Info->Framebuffer[itrfb].BaseAddress,
(Info->Framebuffer[itrfb].Pitch * Info->Framebuffer[itrfb].Height) + PAGE_SIZE);
UniversalAsynchronousReceiverTransmitter::UART mTrkUART = UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM3);
for (short i = 0; i < MEM_TRK_MAX_SIZE; i++)
{
if (mExtTrkLog[i] == '\r')
break;
mTrkUART.Write(mExtTrkLog[i]);
}
mExtTrkLock.Unlock();
}
#endif
}
}
NIF void MapKernel(PageTable4 *PT, BootInfo *Info)
{
debug("Mapping Kernel");
uintptr_t BootstrapStart = (uintptr_t)&_bootstrap_start;
uintptr_t KernelStart = (uintptr_t)&_kernel_start;
uintptr_t KernelTextEnd = (uintptr_t)&_kernel_text_end;
uintptr_t KernelDataEnd = (uintptr_t)&_kernel_data_end;
uintptr_t KernelRoDataEnd = (uintptr_t)&_kernel_rodata_end;
uintptr_t KernelEnd = (uintptr_t)&_kernel_end;
uintptr_t KernelFileStart = (uintptr_t)Info->Kernel.FileBase;
uintptr_t KernelFileEnd = KernelFileStart + Info->Kernel.Size;
debug("Kernel physical address: %#lx - %#lx", Info->Kernel.PhysicalBase, (uintptr_t)Info->Kernel.PhysicalBase + Info->Kernel.Size);
debug("Kernel file base: %#lx - %#lx", KernelFileStart, KernelFileEnd);
debug("File size: %ld KB", TO_KB(Info->Kernel.Size));
debug(".text size: %ld KB", TO_KB(KernelTextEnd - KernelStart));
debug(".data size: %ld KB", TO_KB(KernelDataEnd - KernelTextEnd));
debug(".rodata size: %ld KB", TO_KB(KernelRoDataEnd - KernelDataEnd));
debug(".bss size: %ld KB", TO_KB(KernelEnd - KernelRoDataEnd));
uintptr_t BaseKernelMapAddress = (uintptr_t)Info->Kernel.PhysicalBase;
uintptr_t k;
Virtual va = Virtual(PT);
/* Bootstrap section */
for (k = BootstrapStart; k < KernelStart - KERNEL_VMA_OFFSET; k += PAGE_SIZE)
{
#ifdef DEBUG /* vscode debugging */
void *BKMA = (void *)BaseKernelMapAddress, *K_ = (void *)k;
#endif
va.Map((void *)k, (void *)BaseKernelMapAddress, PTFlag::RW | PTFlag::G);
KernelAllocator.ReservePage((void *)BaseKernelMapAddress);
BaseKernelMapAddress += PAGE_SIZE;
}
/* Text section */
for (k = KernelStart; k < KernelTextEnd; k += PAGE_SIZE)
{
#ifdef DEBUG /* vscode debugging */
void *BKMA = (void *)BaseKernelMapAddress, *K_ = (void *)k;
#endif
va.Map((void *)k, (void *)BaseKernelMapAddress, PTFlag::RW | PTFlag::G);
KernelAllocator.ReservePage((void *)BaseKernelMapAddress);
BaseKernelMapAddress += PAGE_SIZE;
}
/* Data section */
for (k = KernelTextEnd; k < KernelDataEnd; k += PAGE_SIZE)
{
#ifdef DEBUG /* vscode debugging */
void *BKMA = (void *)BaseKernelMapAddress, *K_ = (void *)k;
#endif
va.Map((void *)k, (void *)BaseKernelMapAddress, PTFlag::RW | PTFlag::G);
KernelAllocator.ReservePage((void *)BaseKernelMapAddress);
BaseKernelMapAddress += PAGE_SIZE;
}
/* Read only data section */
for (k = KernelDataEnd; k < KernelRoDataEnd; k += PAGE_SIZE)
{
#ifdef DEBUG /* vscode debugging */
void *BKMA = (void *)BaseKernelMapAddress, *K_ = (void *)k;
#endif
va.Map((void *)k, (void *)BaseKernelMapAddress, PTFlag::G);
KernelAllocator.ReservePage((void *)BaseKernelMapAddress);
BaseKernelMapAddress += PAGE_SIZE;
}
/* BSS section */
for (k = KernelRoDataEnd; k < KernelEnd; k += PAGE_SIZE)
{
#ifdef DEBUG /* vscode debugging */
void *BKMA = (void *)BaseKernelMapAddress, *K_ = (void *)k;
#endif
va.Map((void *)k, (void *)BaseKernelMapAddress, PTFlag::RW | PTFlag::G);
KernelAllocator.ReservePage((void *)BaseKernelMapAddress);
BaseKernelMapAddress += PAGE_SIZE;
}
debug("BaseKernelMapAddress: %#lx - %#lx", Info->Kernel.PhysicalBase, BaseKernelMapAddress);
/* Kernel file */
if (KernelFileStart != 0)
for (k = KernelFileStart; k < KernelFileEnd; k += PAGE_SIZE)
{
va.Map((void *)k, (void *)k, PTFlag::G);
KernelAllocator.ReservePage((void *)k);
}
#ifdef DEBUG
if (EnableExternalMemoryTracer)
{
char LockTmpStr[64];
strcpy_unsafe(LockTmpStr, __FUNCTION__);
strcat_unsafe(LockTmpStr, "_memTrk");
mExtTrkLock.TimeoutLock(LockTmpStr, 10000);
sprintf(mExtTrkLog, "Rsrv( %p %ld )\n\r",
Info->Kernel.PhysicalBase,
Info->Kernel.Size);
UniversalAsynchronousReceiverTransmitter::UART mTrkUART = UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM3);
for (short i = 0; i < MEM_TRK_MAX_SIZE; i++)
{
if (mExtTrkLog[i] == '\r')
break;
mTrkUART.Write(mExtTrkLog[i]);
}
sprintf(mExtTrkLog, "Rsrv( %p %ld )\n\r",
Info->Kernel.VirtualBase,
Info->Kernel.Size);
mExtTrkLock.Unlock();
for (short i = 0; i < MEM_TRK_MAX_SIZE; i++)
{
if (mExtTrkLog[i] == '\r')
break;
mTrkUART.Write(mExtTrkLog[i]);
}
}
#endif
}
NIF void InitializeMemoryManagement(BootInfo *Info)
{
#ifdef DEBUG
for (uint64_t i = 0; i < Info->Memory.Entries; i++)
{
uintptr_t Base = r_cst(uintptr_t, Info->Memory.Entry[i].BaseAddress);
size_t Length = Info->Memory.Entry[i].Length;
uintptr_t End = Base + Length;
const char *Type = "Unknown";
switch (Info->Memory.Entry[i].Type)
{
case likely(Usable):
Type = "Usable";
break;
case Reserved:
Type = "Reserved";
break;
case ACPIReclaimable:
Type = "ACPI Reclaimable";
break;
case ACPINVS:
Type = "ACPI NVS";
break;
case BadMemory:
Type = "Bad Memory";
break;
case BootloaderReclaimable:
Type = "Bootloader Reclaimable";
break;
case KernelAndModules:
Type = "Kernel and Modules";
break;
case Framebuffer:
Type = "Framebuffer";
break;
default:
break;
}
debug("%ld: %p-%p %s",
i,
Base,
End,
Type);
}
#endif
trace("Initializing Physical Memory Manager");
// KernelAllocator = Physical(); <- Already called in the constructor
KernelAllocator.Init(Info);
debug("Memory Info: %lldMB / %lldMB (%lldMB reserved)",
TO_MB(KernelAllocator.GetUsedMemory()),
TO_MB(KernelAllocator.GetTotalMemory()),
TO_MB(KernelAllocator.GetReservedMemory()));
/* -- Debugging --
size_t bmap_size = KernelAllocator.GetPageBitmap().Size;
for (size_t i = 0; i < bmap_size; i++)
{
bool idx = KernelAllocator.GetPageBitmap().Get(i);
if (idx == true)
debug("Page %04d: %#lx", i, i * PAGE_SIZE);
}
inf_loop debug("Alloc.: %#lx", KernelAllocator.RequestPage());
*/
trace("Initializing Virtual Memory Manager");
KernelPageTable = (PageTable4 *)KernelAllocator.RequestPages(TO_PAGES(PAGE_SIZE + 1));
debug("Page table allocated at %#lx", KernelPageTable);
memset(KernelPageTable, 0, PAGE_SIZE);
if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_AMD) == 0)
{
CPU::x86::AMD::CPUID0x80000001 cpuid;
cpuid.Get();
PSESupport = cpuid.EDX.PSE;
Page1GBSupport = cpuid.EDX.Page1GB;
}
else if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_INTEL) == 0)
{
CPU::x86::Intel::CPUID0x80000001 cpuid;
cpuid.Get();
fixme("Intel PSE support");
}
if (Page1GBSupport && PSESupport)
{
debug("1GB Page Support Enabled");
#if defined(a64)
CPU::x64::CR4 cr4 = CPU::x64::readcr4();
cr4.PSE = 1;
CPU::x64::writecr4(cr4);
#elif defined(a32)
CPU::x32::CR4 cr4 = CPU::x32::readcr4();
cr4.PSE = 1;
CPU::x32::writecr4(cr4);
#elif defined(aa64)
#endif
}
MapFromZero(KernelPageTable, Info);
MapFramebuffer(KernelPageTable, Info);
MapKernel(KernelPageTable, Info);
trace("Applying new page table from address %#lx", KernelPageTable);
#ifdef DEBUG
tracepagetable(KernelPageTable);
#endif
#if defined(a86)
asmv("mov %0, %%cr3" ::"r"(KernelPageTable));
#elif defined(aa64)
asmv("msr ttbr0_el1, %0" ::"r"(KernelPageTable));
#endif
debug("Page table updated.");
if (strstr(Info->Kernel.CommandLine, "xallocv1"))
{
XallocV1Allocator = new Xalloc::V1((void *)KERNEL_HEAP_BASE, false, false);
AllocatorType = MemoryAllocatorType::XallocV1;
trace("XallocV1 Allocator initialized (%p)", XallocV1Allocator);
}
else if (strstr(Info->Kernel.CommandLine, "liballoc11"))
{
AllocatorType = MemoryAllocatorType::liballoc11;
}
}
void *malloc(size_t Size)
{
#ifdef DEBUG_ALLOCATIONS_SL
SmartLockClass lock___COUNTER__(AllocatorLock, (KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown"));
#endif
memdbg("malloc(%d)->[%s]", Size, KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown");
void *ret = nullptr;
switch (AllocatorType)
{
case MemoryAllocatorType::Pages:
{
ret = KernelAllocator.RequestPages(TO_PAGES(Size + 1));
memset(ret, 0, Size);
break;
}
case MemoryAllocatorType::XallocV1:
{
ret = XallocV1Allocator->malloc(Size);
break;
}
case MemoryAllocatorType::liballoc11:
{
ret = PREFIX(malloc)(Size);
memset(ret, 0, Size);
break;
}
default:
throw;
}
#ifdef DEBUG
if (EnableExternalMemoryTracer)
{
char LockTmpStr[64];
strcpy_unsafe(LockTmpStr, __FUNCTION__);
strcat_unsafe(LockTmpStr, "_memTrk");
mExtTrkLock.TimeoutLock(LockTmpStr, 10000);
sprintf(mExtTrkLog, "malloc( %ld )=%p~%p\n\r",
Size,
ret, __builtin_return_address(0));
UniversalAsynchronousReceiverTransmitter::UART mTrkUART = UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM3);
for (short i = 0; i < MEM_TRK_MAX_SIZE; i++)
{
if (mExtTrkLog[i] == '\r')
break;
mTrkUART.Write(mExtTrkLog[i]);
}
mExtTrkLock.Unlock();
}
#endif
return ret;
}
void *calloc(size_t n, size_t Size)
{
#ifdef DEBUG_ALLOCATIONS_SL
SmartLockClass lock___COUNTER__(AllocatorLock, (KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown"));
#endif
memdbg("calloc(%d, %d)->[%s]", n, Size, KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown");
void *ret = nullptr;
switch (AllocatorType)
{
case MemoryAllocatorType::Pages:
{
ret = KernelAllocator.RequestPages(TO_PAGES(n * Size + 1));
memset(ret, 0, n * Size);
break;
}
case MemoryAllocatorType::XallocV1:
{
ret = XallocV1Allocator->calloc(n, Size);
break;
}
case MemoryAllocatorType::liballoc11:
{
void *ret = PREFIX(calloc)(n, Size);
memset(ret, 0, Size);
return ret;
}
default:
throw;
}
#ifdef DEBUG
if (EnableExternalMemoryTracer)
{
char LockTmpStr[64];
strcpy_unsafe(LockTmpStr, __FUNCTION__);
strcat_unsafe(LockTmpStr, "_memTrk");
mExtTrkLock.TimeoutLock(LockTmpStr, 10000);
sprintf(mExtTrkLog, "calloc( %ld %ld )=%p~%p\n\r",
n, Size,
ret, __builtin_return_address(0));
UniversalAsynchronousReceiverTransmitter::UART mTrkUART = UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM3);
for (short i = 0; i < MEM_TRK_MAX_SIZE; i++)
{
if (mExtTrkLog[i] == '\r')
break;
mTrkUART.Write(mExtTrkLog[i]);
}
mExtTrkLock.Unlock();
}
#endif
return ret;
}
void *realloc(void *Address, size_t Size)
{
#ifdef DEBUG_ALLOCATIONS_SL
SmartLockClass lock___COUNTER__(AllocatorLock, (KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown"));
#endif
memdbg("realloc(%#lx, %d)->[%s]", Address, Size, KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown");
void *ret = nullptr;
switch (AllocatorType)
{
case unlikely(MemoryAllocatorType::Pages):
{
ret = KernelAllocator.RequestPages(TO_PAGES(Size + 1)); // WARNING: Potential memory leak
memset(ret, 0, Size);
break;
}
case MemoryAllocatorType::XallocV1:
{
ret = XallocV1Allocator->realloc(Address, Size);
break;
}
case MemoryAllocatorType::liballoc11:
{
void *ret = PREFIX(realloc)(Address, Size);
memset(ret, 0, Size);
return ret;
}
default:
throw;
}
#ifdef DEBUG
if (EnableExternalMemoryTracer)
{
char LockTmpStr[64];
strcpy_unsafe(LockTmpStr, __FUNCTION__);
strcat_unsafe(LockTmpStr, "_memTrk");
mExtTrkLock.TimeoutLock(LockTmpStr, 10000);
sprintf(mExtTrkLog, "realloc( %p %ld )=%p~%p\n\r",
Address, Size,
ret, __builtin_return_address(0));
UniversalAsynchronousReceiverTransmitter::UART mTrkUART = UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM3);
for (short i = 0; i < MEM_TRK_MAX_SIZE; i++)
{
if (mExtTrkLog[i] == '\r')
break;
mTrkUART.Write(mExtTrkLog[i]);
}
mExtTrkLock.Unlock();
}
#endif
return ret;
}
void free(void *Address)
{
#ifdef DEBUG_ALLOCATIONS_SL
SmartLockClass lock___COUNTER__(AllocatorLock, (KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown"));
#endif
memdbg("free(%#lx)->[%s]", Address, KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown");
switch (AllocatorType)
{
case unlikely(MemoryAllocatorType::Pages):
{
KernelAllocator.FreePage(Address); // WARNING: Potential memory leak
break;
}
case MemoryAllocatorType::XallocV1:
{
XallocV1Allocator->free(Address);
break;
}
case MemoryAllocatorType::liballoc11:
{
PREFIX(free)
(Address);
break;
}
default:
throw;
}
#ifdef DEBUG
if (EnableExternalMemoryTracer)
{
char LockTmpStr[64];
strcpy_unsafe(LockTmpStr, __FUNCTION__);
strcat_unsafe(LockTmpStr, "_memTrk");
mExtTrkLock.TimeoutLock(LockTmpStr, 10000);
sprintf(mExtTrkLog, "free( %p )~%p\n\r",
Address,
__builtin_return_address(0));
UniversalAsynchronousReceiverTransmitter::UART mTrkUART = UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM3);
for (short i = 0; i < MEM_TRK_MAX_SIZE; i++)
{
if (mExtTrkLog[i] == '\r')
break;
mTrkUART.Write(mExtTrkLog[i]);
}
mExtTrkLock.Unlock();
}
#endif
}
void *operator new(size_t Size)
{
#ifdef DEBUG_ALLOCATIONS_SL
SmartLockClass lock___COUNTER__(OperatorAllocatorLock, (KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown"));
#endif
memdbg("new(%d)->[%s]", Size, KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown");
void *ret = malloc(Size);
#ifdef DEBUG
if (EnableExternalMemoryTracer)
{
char LockTmpStr[64];
strcpy_unsafe(LockTmpStr, __FUNCTION__);
strcat_unsafe(LockTmpStr, "_memTrk");
mExtTrkLock.TimeoutLock(LockTmpStr, 10000);
sprintf(mExtTrkLog, "new( %ld )=%p~%p\n\r",
Size,
ret, __builtin_return_address(0));
UniversalAsynchronousReceiverTransmitter::UART mTrkUART = UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM3);
for (short i = 0; i < MEM_TRK_MAX_SIZE; i++)
{
if (mExtTrkLog[i] == '\r')
break;
mTrkUART.Write(mExtTrkLog[i]);
}
mExtTrkLock.Unlock();
}
#endif
return ret;
}
void *operator new[](size_t Size)
{
#ifdef DEBUG_ALLOCATIONS_SL
SmartLockClass lock___COUNTER__(OperatorAllocatorLock, (KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown"));
#endif
memdbg("new[](%d)->[%s]", Size, KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown");
void *ret = malloc(Size);
#ifdef DEBUG
if (EnableExternalMemoryTracer)
{
char LockTmpStr[64];
strcpy_unsafe(LockTmpStr, __FUNCTION__);
strcat_unsafe(LockTmpStr, "_memTrk");
mExtTrkLock.TimeoutLock(LockTmpStr, 10000);
sprintf(mExtTrkLog, "new[]( %ld )=%p~%p\n\r",
Size,
ret, __builtin_return_address(0));
UniversalAsynchronousReceiverTransmitter::UART mTrkUART = UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM3);
for (short i = 0; i < MEM_TRK_MAX_SIZE; i++)
{
if (mExtTrkLog[i] == '\r')
break;
mTrkUART.Write(mExtTrkLog[i]);
}
mExtTrkLock.Unlock();
}
#endif
return ret;
}
void *operator new(unsigned long Size, std::align_val_t Alignment)
{
#ifdef DEBUG_ALLOCATIONS_SL
SmartLockClass lock___COUNTER__(OperatorAllocatorLock, (KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown"));
#endif
memdbg("new(%d, %d)->[%s]", Size, Alignment, KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown");
fixme("operator new with alignment(%#lx) is not implemented", Alignment);
void *ret = malloc(Size);
#ifdef DEBUG
if (EnableExternalMemoryTracer)
{
char LockTmpStr[64];
strcpy_unsafe(LockTmpStr, __FUNCTION__);
strcat_unsafe(LockTmpStr, "_memTrk");
mExtTrkLock.TimeoutLock(LockTmpStr, 10000);
sprintf(mExtTrkLog, "new( %ld %#lx )=%p~%p\n\r",
Size, (uintptr_t)Alignment,
ret, __builtin_return_address(0));
UniversalAsynchronousReceiverTransmitter::UART mTrkUART = UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM3);
for (short i = 0; i < MEM_TRK_MAX_SIZE; i++)
{
if (mExtTrkLog[i] == '\r')
break;
mTrkUART.Write(mExtTrkLog[i]);
}
mExtTrkLock.Unlock();
}
#endif
return ret;
}
void operator delete(void *Pointer)
{
#ifdef DEBUG_ALLOCATIONS_SL
SmartLockClass lock___COUNTER__(OperatorAllocatorLock, (KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown"));
#endif
memdbg("delete(%#lx)->[%s]", Pointer, KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown");
free(Pointer);
#ifdef DEBUG
if (EnableExternalMemoryTracer)
{
char LockTmpStr[64];
strcpy_unsafe(LockTmpStr, __FUNCTION__);
strcat_unsafe(LockTmpStr, "_memTrk");
mExtTrkLock.TimeoutLock(LockTmpStr, 10000);
sprintf(mExtTrkLog, "delete( %p )~%p\n\r",
Pointer,
__builtin_return_address(0));
UniversalAsynchronousReceiverTransmitter::UART mTrkUART = UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM3);
for (short i = 0; i < MEM_TRK_MAX_SIZE; i++)
{
if (mExtTrkLog[i] == '\r')
break;
mTrkUART.Write(mExtTrkLog[i]);
}
mExtTrkLock.Unlock();
}
#endif
}
void operator delete[](void *Pointer)
{
#ifdef DEBUG_ALLOCATIONS_SL
SmartLockClass lock___COUNTER__(OperatorAllocatorLock, (KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown"));
#endif
memdbg("delete[](%#lx)->[%s]", Pointer, KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown");
free(Pointer);
#ifdef DEBUG
if (EnableExternalMemoryTracer)
{
char LockTmpStr[64];
strcpy_unsafe(LockTmpStr, __FUNCTION__);
strcat_unsafe(LockTmpStr, "_memTrk");
mExtTrkLock.TimeoutLock(LockTmpStr, 10000);
sprintf(mExtTrkLog, "delete[]( %p )~%p\n\r",
Pointer,
__builtin_return_address(0));
UniversalAsynchronousReceiverTransmitter::UART mTrkUART = UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM3);
for (short i = 0; i < MEM_TRK_MAX_SIZE; i++)
{
if (mExtTrkLog[i] == '\r')
break;
mTrkUART.Write(mExtTrkLog[i]);
}
mExtTrkLock.Unlock();
}
#endif
}
void operator delete(void *Pointer, long unsigned int Size)
{
UNUSED(Size);
#ifdef DEBUG_ALLOCATIONS_SL
SmartLockClass lock___COUNTER__(OperatorAllocatorLock, (KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown"));
#endif
memdbg("delete(%#lx, %d)->[%s]", Pointer, Size, KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown");
free(Pointer);
#ifdef DEBUG
if (EnableExternalMemoryTracer)
{
char LockTmpStr[64];
strcpy_unsafe(LockTmpStr, __FUNCTION__);
strcat_unsafe(LockTmpStr, "_memTrk");
mExtTrkLock.TimeoutLock(LockTmpStr, 10000);
sprintf(mExtTrkLog, "delete( %p %ld )~%p\n\r",
Pointer, Size,
__builtin_return_address(0));
UniversalAsynchronousReceiverTransmitter::UART mTrkUART = UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM3);
for (short i = 0; i < MEM_TRK_MAX_SIZE; i++)
{
if (mExtTrkLog[i] == '\r')
break;
mTrkUART.Write(mExtTrkLog[i]);
}
mExtTrkLock.Unlock();
}
#endif
}
void operator delete[](void *Pointer, long unsigned int Size)
{
UNUSED(Size);
#ifdef DEBUG_ALLOCATIONS_SL
SmartLockClass lock___COUNTER__(OperatorAllocatorLock, (KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown"));
#endif
memdbg("delete[](%#lx, %d)->[%s]", Pointer, Size, KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress((uintptr_t)__builtin_return_address(0)) : "Unknown");
free(Pointer);
#ifdef DEBUG
if (EnableExternalMemoryTracer)
{
char LockTmpStr[64];
strcpy_unsafe(LockTmpStr, __FUNCTION__);
strcat_unsafe(LockTmpStr, "_memTrk");
mExtTrkLock.TimeoutLock(LockTmpStr, 10000);
sprintf(mExtTrkLog, "delete[]( %p %ld )~%p\n\r",
Pointer, Size,
__builtin_return_address(0));
UniversalAsynchronousReceiverTransmitter::UART mTrkUART = UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM3);
for (short i = 0; i < MEM_TRK_MAX_SIZE; i++)
{
if (mExtTrkLog[i] == '\r')
break;
mTrkUART.Write(mExtTrkLog[i]);
}
mExtTrkLock.Unlock();
}
#endif
}

