Replaced string to convert

This commit is contained in:
Alex
2022-10-20 01:06:20 +03:00
parent a6d5e08e3b
commit 7750dd777e
10 changed files with 316 additions and 149 deletions

View File

@ -37,21 +37,21 @@
* THE SOFTWARE.
*/
#pragma GCC diagnostic ignored "-Wtype-limits"
#pragma GCC diagnostic ignored "-Wsign-compare"
#pragma GCC diagnostic ignored "-Wtautological-compare"
#pragma GCC diagnostic ignored "-Wsign-compare"
// Define this globally (e.g. gcc -DPRINTF_INCLUDE_CONFIG_H ...) to include the
// Define this globally (e.g. gcc -DPRINTF_INCLUDE_CONFIG_H=1 ...) to include the
// printf_config.h header file
#if PRINTF_INCLUDE_CONFIG_H
#include "printf_config.h"
#endif
#include <printf.h>
#ifdef __cplusplus
#include <cstdint>
#include <climits>
#else
#include <types.h>
#include <limits.h>
#include <debug.h>
#include <printf.h>
#endif // __cplusplus
#if PRINTF_ALIAS_STANDARD_FUNCTION_NAMES
#define printf_ printf
@ -104,7 +104,7 @@
#endif
// Support for the long long integral types (with the ll, z and t length modifiers for specifiers
// %d,%i,%o,%x,%X,%u, and with the %p specifier). Note: 'L' (long / *doubl e*/unsigned long) is not supported.
// %d,%i,%o,%x,%X,%u, and with the %p specifier). Note: 'L' (long double) is not supported.
#ifndef PRINTF_SUPPORT_LONG_LONG
#define PRINTF_SUPPORT_LONG_LONG 1
#endif
@ -120,6 +120,12 @@
#error "At least one non-constant Taylor expansion is necessary for the log10() calculation"
#endif
// Be extra-safe, and don't assume format specifiers are completed correctly
// before the format string end.
#ifndef PRINTF_CHECK_FOR_NUL_IN_FORMAT_SPECIFIER
#define PRINTF_CHECK_FOR_NUL_IN_FORMAT_SPECIFIER 1
#endif
#define PRINTF_PREFER_DECIMAL false
#define PRINTF_PREFER_EXPONENTIAL true
@ -245,14 +251,14 @@ typedef uint64_t double_uint_t;
#define DOUBLE_MAX_SUBNORMAL_POWER_OF_10 1e-308
#else
#error "Unsupported / *doubl e*/unsigned long type configuration"
#error "Unsupported double type configuration"
#endif
#define DOUBLE_STORED_MANTISSA_BITS (DBL_MANT_DIG - 1)
typedef union
{
double_uint_t U;
/* double */ unsigned long F;
double F;
} double_with_bit_access;
// This is unnecessary in C99, since compound initializers can be used,
@ -260,14 +266,14 @@ typedef union
// 1. Some compilers are finicky about this;
// 2. Some people may want to convert this to C89;
// 3. If you try to use it as C++, only C++20 supports compound literals
static inline double_with_bit_access get_bit_access(/* double */ unsigned long x)
static inline double_with_bit_access get_bit_access(double x)
{
double_with_bit_access dwba;
dwba.F = x;
return dwba;
}
static inline int get_sign_bit(/* double */ unsigned long x)
static inline int get_sign_bit(double x)
{
// The sign is stored in the highest bit
return (int)(get_bit_access(x).U >> (DOUBLE_SIZE_IN_BITS - 1));
@ -356,7 +362,7 @@ static inline void putchar_wrapper(char c, void *unused)
putchar(c);
}
static inline output_gadget_t discarding_gadget()
static inline output_gadget_t discarding_gadget(void)
{
output_gadget_t gadget;
gadget.function = NULL;
@ -388,7 +394,7 @@ static inline output_gadget_t function_gadget(void (*function)(char, void *), vo
return result;
}
static inline output_gadget_t extern_putchar_gadget()
static inline output_gadget_t extern_putchar_gadget(void)
{
return function_gadget(putchar_wrapper, NULL);
}
@ -576,53 +582,50 @@ static void print_integer(output_gadget_t *output, printf_unsigned_value_t value
#if (PRINTF_SUPPORT_DECIMAL_SPECIFIERS || PRINTF_SUPPORT_EXPONENTIAL_SPECIFIERS)
// Stores a fixed-precision representation of a / *doubl e*/unsigned long relative
// Stores a fixed-precision representation of a double relative
// to a fixed precision (which cannot be determined by examining this structure)
struct double_components
{
int_fast64_t integral;
int_fast64_t fractional;
// ... truncation of the actual fractional part of the / *doubl e*/unsigned long value, scaled
// ... truncation of the actual fractional part of the double value, scaled
// by the precision value
bool is_negative;
};
#define NUM_DECIMAL_DIGITS_IN_INT64_T 18
#define PRINTF_MAX_PRECOMPUTED_POWER_OF_10 NUM_DECIMAL_DIGITS_IN_INT64_T
static const /* double */ unsigned long powers_of_10[NUM_DECIMAL_DIGITS_IN_INT64_T] = {
static const double powers_of_10[NUM_DECIMAL_DIGITS_IN_INT64_T] = {
1e00, 1e01, 1e02, 1e03, 1e04, 1e05, 1e06, 1e07, 1e08,
1e09, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17};
#define PRINTF_MAX_SUPPORTED_PRECISION NUM_DECIMAL_DIGITS_IN_INT64_T - 1
// Break up a / *doubl e*/unsigned long number - which is known to be a finite non-negative number -
// Break up a double number - which is known to be a finite non-negative number -
// into its base-10 parts: integral - before the decimal point, and fractional - after it.