View File

@ -0,0 +1,250 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include <memory.hpp>
#include <debug.h>
#include "../../kernel.h"
namespace Memory
{
ReadFSFunction(MEM_Read)
{
if (!Size)
Size = node->Length;
if (Offset > node->Length)
return 0;
if (Offset + Size > node->Length)
Size = node->Length - Offset;
memcpy(Buffer, (uint8_t *)(node->Address + Offset), Size);
return Size;
}
WriteFSFunction(MEM_Write)
{
if (!Size)
Size = node->Length;
if (Offset > node->Length)
return 0;
if (Offset + Size > node->Length)
Size = node->Length - Offset;
memcpy((uint8_t *)(node->Address + Offset), Buffer, Size);
return Size;
}
VirtualFileSystem::FileSystemOperations mem_op = {
.Name = "mem",
.Read = MEM_Read,
.Write = MEM_Write,
};
uint64_t MemMgr::GetAllocatedMemorySize()
{
uint64_t Size = 0;
foreach (auto ap in AllocatedPagesList)
Size += ap.PageCount;
return FROM_PAGES(Size);
}
bool MemMgr::Add(void *Address, size_t Count)
{
if (Address == nullptr)
{
error("Address is null!");
return false;
}
if (Count == 0)
{
error("Count is 0!");
return false;
}
for (size_t i = 0; i < AllocatedPagesList.size(); i++)
{
if (AllocatedPagesList[i].Address == Address)
{
error("Address already exists!");
return false;
}
else if ((uintptr_t)Address < (uintptr_t)AllocatedPagesList[i].Address)
{
if ((uintptr_t)Address + (Count * PAGE_SIZE) > (uintptr_t)AllocatedPagesList[i].Address)
{
error("Address intersects with an allocated page!");
return false;
}
}
else
{
if ((uintptr_t)AllocatedPagesList[i].Address + (AllocatedPagesList[i].PageCount * PAGE_SIZE) > (uintptr_t)Address)
{
error("Address intersects with an allocated page!");
return false;
}
}
}
if (this->Directory)
{
char FileName[64];
sprintf(FileName, "%lx-%ld", (uintptr_t)Address, Count);
VirtualFileSystem::Node *n = vfs->Create(FileName, VirtualFileSystem::NodeFlags::FILE, this->Directory);
if (n)
{
n->Address = (uintptr_t)Address;
n->Length = Count * PAGE_SIZE;
n->Operator = &mem_op;
}
}
AllocatedPagesList.push_back({Address, Count});
return true;
}
void *MemMgr::RequestPages(size_t Count, bool User)
{
void *Address = KernelAllocator.RequestPages(Count);
for (size_t i = 0; i < Count; i++)
{
int Flags = Memory::PTFlag::RW;
if (User)
Flags |= Memory::PTFlag::US;
Memory::Virtual(this->PageTable).Remap((void *)((uintptr_t)Address + (i * PAGE_SIZE)), (void *)((uint64_t)Address + (i * PAGE_SIZE)), Flags);
}
if (this->Directory)
{
char FileName[64];
sprintf(FileName, "%lx-%ld", (uintptr_t)Address, Count);
VirtualFileSystem::Node *n = vfs->Create(FileName, VirtualFileSystem::NodeFlags::FILE, this->Directory);
if (n) // If null, error or file already exists
{
n->Address = (uintptr_t)Address;
n->Length = Count * PAGE_SIZE;
n->Operator = &mem_op;
}
}
AllocatedPagesList.push_back({Address, Count});
/* For security reasons, we clear the allocated page
if it's a user page. */
if (User)
memset(Address, 0, Count * PAGE_SIZE);
return Address;
}
void MemMgr::FreePages(void *Address, size_t Count)
{
for (size_t i = 0; i < AllocatedPagesList.size(); i++)
{
if (AllocatedPagesList[i].Address == Address)
{
/** TODO: Advanced checks. Allow if the page count is less than the requested one.
* This will allow the user to free only a part of the allocated pages.
*
* But this will be in a separate function because we need to specify if we
* want to free from the start or from the end and return the new address.
*/
if (AllocatedPagesList[i].PageCount != Count)
{
error("Page count mismatch! (Allocated: %lld, Requested: %lld)", AllocatedPagesList[i].PageCount, Count);
return;
}
KernelAllocator.FreePages(Address, Count);
for (size_t i = 0; i < Count; i++)
{
Memory::Virtual(this->PageTable).Remap((void *)((uintptr_t)Address + (i * PAGE_SIZE)), (void *)((uint64_t)Address + (i * PAGE_SIZE)), Memory::PTFlag::RW);
// Memory::Virtual(this->PageTable).Unmap((void *)((uintptr_t)Address + (i * PAGE_SIZE)));
}
if (this->Directory)
{
char FileName[64];
sprintf(FileName, "%lx-%ld", (uintptr_t)Address, Count);
VirtualFileSystem::FileStatus s = vfs->Delete(FileName, false, this->Directory);
if (s != VirtualFileSystem::FileStatus::OK)
error("Failed to delete file %s", FileName);
}
AllocatedPagesList.remove(i);
return;
}
}
}
void MemMgr::DetachAddress(void *Address)
{
for (size_t i = 0; i < AllocatedPagesList.size(); i++)
{
if (AllocatedPagesList[i].Address == Address)
{
if (this->Directory)
{
char FileName[64];
sprintf(FileName, "%lx-%ld", (uintptr_t)Address, AllocatedPagesList[i].PageCount);
VirtualFileSystem::FileStatus s = vfs->Delete(FileName, false, this->Directory);
if (s != VirtualFileSystem::FileStatus::OK)
error("Failed to delete file %s", FileName);
}
AllocatedPagesList.remove(i);
return;
}
}
}
MemMgr::MemMgr(PageTable4 *PageTable, VirtualFileSystem::Node *Directory)
{
if (PageTable)
this->PageTable = PageTable;
else
{
#if defined(a64)
this->PageTable = (PageTable4 *)CPU::x64::readcr3().raw;
#elif defined(a32)
this->PageTable = (PageTable4 *)CPU::x32::readcr3().raw;
#endif
}
this->Directory = Directory;
debug("+ %#lx", this);
}
MemMgr::~MemMgr()
{
foreach (auto ap in AllocatedPagesList)
{
KernelAllocator.FreePages(ap.Address, ap.PageCount);
for (size_t i = 0; i < ap.PageCount; i++)
Memory::Virtual(this->PageTable).Remap((void *)((uintptr_t)ap.Address + (i * PAGE_SIZE)), (void *)((uintptr_t)ap.Address + (i * PAGE_SIZE)), Memory::PTFlag::RW);
}
if (this->Directory)
{
foreach (auto Child in this->Directory->Children)
vfs->Delete(Child, true);
}
debug("- %#lx", this);
}
}

View File

@ -0,0 +1,45 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include <memory.hpp>
namespace Memory
{
Virtual::PageMapIndexer::PageMapIndexer(uintptr_t VirtualAddress)
{
#if defined(a64)
uintptr_t Address = VirtualAddress;
Address >>= 12;
this->PTEIndex = Address & 0x1FF;
Address >>= 9;
this->PDEIndex = Address & 0x1FF;
Address >>= 9;
this->PDPTEIndex = Address & 0x1FF;
Address >>= 9;
this->PMLIndex = Address & 0x1FF;
#elif defined(a32)
uintptr_t Address = VirtualAddress;
Address >>= 12;
this->PTEIndex = Address & 0x3FF;
Address >>= 10;
this->PDEIndex = Address & 0x3FF;
Address >>= 10;
this->PDPTEIndex = Address & 0x3FF;
#elif defined(aa64)
#endif
}
}