// Taken the precision into account, but does not change it even internally.
static struct double_components get_components(/* double */ unsigned long number, printf_size_t precision)
static struct double_components get_components(double number, printf_size_t precision)
{
struct double_components number_;
number_.is_negative = get_sign_bit(number);
/* double */ unsigned long abs_number = (number_.is_negative) ? -number : number;
double abs_number = (number_.is_negative) ? -number : number;
number_.integral = (int_fast64_t)abs_number;
/* double */ unsigned long remainder = (abs_number - (/* double */ unsigned long)number_.integral) * powers_of_10[precision];
double remainder = (abs_number - (double)number_.integral) * powers_of_10[precision];
number_.fractional = (int_fast64_t)remainder;
remainder -= (/* double */ unsigned long)number_.fractional;
remainder -= (double)number_.fractional;
// if (remainder > 0.5)
warn("SSE not supported.");
if (remainder > 1)
if (remainder > 0.5)
{
++number_.fractional;
// handle rollover, e.g. case 0.99 with precision 1 is 1.0
if ((/* double */ unsigned long)number_.fractional >= powers_of_10[precision])
if ((double)number_.fractional >= powers_of_10[precision])
{
number_.fractional = 0;
++number_.integral;
}
}
// else if ((remainder == 0.5) && ((number_.fractional == 0U) || (number_.fractional & 1U)))
else if ((remainder == 1) && ((number_.fractional == 0U) || (number_.fractional & 1U)))
else if ((remainder == 0.5) && ((number_.fractional == 0U) || (number_.fractional & 1U)))
{
// if halfway, round up if odd OR if last digit is 0
++number_.fractional;
@ -630,9 +633,8 @@ static struct double_components get_components(/* double */ unsigned long number
if (precision == 0U)
{
remainder = abs_number - (/* double */ unsigned long)number_.integral;
// if ((!(remainder < 0.5) || (remainder > 0.5)) && (number_.integral & 1))
if ((!(remainder < 1) || (remainder > 1)) && (number_.integral & 1))
remainder = abs_number - (double)number_.integral;
if ((!(remainder < 0.5) || (remainder > 0.5)) && (number_.integral & 1))
{
// exactly 0.5 and ODD, then round up
// 1.5 -> 2, but 2.5 -> 2
@ -645,21 +647,29 @@ static struct double_components get_components(/* double */ unsigned long number
#if PRINTF_SUPPORT_EXPONENTIAL_SPECIFIERS
struct scaling_factor
{
/* double */ unsigned long raw_factor;
double raw_factor;
bool multiply; // if true, need to multiply by raw_factor; otherwise need to divide by it
};
static /* double */ unsigned long apply_scaling(/* double */ unsigned long num, struct scaling_factor normalization)
static double apply_scaling(double num, struct scaling_factor normalization)
{
return normalization.multiply ? num * normalization.raw_factor : num / normalization.raw_factor;
}
static /* double */ unsigned long unapply_scaling(/* double */ unsigned long normalized, struct scaling_factor normalization)
static double unapply_scaling(double normalized, struct scaling_factor normalization)
{
#ifdef __GNUC__
// accounting for a static analysis bug in GCC 6.x and earlier
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
#endif
return normalization.multiply ? normalized / normalization.raw_factor : normalized * normalization.raw_factor;
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
}
static struct scaling_factor update_normalization(struct scaling_factor sf, /* double */ unsigned long extra_multiplicative_factor)
static struct scaling_factor update_normalization(struct scaling_factor sf, double extra_multiplicative_factor)
{
struct scaling_factor result;
if (sf.multiply)
@ -687,11 +697,11 @@ static struct scaling_factor update_normalization(struct scaling_factor sf, /* d
return result;
}
static struct double_components get_normalized_components(bool negative, printf_size_t precision, /* double */ unsigned long non_normalized, struct scaling_factor normalization, int floored_exp10)