View File

@ -0,0 +1,541 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include <memory.hpp>
#include <debug.h>
#ifdef DEBUG
#include <uart.hpp>
#endif
#include "../../Architecture/amd64/acpi.hpp"
#include "../../kernel.h"
extern "C" char BootPageTable[]; // 0x10000 in length
namespace Memory
{
uint64_t Physical::GetTotalMemory()
{
SmartLock(this->MemoryLock);
return this->TotalMemory;
}
uint64_t Physical::GetFreeMemory()
{
SmartLock(this->MemoryLock);
return this->FreeMemory;
}
uint64_t Physical::GetReservedMemory()
{
SmartLock(this->MemoryLock);
return this->ReservedMemory;
}
uint64_t Physical::GetUsedMemory()
{
SmartLock(this->MemoryLock);
return this->UsedMemory;
}
bool Physical::SwapPage(void *Address)
{
fixme("%p", Address);
return false;
}
bool Physical::SwapPages(void *Address, size_t PageCount)
{
for (size_t i = 0; i < PageCount; i++)
{
if (!this->SwapPage((void *)((uintptr_t)Address + (i * PAGE_SIZE))))
return false;
}
return false;
}
bool Physical::UnswapPage(void *Address)
{
fixme("%p", Address);
return false;
}
bool Physical::UnswapPages(void *Address, size_t PageCount)
{
for (size_t i = 0; i < PageCount; i++)
{
if (!this->UnswapPage((void *)((uintptr_t)Address + (i * PAGE_SIZE))))
return false;
}
return false;
}
void *Physical::RequestPage()
{
SmartLock(this->MemoryLock);
for (; PageBitmapIndex < PageBitmap.Size * 8; PageBitmapIndex++)
{
if (PageBitmap[PageBitmapIndex] == true)
continue;
this->LockPage((void *)(PageBitmapIndex * PAGE_SIZE));
#ifdef DEBUG
if (EnableExternalMemoryTracer)
{
char LockTmpStr[64];
strcpy_unsafe(LockTmpStr, __FUNCTION__);
strcat_unsafe(LockTmpStr, "_memTrk");
mExtTrkLock.TimeoutLock(LockTmpStr, 10000);
sprintf(mExtTrkLog, "RequestPage( )=%p~%p\n\r",
(void *)(PageBitmapIndex * PAGE_SIZE), __builtin_return_address(0));
UniversalAsynchronousReceiverTransmitter::UART mTrkUART = UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM3);
for (short i = 0; i < MEM_TRK_MAX_SIZE; i++)
{
if (mExtTrkLog[i] == '\r')
break;
mTrkUART.Write(mExtTrkLog[i]);
}
mExtTrkLock.Unlock();
}
#endif
return (void *)(PageBitmapIndex * PAGE_SIZE);
}
if (this->SwapPage((void *)(PageBitmapIndex * PAGE_SIZE)))
{
this->LockPage((void *)(PageBitmapIndex * PAGE_SIZE));
return (void *)(PageBitmapIndex * PAGE_SIZE);
}
error("Out of memory! (Free: %ldMB; Used: %ldMB; Reserved: %ldMB)", TO_MB(FreeMemory), TO_MB(UsedMemory), TO_MB(ReservedMemory));
CPU::Stop();
__builtin_unreachable();
}
void *Physical::RequestPages(size_t Count)
{
SmartLock(this->MemoryLock);
for (; PageBitmapIndex < PageBitmap.Size * 8; PageBitmapIndex++)
{
if (PageBitmap[PageBitmapIndex] == true)
continue;
for (uint64_t Index = PageBitmapIndex; Index < PageBitmap.Size * 8; Index++)
{
if (PageBitmap[Index] == true)
continue;
for (size_t i = 0; i < Count; i++)
{
if (PageBitmap[Index + i] == true)
goto NextPage;
}
this->LockPages((void *)(Index * PAGE_SIZE), Count);
#ifdef DEBUG
if (EnableExternalMemoryTracer)
{
char LockTmpStr[64];
strcpy_unsafe(LockTmpStr, __FUNCTION__);
strcat_unsafe(LockTmpStr, "_memTrk");
mExtTrkLock.TimeoutLock(LockTmpStr, 10000);
sprintf(mExtTrkLog, "RequestPages( %ld )=%p~%p\n\r",
Count,
(void *)(Index * PAGE_SIZE), __builtin_return_address(0));
UniversalAsynchronousReceiverTransmitter::UART mTrkUART = UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM3);
for (short i = 0; i < MEM_TRK_MAX_SIZE; i++)
{
if (mExtTrkLog[i] == '\r')
break;
mTrkUART.Write(mExtTrkLog[i]);
}
mExtTrkLock.Unlock();
}
#endif
return (void *)(Index * PAGE_SIZE);
NextPage:
Index += Count;
continue;
}
}
if (this->SwapPages((void *)(PageBitmapIndex * PAGE_SIZE), Count))
{
this->LockPages((void *)(PageBitmapIndex * PAGE_SIZE), Count);
return (void *)(PageBitmapIndex * PAGE_SIZE);
}
error("Out of memory! (Free: %ldMB; Used: %ldMB; Reserved: %ldMB)", TO_MB(FreeMemory), TO_MB(UsedMemory), TO_MB(ReservedMemory));
CPU::Halt(true);
__builtin_unreachable();
}
void Physical::FreePage(void *Address)
{
SmartLock(this->MemoryLock);
if (unlikely(Address == nullptr))
{
warn("Null pointer passed to FreePage.");
return;
}
size_t Index = (size_t)Address / PAGE_SIZE;
if (unlikely(PageBitmap[Index] == false))
{
warn("Tried to free an already free page. (%p)", Address);
return;
}
if (PageBitmap.Set(Index, false))
{
FreeMemory += PAGE_SIZE;
UsedMemory -= PAGE_SIZE;
if (PageBitmapIndex > Index)
PageBitmapIndex = Index;
}
#ifdef DEBUG
if (EnableExternalMemoryTracer)
{
char LockTmpStr[64];
strcpy_unsafe(LockTmpStr, __FUNCTION__);
strcat_unsafe(LockTmpStr, "_memTrk");
mExtTrkLock.TimeoutLock(LockTmpStr, 10000);
sprintf(mExtTrkLog, "FreePage( %p )~%p\n\r",
Address,
__builtin_return_address(0));
UniversalAsynchronousReceiverTransmitter::UART mTrkUART = UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM3);
for (short i = 0; i < MEM_TRK_MAX_SIZE; i++)
{
if (mExtTrkLog[i] == '\r')
break;
mTrkUART.Write(mExtTrkLog[i]);
}
mExtTrkLock.Unlock();
}
#endif
}
void Physical::FreePages(void *Address, size_t Count)
{
if (unlikely(Address == nullptr || Count == 0))
{
warn("%s%s%s passed to FreePages.", Address == nullptr ? "Null pointer " : "", Address == nullptr && Count == 0 ? "and " : "", Count == 0 ? "Zero count" : "");
return;
}
#ifdef DEBUG
if (EnableExternalMemoryTracer)
{
char LockTmpStr[64];
strcpy_unsafe(LockTmpStr, __FUNCTION__);
strcat_unsafe(LockTmpStr, "_memTrk");
mExtTrkLock.TimeoutLock(LockTmpStr, 10000);
sprintf(mExtTrkLog, "!FreePages( %p %ld )~%p\n\r",
Address, Count,
__builtin_return_address(0));
UniversalAsynchronousReceiverTransmitter::UART mTrkUART = UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM3);
for (short i = 0; i < MEM_TRK_MAX_SIZE; i++)
{
if (mExtTrkLog[i] == '\r')
break;
mTrkUART.Write(mExtTrkLog[i]);
}
mExtTrkLock.Unlock();
}
#endif
for (size_t t = 0; t < Count; t++)
this->FreePage((void *)((uintptr_t)Address + (t * PAGE_SIZE)));
}
void Physical::LockPage(void *Address)
{
if (unlikely(Address == nullptr))
warn("Trying to lock null address.");
uintptr_t Index = (uintptr_t)Address / PAGE_SIZE;
if (unlikely(PageBitmap[Index] == true))
return;
if (PageBitmap.Set(Index, true))
{
FreeMemory -= PAGE_SIZE;
UsedMemory += PAGE_SIZE;
}
}
void Physical::LockPages(void *Address, size_t PageCount)
{
if (unlikely(Address == nullptr || PageCount == 0))
warn("Trying to lock %s%s.", Address ? "null address" : "", PageCount ? "0 pages" : "");
for (size_t i = 0; i < PageCount; i++)
this->LockPage((void *)((uintptr_t)Address + (i * PAGE_SIZE)));
}
void Physical::ReservePage(void *Address)
{
if (unlikely(Address == nullptr))
warn("Trying to reserve null address.");
uintptr_t Index = (Address == NULL) ? 0 : (uintptr_t)Address / PAGE_SIZE;
if (unlikely(PageBitmap[Index] == true))
return;
if (PageBitmap.Set(Index, true))
{
FreeMemory -= PAGE_SIZE;
ReservedMemory += PAGE_SIZE;
}
}
void Physical::ReservePages(void *Address, size_t PageCount)
{
if (unlikely(Address == nullptr || PageCount == 0))
warn("Trying to reserve %s%s.", Address ? "null address" : "", PageCount ? "0 pages" : "");
for (size_t t = 0; t < PageCount; t++)
{
uintptr_t Index = ((uintptr_t)Address + (t * PAGE_SIZE)) / PAGE_SIZE;
if (unlikely(PageBitmap[Index] == true))
return;
if (PageBitmap.Set(Index, true))
{
FreeMemory -= PAGE_SIZE;
ReservedMemory += PAGE_SIZE;
}
}
}
void Physical::UnreservePage(void *Address)
{
if (unlikely(Address == nullptr))
warn("Trying to unreserve null address.");
uintptr_t Index = (Address == NULL) ? 0 : (uintptr_t)Address / PAGE_SIZE;
if (unlikely(PageBitmap[Index] == false))
return;
if (PageBitmap.Set(Index, false))
{
FreeMemory += PAGE_SIZE;
ReservedMemory -= PAGE_SIZE;
if (PageBitmapIndex > Index)
PageBitmapIndex = Index;
}
}
void Physical::UnreservePages(void *Address, size_t PageCount)
{
if (unlikely(Address == nullptr || PageCount == 0))
warn("Trying to unreserve %s%s.", Address ? "null address" : "", PageCount ? "0 pages" : "");
for (size_t t = 0; t < PageCount; t++)
{
uintptr_t Index = ((uintptr_t)Address + (t * PAGE_SIZE)) / PAGE_SIZE;
if (unlikely(PageBitmap[Index] == false))
return;
if (PageBitmap.Set(Index, false))
{
FreeMemory += PAGE_SIZE;
ReservedMemory -= PAGE_SIZE;
if (PageBitmapIndex > Index)
PageBitmapIndex = Index;
}
}
}
void Physical::Init(BootInfo *Info)
{
SmartLock(this->MemoryLock);
uint64_t MemorySize = Info->Memory.Size;
debug("Memory size: %lld bytes (%ld pages)", MemorySize, TO_PAGES(MemorySize));
TotalMemory = MemorySize;
FreeMemory = MemorySize;
size_t BitmapSize = (MemorySize / PAGE_SIZE) / 8 + 1;
void *LargestFreeMemorySegment = nullptr;
uint64_t LargestFreeMemorySegmentSize = 0;
for (uint64_t i = 0; i < Info->Memory.Entries; i++)
{
if (Info->Memory.Entry[i].Type == Usable)
{
if (Info->Memory.Entry[i].Length > LargestFreeMemorySegmentSize)
{
/* We don't want to use 0 as a memory address. */
if (Info->Memory.Entry[i].BaseAddress == 0x0)
{
debug("Ignoring memory segment at 0x0");
continue;
}
if (Info->Memory.Entry[i].Length > BitmapSize + 0x1000)
{
LargestFreeMemorySegment = (void *)Info->Memory.Entry[i].BaseAddress;
LargestFreeMemorySegmentSize = Info->Memory.Entry[i].Length;
#define ROUND_UP(N, S) ((((N) + (S)-1) / (S)) * (S))
if (LargestFreeMemorySegment >= Info->Kernel.PhysicalBase &&
LargestFreeMemorySegment <= (void *)((uintptr_t)Info->Kernel.PhysicalBase + Info->Kernel.Size))
{
debug("Kernel range: %#lx-%#lx", Info->Kernel.PhysicalBase, (void *)((uintptr_t)Info->Kernel.PhysicalBase + Info->Kernel.Size));
void *NewLargestFreeMemorySegment = (void *)((uintptr_t)Info->Kernel.PhysicalBase + Info->Kernel.Size);
void *RoundNewLargestFreeMemorySegment = (void *)ROUND_UP((uintptr_t)NewLargestFreeMemorySegment, PAGE_SIZE);
RoundNewLargestFreeMemorySegment = (void *)((uintptr_t)RoundNewLargestFreeMemorySegment + PAGE_SIZE); /* Leave a page between the kernel and the bitmap */
debug("Rounding %p to %p", NewLargestFreeMemorySegment, RoundNewLargestFreeMemorySegment);
info("Memory bitmap's memory segment is in the kernel, moving it to %p", RoundNewLargestFreeMemorySegment);
LargestFreeMemorySegmentSize = (uintptr_t)LargestFreeMemorySegmentSize - ((uintptr_t)RoundNewLargestFreeMemorySegment - (uintptr_t)LargestFreeMemorySegment);
LargestFreeMemorySegment = RoundNewLargestFreeMemorySegment;
}
#undef ROUND_UP
if (LargestFreeMemorySegmentSize < BitmapSize + 0x1000)
{
trace("Largest free memory segment is too small (%lld bytes), skipping...",
LargestFreeMemorySegmentSize);
continue;
}
debug("Found a memory segment of %lld bytes (%lldMB) at %llp (out segment is %lld bytes (%lldKB)))",
LargestFreeMemorySegmentSize,
TO_MB(LargestFreeMemorySegmentSize),
LargestFreeMemorySegment,
BitmapSize,
TO_KB(BitmapSize));
break;
}
// LargestFreeMemorySegment = (void *)Info->Memory.Entry[i].BaseAddress;
// LargestFreeMemorySegmentSize = Info->Memory.Entry[i].Length;
// debug("Largest free memory segment: %llp (%lldMB)",
// (void *)Info->Memory.Entry[i].BaseAddress,
// TO_MB(Info->Memory.Entry[i].Length));
}
}
}
if (LargestFreeMemorySegment == nullptr)
{
error("No free memory found!");
CPU::Stop();
}
/* TODO: Read swap config and make the configure the bitmap size correctly */
debug("Initializing Bitmap at %llp-%llp (%lld Bytes)",
LargestFreeMemorySegment,
(void *)((uintptr_t)LargestFreeMemorySegment + BitmapSize),
BitmapSize);
PageBitmap.Size = BitmapSize;
PageBitmap.Buffer = (uint8_t *)LargestFreeMemorySegment;
for (size_t i = 0; i < BitmapSize; i++)
*(uint8_t *)(PageBitmap.Buffer + i) = 0;
debug("Reserving pages...");
this->ReservePages(0, TO_PAGES(Info->Memory.Size));
debug("Unreserving usable pages...");
for (uint64_t i = 0; i < Info->Memory.Entries; i++)
{
if (Info->Memory.Entry[i].Type == Usable && Info->Memory.Entry[i].BaseAddress != 0x0)
this->UnreservePages(Info->Memory.Entry[i].BaseAddress, TO_PAGES(Info->Memory.Entry[i].Length));
}
debug("Reserving pages for SMP...");
this->ReservePage((void *)0x0); /* Trampoline stack, gdt, idt, etc... */
this->ReservePages((void *)0x2000, 4); /* TRAMPOLINE_START */
debug("Reserving bitmap region %#lx-%#lx...", PageBitmap.Buffer, (void *)((uintptr_t)PageBitmap.Buffer + PageBitmap.Size));
this->ReservePages(PageBitmap.Buffer, TO_PAGES(PageBitmap.Size));
// debug("Reserving page table...");
// this->ReservePages(BootPageTable, TO_PAGES(0x10000)); << in the bootstrap region
debug("Reserving kernel bootstrap region %#lx-%#lx...", &_bootstrap_start, &_bootstrap_end);
this->ReservePages(&_bootstrap_start, TO_PAGES((uintptr_t)&_bootstrap_end - (uintptr_t)&_bootstrap_start));
void *KernelPhysicalStart = (void *)(((uintptr_t)&_kernel_start - KERNEL_VMA_OFFSET));
void *KernelPhysicalEnd = (void *)(((uintptr_t)&_kernel_end - KERNEL_VMA_OFFSET));
debug("Reserving kernel region %#lx-%#lx...", KernelPhysicalStart, KernelPhysicalEnd);
this->ReservePages((void *)KernelPhysicalStart, TO_PAGES((uintptr_t)&_kernel_end - (uintptr_t)&_kernel_start));
ACPI::ACPI::ACPIHeader *hdr = nullptr;
bool XSDT = false;
if (Info->RSDP->Revision >= 2 && Info->RSDP->XSDTAddress)
{
hdr = (ACPI::ACPI::ACPIHeader *)(Info->RSDP->XSDTAddress);
XSDT = true;
}
else
{
hdr = (ACPI::ACPI::ACPIHeader *)(uintptr_t)Info->RSDP->RSDTAddress;
}
debug("Reserving RSDT...");
this->ReservePages((void*)Info->RSDP, TO_PAGES(sizeof(BootInfo::RSDPInfo)));
debug("Reserving ACPI tables...");
uint64_t TableSize = ((hdr->Length - sizeof(ACPI::ACPI::ACPIHeader)) / (XSDT ? 8 : 4));
debug("Table size: %lld", TableSize);
for (uint64_t t = 0; t < TableSize; t++)
{
// TODO: Should I be concerned about unaligned memory access?
ACPI::ACPI::ACPIHeader *SDTHdr = nullptr;
if (XSDT)
SDTHdr = (ACPI::ACPI::ACPIHeader *)(*(uint64_t *)((uint64_t)hdr + sizeof(ACPI::ACPI::ACPIHeader) + (t * 8)));
else
SDTHdr = (ACPI::ACPI::ACPIHeader *)(*(uint32_t *)((uint64_t)hdr + sizeof(ACPI::ACPI::ACPIHeader) + (t * 4)));
this->ReservePages(SDTHdr, TO_PAGES(SDTHdr->Length));
}
debug("Reserving kernel modules...");
for (uint64_t i = 0; i < MAX_MODULES; i++)
{
if (Info->Modules[i].Address == 0x0)
continue;
debug("Reserving module %s (%#lx-%#lx)...", Info->Modules[i].CommandLine,
Info->Modules[i].Address, (void *)((uintptr_t)Info->Modules[i].Address + Info->Modules[i].Size));
this->ReservePages((void *)Info->Modules[i].Address, TO_PAGES(Info->Modules[i].Size));
}
}
Physical::Physical() {}
Physical::~Physical() {}
}

View File

@ -0,0 +1,110 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include <memory.hpp>
#include <debug.h>
namespace Memory
{
StackGuard::StackGuard(bool User, PageTable4 *Table)
{
this->UserMode = User;
this->Table = Table;
if (this->UserMode)
{
void *AllocatedStack = KernelAllocator.RequestPages(TO_PAGES(USER_STACK_SIZE + 1));
memset(AllocatedStack, 0, USER_STACK_SIZE);
debug("AllocatedStack: %p", AllocatedStack);
Virtual va = Virtual(Table);
for (size_t i = 0; i < TO_PAGES(USER_STACK_SIZE); i++)
{
va.Map((void *)(USER_STACK_BASE + (i * PAGE_SIZE)),
(void *)((uintptr_t)AllocatedStack + (i * PAGE_SIZE)),
PTFlag::RW | PTFlag::US);
debug("Mapped %p to %p", (void *)(USER_STACK_BASE + (i * PAGE_SIZE)),
(void *)((uintptr_t)AllocatedStack + (i * PAGE_SIZE)));
}
this->StackBottom = (void *)USER_STACK_BASE;
this->StackTop = (void *)(USER_STACK_BASE + USER_STACK_SIZE);
this->StackPhyiscalBottom = AllocatedStack;
this->StackPhyiscalTop = (void *)((uintptr_t)AllocatedStack + USER_STACK_SIZE);
this->Size = USER_STACK_SIZE;
}
else
{
this->StackBottom = KernelAllocator.RequestPages(TO_PAGES(STACK_SIZE + 1));
memset(this->StackBottom, 0, STACK_SIZE);
debug("StackBottom: %p", this->StackBottom);
this->StackTop = (void *)((uintptr_t)this->StackBottom + STACK_SIZE);
this->StackPhyiscalBottom = this->StackBottom;
this->StackPhyiscalTop = this->StackTop;
this->Size = STACK_SIZE;
}
debug("Allocated stack at %p", this->StackBottom);
}
StackGuard::~StackGuard()
{
fixme("Temporarily disabled stack guard deallocation");
// KernelAllocator.FreePages(this->StackBottom, TO_PAGES(this->Size + 1));
// debug("Freed stack at %p", this->StackBottom);
}
bool StackGuard::Expand(uintptr_t FaultAddress)
{
if (this->UserMode)
{
if (FaultAddress < (uintptr_t)this->StackBottom - USER_STACK_SIZE ||
FaultAddress > (uintptr_t)this->StackTop)
{
return false; /* It's not about the stack. */
}
else
{
void *AllocatedStack = KernelAllocator.RequestPages(TO_PAGES(USER_STACK_SIZE + 1));
debug("AllocatedStack: %p", AllocatedStack);
memset(AllocatedStack, 0, USER_STACK_SIZE);
Virtual va = Virtual(this->Table);
for (uintptr_t i = 0; i < TO_PAGES(USER_STACK_SIZE); i++)
{
va.Map((void *)((uintptr_t)this->StackBottom - (i * PAGE_SIZE)), (void *)((uintptr_t)AllocatedStack + (i * PAGE_SIZE)), PTFlag::RW | PTFlag::US);
debug("Mapped %p to %p", (void *)((uintptr_t)this->StackBottom - (i * PAGE_SIZE)), (void *)((uintptr_t)AllocatedStack + (i * PAGE_SIZE)));
}
this->StackBottom = (void *)((uintptr_t)this->StackBottom - USER_STACK_SIZE);
this->Size += USER_STACK_SIZE;
info("Stack expanded to %p", this->StackBottom);
return true;
}
}
else
{
fixme("Not implemented and probably not needed");
return false;
}
}
}

View File

@ -0,0 +1,304 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include <memory.hpp>
#include <convert.h>
#include <debug.h>
namespace Memory
{
bool Virtual::Check(void *VirtualAddress, PTFlag Flag, MapType Type)
{
// 0x1000 aligned
uintptr_t Address = (uintptr_t)VirtualAddress;
Address &= 0xFFFFFFFFFFFFF000;
PageMapIndexer Index = PageMapIndexer(Address);
PageMapLevel4 PML4 = this->Table->Entries[Index.PMLIndex];
PageDirectoryPointerTableEntryPtr *PDPTE = nullptr;
PageDirectoryEntryPtr *PDE = nullptr;
PageTableEntryPtr *PTE = nullptr;
if ((PML4.raw & Flag) > 0)
{
PDPTE = (PageDirectoryPointerTableEntryPtr *)((uintptr_t)PML4.GetAddress() << 12);
if (PDPTE)
{
if ((PDPTE->Entries[Index.PDPTEIndex].Present))
{
if (Type == MapType::OneGB && PDPTE->Entries[Index.PDPTEIndex].PageSize)
return true;
PDE = (PageDirectoryEntryPtr *)((uintptr_t)PDPTE->Entries[Index.PDPTEIndex].GetAddress() << 12);
if (PDE)
{
if (Type == MapType::TwoMB && PDE->Entries[Index.PDEIndex].PageSize)
return true;
if ((PDE->Entries[Index.PDEIndex].Present))
{
PTE = (PageTableEntryPtr *)((uintptr_t)PDE->Entries[Index.PDEIndex].GetAddress() << 12);
if (PTE)
{
if ((PTE->Entries[Index.PTEIndex].Present))
return true;
}
}
}
}
}
}
return false;
}
void *Virtual::GetPhysical(void *VirtualAddress)
{
// 0x1000 aligned
uintptr_t Address = (uintptr_t)VirtualAddress;
Address &= 0xFFFFFFFFFFFFF000;
PageMapIndexer Index = PageMapIndexer(Address);
PageMapLevel4 PML4 = this->Table->Entries[Index.PMLIndex];
PageDirectoryPointerTableEntryPtr *PDPTE = nullptr;
PageDirectoryEntryPtr *PDE = nullptr;
PageTableEntryPtr *PTE = nullptr;
if (PML4.Present)
{
PDPTE = (PageDirectoryPointerTableEntryPtr *)((uintptr_t)PML4.GetAddress() << 12);
if (PDPTE)
{
if (PDPTE->Entries[Index.PDPTEIndex].Present)
{
if (PDPTE->Entries[Index.PDPTEIndex].PageSize)
return (void *)((uintptr_t)PDPTE->Entries[Index.PDPTEIndex].GetAddress() << 12);
PDE = (PageDirectoryEntryPtr *)((uintptr_t)PDPTE->Entries[Index.PDPTEIndex].GetAddress() << 12);
if (PDE)
{
if (PDE->Entries[Index.PDEIndex].Present)
{
if (PDE->Entries[Index.PDEIndex].PageSize)
return (void *)((uintptr_t)PDE->Entries[Index.PDEIndex].GetAddress() << 12);
PTE = (PageTableEntryPtr *)((uintptr_t)PDE->Entries[Index.PDEIndex].GetAddress() << 12);
if (PTE)
{
if (PTE->Entries[Index.PTEIndex].Present)
return (void *)((uintptr_t)PTE->Entries[Index.PTEIndex].GetAddress() << 12);
}
}
}
}
}
}
return nullptr;
}
void Virtual::Map(void *VirtualAddress, void *PhysicalAddress, uint64_t Flags, MapType Type)
{
SmartLock(this->MemoryLock);
if (unlikely(!this->Table))
{
error("No page table");
return;
}
Flags |= PTFlag::P;
PageMapIndexer Index = PageMapIndexer((uintptr_t)VirtualAddress);
// Clear any flags that are not 1 << 0 (Present) - 1 << 5 (Accessed) because rest are for page table entries only
uint64_t DirectoryFlags = Flags & 0x3F;
PageMapLevel4 *PML4 = &this->Table->Entries[Index.PMLIndex];
PageDirectoryPointerTableEntryPtr *PDPTEPtr = nullptr;
if (!PML4->Present)
{
PDPTEPtr = (PageDirectoryPointerTableEntryPtr *)KernelAllocator.RequestPages(TO_PAGES(sizeof(PageDirectoryPointerTableEntryPtr) + 1));
memset(PDPTEPtr, 0, sizeof(PageDirectoryPointerTableEntryPtr));
PML4->Present = true;
PML4->SetAddress((uintptr_t)PDPTEPtr >> 12);
}
else
PDPTEPtr = (PageDirectoryPointerTableEntryPtr *)(PML4->GetAddress() << 12);
PML4->raw |= DirectoryFlags;
PageDirectoryPointerTableEntry *PDPTE = &PDPTEPtr->Entries[Index.PDPTEIndex];
if (Type == MapType::OneGB)
{
PDPTE->raw |= Flags;
PDPTE->PageSize = true;
PDPTE->SetAddress((uintptr_t)PhysicalAddress >> 12);
debug("Mapped 1GB page at %p to %p", VirtualAddress, PhysicalAddress);
return;
}
PageDirectoryEntryPtr *PDEPtr = nullptr;
if (!PDPTE->Present)
{
PDEPtr = (PageDirectoryEntryPtr *)KernelAllocator.RequestPages(TO_PAGES(sizeof(PageDirectoryEntryPtr) + 1));
memset(PDEPtr, 0, sizeof(PageDirectoryEntryPtr));
PDPTE->Present = true;
PDPTE->SetAddress((uintptr_t)PDEPtr >> 12);
}
else
PDEPtr = (PageDirectoryEntryPtr *)(PDPTE->GetAddress() << 12);
PDPTE->raw |= DirectoryFlags;
PageDirectoryEntry *PDE = &PDEPtr->Entries[Index.PDEIndex];
if (Type == MapType::TwoMB)
{
PDE->raw |= Flags;
PDE->PageSize = true;
PDE->SetAddress((uintptr_t)PhysicalAddress >> 12);
debug("Mapped 2MB page at %p to %p", VirtualAddress, PhysicalAddress);
return;
}
PageTableEntryPtr *PTEPtr = nullptr;
if (!PDE->Present)
{
PTEPtr = (PageTableEntryPtr *)KernelAllocator.RequestPages(TO_PAGES(sizeof(PageTableEntryPtr) + 1));
memset(PTEPtr, 0, sizeof(PageTableEntryPtr));
PDE->Present = true;
PDE->SetAddress((uintptr_t)PTEPtr >> 12);
}
else
PTEPtr = (PageTableEntryPtr *)(PDE->GetAddress() << 12);
PDE->raw |= DirectoryFlags;
PageTableEntry *PTE = &PTEPtr->Entries[Index.PTEIndex];
PTE->Present = true;
PTE->raw |= Flags;
PTE->SetAddress((uintptr_t)PhysicalAddress >> 12);
#if defined(a64)
CPU::x64::invlpg(VirtualAddress);
#elif defined(a32)
CPU::x32::invlpg(VirtualAddress);
#elif defined(aa64)
asmv("dsb sy");
asmv("tlbi vae1is, %0"
:
: "r"(VirtualAddress)
: "memory");
asmv("dsb sy");
asmv("isb");
#endif
#ifdef DEBUG
/* https://stackoverflow.com/a/3208376/9352057 */
#define BYTE_TO_BINARY_PATTERN "%c%c%c%c%c%c%c%c"
#define BYTE_TO_BINARY(byte) \
(byte & 0x80 ? '1' : '0'), \
(byte & 0x40 ? '1' : '0'), \
(byte & 0x20 ? '1' : '0'), \
(byte & 0x10 ? '1' : '0'), \
(byte & 0x08 ? '1' : '0'), \
(byte & 0x04 ? '1' : '0'), \
(byte & 0x02 ? '1' : '0'), \
(byte & 0x01 ? '1' : '0')
if (!this->Check(VirtualAddress, (PTFlag)Flags, Type)) // quick workaround just to see where it fails
warn("Failed to map v:%#lx p:%#lx with flags: " BYTE_TO_BINARY_PATTERN, VirtualAddress, PhysicalAddress, BYTE_TO_BINARY(Flags));
#endif
}
void Virtual::Unmap(void *VirtualAddress, MapType Type)
{
SmartLock(this->MemoryLock);
if (!this->Table)
{
error("No page table");
return;
}
PageMapIndexer Index = PageMapIndexer((uintptr_t)VirtualAddress);
PageMapLevel4 *PML4 = &this->Table->Entries[Index.PMLIndex];
if (!PML4->Present)
{
error("Page %#lx not present", PML4->GetAddress());
return;
}
PageDirectoryPointerTableEntryPtr *PDPTEPtr = (PageDirectoryPointerTableEntryPtr *)((uintptr_t)PML4->Address << 12);
PageDirectoryPointerTableEntry *PDPTE = &PDPTEPtr->Entries[Index.PDPTEIndex];
if (!PDPTE->Present)
{
error("Page %#lx not present", PDPTE->GetAddress());
return;
}
if (Type == MapType::OneGB && PDPTE->PageSize)
{
PDPTE->Present = false;
return;
}
PageDirectoryEntryPtr *PDEPtr = (PageDirectoryEntryPtr *)((uintptr_t)PDPTE->Address << 12);
PageDirectoryEntry *PDE = &PDEPtr->Entries[Index.PDEIndex];
if (!PDE->Present)
{
error("Page %#lx not present", PDE->GetAddress());
return;
}
if (Type == MapType::TwoMB && PDE->PageSize)
{
PDE->Present = false;
return;
}
PageTableEntryPtr *PTEPtr = (PageTableEntryPtr *)((uintptr_t)PDE->Address << 12);
PageTableEntry PTE = PTEPtr->Entries[Index.PTEIndex];
if (!PTE.Present)
{
error("Page %#lx not present", PTE.GetAddress());
return;
}
PTE.Present = false;
PTEPtr->Entries[Index.PTEIndex] = PTE;
#if defined(a64)
CPU::x64::invlpg(VirtualAddress);
#elif defined(a32)
CPU::x32::invlpg(VirtualAddress);
#elif defined(aa64)
asmv("dsb sy");
asmv("tlbi vae1is, %0"
:
: "r"(VirtualAddress)
: "memory");
asmv("dsb sy");
asmv("isb");
#endif
}
Virtual::Virtual(PageTable4 *Table)
{
if (Table)
this->Table = Table;
else
this->Table = (PageTable4 *)CPU::PageTable();
}
Virtual::~Virtual() {}
}

View File

@ -0,0 +1,886 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include <pci.hpp>
#include <memory.hpp>
#include <power.hpp>
#if defined(a64)
#include "../Architecture/amd64/acpi.hpp"
#elif defined(a32)
#elif defined(aa64)
#endif
#include "../kernel.h"
namespace PCI
{
namespace Descriptors
{
const char *u8ToHexString(uint8_t Value)
{
static char Buffer[3];
memset(Buffer, 0, 3);
for (size_t i = 0; i < 2; i++)
{
uint8_t Digit = (Value >> (4 - (i * 4))) & 0xF;
if (Digit < 10)
Buffer[i] = s_cst(char, '0' + Digit);
else
Buffer[i] = s_cst(char, 'A' + (Digit - 10));
}
return Buffer;
}
const char *u32ToHexString(uint32_t Value)
{
static char Buffer[9];
memset(Buffer, 0, 9);
for (size_t i = 0; i < 8; i++)
{
uint8_t Digit = (Value >> (28 - (i * 4))) & 0xF;
if (Digit < 10)
Buffer[i] = s_cst(char, '0' + Digit);
else
Buffer[i] = s_cst(char, 'A' + (Digit - 10));
}
return Buffer;
}
const char *MassStorageControllerSubclassName(uint8_t SubclassCode)
{
switch (SubclassCode)
{
case 0x00:
return "SCSI Bus Controller";
case 0x01:
return "IDE Controller";
case 0x02:
return "Floppy Disk Controller";
case 0x03:
return "IPI Bus Controller";
case 0x04:
return "RAID Controller";
case 0x05:
return "ATA Controller";
case 0x06:
return "Serial ATA";
case 0x07:
return "Serial Attached SCSI Controller";
case 0x08:
return "Non-Volatile Memory Controller";
case 0x80:
return "Mass Storage Controller";
default:
break;
}
fixme("Unknown mass storage controller %02x", SubclassCode);
return u8ToHexString(SubclassCode);
}
const char *NetworkControllerSubclassName(uint8_t SubclassCode)
{
switch (SubclassCode)
{
case 0x00:
return "Ethernet Controller";
case 0x01:
return "Token Ring Controller";
case 0x02:
return "FDDI Controller";
case 0x03:
return "ATM Controller";
case 0x04:
return "ISDN Controller";
case 0x05:
return "WorldFip Controller";
case 0x06:
return "PICMG HyperCard Controller";
case 0x07:
return "Infiniband Controller";
case 0x08:
return "Fabric Controller";
case 0x80:
return "Network Controller";
default:
break;
}
fixme("Unknown network controller %02x", SubclassCode);
return u8ToHexString(SubclassCode);
}
const char *DisplayControllerSubclassName(uint8_t SubclassCode)
{
switch (SubclassCode)
{
case 0x00:
return "VGA Compatible Controller";
case 0x01:
return "XGA Controller";
case 0x02:
return "3D Controller";
case 0x80:
return "Display Controller";
default:
break;
}
fixme("Unknown display controller %02x", SubclassCode);
return u8ToHexString(SubclassCode);
}
const char *CommunicationControllerSubclassName(uint8_t SubclassCode)
{
switch (SubclassCode)
{
case 0x00:
return "Serial Controller";
case 0x01:
return "Parallel Controller";
case 0x02:
return "Multi-Serial Controller";
case 0x03:
return "IEEE-1284 Controller";
case 0x04:
return "ATM Controller";
case 0x05:
return "Object Storage Controller";
case 0x80:
return "Communication controller";
default:
break;
}
fixme("Unknown communication controller %02x", SubclassCode);
return u8ToHexString(SubclassCode);
}
const char *BaseSystemPeripheralSubclassName(uint8_t SubclassCode)
{
// not sure if it's right
switch (SubclassCode)
{
case 0x00:
return "Unclassified";
case 0x01:
return "Keyboard";
case 0x02:
return "Pointing Device";
case 0x03:
return "Mouse";
case 0x04:
return "Scanner";
case 0x05:
return "Gameport";
case 0x80:
return "Unclassified";
default:
break;
}
fixme("Unknown base system peripheral %02x", SubclassCode);
return u8ToHexString(SubclassCode);
}
const char *SerialBusControllerSubclassName(uint8_t SubclassCode)
{
switch (SubclassCode)
{
case 0x00:
return "FireWire (IEEE 1394) Controller";
case 0x01:
return "ACCESS Bus Controller";
case 0x02:
return "SSA Controller";
case 0x03:
return "USB Controller";
case 0x04:
return "Fibre Channel Controller";
case 0x05:
return "SMBus Controller";
case 0x06:
return "Infiniband Controller";
case 0x07:
return "IPMI Interface Controller";
case 0x08:
return "SERCOS Interface (IEC 61491) Controller";
case 0x09:
return "CANbus Controller";
case 0x80:
return "Serial Bus Controller";
default:
break;
}
fixme("Unknown serial bus controller %02x", SubclassCode);
return u8ToHexString(SubclassCode);
}
const char *BridgeDeviceSubclassName(uint8_t SubclassCode)
{
switch (SubclassCode)
{
case 0x00:
return "Host Bridge";
case 0x01:
return "ISA Bridge";
case 0x02:
return "EISA Bridge";
case 0x03:
return "MCA Bridge";
case 0x04:
return "PCI-to-PCI Bridge";
case 0x05:
return "PCMCIA Bridge";
case 0x06:
return "NuBus Bridge";
case 0x07:
return "CardBus Bridge";
case 0x08:
return "RACEway Bridge";
case 0x09:
return "PCI-to-PCI Bridge";
case 0x0A:
return "InfiniBand-to-PCI Host Bridge";
case 0x80:
return "Bridge Device";
default:
break;
}
fixme("Unknown bridge device %02x", SubclassCode);
return u8ToHexString(SubclassCode);
}
const char *WirelessControllerSubclassName(uint8_t SubclassCode)
{
switch (SubclassCode)
{
case 0x11:
return "Bluetooth";
case 0x20:
return "802.1a controller";
case 0x21:
return "802.1b controller";
case 0x80:
return "Wireless controller";
default:
break;
}
fixme("Unknown wireless controller %02x", SubclassCode);
return u8ToHexString(SubclassCode);
}
const char *GetVendorName(uint32_t VendorID)
{
switch (VendorID)
{
case 0x1000:
return "Symbios Logic";
case 0x1B36:
case 0x1AF4:
return "Red Hat, Inc.";
case 0x10EC:
return "Realtek Semiconductor Co., Ltd.";
case 0x80EE:
return "VirtualBox";
case 0x1274:
return "Ensoniq";
case 0x1234:
return "QEMU";
case 0x15AD:
return "VMware";
case 0x8086:
return "Intel Corporation";
case 0x1022:
return "Advanced Micro Devices, Inc.";
case 0x10DE:
return "NVIDIA Corporation";
case 0x1AE0:
return "Google, Inc.";
case 0x1a58:
return "Razer USA Ltd.";
case 0x1414:
return "Microsoft Corporation";
default:
break;
}
fixme("Unknown vendor %04x", VendorID);
return u32ToHexString(VendorID);
}
const char *GetDeviceName(uint32_t VendorID, uint32_t DeviceID)
{
switch (VendorID)
{
case SymbiosLogic:
{
switch (DeviceID)
{
case 0x30:
return "53c1030 PCI-X Fusion-MPT Dual Ultra320 SCSI";
case 0x1000:
return "63C815";
default:
break;
}
break;
}
case RedHat:
{
switch (DeviceID)
{
case 0x1000:
case 0x1041:
return "Virtio network device";
case 0x1001:
case 0x1042:
return "Virtio block device";
case 0x1002:
case 0x1045:
return "Virtio memory balloon";
case 0x1003:
case 0x1043:
return "Virtio console";
case 0x1004:
case 0x1048:
return "Virtio SCSI";
case 0x1005:
case 0x1044:
return "Virtio RNG";
case 0x1009:
case 0x1049:
case 0x105a:
return "Virtio filesystem";
case 0x1050:
return "Virtio GPU";
case 0x1052:
return "Virtio input";
case 0x1053:
return "Virtio socket";
case 1110:
return "Inter-VM shared memory";
case 0x1af41100:
return "QEMU Virtual Machine";
default:
break;
}
break;
}
case REDHat2:
{
switch (DeviceID)
{
case 0x0001:
return "QEMU PCI-PCI bridge";
case 0x0002:
return "QEMU PCI 16550A Adapter";
case 0x0003:
return "QEMU PCI Dual-port 16550A Adapter";
case 0x0004:
return "QEMU PCI Quad-port 16550A Adapter";
case 0x0005:
return "QEMU PCI Test Device";
case 0x0006:
return "PCI Rocker Ethernet switch device";
case 0x0007:
return "PCI SD Card Host Controller Interface";
case 0x0008:
return "QEMU PCIe Host bridge";
case 0x0009:
return "QEMU PCI Expander bridge";
case 0x000A:
return "PCI-PCI bridge (multiseat)";
case 0x000B:
return "QEMU PCIe Expander bridge";
case 0x000C:
return "QEMU PCIe Root Port";
case 0x000D:
return "QEMU XHCI Host Controller";
case 0x0010:
return "QEMU NVM Express Controller";
case 0x0100:
return "QXL Paravirtual Graphic Card";
case 0x1AF41100:
return "QEMU Virtual Machine";
default:
break;
}
break;
}
case Realtek:
{
switch (DeviceID)
{
case 0x8029:
return "RTL-8029(AS)";
case 0x8139:
return "RTL-8139/8139C/8139C+ Ethernet Controller";
default:
break;
}
break;
}
case VirtualBox:
{
switch (DeviceID)
{
case 0xCAFE:
return "VirtualBox Guest Service";
case 0xBEEF:
return "VirtualBox Graphics Adapter";
case 0x0021:
return "USB Tablet";
case 0x0022:
return "Multitouch tablet";
case 0x4E56:
return "NVM Express";
default:
break;
}
break;
}
case Ensoniq:
{
switch (DeviceID)
{
case 0x1371:
return "ES1371/ES1373 / Creative Labs CT2518";
case 0x5000:
return "ES1370 [AudioPCI]";
default:
break;
}
break;
}
case QEMU:
{
switch (DeviceID)
{
case 0x1111:
return "QEMU Display";
default:
break;
}
break;
}
case VMware:
{
switch (DeviceID)
{
case 0x0740:
return "Virtual Machine Communication Interface";
case 0x0405:
return "SVGA II Adapter";
case 0x0790:
return "PCI bridge";
case 0x07A0:
return "PCI Express Root Port";
case 0x0774:
return "USB1.1 UHCI Controller";
case 0x0770:
return "USB2 EHCI Controller";
case 0x0779:
return "USB3 xHCI 1.0 Controller";
case 0x07E0:
return "SATA AHCI controller";
case 0x07F0:
return "NVM Express";
default:
break;
}
break;
}
case IntelCorporation:
{
switch (DeviceID)
{
case 0x1229:
return "82557/8/9/0/1 Ethernet Pro 100";
case 0x1209:
return "8255xER/82551IT Fast Ethernet Controller";
case 0x100E:
return "82540EM Gigabit Ethernet Controller";
case 0x7190:
return "440BX/ZX/DX - 82443BX/ZX/DX Host bridge";
case 0x7191:
return "440BX/ZX/DX - 82443BX/ZX/DX AGP bridge";
case 0x7110:
return "82371AB/EB/MB PIIX4 ISA";
case 0x7111:
return "82371AB/EB/MB PIIX4 IDE";
case 0x7113:
return "82371AB/EB/MB PIIX4 ACPI";
case 0x1e31:
return "7 Series/C210 Series Chipset Family USB xHCI Host Controller";
case 0x100F:
return "82545EM Gigabit Ethernet Controller (Copper)";
case 0x1371:
return "ES1371/ES1373 / Creative Labs CT2518";
case 0x27b9:
return "82801GBM (ICH7-M) LPC Interface Bridge";
case 0x07E0:
return "SATA AHCI controller";
case 0x293E:
return "82801I (ICH9 Family) HD Audio Controller";
case 0x2935:
return "82801I (ICH9 Family) USB UHCI Controller #2";
case 0x2936:
return "82801I (ICH9 Family) USB UHCI Controller #3";
case 0x293A:
return "82801I (ICH9 Family) USB2 EHCI Controller #1";
case 0x2934:
return "82801I (ICH9 Family) USB UHCI Controller #1";
case 0x2668:
return "82801FB/FBM/FR/FW/FRW (ICH6 Family) High Definition Audio Controller";
case 0x2415:
return "82801AA AC'97 Audio Controller";
case 0x10D3:
return "82574L Gigabit Network Connection";
case 0x29C0:
return "82G33/G31/P35/P31 Express DRAM Controller";
case 0x2918:
return "82801IB (ICH9) LPC Interface Controller";
case 0x2829:
return "82801HM/HEM (ICH8M/ICH8M-E) SATA Controller [AHCI mode]";
case 0x2922:
return "82801IR/IO/IH (ICH9R/DO/DH) 6 port SATA Controller [AHCI mode]";
case 0x2930:
return "82801I (ICH9 Family) SMBus Controller";
default:
break;
}
break;
}
case AdvancedMicroDevices:
{
switch (DeviceID)
{
case 0x2000:
return "79C970 [PCnet32 LANCE]";
default:
break;
}
break;
}
default:
break;
}
fixme("Unknown device %04x:%04x", VendorID, DeviceID);
return u32ToHexString(DeviceID);
}
const char *GetSubclassName(uint8_t ClassCode, uint8_t SubclassCode)
{
switch (ClassCode)
{
case 0x00:
return "Unclassified";
case 0x01:
return MassStorageControllerSubclassName(SubclassCode);
case 0x02:
return NetworkControllerSubclassName(SubclassCode);
case 0x03:
return DisplayControllerSubclassName(SubclassCode);
case 0x04:
return "Multimedia controller";
case 0x05:
return "Memory Controller";
case 0x06:
return BridgeDeviceSubclassName(SubclassCode);
case 0x07:
return CommunicationControllerSubclassName(SubclassCode);
case 0x08:
return BaseSystemPeripheralSubclassName(SubclassCode);
case 0x09:
return "Input device controller";
case 0x0A:
return "Docking station";
case 0x0B:
return "Processor";
case 0x0C:
return SerialBusControllerSubclassName(SubclassCode);
case 0x0D:
return WirelessControllerSubclassName(SubclassCode);
case 0x0E:
return "Intelligent controller";
case 0x0F:
return "Satellite communication controller";
case 0x10:
return "Encryption controller";
case 0x11:
return "Signal processing accelerators";
case 0x12:
return "Processing accelerators";
case 0x13:
return "Non-Essential Instrumentation";
case 0x40:
return "Coprocessor";
default:
break;
}
fixme("Unknown subclass name %02x:%02x", ClassCode, SubclassCode);
return u8ToHexString(SubclassCode);
}
const char *GetProgIFName(uint8_t ClassCode, uint8_t SubclassCode, uint8_t ProgIF)
{
switch (ClassCode)
{
case 0x01:
{
switch (SubclassCode)
{
case 0x06:
{
switch (ProgIF)
{
case 0:
return "Vendor Specific SATA Controller";
case 1:
return "AHCI SATA Controller";
case 2:
return "Serial Storage Bus SATA Controller";
default:
return "SATA controller";
}
break;
}
case 0x08:
{
switch (ProgIF)
{
case 0x01:
return "NVMHCI Controller";
case 0x02:
return "NVM Express Controller";
default:
return "Non-Volatile Memory Controller";
}
break;
}
default:
break;
}
default:
break;
}
case 0x03:
{
switch (SubclassCode)
{
case 0x00:
switch (ProgIF)
{
case 0x00:
return "VGA Controller";
case 0x01:
return "8514-Compatible Controller";
default:
return "VGA Compatible Controller";
}
break;
default:
break;
}
break;
}
case 0x07:
{
switch (SubclassCode)
{
case 0x00:
{
switch (ProgIF)
{
case 0x00:
return "Serial controller <8250>";
case 0x01:
return "Serial controller <16450>";
case 0x02:
return "Serial controller <16550>";
case 0x03:
return "Serial controller <16650>";
case 0x04:
return "Serial controller <16750>";
case 0x05:
return "Serial controller <16850>";
case 0x06:
return "Serial controller <16950";
default:
return "Serial controller";
}
break;
}
default:
break;
}
break;
}
case 0x0C:
{
switch (SubclassCode)
{
case 0x00:
{
switch (ProgIF)
{
case 0x00:
return "Generic FireWire (IEEE 1394) Controller";
case 0x10:
return "OHCI FireWire (IEEE 1394) Controller";
default:
break;
}
break;
}
case 0x03:
{
switch (ProgIF)
{
case 0x00:
return "UHCI (USB1) Controller";
case 0x10:
return "OHCI (USB1) Controller";
case 0x20:
return "EHCI (USB2) Controller";
case 0x30:
return "XHCI (USB3) Controller";
case 0x80:
return "Unspecified";
case 0xFE:
return "USB Device";
default:
break;
}
break;
}
default:
break;
}
break;
}
}
// not really a fixme
// fixme("Unknown prog IF name %02x:%02x:%02x", ClassCode, SubclassCode, ProgIF);
return u8ToHexString(ProgIF);
}
}
#ifdef DEBUG
void e(PCIDeviceHeader *hdr)
{
debug("%#x:%#x\t\t%s / %s / %s / %s / %s",
hdr->VendorID, hdr->DeviceID,
Descriptors::GetVendorName(hdr->VendorID),
Descriptors::GetDeviceName(hdr->VendorID, hdr->DeviceID),
Descriptors::DeviceClasses[hdr->Class],
Descriptors::GetSubclassName(hdr->Class, hdr->Subclass),
Descriptors::GetProgIFName(hdr->Class, hdr->Subclass, hdr->ProgIF));
}
#endif
void PCI::EnumerateFunction(uintptr_t DeviceAddress, uint64_t Function)
{
uintptr_t Offset = Function << 12;
uintptr_t FunctionAddress = DeviceAddress + Offset;
Memory::Virtual(KernelPageTable).Map((void *)FunctionAddress, (void *)FunctionAddress, Memory::PTFlag::RW);
PCIDeviceHeader *PCIDeviceHdr = (PCIDeviceHeader *)FunctionAddress;
if (PCIDeviceHdr->DeviceID == 0)
return;
if (PCIDeviceHdr->DeviceID == 0xFFFF)
return;
Devices.push_back(PCIDeviceHdr);
#ifdef DEBUG
e(PCIDeviceHdr);
#endif
}
void PCI::EnumerateDevice(uintptr_t BusAddress, uint64_t Device)
{
uintptr_t Offset = Device << 15;
uintptr_t DeviceAddress = BusAddress + Offset;
Memory::Virtual(KernelPageTable).Map((void *)DeviceAddress, (void *)DeviceAddress, Memory::PTFlag::RW);
PCIDeviceHeader *PCIDeviceHdr = (PCIDeviceHeader *)DeviceAddress;
if (PCIDeviceHdr->DeviceID == 0)
return;
if (PCIDeviceHdr->DeviceID == 0xFFFF)
return;
for (uintptr_t Function = 0; Function < 8; Function++)
EnumerateFunction(DeviceAddress, Function);
}
void PCI::EnumerateBus(uintptr_t BaseAddress, uint64_t Bus)
{
uintptr_t Offset = Bus << 20;
uintptr_t BusAddress = BaseAddress + Offset;
Memory::Virtual(KernelPageTable).Map((void *)BusAddress, (void *)BusAddress, Memory::PTFlag::RW);
PCIDeviceHeader *PCIDeviceHdr = (PCIDeviceHeader *)BusAddress;
if (Bus != 0) // TODO: VirtualBox workaround (UNTESTED ON REAL HARDWARE!)
{
if (PCIDeviceHdr->DeviceID == 0)
return;
if (PCIDeviceHdr->DeviceID == 0xFFFF)
return;
}
debug("PCI Bus DeviceID:%#llx VendorID:%#llx BIST:%#llx Cache:%#llx Class:%#llx Cmd:%#llx HdrType:%#llx LatencyTimer:%#llx ProgIF:%#llx RevID:%#llx Status:%#llx SubClass:%#llx ",
PCIDeviceHdr->DeviceID, PCIDeviceHdr->VendorID, PCIDeviceHdr->BIST,
PCIDeviceHdr->CacheLineSize, PCIDeviceHdr->Class, PCIDeviceHdr->Command,
PCIDeviceHdr->HeaderType, PCIDeviceHdr->LatencyTimer, PCIDeviceHdr->ProgIF,
PCIDeviceHdr->RevisionID, PCIDeviceHdr->Status, PCIDeviceHdr->Subclass);
for (uintptr_t Device = 0; Device < 32; Device++)
EnumerateDevice(BusAddress, Device);
}
std::vector<PCIDeviceHeader *> PCI::FindPCIDevice(uint8_t Class, uint8_t Subclass, uint8_t ProgIF)
{
std::vector<PCIDeviceHeader *> DeviceFound;
for (auto var : Devices)
if (var->Class == Class && var->Subclass == Subclass && var->ProgIF == ProgIF)
DeviceFound.push_back(var);
return DeviceFound;
}
std::vector<PCIDeviceHeader *> PCI::FindPCIDevice(int VendorID, int DeviceID)
{
std::vector<PCIDeviceHeader *> DeviceFound;
for (auto var : Devices)
if (var->VendorID == VendorID && var->DeviceID == DeviceID)
DeviceFound.push_back(var);
return DeviceFound;
}
PCI::PCI()
{
#if defined(a64)
int Entries = s_cst(int, ((((ACPI::ACPI *)PowerManager->GetACPI())->MCFG->Header.Length) - sizeof(ACPI::ACPI::MCFGHeader)) / sizeof(DeviceConfig));
Memory::Virtual vma = Memory::Virtual(KernelPageTable);
for (int t = 0; t < Entries; t++)
{
DeviceConfig *NewDeviceConfig = (DeviceConfig *)((uintptr_t)((ACPI::ACPI *)PowerManager->GetACPI())->MCFG + sizeof(ACPI::ACPI::MCFGHeader) + (sizeof(DeviceConfig) * t));
vma.Map((void *)NewDeviceConfig->BaseAddress, (void *)NewDeviceConfig->BaseAddress, Memory::PTFlag::RW);
debug("PCI Entry %d Address:%#llx BUS:%#llx-%#llx", t, NewDeviceConfig->BaseAddress,
NewDeviceConfig->StartBus, NewDeviceConfig->EndBus);
for (uintptr_t Bus = NewDeviceConfig->StartBus; Bus < NewDeviceConfig->EndBus; Bus++)
EnumerateBus(NewDeviceConfig->BaseAddress, Bus);
}
#elif defined(a32)
error("PCI not implemented on i386");
#elif defined(aa64)
error("PCI not implemented on aarch64");
#endif
}
PCI::~PCI()
{
}
}

139
Kernel/Core/Power.cpp Normal file
View File

@ -0,0 +1,139 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include <power.hpp>
#include <memory.hpp>
#include <debug.h>
#include "../kernel.h"
#if defined(a64)
#include <io.h>
#include "../Architecture/amd64/acpi.hpp"
namespace Power
{
void Power::Reboot()
{
if (((ACPI::ACPI *)this->acpi)->FADT)
if (((ACPI::DSDT *)this->dsdt)->ACPIShutdownSupported)
((ACPI::DSDT *)this->dsdt)->Reboot();
uint8_t val = 0x02;
while (val & 0x02)
val = inb(0x64);
outb(0x64, 0xFE);
warn("Executing the second attempt to reboot...");
// second attempt to reboot
// https://wiki.osdev.org/Reboot
uint8_t temp;
asmv("cli");
do
{
temp = inb(0x64);
if (((temp) & (1 << (0))) != 0)
inb(0x60);
} while (((temp) & (1 << (1))) != 0);
outb(0x64, 0xFE);
CPU::Stop();
}
void Power::Shutdown()
{
if (((ACPI::ACPI *)this->acpi)->FADT)
if (((ACPI::DSDT *)this->dsdt)->ACPIShutdownSupported)
((ACPI::DSDT *)this->dsdt)->Shutdown();
outl(0xB004, 0x2000); // for qemu
outl(0x604, 0x2000); // if qemu not working, bochs and older versions of qemu
outl(0x4004, 0x3400); // virtual box
CPU::Stop();
}
void Power::InitDSDT()
{
if (((ACPI::ACPI *)this->acpi)->FADT)
this->dsdt = new ACPI::DSDT((ACPI::ACPI *)acpi);
}
Power::Power()
{
this->acpi = new ACPI::ACPI;
this->madt = new ACPI::MADT(((ACPI::ACPI *)acpi)->MADT);
trace("Power manager initialized");
}
Power::~Power()
{
debug("Destructor called");
}
}
#elif defined(a32)
namespace Power
{
void Power::Reboot()
{
warn("Reboot not implemented for i386");
}
void Power::Shutdown()
{
warn("Shutdown not implemented for i386");
}
Power::Power()
{
error("Power not implemented for i386");
}
Power::~Power()
{
}
}
#elif defined(aa64)
namespace Power
{
void Power::Reboot()
{
warn("Reboot not implemented for aarch64");
}
void Power::Shutdown()
{
warn("Shutdown not implemented for aarch64");
}
Power::Power()
{
error("Power not implemented for aarch64");
}
Power::~Power()
{
}
}
#endif

22
Kernel/Core/README.md Normal file
View File

@ -0,0 +1,22 @@
# Core components
This directory contains the core components of the project. These components are used by the kernel to provide the basic functionality of the operating system.
---
## 💾 Memory
Contains the memory management code.
It is responsible for allocating and freeing memory.
It also provides the `kmalloc`, `kcalloc`, `krealloc` and `kfree` functions that are used by the rest of the kernel.
## 📺 Video
Contains the video management code.
It is responsible for printing text to the screen.
## 🖥 CPU
Contains the CPU management code.
It is responsible for initializing the GDT and IDT.
More code related is in the `Architecture` directory.

143
Kernel/Core/Random.cpp Normal file
View File

@ -0,0 +1,143 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include <rand.hpp>
#include <cpu.hpp>
namespace Random
{
static uint64_t Seed = 0xdeadbeef;
uint16_t rand16()
{
#if defined(a86)
static int RDRANDFlag = 0x1A1A;
if (unlikely(RDRANDFlag == 0x1A1A))
{
if (strcmp(CPU::Hypervisor(), x86_CPUID_VENDOR_TCG) != 0)
{
if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_AMD) == 0)
{
CPU::x86::AMD::CPUID0x00000001 cpuid;
cpuid.Get();
RDRANDFlag = cpuid.ECX.RDRAND;
}
else if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_INTEL) == 0)
{
CPU::x86::Intel::CPUID0x00000001 cpuid;
cpuid.Get();
RDRANDFlag = cpuid.ECX.RDRAND;
}
}
else
RDRANDFlag = 0;
}
if (RDRANDFlag)
{
uint16_t RDRANDValue = 0;
asmv("1: rdrand %0; jnc 1b"
: "=r"(RDRANDValue));
return RDRANDValue;
}
Seed = Seed * 1103515245 + 12345;
return (uint16_t)(Seed / 65536) % __UINT16_MAX__;
#endif
return 0;
}
uint32_t rand32()
{
#if defined(a86)
static int RDRANDFlag = 0x1A1A;
if (unlikely(RDRANDFlag == 0x1A1A))
{
if (strcmp(CPU::Hypervisor(), x86_CPUID_VENDOR_TCG) != 0)
{
if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_AMD) == 0)
{
CPU::x86::AMD::CPUID0x00000001 cpuid;
cpuid.Get();
RDRANDFlag = cpuid.ECX.RDRAND;
}
else if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_INTEL) == 0)
{
CPU::x86::Intel::CPUID0x00000001 cpuid;
cpuid.Get();
RDRANDFlag = cpuid.ECX.RDRAND;
}
}
else
RDRANDFlag = 0;
}
if (RDRANDFlag)
{
uint32_t RDRANDValue = 0;
asmv("1: rdrand %0; jnc 1b"
: "=r"(RDRANDValue));
return RDRANDValue;
}
Seed = Seed * 1103515245 + 12345;
return (uint32_t)(Seed / 65536) % __UINT32_MAX__;
#endif
return 0;
}
uint64_t rand64()
{
#if defined(a86)
static int RDRANDFlag = 0x1A1A;
if (unlikely(RDRANDFlag == 0x1A1A))
{
if (strcmp(CPU::Hypervisor(), x86_CPUID_VENDOR_TCG) != 0)
{
if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_AMD) == 0)
{
CPU::x86::AMD::CPUID0x00000001 cpuid;
cpuid.Get();
RDRANDFlag = cpuid.ECX.RDRAND;
}
else if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_INTEL) == 0)
{
CPU::x86::Intel::CPUID0x00000001 cpuid;
cpuid.Get();
RDRANDFlag = cpuid.ECX.RDRAND;
}
}
else
RDRANDFlag = 0;
}
if (RDRANDFlag)
{
uint64_t RDRANDValue = 0;
asmv("1: rdrand %0; jnc 1b"
: "=r"(RDRANDValue));
return RDRANDValue;
}
Seed = Seed * 1103515245 + 12345;
return (uint64_t)(Seed / 65536) % __UINT64_MAX__;
#endif
return 0;
}
void ChangeSeed(uint64_t CustomSeed) { Seed = CustomSeed; }
}

View File

@ -0,0 +1,96 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include <types.h>
#include <debug.h>
#include <rand.hpp>
#include "../kernel.h"
/* EXTERNC */ __weak uintptr_t __stack_chk_guard = 0;
EXTERNC __weak __no_stack_protector uintptr_t __stack_chk_guard_init(void)
{
int MaxRetries = 0;
#if UINTPTR_MAX == UINT32_MAX
uint32_t num;
Retry:
num = Random::rand32();
if (num < 0x1000 && MaxRetries++ < 10)
goto Retry;
return num;
#else
uint64_t num;
Retry:
num = Random::rand64();
if (num < 0x100000 && MaxRetries++ < 10)
goto Retry;
return num;
#endif
}
EXTERNC __constructor __no_stack_protector void __guard_setup(void)
{
debug("StackGuard: __guard_setup");
if (__stack_chk_guard == 0)
__stack_chk_guard = __stack_chk_guard_init();
debug("Stack guard value: %ld", __stack_chk_guard);
}
EXTERNC __weak __noreturn __no_stack_protector void __stack_chk_fail(void)
{
TaskingPanic();
for (short i = 0; i < 10; i++)
error("Stack smashing detected!");
debug("Current stack check guard value: %#lx", __stack_chk_guard);
KPrint("\eFF0000Stack smashing detected!");
#if defined(a86)
void *Stack = nullptr;
#if defined(a64)
asmv("movq %%rsp, %0"
: "=r"(Stack));
#elif defined(a32)
asmv("movl %%esp, %0"
: "=r"(Stack));
#endif
error("Stack address: %#lx", Stack);
while (1)
asmv("cli; hlt");
#elif defined(aa64)
asmv("wfe");
#endif
CPU::Stop();
}
// https://github.com/gcc-mirror/gcc/blob/master/libssp/ssp.c
EXTERNC __weak __noreturn __no_stack_protector void __chk_fail(void)
{
TaskingPanic();
for (short i = 0; i < 10; i++)
error("Buffer overflow detected!");
KPrint("\eFF0000Buffer overflow detected!");
#if defined(a86)
while (1)
asmv("cli; hlt");
#elif defined(aa64)
asmv("wfe");
#endif
}

142
Kernel/Core/Symbols.cpp Normal file
View File

@ -0,0 +1,142 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include <symbols.hpp>
#include <memory.hpp>
#include <convert.h>
#include <debug.h>
#include <elf.h>
// #pragma GCC diagnostic ignored "-Wignored-qualifiers"
namespace SymbolResolver
{
Symbols::Symbols(uintptr_t ImageAddress)
{
debug("Solving symbols for address: %#llx", ImageAddress);
if (ImageAddress == 0)
{
error("Invalid image address");
return;
}
Elf64_Ehdr *Header = (Elf64_Ehdr *)ImageAddress;
if (Header->e_ident[0] != 0x7F &&
Header->e_ident[1] != 'E' &&
Header->e_ident[2] != 'L' &&
Header->e_ident[3] != 'F')
{
error("Invalid ELF header");
return;
}
Elf64_Shdr *ElfSections = (Elf64_Shdr *)(ImageAddress + Header->e_shoff);
Elf64_Sym *ElfSymbols = nullptr;
char *strtab = nullptr;
for (uint16_t i = 0; i < Header->e_shnum; i++)
switch (ElfSections[i].sh_type)
{
case SHT_SYMTAB:
ElfSymbols = (Elf64_Sym *)(ImageAddress + ElfSections[i].sh_offset);
this->TotalEntries = ElfSections[i].sh_size / sizeof(Elf64_Sym);
if (this->TotalEntries >= 0x10000)
this->TotalEntries = 0x10000 - 1;
debug("Symbol table found, %d entries", this->TotalEntries);
break;
case SHT_STRTAB:
if (Header->e_shstrndx == i)
{
debug("String table found, %d entries", ElfSections[i].sh_size);
}
else
{
strtab = (char *)(ImageAddress + ElfSections[i].sh_offset);
debug("String table found, %d entries", ElfSections[i].sh_size);
}
break;
default:
break;
}
if (ElfSymbols != nullptr && strtab != nullptr)
{
uintptr_t Index, MinimumIndex;
for (uintptr_t i = 0; i < this->TotalEntries - 1; i++)
{
MinimumIndex = i;
for (Index = i + 1; Index < this->TotalEntries; Index++)
if (ElfSymbols[Index].st_value < ElfSymbols[MinimumIndex].st_value)
MinimumIndex = Index;
Elf64_Sym tmp = ElfSymbols[MinimumIndex];
ElfSymbols[MinimumIndex] = ElfSymbols[i];
ElfSymbols[i] = tmp;
}
while (ElfSymbols[0].st_value == 0)
{
ElfSymbols++;
this->TotalEntries--;
}
#ifdef DEBUG
static int once = 0;
#endif
trace("Symbol table loaded, %d entries (%ldKB)", this->TotalEntries, TO_KB(this->TotalEntries * sizeof(SymbolTable)));
for (uintptr_t i = 0, g = this->TotalEntries; i < g; i++)
{
this->SymTable[i].Address = ElfSymbols[i].st_value;
this->SymTable[i].FunctionName = &strtab[ElfSymbols[i].st_name];
#ifdef DEBUG
if (once)
debug("Symbol %d: %#llx %s", i, this->SymTable[i].Address, this->SymTable[i].FunctionName);
#endif
}
#ifdef DEBUG
if (!once)
once++;
#endif
}
}
Symbols::~Symbols() {}
const NIF char *Symbols::GetSymbolFromAddress(uintptr_t Address)
{
Symbols::SymbolTable Result{0, (char *)"<unknown>"};
for (uintptr_t i = 0; i < this->TotalEntries; i++)
if (this->SymTable[i].Address <= Address && this->SymTable[i].Address > Result.Address)
Result = this->SymTable[i];
return Result.FunctionName;
}
NIF void Symbols::AddSymbol(uintptr_t Address, const char *Name)
{
if (this->TotalEntries >= 0x10000)
{
error("Symbol table is full");
return;
}
this->SymTable[this->TotalEntries].Address = Address;
strcpy(this->SymTable[this->TotalEntries].FunctionName, Name);
this->TotalEntries++;
}
}

View File

@ -0,0 +1,85 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "smbios.hpp"
#include <debug.h>
#include "../kernel.h"
namespace SMBIOS
{
bool CheckSMBIOS()
{
if (bInfo.SMBIOSPtr != nullptr && bInfo.SMBIOSPtr < (void *)0xFFFFFFFFFFFF0000)
{
debug("SMBIOS is available (%#lx).", bInfo.SMBIOSPtr);
return true;
}
debug("SMBIOS is not available. (%#lx)", bInfo.SMBIOSPtr);
return false;
}
SMBIOSEntryPoint *GetSMBIOSEntryPoint() { return (SMBIOSEntryPoint *)bInfo.SMBIOSPtr; }
static inline int SMBIOSTableLength(SMBIOSHeader *Hdr)
{
int i;
const char *strtab = (char *)Hdr + Hdr->Length;
for (i = 1; strtab[i - 1] != '\0' || strtab[i] != '\0'; i++)
;
return Hdr->Length + i + 1;
}
void *GetSMBIOSHeader(SMBIOSType Type)
{
if (!CheckSMBIOS())
return nullptr;
SMBIOSEntryPoint *Header = (SMBIOSEntryPoint *)bInfo.SMBIOSPtr;
debug("Getting SMBIOS header for type %d", Type);
struct SMBIOSHeader *hdr = (SMBIOSHeader *)(uintptr_t)Header->TableAddress;
for (int i = 0; i <= 11; i++)
{
if (hdr < (void *)(uintptr_t)(Header->TableAddress + Header->TableLength))
if (hdr->Type == Type)
{
debug("Found SMBIOS header for type %d at %#lx", Type, hdr);
return hdr;
}
hdr = (struct SMBIOSHeader *)((uintptr_t)hdr + SMBIOSTableLength(hdr));
}
return nullptr;
}
SMBIOSBIOSInformation *GetBIOSInformation() { return (SMBIOSBIOSInformation *)GetSMBIOSHeader(SMBIOSTypeBIOSInformation); }
SMBIOSSystemInformation *GetSystemInformation() { return (SMBIOSSystemInformation *)GetSMBIOSHeader(SMBIOSTypeSystemInformation); }
SMBIOSBaseBoardInformation *GetBaseBoardInformation() { return (SMBIOSBaseBoardInformation *)GetSMBIOSHeader(SMBIOSTypeBaseBoardInformation); }
SMBIOSProcessorInformation *GetProcessorInformation() { return (SMBIOSProcessorInformation *)GetSMBIOSHeader(SMBIOSTypeProcessorInformation); }
SMBIOSMemoryArray *GetMemoryArray() { return (SMBIOSMemoryArray *)GetSMBIOSHeader(SMBIOSTypePhysicalMemoryArray); }
SMBIOSMemoryDevice *GetMemoryDevice() { return (SMBIOSMemoryDevice *)GetSMBIOSHeader(SMBIOSTypeMemoryDevice); }
SMBIOSMemoryArrayMappedAddress *GetMemoryArrayMappedAddress() { return (SMBIOSMemoryArrayMappedAddress *)GetSMBIOSHeader(SMBIOSTypeMemoryArrayMappedAddress); }
SMBIOSMemoryDeviceMappedAddress *GetMemoryDeviceMappedAddress() { return (SMBIOSMemoryDeviceMappedAddress *)GetSMBIOSHeader(SMBIOSTypeMemoryDeviceMappedAddress); }
}

View File

@ -0,0 +1,89 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include <time.hpp>
#include <memory.hpp>
#include <debug.h>
#include <io.h>
#if defined(a64)
#include "../../Architecture/amd64/acpi.hpp"
#elif defined(a32)
#include "../../Architecture/i386/acpi.hpp"
#elif defined(aa64)
#endif
#include "../../kernel.h"
namespace Time
{
bool HighPrecisionEventTimer::Sleep(uint64_t Duration, Units Unit)
{
#if defined(a86)
uint64_t Target = mminq(&((HPET *)hpet)->MainCounterValue) + (Duration * ConvertUnit(Unit)) / clk;
while (mminq(&((HPET *)hpet)->MainCounterValue) < Target)
CPU::Pause();
return true;
#endif
}
uint64_t HighPrecisionEventTimer::GetCounter()
{
#if defined(a86)
return mminq(&((HPET *)hpet)->MainCounterValue);
#endif
}
uint64_t HighPrecisionEventTimer::CalculateTarget(uint64_t Target, Units Unit)
{
#if defined(a86)
return mminq(&((HPET *)hpet)->MainCounterValue) + (Target * ConvertUnit(Unit)) / clk;
#endif
}
uint64_t HighPrecisionEventTimer::GetNanosecondsSinceClassCreation()
{
#if defined(a86)
uint64_t Subtraction = this->GetCounter() - this->ClassCreationTime;
if (Subtraction <= 0 || this->clk <= 0)
return 0;
return Subtraction / (this->clk / ConvertUnit(Units::Nanoseconds));
#endif
}
HighPrecisionEventTimer::HighPrecisionEventTimer(void *hpet)
{
#if defined(a86)
ACPI::ACPI::HPETHeader *HPET_HDR = (ACPI::ACPI::HPETHeader *)hpet;
Memory::Virtual().Remap((void *)HPET_HDR->Address.Address,
(void *)HPET_HDR->Address.Address,
Memory::PTFlag::RW | Memory::PTFlag::PCD);
this->hpet = (HPET *)HPET_HDR->Address.Address;
trace("%s timer is at address %016p", HPET_HDR->Header.OEMID, (void *)HPET_HDR->Address.Address);
clk = s_cst(uint32_t, this->hpet->GeneralCapabilities >> 32);
mmoutq(&this->hpet->GeneralConfiguration, 0);
mmoutq(&this->hpet->MainCounterValue, 0);
mmoutq(&this->hpet->GeneralConfiguration, 1);
ClassCreationTime = this->GetCounter();
#endif
}
HighPrecisionEventTimer::~HighPrecisionEventTimer()
{
}
}

105
Kernel/Core/Time/Time.cpp Normal file
View File

@ -0,0 +1,105 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include <time.hpp>
#include <debug.h>
#include <io.h>
namespace Time
{
Clock ReadClock()
{
Clock tm;
#if defined(a86)
uint32_t t = 0;
outb(0x70, 0x00);
t = inb(0x71);
tm.Second = ((t & 0x0F) + ((t >> 4) * 10));
outb(0x70, 0x02);
t = inb(0x71);
tm.Minute = ((t & 0x0F) + ((t >> 4) * 10));
outb(0x70, 0x04);
t = inb(0x71);
tm.Hour = ((t & 0x0F) + ((t >> 4) * 10));
outb(0x70, 0x07);
t = inb(0x71);
tm.Day = ((t & 0x0F) + ((t >> 4) * 10));
outb(0x70, 0x08);
t = inb(0x71);
tm.Month = ((t & 0x0F) + ((t >> 4) * 10));
outb(0x70, 0x09);
t = inb(0x71);
tm.Year = ((t & 0x0F) + ((t >> 4) * 10));
tm.Counter = 0;
#elif defined(aa64)
tm.Year = 0;
tm.Month = 0;
tm.Day = 0;
tm.Hour = 0;
tm.Minute = 0;
tm.Second = 0;
tm.Counter = 0;
#endif
return tm;
}
Clock ConvertFromUnix(int Timestamp)
{
Clock result;
uint64_t Seconds = Timestamp;
uint64_t Minutes = Seconds / 60;
uint64_t Hours = Minutes / 60;
uint64_t Days = Hours / 24;
result.Year = 1970;
while (Days >= 365)
{
if (result.Year % 4 == 0 && (result.Year % 100 != 0 || result.Year % 400 == 0))
{
if (Days >= 366)
{
Days -= 366;
result.Year++;
}
else
break;
}
else
{
Days -= 365;
result.Year++;
}
}
int DaysInMonth[] = {31, result.Year % 4 == 0 ? 29 : 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
for (result.Month = 0; result.Month < 12; result.Month++)
{
if (Days < static_cast<uint64_t>(DaysInMonth[result.Month]))
break;
Days -= DaysInMonth[result.Month];
}
result.Month++;
result.Day = static_cast<int>(Days) + 1;
result.Hour = static_cast<int>(Hours % 24);
result.Minute = static_cast<int>(Minutes % 60);
result.Second = static_cast<int>(Seconds % 60);
result.Counter = static_cast<uint64_t>(Timestamp);
return result;
}
}

View File

@ -0,0 +1,81 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include <time.hpp>
#include <memory.hpp>
#include <debug.h>
#include <io.h>
#if defined(a64)
#include "../../Architecture/amd64/acpi.hpp"
#elif defined(a32)
#elif defined(aa64)
#endif
#include "../../kernel.h"
namespace Time
{
bool TimeStampCounter::Sleep(uint64_t Duration, Units Unit)
{
#if defined(a86)
uint64_t Target = this->GetCounter() + (Duration * ConvertUnit(Unit)) / this->clk;
while (this->GetCounter() < Target)
CPU::Pause();
return true;
#endif
}
uint64_t TimeStampCounter::GetCounter()
{
#if defined(a86)
return CPU::Counter();
#endif
}
uint64_t TimeStampCounter::CalculateTarget(uint64_t Target, Units Unit)
{
#if defined(a86)
return this->GetCounter() + (Target * ConvertUnit(Unit)) / this->clk;
#endif
}
uint64_t TimeStampCounter::GetNanosecondsSinceClassCreation()
{
#if defined(a86)
return (this->GetCounter() - this->ClassCreationTime) / this->clk;
#endif
}
TimeStampCounter::TimeStampCounter()
{
#if defined(a86)
fixme(""); // FIXME: This is not a good way to measure the clock speed
uint64_t Start = CPU::Counter();
TimeManager->Sleep(1, Units::Milliseconds);
uint64_t End = CPU::Counter();
this->clk = End - Start;
this->ClassCreationTime = this->GetCounter();
#endif
}
TimeStampCounter::~TimeStampCounter()
{
}
}

215
Kernel/Core/Time/Timer.cpp Normal file
View File

@ -0,0 +1,215 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include <time.hpp>
#include <memory.hpp>
#include <debug.h>
#include <io.h>
#if defined(a64)
#include "../../Architecture/amd64/acpi.hpp"
#elif defined(a32)
#include "../../Architecture/i386/acpi.hpp"
#elif defined(aa64)
#endif
#include "../../kernel.h"
namespace Time
{
bool time::Sleep(uint64_t Duration, Units Unit)
{
switch (ActiveTimer)
{
case NONE:
error("No timer is active");
return false;
case RTC:
fixme("RTC sleep not implemented");
return false;
case PIT:
fixme("PIT sleep not implemented");
return false;
case HPET:
return this->hpet->Sleep(Duration, Unit);
case ACPI:
fixme("ACPI sleep not implemented");
return false;
case APIC:
fixme("APIC sleep not implemented");
return false;
case TSC:
return this->tsc->Sleep(Duration, Unit);
default:
error("Unknown timer");
return false;
}
}
uint64_t time::GetCounter()
{
switch (ActiveTimer)
{
case NONE:
error("No timer is active");
return false;
case RTC:
fixme("RTC sleep not implemented");
return false;
case PIT:
fixme("PIT sleep not implemented");
return false;
case HPET:
return this->hpet->GetCounter();
case ACPI:
fixme("ACPI sleep not implemented");
return false;
case APIC:
fixme("APIC sleep not implemented");
return false;
case TSC:
return this->tsc->GetCounter();
default:
error("Unknown timer");
return false;
}
}
uint64_t time::CalculateTarget(uint64_t Target, Units Unit)
{
switch (ActiveTimer)
{
case NONE:
error("No timer is active");
return false;
case RTC:
fixme("RTC sleep not implemented");
return false;
case PIT:
fixme("PIT sleep not implemented");
return false;
case HPET:
return this->hpet->CalculateTarget(Target, Unit);
case ACPI:
fixme("ACPI sleep not implemented");
return false;
case APIC:
fixme("APIC sleep not implemented");
return false;
case TSC:
return this->tsc->CalculateTarget(Target, Unit);
default:
error("Unknown timer");
return false;
}
}
uint64_t time::GetNanosecondsSinceClassCreation()
{
switch (ActiveTimer)
{
case NONE:
error("No timer is active");
return false;
case RTC:
fixme("RTC sleep not implemented");
return false;
case PIT:
fixme("PIT sleep not implemented");
return false;
case HPET:
return this->hpet->GetNanosecondsSinceClassCreation();
case ACPI:
fixme("ACPI sleep not implemented");
return false;
case APIC:
fixme("APIC sleep not implemented");
return false;
case TSC:
return this->tsc->GetNanosecondsSinceClassCreation();
default:
error("Unknown timer");
return false;
}
}
void time::FindTimers(void *acpi)
{
#if defined(a86)
/* TODO: RTC check */
/* TODO: PIT check */
if (acpi)
{
if (((ACPI::ACPI *)acpi)->HPET)
{
hpet = new HighPrecisionEventTimer(((ACPI::ACPI *)acpi)->HPET);
ActiveTimer = HPET;
SupportedTimers |= HPET;
KPrint("\e11FF11HPET found");
}
else
{
KPrint("\eFF2200HPET not found");
}
/* TODO: ACPI check */
/* TODO: APIC check */
}
else
{
KPrint("\eFF2200ACPI not found");
}
bool TSCInvariant = false;
if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_AMD) == 0)
{
CPU::x86::AMD::CPUID0x80000007 cpuid80000007;
cpuid80000007.Get();
if (cpuid80000007.EDX.TscInvariant)
TSCInvariant = true;
}
else if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_INTEL) == 0)
{
// TODO: Intel 0x80000007
CPU::x86::AMD::CPUID0x80000007 cpuid80000007;
cpuid80000007.Get();
if (cpuid80000007.EDX.TscInvariant)
TSCInvariant = true;
}
if (TSCInvariant)
{
tsc = new TimeStampCounter;
// FIXME: ActiveTimer = TSC;
SupportedTimers |= TSC;
KPrint("\e11FF11Invariant TSC found");
}
else
KPrint("\eFF2200TSC is not invariant");
#endif
}
time::time()
{
}
time::~time()
{
}
}

View File

@ -0,0 +1,610 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "ubsan.h"
#include <convert.h>
#include <debug.h>
// TODO: implement:
/*
__ubsan_handle_type_mismatch_v1_abort
__ubsan_handle_add_overflow_abort
__ubsan_handle_sub_overflow_abort
__ubsan_handle_mul_overflow_abort
__ubsan_handle_negate_overflow_abort
__ubsan_handle_divrem_overflow_abort
__ubsan_handle_shift_out_of_bounds_abort
__ubsan_handle_out_of_bounds_abort
__ubsan_handle_vla_bound_not_positive_abort
__ubsan_handle_float_cast_overflow
__ubsan_handle_float_cast_overflow_abort
__ubsan_handle_load_invalid_value_abort
__ubsan_handle_invalid_builtin_abort
__ubsan_handle_function_type_mismatch_abort
__ubsan_handle_nonnull_return_v1
__ubsan_handle_nonnull_return_v1_abort
__ubsan_handle_nullability_return_v1
__ubsan_handle_nullability_return_v1_abort
__ubsan_handle_nonnull_arg_abort
__ubsan_handle_nullability_arg
__ubsan_handle_nullability_arg_abort
__ubsan_handle_pointer_overflow_abort
__ubsan_handle_cfi_check_fail
*/
extern void __asan_report_load1(void *unknown)
{
ubsan("load1");
UNUSED(unknown);
}
extern void __asan_report_load2(void *unknown)
{
ubsan("load2");
UNUSED(unknown);
}
extern void __asan_report_load4(void *unknown)
{
ubsan("load4");
UNUSED(unknown);
}
extern void __asan_report_load8(void *unknown)
{
ubsan("load8");
UNUSED(unknown);
}
extern void __asan_report_load16(void *unknown)
{
ubsan("load16");
UNUSED(unknown);
}
extern void __asan_report_load_n(void *unknown, uintptr_t size)
{
ubsan("loadn");
UNUSED(unknown);
UNUSED(size);
}
extern void __asan_report_store1(void *unknown)
{
ubsan("store1");
UNUSED(unknown);
}
extern void __asan_report_store2(void *unknown)
{
ubsan("store2");
UNUSED(unknown);
}
extern void __asan_report_store4(void *unknown)
{
ubsan("store4");
UNUSED(unknown);
}
extern void __asan_report_store8(void *unknown)
{
ubsan("store8");
UNUSED(unknown);
}
extern void __asan_report_store16(void *unknown)
{
ubsan("store16");
UNUSED(unknown);
}
extern void __asan_report_store_n(void *unknown, uintptr_t size)
{
ubsan("storen");
UNUSED(unknown);
UNUSED(size);
}
extern void __asan_report_load1_noabort(void *unknown)
{
ubsan("load1");
UNUSED(unknown);
}
extern void __asan_report_load2_noabort(void *unknown)
{
ubsan("load2");
UNUSED(unknown);
}
extern void __asan_report_load4_noabort(void *unknown)
{
ubsan("load4");
UNUSED(unknown);
}
extern void __asan_report_load8_noabort(void *unknown)
{
ubsan("load8");
UNUSED(unknown);
}
extern void __asan_report_load16_noabort(void *unknown)
{
ubsan("load16");
UNUSED(unknown);
}
extern void __asan_report_load_n_noabort(void *unknown, uintptr_t size)
{
ubsan("loadn");
UNUSED(unknown);
UNUSED(size);
}
extern void __asan_report_store1_noabort(void *unknown)
{
ubsan("store1");
UNUSED(unknown);
}
extern void __asan_report_store2_noabort(void *unknown)
{
ubsan("store2");
UNUSED(unknown);
}
extern void __asan_report_store4_noabort(void *unknown)
{
ubsan("store4");
UNUSED(unknown);
}
extern void __asan_report_store8_noabort(void *unknown)
{
ubsan("store8");
UNUSED(unknown);
}
extern void __asan_report_store16_noabort(void *unknown)
{
ubsan("store16");
UNUSED(unknown);
}
extern void __asan_report_store_n_noabort(void *unknown, uintptr_t size)
{
ubsan("storen");
UNUSED(unknown);
UNUSED(size);
}
extern void __asan_stack_malloc_0(uintptr_t size)
{
ubsan("stack malloc 0");
UNUSED(size);
}
extern void __asan_stack_malloc_1(uintptr_t size)
{
ubsan("stack malloc 1");
UNUSED(size);
}
extern void __asan_stack_malloc_2(uintptr_t size)
{
ubsan("stack malloc 2");
UNUSED(size);
}
extern void __asan_stack_malloc_3(uintptr_t size)
{
ubsan("stack malloc 3");
UNUSED(size);
}
extern void __asan_stack_malloc_4(uintptr_t size)
{
ubsan("stack malloc 4");
UNUSED(size);
}
extern void __asan_stack_malloc_5(uintptr_t size)
{
ubsan("stack malloc 5");
UNUSED(size);
}
extern void __asan_stack_malloc_6(uintptr_t size)
{
ubsan("stack malloc 6");
UNUSED(size);
}
extern void __asan_stack_malloc_7(uintptr_t size)
{
ubsan("stack malloc 7");
UNUSED(size);
}
extern void __asan_stack_malloc_8(uintptr_t size)
{
ubsan("stack malloc 8");
UNUSED(size);
}
extern void __asan_stack_malloc_9(uintptr_t size)
{
ubsan("stack malloc 9");
UNUSED(size);
}
extern void __asan_stack_free_0(void *ptr, uintptr_t size)
{
ubsan("stack free 0");
UNUSED(ptr);
UNUSED(size);
}
extern void __asan_stack_free_1(void *ptr, uintptr_t size)
{
ubsan("stack free 1");
UNUSED(ptr);
UNUSED(size);
}
extern void __asan_stack_free_2(void *ptr, uintptr_t size)
{
ubsan("stack free 2");
UNUSED(ptr);
UNUSED(size);
}
extern void __asan_stack_free_3(void *ptr, uintptr_t size)
{
ubsan("stack free 3");
UNUSED(ptr);
UNUSED(size);
}
extern void __asan_stack_free_4(void *ptr, uintptr_t size)
{
ubsan("stack free 4");
UNUSED(ptr);
UNUSED(size);
}
extern void __asan_stack_free_5(void *ptr, uintptr_t size)
{
ubsan("stack free 5");
UNUSED(ptr);
UNUSED(size);
}
extern void __asan_stack_free_6(void *ptr, uintptr_t size)
{
ubsan("stack free 6");
UNUSED(ptr);
UNUSED(size);
}
extern void __asan_stack_free_7(void *ptr, uintptr_t size)
{
ubsan("stack free 7");
UNUSED(ptr);
UNUSED(size);
}
extern void __asan_stack_free_8(void *ptr, uintptr_t size)
{
ubsan("stack free 8");
UNUSED(ptr);
UNUSED(size);
}
extern void __asan_stack_free_9(void *ptr, uintptr_t size)
{
ubsan("stack free 9");
UNUSED(ptr);
UNUSED(size);
}
extern void __asan_poison_stack_memory(void *addr, uintptr_t size)
{
ubsan("poison stack memory");
UNUSED(addr);
UNUSED(size);
}
extern void __asan_unpoison_stack_memory(void *addr, uintptr_t size)
{
ubsan("unpoison stack memory");
UNUSED(addr);
UNUSED(size);
}
extern void __asan_before_dynamic_init(const char *module_name)
{
ubsan("before dynamic init");
UNUSED(module_name);
}
extern void __asan_after_dynamic_init(void) { ubsan("after dynamic init"); }
extern void __asan_register_globals(void *unknown, size_t size)
{
ubsan("register_globals");
UNUSED(unknown);
UNUSED(size);
}
extern void __asan_unregister_globals(void) { ubsan("unregister_globals"); }
extern void __asan_init(void) { ubsan("init"); }
extern void __asan_version_mismatch_check_v8(void) { ubsan("version_mismatch_check_v8"); }
extern void __asan_option_detect_stack_use_after_return(void) { ubsan("stack use after return"); }
extern __noreturn void __asan_handle_no_return(void)
{
ubsan("no_return");
while (1)
;
}
#define is_aligned(value, alignment) !(value & (alignment - 1))
const char *Type_Check_Kinds[] = {
"Load of",
"Store to",
"Reference binding to",
"Member access within",
"Member call on",
"Constructor call on",
"Downcast of",
"Downcast of",
"Upcast of",
"Cast to virtual base of",
};
bool UBSANMsg(const char *file, uint32_t line, uint32_t column)
{
/* This can be ignored (unaligned memory access) */
if (strstr(file, "AdvancedConfigurationAndPowerInterface.cpp") &&
((line == 34 && column == 47) ||
(line == 36 && column == 47)))
return false;
/* This can be ignored (unaligned memory access) */
if (strstr(file, "SystemManagementBIOS.cpp") &&
((line == 47 && column == 21) ||
(line == 44 && column == 49) ||
(line == 62 && column == 26)))
return false;
/* This can be ignored (unaligned memory access) */
if (strstr(file, "DynamicHostConfigurationProtocol.cpp") &&
(line == 63 && column == 30))
return false;
if (strstr(file, "liballoc_1_1.c"))
return false;
/* This can be ignored (store address x with insufficient space for object of type 'y') */
if (strstr(file, "Task.cpp") && line > 500)
return false;
/* This can be ignored (store address x with insufficient space for object of type 'y') */
if (strstr(file, "InternetProtocol.cpp") &&
((line == 66 && column == 13) ||
(line == 66 && column == 93) ||
(line == 68 && column == 51) ||
(line == 68 && column == 165) ||
(line == 73 && column == 36) ||
(line == 78 && column == 54) ||
(line == 79 && column == 64) ||
(line == 81 && column == 126) ||
(line == 81 && column == 165) ||
(line == 81 && column == 15) ||
(line == 156 && column == 38) ||
(line == 157 && column == 47) ||
(line == 158 && column == 45)))
return false;
/* This can be ignored (store address x with insufficient space for object of type 'y') */
if (strstr(file, "DynamicHostConfigurationProtocol.cpp") &&
((line == 156 && column == 38) ||
(line == 157 && column == 47) ||
(line == 158 && column == 45)))
return false;
ubsan("\t\tIn File: %s:%i:%i", file, line, column);
return true;
}
void __ubsan_handle_type_mismatch_v1(struct type_mismatch_v1_data *type_mismatch, uintptr_t pointer)
{
struct source_location *location = &type_mismatch->location;
if (pointer == 0)
{
if (UBSANMsg(location->file, location->line, location->column))
{
ubsan("Null pointer access.");
}
}
else if (type_mismatch->alignment != 0 && is_aligned(pointer, type_mismatch->alignment))
{
if (UBSANMsg(location->file, location->line, location->column))
{
ubsan("Unaligned memory access %#llx.", pointer);
}
}
else
{
if (UBSANMsg(location->file, location->line, location->column))
{
ubsan("%s address %#llx with insufficient space for object of type %s",
Type_Check_Kinds[type_mismatch->type_check_kind], (void *)pointer, type_mismatch->type->name);
}
}
}
void __ubsan_handle_add_overflow(struct overflow_data *data)
{
if (UBSANMsg(data->location.file, data->location.line, data->location.column))
{
ubsan("Addition overflow.");
}
}
void __ubsan_handle_sub_overflow(struct overflow_data *data)
{
if (UBSANMsg(data->location.file, data->location.line, data->location.column))
{
ubsan("Subtraction overflow.");
}
}
void __ubsan_handle_mul_overflow(struct overflow_data *data)
{
if (UBSANMsg(data->location.file, data->location.line, data->location.column))
{
ubsan("Multiplication overflow.");
}
}
void __ubsan_handle_divrem_overflow(struct overflow_data *data)
{
if (UBSANMsg(data->location.file, data->location.line, data->location.column))
{
ubsan("Division overflow.");
}
}
void __ubsan_handle_negate_overflow(struct overflow_data *data)
{
if (UBSANMsg(data->location.file, data->location.line, data->location.column))
{
ubsan("Negation overflow.");
}
}
void __ubsan_handle_pointer_overflow(struct overflow_data *data)
{
if (UBSANMsg(data->location.file, data->location.line, data->location.column))
{
ubsan("Pointer overflow.");
}
}
void __ubsan_handle_shift_out_of_bounds(struct shift_out_of_bounds_data *data)
{
if (UBSANMsg(data->location.file, data->location.line, data->location.column))
{
ubsan("Shift out of bounds.");
}
}
void __ubsan_handle_load_invalid_value(struct invalid_value_data *data)
{
if (UBSANMsg(data->location.file, data->location.line, data->location.column))
{
ubsan("Invalid load value.");
}
}
void __ubsan_handle_out_of_bounds(struct array_out_of_bounds_data *data)
{
if (UBSANMsg(data->location.file, data->location.line, data->location.column))
{
ubsan("Array out of bounds.");
}
}
void __ubsan_handle_vla_bound_not_positive(struct negative_vla_data *data)
{
if (UBSANMsg(data->location.file, data->location.line, data->location.column))
{
ubsan("Variable-length argument is negative.");
}
}
void __ubsan_handle_nonnull_return(struct nonnull_return_data *data)
{
if (UBSANMsg(data->location.file, data->location.line, data->location.column))
{
ubsan("Non-null return is null.");
}
}
void __ubsan_handle_nonnull_return_v1(struct nonnull_return_data *data)
{
if (UBSANMsg(data->location.file, data->location.line, data->location.column))
{
ubsan("Non-null return is null.");
}
}
void __ubsan_handle_nonnull_arg(struct nonnull_arg_data *data)
{
if (UBSANMsg(data->location.file, data->location.line, data->location.column))
{
ubsan("Non-null argument is null.");
}
}
void __ubsan_handle_builtin_unreachable(struct unreachable_data *data)
{
if (UBSANMsg(data->location.file, data->location.line, data->location.column))
{
ubsan("Unreachable code reached.");
}
}
void __ubsan_handle_invalid_builtin(struct invalid_builtin_data *data)
{
if (UBSANMsg(data->location.file, data->location.line, data->location.column))
{
ubsan("Invalid builtin.");
}
}
void __ubsan_handle_missing_return(struct unreachable_data *data)
{
if (UBSANMsg(data->location.file, data->location.line, data->location.column))
{
ubsan("Missing return.");
}
}
void __ubsan_vptr_type_cache(uintptr_t *cache, uintptr_t ptr)
{
ubsan("Vptr type cache.");
*cache = ptr;
}
void __ubsan_handle_dynamic_type_cache_miss(struct dynamic_type_cache_miss_data *data, uintptr_t ptr)
{
if (UBSANMsg(data->location.file, data->location.line, data->location.column))
{
ubsan("Dynamic type cache miss.");
}
UNUSED(ptr);
}

View File

@ -0,0 +1,171 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include <uart.hpp>
#include <debug.h>
#include <vector>
volatile bool serialports[8] = {false, false, false, false, false, false, false, false};
std::vector<UniversalAsynchronousReceiverTransmitter::Events *> RegisteredEvents;
#if defined(a86)
NIF __always_inline inline uint8_t NoProfiler_inportb(uint16_t Port)
{
uint8_t Result;
asm("in %%dx, %%al"
: "=a"(Result)
: "d"(Port));
return Result;
}
NIF __always_inline inline void NoProfiler_outportb(uint16_t Port, uint8_t Data)
{
asmv("out %%al, %%dx"
:
: "a"(Data), "d"(Port));
}
#endif
namespace UniversalAsynchronousReceiverTransmitter
{
#define SERIAL_ENABLE_DLAB 0x80
#define SERIAL_RATE_115200_LO 0x01
#define SERIAL_RATE_115200_HI 0x00
#define SERIAL_RATE_57600_LO 0x02
#define SERIAL_RATE_57600_HI 0x00
#define SERIAL_RATE_38400_LO 0x03
#define SERIAL_RATE_38400_HI 0x00
#define SERIAL_BUFFER_EMPTY 0x20
/* TODO: Serial Port implementation needs reword. https://wiki.osdev.org/Serial_Ports */
SafeFunction NIF UART::UART(SerialPorts Port)
{
#if defined(a86)
if (Port == COMNULL)
return;
this->Port = Port;
int PortNumber = 0;
switch (Port)
{
case COM1:
PortNumber = 0;
break;
case COM2:
PortNumber = 1;
break;
case COM3:
PortNumber = 2;
break;
case COM4:
PortNumber = 3;
break;
case COM5:
PortNumber = 4;
break;
case COM6:
PortNumber = 5;
break;
case COM7:
PortNumber = 6;
break;
case COM8:
PortNumber = 7;
break;
default:
return;
}
if (serialports[PortNumber])
return;
// Initialize the serial port
NoProfiler_outportb(s_cst(uint16_t, Port + 1), 0x00); // Disable all interrupts
NoProfiler_outportb(s_cst(uint16_t, Port + 3), SERIAL_ENABLE_DLAB); // Enable DLAB (set baud rate divisor)
NoProfiler_outportb(s_cst(uint16_t, Port + 0), SERIAL_RATE_115200_LO); // Set divisor to 1 (lo byte) 115200 baud
NoProfiler_outportb(s_cst(uint16_t, Port + 1), SERIAL_RATE_115200_HI); // (hi byte)
NoProfiler_outportb(s_cst(uint16_t, Port + 3), 0x03); // 8 bits, no parity, one stop bit
NoProfiler_outportb(s_cst(uint16_t, Port + 2), 0xC7); // Enable FIFO, clear them, with 14-byte threshold
NoProfiler_outportb(s_cst(uint16_t, Port + 4), 0x0B); // IRQs enabled, RTS/DSR set
// Check if the serial port is faulty.
if (NoProfiler_inportb(s_cst(uint16_t, Port + 0)) != 0xAE)
{
static int once = 0;
if (!once++)
warn("Serial port %#llx is faulty.", Port);
// serialports[Port] = false; // ignore for now
// return;
}
// Set to normal operation mode.
NoProfiler_outportb(s_cst(uint16_t, Port + 4), 0x0F);
serialports[PortNumber] = true;
#endif
}
SafeFunction NIF UART::~UART() {}
SafeFunction NIF void UART::Write(uint8_t Char)
{
#if defined(a86)
while ((NoProfiler_inportb(s_cst(uint16_t, Port + 5)) & SERIAL_BUFFER_EMPTY) == 0)
;
NoProfiler_outportb(Port, Char);
#endif
foreach (auto e in RegisteredEvents)
if (e->GetRegisteredPort() == Port || e->GetRegisteredPort() == COMNULL)
e->OnSent(Char);
}
SafeFunction NIF uint8_t UART::Read()
{
#if defined(a86)
while ((NoProfiler_inportb(s_cst(uint16_t, Port + 5)) & 1) == 0)
;
return NoProfiler_inportb(Port);
#endif
foreach (auto e in RegisteredEvents)
{
if (e->GetRegisteredPort() == Port || e->GetRegisteredPort() == COMNULL)
{
#if defined(a86)
e->OnReceived(NoProfiler_inportb(Port));
#endif
}
}
}
SafeFunction NIF Events::Events(SerialPorts Port)
{
this->Port = Port;
RegisteredEvents.push_back(this);
}
SafeFunction NIF Events::~Events()
{
for (size_t i = 0; i < RegisteredEvents.size(); i++)
if (RegisteredEvents[i] == this)
{
RegisteredEvents.remove(i);
return;
}
}
}

View File

@ -0,0 +1,442 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include <display.hpp>
#include <lock.hpp>
#include <uart.hpp>
#include <debug.h>
extern uintptr_t _binary_Files_tamsyn_font_1_11_Tamsyn7x14r_psf_start;
extern uintptr_t _binary_Files_tamsyn_font_1_11_Tamsyn7x14r_psf_end;
extern uintptr_t _binary_Files_tamsyn_font_1_11_Tamsyn7x14r_psf_size;
NewLock(PrintLock);
namespace Video
{
Font *Display::GetCurrentFont() { return CurrentFont; }
void Display::SetCurrentFont(Font *Font) { CurrentFont = Font; }
uint16_t Display::GetBitsPerPixel() { return this->framebuffer.BitsPerPixel; }
uint64_t Display::GetPitch() { return this->framebuffer.Pitch; }
void Display::CreateBuffer(uint32_t Width, uint32_t Height, int Index)
{
if (Width == 0 || Height == 0)
{
Width = this->framebuffer.Width;
Height = this->framebuffer.Height;
debug("Buffer %d created with default size (%d, %d)", Index, Width, Height);
}
if (this->Buffers[Index].Checksum == 0xBBFFE515A117E)
{
warn("Buffer %d already exists, skipping creation", Index);
return;
}
size_t Size = this->framebuffer.Pitch * Height;
this->Buffers[Index].Buffer = KernelAllocator.RequestPages(TO_PAGES(Size + 1));
memset(this->Buffers[Index].Buffer, 0, Size);
this->Buffers[Index].Width = Width;
this->Buffers[Index].Height = Height;
this->Buffers[Index].Size = Size;
this->Buffers[Index].Color = 0xFFFFFF;
this->Buffers[Index].CursorX = 0;
this->Buffers[Index].CursorY = 0;
this->Buffers[Index].Brightness = 100;
this->Buffers[Index].Checksum = 0xBBFFE515A117E;
debug("Buffer %d created", Index);
}
void Display::SetBuffer(int Index)
{
if (unlikely(this->Buffers[Index].Checksum != 0xBBFFE515A117E))
{
debug("Invalid buffer %d", Index);
return;
}
if (this->Buffers[Index].Brightness != 100)
this->SetBrightness(this->Buffers[Index].Brightness, Index);
if (this->Buffers[Index].Brightness == 0) /* Just clear the buffer */
memset(this->Buffers[Index].Buffer, 0, this->Buffers[Index].Size);
memcpy(this->framebuffer.BaseAddress, this->Buffers[Index].Buffer, this->Buffers[Index].Size);
}
ScreenBuffer *Display::GetBuffer(int Index) { return &this->Buffers[Index]; }
void Display::ClearBuffer(int Index)
{
if (unlikely(this->Buffers[Index].Checksum != 0xBBFFE515A117E))
{
debug("Invalid buffer %d", Index);
return;
}
memset(this->Buffers[Index].Buffer, 0, this->Buffers[Index].Size);
}
void Display::DeleteBuffer(int Index)
{
if (unlikely(this->Buffers[Index].Checksum != 0xBBFFE515A117E))
{
debug("Invalid buffer %d", Index);
return;
}
KernelAllocator.FreePages(this->Buffers[Index].Buffer, TO_PAGES(this->Buffers[Index].Size + 1));
this->Buffers[Index].Buffer = nullptr;
this->Buffers[Index].Checksum = 0;
debug("Buffer %d deleted", Index);
}
void Display::SetBrightness(int Value, int Index)
{
if (unlikely(this->Buffers[Index].Checksum != 0xBBFFE515A117E))
{
debug("Invalid buffer %d", Index);
return;
}
if (Value > 100)
Value = 100;
else if (Value < 0)
Value = 0;
uint32_t *pixel = (uint32_t *)this->Buffers[Index].Buffer;
for (uint32_t y = 0; y < this->Buffers[Index].Height; y++)
{
for (uint32_t x = 0; x < this->Buffers[Index].Width; x++)
{
uint32_t color = pixel[y * this->Buffers[Index].Width + x];
uint8_t r = color & 0xff;
uint8_t g = (color >> 8) & 0xff;
uint8_t b = (color >> 16) & 0xff;
r = s_cst(uint8_t, (r * Value) / 100);
g = s_cst(uint8_t, (g * Value) / 100);
b = s_cst(uint8_t, (b * Value) / 100);
pixel[y * this->Buffers[Index].Width + x] = (b << 16) | (g << 8) | r;
}
}
this->Buffers[Index].Brightness = s_cst(char, Value);
}
void Display::SetBufferCursor(int Index, uint32_t X, uint32_t Y)
{
if (unlikely(this->Buffers[Index].Checksum != 0xBBFFE515A117E))
{
debug("Invalid buffer %d", Index);
return;
}
this->Buffers[Index].CursorX = X;
this->Buffers[Index].CursorY = Y;
}
void Display::GetBufferCursor(int Index, uint32_t *X, uint32_t *Y)
{
if (unlikely(this->Buffers[Index].Checksum != 0xBBFFE515A117E))
{
debug("Invalid buffer %d", Index);
return;
}
*X = this->Buffers[Index].CursorX;
*Y = this->Buffers[Index].CursorY;
}
void Display::SetPixel(uint32_t X, uint32_t Y, uint32_t Color, int Index)
{
if (unlikely(this->Buffers[Index].Checksum != 0xBBFFE515A117E))
{
debug("Invalid buffer %d", Index);
return;
}
if (unlikely(X >= this->Buffers[Index].Width))
X = this->Buffers[Index].Width - 1;
if (unlikely(Y >= this->Buffers[Index].Height))
Y = this->Buffers[Index].Height - 1;
uint32_t *Pixel = (uint32_t *)((uintptr_t)this->Buffers[Index].Buffer + (Y * this->Buffers[Index].Width + X) * (this->framebuffer.BitsPerPixel / 8));
*Pixel = Color;
}
uint32_t Display::GetPixel(uint32_t X, uint32_t Y, int Index)
{
if (unlikely(this->Buffers[Index].Checksum != 0xBBFFE515A117E))
return 0;
if (unlikely(X >= this->Buffers[Index].Width || Y >= this->Buffers[Index].Height))
return 0;
uint32_t *Pixel = (uint32_t *)((uintptr_t)this->Buffers[Index].Buffer + (Y * this->Buffers[Index].Width + X) * (this->framebuffer.BitsPerPixel / 8));
return *Pixel;
}
void Display::Scroll(int Index, int Lines)
{
if (unlikely(this->Buffers[Index].Checksum != 0xBBFFE515A117E))
{
debug("Invalid buffer %d", Index);
return;
}
if (this->Buffers[Index].DoNotScroll)
return;
if (Lines == 0)
return;
if (Lines > 0)
{
uint32_t LineSize = this->Buffers[Index].Width * (this->framebuffer.BitsPerPixel / 8);
uint32_t BytesToMove = LineSize * Lines * this->CurrentFont->GetInfo().Height;
size_t BytesToClear = this->Buffers[Index].Size - BytesToMove;
memmove(this->Buffers[Index].Buffer, (uint8_t *)this->Buffers[Index].Buffer + BytesToMove, BytesToClear);
memset((uint8_t *)this->Buffers[Index].Buffer + BytesToClear, 0, BytesToMove);
}
}
void Display::SetDoNotScroll(bool Value, int Index)
{
if (unlikely(this->Buffers[Index].Checksum != 0xBBFFE515A117E))
{
debug("Invalid buffer %d", Index);
return;
}
this->Buffers[Index].DoNotScroll = Value;
}
char Display::Print(char Char, int Index, bool WriteToUART)
{
if (unlikely(this->Buffers[Index].Checksum != 0xBBFFE515A117E))
return 0;
// SmartLock(PrintLock);
if (this->ColorIteration)
{
// RRGGBB
if (Char >= '0' && Char <= '9')
this->Buffers[Index].Color = (this->Buffers[Index].Color << 4) | (Char - '0');
else if (Char >= 'a' && Char <= 'f')
this->Buffers[Index].Color = (this->Buffers[Index].Color << 4) | (Char - 'a' + 10);
else if (Char >= 'A' && Char <= 'F')
this->Buffers[Index].Color = (this->Buffers[Index].Color << 4) | (Char - 'A' + 10);
else
this->Buffers[Index].Color = 0xFFFFFF;
if (WriteToUART)
UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM1).Write(Char);
this->ColorPickerIteration++;
if (this->ColorPickerIteration == 6)
{
this->ColorPickerIteration = 0;
if (WriteToUART)
UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM1).Write(']');
this->ColorIteration = false;
}
return Char;
}
if (WriteToUART)
UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM1).Write(Char);
switch (Char)
{
case '\e':
{
if (WriteToUART)
UniversalAsynchronousReceiverTransmitter::UART(UniversalAsynchronousReceiverTransmitter::COM1).Write('[');
this->ColorIteration = true;
return Char;
}
case '\b':
{
switch (this->CurrentFont->GetInfo().Type)
{
case FontType::PCScreenFont1:
{
fixme("PCScreenFont1");
break;
}
case FontType::PCScreenFont2:
{
uint32_t fonthdrWidth = this->CurrentFont->GetInfo().PSF2Font->Header->width;
uint32_t fonthdrHeight = this->CurrentFont->GetInfo().PSF2Font->Header->height;
for (unsigned long Y = this->Buffers[Index].CursorY; Y < this->Buffers[Index].CursorY + fonthdrHeight; Y++)
for (unsigned long X = this->Buffers[Index].CursorX - fonthdrWidth; X < this->Buffers[Index].CursorX; X++)
*(uint32_t *)((uintptr_t)this->Buffers[Index].Buffer +
(Y * this->Buffers[Index].Width + X) * (this->framebuffer.BitsPerPixel / 8)) = 0;
break;
}
default:
warn("Unsupported font type");
break;
}
if (this->Buffers[Index].CursorX > 0)
this->Buffers[Index].CursorX -= this->GetCurrentFont()->GetInfo().Width;
return Char;
}
case '\t':
{
this->Buffers[Index].CursorX = (this->Buffers[Index].CursorX + 8) & ~(8 - 1);
return Char;
}
case '\r':
{
this->Buffers[Index].CursorX = 0;
return Char;
}
case '\n':
{
this->Buffers[Index].CursorX = 0;
this->Buffers[Index].CursorY += this->GetCurrentFont()->GetInfo().Height;
return Char;
}
default:
break;
}
uint32_t FontHeight = this->GetCurrentFont()->GetInfo().Height;
if (this->Buffers[Index].CursorX + this->GetCurrentFont()->GetInfo().Width >= this->Buffers[Index].Width)
{
this->Buffers[Index].CursorX = 0;
this->Buffers[Index].CursorY += FontHeight;
}
if (this->Buffers[Index].CursorY + FontHeight >= this->Buffers[Index].Height)
{
if (!this->Buffers[Index].DoNotScroll)
{
this->Buffers[Index].CursorY -= FontHeight;
this->Scroll(Index, 1);
}
}
switch (this->CurrentFont->GetInfo().Type)
{
case FontType::PCScreenFont1:
{
uint32_t *PixelPtr = (uint32_t *)this->Buffers[Index].Buffer;
char *FontPtr = (char *)this->CurrentFont->GetInfo().PSF1Font->GlyphBuffer + (Char * this->CurrentFont->GetInfo().PSF1Font->Header->charsize);
for (uint64_t Y = this->Buffers[Index].CursorY; Y < this->Buffers[Index].CursorY + 16; Y++)
{
for (uint64_t X = this->Buffers[Index].CursorX; X < this->Buffers[Index].CursorX + 8; X++)
if ((*FontPtr & (0b10000000 >> (X - this->Buffers[Index].CursorX))) > 0)
*(unsigned int *)(PixelPtr + X + (Y * this->Buffers[Index].Width)) = this->Buffers[Index].Color;
FontPtr++;
}
this->Buffers[Index].CursorX += 8;
break;
}
case FontType::PCScreenFont2:
{
// if (this->CurrentFont->PSF2Font->GlyphBuffer == (uint16_t *)0x01) // HAS UNICODE TABLE
// Char = this->CurrentFont->PSF2Font->GlyphBuffer[Char];
int BytesPerLine = (this->CurrentFont->GetInfo().PSF2Font->Header->width + 7) / 8;
char *FontAddress = (char *)this->CurrentFont->GetInfo().StartAddress;
uint32_t FontHeaderSize = this->CurrentFont->GetInfo().PSF2Font->Header->headersize;
uint32_t FontCharSize = this->CurrentFont->GetInfo().PSF2Font->Header->charsize;
uint32_t FontLength = this->CurrentFont->GetInfo().PSF2Font->Header->length;
char *FontPtr = FontAddress + FontHeaderSize + (Char > 0 && (uint32_t)Char < FontLength ? Char : 0) * FontCharSize;
uint32_t FontHdrWidth = this->CurrentFont->GetInfo().PSF2Font->Header->width;
uint32_t FontHdrHeight = this->CurrentFont->GetInfo().PSF2Font->Header->height;
for (size_t Y = this->Buffers[Index].CursorY; Y < this->Buffers[Index].CursorY + FontHdrHeight; Y++)
{
for (size_t X = this->Buffers[Index].CursorX; X < this->Buffers[Index].CursorX + FontHdrWidth; X++)
{
if ((*FontPtr & (0b10000000 >> (X - this->Buffers[Index].CursorX))) > 0)
{
void *FramebufferAddress = (void *)((uintptr_t)this->Buffers[Index].Buffer +
(Y * this->Buffers[Index].Width + X) *
(this->framebuffer.BitsPerPixel / 8));
*(uint32_t *)FramebufferAddress = this->Buffers[Index].Color;
}
}
FontPtr += BytesPerLine;
}
this->Buffers[Index].CursorX += FontHdrWidth;
break;
}
default:
warn("Unsupported font type");
break;
}
return Char;
}
void Display::DrawString(const char *String, uint32_t X, uint32_t Y, int Index, bool WriteToUART)
{
if (unlikely(this->Buffers[Index].Checksum != 0xBBFFE515A117E))
{
debug("Invalid buffer %d", Index);
return;
}
this->Buffers[Index].CursorX = X;
this->Buffers[Index].CursorY = Y;
for (int i = 0; String[i] != '\0'; i++)
this->Print(String[i], Index, WriteToUART);
}
Display::Display(BootInfo::FramebufferInfo Info, bool LoadDefaultFont)
{
this->framebuffer = Info;
if (LoadDefaultFont)
{
this->CurrentFont = new Font(&_binary_Files_tamsyn_font_1_11_Tamsyn7x14r_psf_start, &_binary_Files_tamsyn_font_1_11_Tamsyn7x14r_psf_end, FontType::PCScreenFont2);
#ifdef DEBUG
FontInfo Info = this->CurrentFont->GetInfo();
debug("Font loaded: %dx%d %s",
Info.Width, Info.Height, Info.Type == FontType::PCScreenFont1 ? "PSF1" : "PSF2");
#endif
}
this->CreateBuffer(Info.Width, Info.Height, 0);
}
Display::~Display()
{
debug("Destructor called");
this->ClearBuffer(0);
this->SetBuffer(0);
for (int i = 0; i < s_cst(int, sizeof(this->Buffers) / sizeof(this->Buffers[0])); i++)
{
if (this->Buffers[i].Checksum == 0xBBFFE515A117E)
this->DeleteBuffer(i);
}
}
}

View File

@ -0,0 +1,76 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include <display.hpp>
#include <debug.h>
#include <cstring>
namespace Video
{
Font::Font(uintptr_t *Start, uintptr_t *End, FontType Type)
{
trace("Initializing font with start %#llx and end %#llx Type: %d", Start, End, Type);
this->Info.StartAddress = Start;
this->Info.EndAddress = End;
this->Info.Type = Type;
size_t FontDataLength = End - Start;
if (Type == FontType::PCScreenFont2)
{
this->Info.PSF2Font = new PSF2_FONT;
PSF2_HEADER *font2 = (PSF2_HEADER *)KernelAllocator.RequestPages(TO_PAGES(FontDataLength + 1));
memcpy((void *)font2, Start, FontDataLength);
Memory::Virtual().Map((void *)font2, (void *)font2, FontDataLength, Memory::PTFlag::RW);
if (font2->magic[0] != PSF2_MAGIC0 || font2->magic[1] != PSF2_MAGIC1 || font2->magic[2] != PSF2_MAGIC2 || font2->magic[3] != PSF2_MAGIC3)
{
error("Font2 magic mismatch.");
KernelAllocator.FreePages((void *)font2, TO_PAGES(FontDataLength + 1));
return;
}
this->Info.PSF2Font->Header = font2;
this->Info.PSF2Font->GlyphBuffer = reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(Start) + sizeof(PSF2_HEADER));
this->Info.Width = font2->width;
this->Info.Height = font2->height;
}
else if (Type == FontType::PCScreenFont1)
{
this->Info.PSF1Font = new PSF1_FONT;
PSF1_HEADER *font1 = (PSF1_HEADER *)Start;
if (font1->magic[0] != PSF1_MAGIC0 || font1->magic[1] != PSF1_MAGIC1)
error("Font1 magic mismatch.");
uint32_t glyphBufferSize = font1->charsize * 256;
if (font1->mode == 1) // 512 glyph mode
glyphBufferSize = font1->charsize * 512;
void *glyphBuffer = reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(Start) + sizeof(PSF1_HEADER));
this->Info.PSF1Font->Header = font1;
this->Info.PSF1Font->GlyphBuffer = glyphBuffer;
UNUSED(glyphBufferSize); // TODO: Use this in the future?
// TODO: Get font size.
this->Info.Width = 16;
this->Info.Height = 8;
}
}
Font::~Font()
{
}
}

View File

@ -0,0 +1,35 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef __FENNIX_KERNEL_CRASH_HANDLER_H__
#define __FENNIX_KERNEL_CRASH_HANDLER_H__
#include <types.h>
#include <ints.hpp>
#include <cpu.hpp>
namespace CrashHandler
{
extern uintptr_t PageFaultAddress;
extern void *EHIntFrames[INT_FRAMES_MAX];
void EHPrint(const char *Format, ...);
void Handle(void *Data);
}
#endif // !__FENNIX_KERNEL_CRASH_HANDLER_H__

357
Kernel/Core/smbios.hpp Normal file
View File

@ -0,0 +1,357 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef __FENNIX_KERNEL_SMBIOS_H__
#define __FENNIX_KERNEL_SMBIOS_H__
#include <types.h>
namespace SMBIOS
{
enum SMBIOSType
{
SMBIOSTypeBIOSInformation = 0,
SMBIOSTypeSystemInformation = 1,
SMBIOSTypeBaseBoardInformation = 2,
SMBIOSTypeSystemEnclosure = 3,
SMBIOSTypeProcessorInformation = 4,
SMBIOSTypeMemoryControllerInformation = 5,
SMBIOSTypeMemoryModuleInformation = 6,
SMBIOSTypeCacheInformation = 7,
SMBIOSTypePortConnectorInformation = 8,
SMBIOSTypeSystemSlots = 9,
SMBIOSTypeOnBoardDevicesInformation = 10,
SMBIOSTypeOEMStrings = 11,
SMBIOSTypeSystemConfigurationOptions = 12,
SMBIOSTypeBIOSLanguageInformation = 13,
SMBIOSTypeGroupAssociations = 14,
SMBIOSTypeSystemEventLog = 15,
SMBIOSTypePhysicalMemoryArray = 16,
SMBIOSTypeMemoryDevice = 17,
SMBIOSType32BitMemoryErrorInformation = 18,
SMBIOSTypeMemoryArrayMappedAddress = 19,
SMBIOSTypeMemoryDeviceMappedAddress = 20,
SMBIOSTypeBuiltInPointingDevice = 21,
SMBIOSTypePortableBattery = 22,
SMBIOSTypeSystemReset = 23,
SMBIOSTypeHardwareSecurity = 24,
SMBIOSTypeSystemPowerControls = 25,
SMBIOSTypeVoltageProbe = 26,
SMBIOSTypeCoolingDevice = 27,
SMBIOSTypeTemperatureProbe = 28,
SMBIOSTypeElectricalCurrentProbe = 29,
SMBIOSTypeOutofBandRemoteAccess = 30,
SMBIOSTypeBootIntegrityServices = 31,
SMBIOSTypeSystemBoot = 32,
SMBIOSType64BitMemoryErrorInformation = 33,
SMBIOSTypeManagementDevice = 34,
SMBIOSTypeManagementDeviceComponent = 35,
SMBIOSTypeManagementDeviceThresholdData = 36,
SMBIOSTypeMemoryChannel = 37,
SMBIOSTypeIPMIDevice = 38,
SMBIOSTypePowerSupply = 39,
SMBIOSTypeAdditionalInformation = 40,
SMBIOSTypeOnboardDevicesExtendedInformation = 41,
SMBIOSTypeManagementControllerHostInterface = 42,
SMBIOSTypeTPMDevice = 43,
SMBIOSTypeProcessorAdditionalInformation = 44,
SMBIOSTypeInactive = 126,
SMBIOSTypeEndOfTable = 127
};
struct SMBIOSHeader
{
unsigned char Type;
unsigned char Length;
unsigned short Handle;
};
struct SMBIOSEntryPoint
{
char EntryPointString[4];
unsigned char Checksum;
unsigned char Length;
unsigned char MajorVersion;
unsigned char MinorVersion;
unsigned short MaxStructureSize;
unsigned char EntryPointRevision;
char FormattedArea[5];
char EntryPointString2[5];
unsigned char Checksum2;
unsigned short TableLength;
unsigned int TableAddress;
unsigned short NumberOfStructures;
unsigned char BCDRevision;
};
static inline char *SMBIOSNextString(char *Str)
{
while (*Str != '\0')
Str++;
return Str + 1;
}
struct SMBIOSBIOSInformation
{
SMBIOSHeader Header;
unsigned char Vendor;
unsigned char Version;
unsigned short StartingAddressSegment;
unsigned char ReleaseDate;
unsigned char ROMSize;
unsigned long Characteristics;
unsigned char CharacteristicsExtensionBytes[2];
unsigned char SystemBIOSMajorRelease;
unsigned char SystemBIOSMinorRelease;
unsigned char EmbeddedControllerFirmwareMajorRelease;
unsigned char EmbeddedControllerFirmwareMinorRelease;
const char *GetString(unsigned char Index)
{
char *Str = (char *)((unsigned long)this + this->Header.Length);
Index--;
if (Index == 0 || Index > 10)
return Str;
for (unsigned char i = 0; i < Index; i++)
Str = SMBIOSNextString(Str);
return Str;
}
};
struct SMBIOSSystemInformation
{
SMBIOSHeader Header;
unsigned char Manufacturer;
unsigned char ProductName;
unsigned char Version;
unsigned char SerialNumber;
unsigned char UUID[16];
unsigned char WakeUpType;
unsigned char SKU;
unsigned char Family;
const char *GetString(unsigned char Index)
{
char *Str = (char *)((unsigned long)this + this->Header.Length);
Index--;
if (Index == 0 || Index > 10)
return Str;
for (unsigned char i = 0; i < Index; i++)
Str = SMBIOSNextString(Str);
return Str;
}
};
struct SMBIOSBaseBoardInformation
{
SMBIOSHeader Header;
unsigned char Manufacturer;
unsigned char Product;
unsigned char Version;
unsigned char SerialNumber;
unsigned char AssetTag;
unsigned char FeatureFlags;
unsigned char LocationInChassis;
unsigned short ChassisHandle;
unsigned char BoardType;
unsigned char NumberOfContainedObjectHandles;
unsigned short ContainedObjectHandles[0];
const char *GetString(unsigned char Index)
{
char *Str = (char *)((unsigned long)this + this->Header.Length);
Index--;
if (Index == 0 || Index > 10)
return Str;
for (unsigned char i = 0; i < Index; i++)
Str = SMBIOSNextString(Str);
return Str;
}
};
struct SMBIOSProcessorInformation
{
SMBIOSHeader Header;
unsigned char SocketDesignation;
unsigned char ProcessorType;
unsigned char ProcessorFamily;
unsigned char ProcessorManufacturer;
unsigned long ProcessorID;
unsigned char ProcessorVersion;
unsigned char Voltage;
unsigned short ExternalClock;
unsigned short MaxSpeed;
unsigned short CurrentSpeed;
unsigned char Status;
unsigned char ProcessorUpgrade;
unsigned short L1CacheHandle;
unsigned short L2CacheHandle;
unsigned short L3CacheHandle;
unsigned char SerialNumber;
unsigned char AssetTag;
unsigned char PartNumber;
unsigned char CoreCount;
unsigned char CoreEnabled;
unsigned char ThreadCount;
unsigned short ProcessorCharacteristics;
unsigned short ProcessorFamily2;
unsigned short CoreCount2;
unsigned short CoreEnabled2;
unsigned short ThreadCount2;
const char *GetString(unsigned char Index)
{
char *Str = (char *)((unsigned long)this + this->Header.Length);
Index--;
if (Index == 0 || Index > 10)
return Str;
for (unsigned char i = 0; i < Index; i++)
Str = SMBIOSNextString(Str);
return Str;
}
};
struct SMBIOSMemoryDevice
{
SMBIOSHeader Header;
unsigned char PhysicalMemoryArrayHandle;
unsigned char MemoryErrorInformationHandle;
unsigned short TotalWidth;
unsigned short DataWidth;
unsigned short Size;
unsigned char FormFactor;
unsigned char DeviceSet;
unsigned char DeviceLocator;
unsigned char BankLocator;
unsigned char MemoryType;
unsigned short TypeDetail;
unsigned short Speed;
unsigned char Manufacturer;
unsigned char SerialNumber;
unsigned char AssetTag;
unsigned char PartNumber;
unsigned char Attributes;
unsigned short ExtendedSize;
unsigned short ConfiguredMemoryClockSpeed;
unsigned short MinimumVoltage;
unsigned short MaximumVoltage;
unsigned short ConfiguredVoltage;
unsigned char MemoryTechnology;
unsigned char OperatingModeCapability;
unsigned char FirmwareVersion;
unsigned char ModuleManufacturerID;
unsigned char ModuleProductID;
unsigned char MemorySubsystemControllerManufacturerID;
unsigned char MemorySubsystemControllerProductID;
unsigned short NonVolatileSize;
unsigned short VolatileSize;
unsigned short CacheSize;
unsigned short LogicalSize;
unsigned char ExtendedSpeed;
unsigned char ExtendedConfiguredMemorySpeed;
const char *GetString(unsigned char Index)
{
char *Str = (char *)((unsigned long)this + this->Header.Length);
Index--;
if (Index == 0 || Index > 10)
return Str;
for (unsigned char i = 0; i < Index; i++)
Str = SMBIOSNextString(Str);
return Str;
}
};
struct SMBIOSMemoryArrayMappedAddress
{
SMBIOSHeader Header;
unsigned int StartingAddress;
unsigned int EndingAddress;
unsigned short MemoryArrayHandle;
unsigned char PartitionWidth;
const char *GetString(unsigned char Index)
{
char *Str = (char *)((unsigned long)this + this->Header.Length);
Index--;
if (Index == 0 || Index > 10)
return Str;
for (unsigned char i = 0; i < Index; i++)
Str = SMBIOSNextString(Str);
return Str;
}
};
struct SMBIOSMemoryDeviceMappedAddress
{
SMBIOSHeader Header;
unsigned int StartingAddress;
unsigned int EndingAddress;
unsigned short MemoryDeviceHandle;
unsigned short MemoryArrayMappedAddressHandle;
unsigned char PartitionRowPosition;
unsigned char InterleavePosition;
unsigned char InterleavedDataDepth;
const char *GetString(unsigned char Index)
{
char *Str = (char *)((unsigned long)this + this->Header.Length);
Index--;
if (Index == 0 || Index > 10)
return Str;
for (unsigned char i = 0; i < Index; i++)
Str = SMBIOSNextString(Str);
return Str;
}
};
struct SMBIOSMemoryArray
{
SMBIOSHeader Header;
unsigned char Location;
unsigned char Use;
unsigned char MemoryErrorCorrection;
unsigned int MaximumCapacity;
unsigned short MemoryErrorInformationHandle;
unsigned short NumberOfMemoryDevices;
const char *GetString(unsigned char Index)
{
char *Str = (char *)((unsigned long)this + this->Header.Length);
Index--;
if (Index == 0 || Index > 10)
return Str;
for (unsigned char i = 0; i < Index; i++)
Str = SMBIOSNextString(Str);
return Str;
}
};
bool CheckSMBIOS();
SMBIOSEntryPoint *GetSMBIOSEntryPoint();
void *GetSMBIOSHeader(SMBIOSType Type);
SMBIOSBIOSInformation *GetBIOSInformation();
SMBIOSSystemInformation *GetSystemInformation();
SMBIOSBaseBoardInformation *GetBaseBoardInformation();
SMBIOSProcessorInformation *GetProcessorInformation();
SMBIOSMemoryArray *GetMemoryArray();
SMBIOSMemoryDevice *GetMemoryDevice();
SMBIOSMemoryArrayMappedAddress *GetMemoryArrayMappedAddress();
SMBIOSMemoryDeviceMappedAddress *GetMemoryDeviceMappedAddress();
}
#endif // !__FENNIX_KERNEL_SMBIOS_H__

111
Kernel/Core/ubsan.h Normal file
View File

@ -0,0 +1,111 @@
/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef __FENNIX_KERNEL_UBSAN_H__
#define __FENNIX_KERNEL_UBSAN_H__
#include <types.h>
struct source_location
{
const char *file;
uint32_t line;
uint32_t column;
};
struct type_descriptor
{
uint16_t kind;
uint16_t info;
char name[];
};
struct type_mismatch_v1_data
{
struct source_location location;
struct type_descriptor *type;
uint8_t alignment;
uint8_t type_check_kind;
};
struct out_of_bounds_info
{
struct source_location location;
struct type_descriptor left_type;
struct type_descriptor right_type;
};
struct overflow_data
{
struct source_location location;
struct type_descriptor *type;
};
struct negative_vla_data
{
struct source_location location;
struct type_descriptor *type;
};
struct invalid_value_data
{
struct source_location location;
struct type_descriptor *type;
};
struct nonnull_return_data
{
struct source_location location;
};
struct nonnull_arg_data
{
struct source_location location;
};
struct unreachable_data
{
struct source_location location;
};
struct invalid_builtin_data
{
struct source_location location;
uint8_t kind;
};
struct array_out_of_bounds_data
{
struct source_location location;
struct type_descriptor *array_type;
struct type_descriptor *index_type;
};
struct shift_out_of_bounds_data
{
struct source_location location;
struct type_descriptor *left_type;
struct type_descriptor *right_type;
};
struct dynamic_type_cache_miss_data
{
struct source_location location;
struct type_descriptor *type;
};
#endif // !__FENNIX_KERNEL_UBSAN_H__