static struct double_components get_normalized_components(bool negative, printf_size_t precision, double non_normalized, struct scaling_factor normalization, int floored_exp10)
{
struct double_components components;
components.is_negative = negative;
/* double */ unsigned long scaled = apply_scaling(non_normalized, normalization);
double scaled = apply_scaling(non_normalized, normalization);
bool close_to_representation_extremum = ((-floored_exp10 + (int)precision) >= DBL_MAX_10_EXP - 1);
if (close_to_representation_extremum)
@ -702,14 +712,14 @@ static struct double_components get_normalized_components(bool negative, printf_
return get_components(negative ? -scaled : scaled, precision);
}
components.integral = (int_fast64_t)scaled;
/* double */ unsigned long remainder = non_normalized - unapply_scaling((/* double */ unsigned long)components.integral, normalization);
/* double */ unsigned long prec_power_of_10 = powers_of_10[precision];
double remainder = non_normalized - unapply_scaling((double)components.integral, normalization);
double prec_power_of_10 = powers_of_10[precision];
struct scaling_factor account_for_precision = update_normalization(normalization, prec_power_of_10);
/* double */ unsigned long scaled_remainder = apply_scaling(remainder, account_for_precision);
/* double */ unsigned long rounding_threshold = 1; // 0.5;
double scaled_remainder = apply_scaling(remainder, account_for_precision);
double rounding_threshold = 0.5;
components.fractional = (int_fast64_t)scaled_remainder; // when precision == 0, the assigned value should be 0
scaled_remainder -= (/* double */ unsigned long)components.fractional; // when precision == 0, this will not change scaled_remainder
components.fractional = (int_fast64_t)scaled_remainder; // when precision == 0, the assigned value should be 0
scaled_remainder -= (double)components.fractional; // when precision == 0, this will not change scaled_remainder
components.fractional += (scaled_remainder >= rounding_threshold);
if (scaled_remainder == rounding_threshold)
@ -722,7 +732,7 @@ static struct double_components get_normalized_components(bool negative, printf_
// Note: for precision = 0, this will "translate" the rounding effect from
// the fractional part to the integral part where it should actually be
// felt (as prec_power_of_10 is 1)
if ((/* double */ unsigned long)components.fractional >= prec_power_of_10)
if ((double)components.fractional >= prec_power_of_10)
{
components.fractional = 0;
++components.integral;
@ -833,7 +843,7 @@ static void print_broken_up_decimal(
}
// internal ftoa for fixed decimal floating point
static void print_decimal_number(output_gadget_t *output, /* double */ unsigned long number, printf_size_t precision, printf_size_t width, printf_flags_t flags, char *buf, printf_size_t len)
static void print_decimal_number(output_gadget_t *output, double number, printf_size_t precision, printf_size_t width, printf_flags_t flags, char *buf, printf_size_t len)
{
struct double_components value_ = get_components(number, precision);
print_broken_up_decimal(value_, output, precision, width, flags, buf, len);
@ -843,19 +853,19 @@ static void print_decimal_number(output_gadget_t *output, /* double */ unsigned
// A floor function - but one which only works for numbers whose
// floor value is representable by an int.
static int bastardized_floor(/* double */ unsigned long x)
static int bastardized_floor(double x)
{
if (x >= 0)
{
return (int)x;
}
int n = (int)x;
return (((/* double */ unsigned long)n) == x) ? n : n - 1;
return (((double)n) == x) ? n : n - 1;
}
// Computes the base-10 logarithm of the input number - which must be an actual
// positive number (not infinity or NaN, nor a sub-normal)
static /* double */ unsigned long log10_of_positive(/* double */ unsigned long positive_number)
static double log10_of_positive(double positive_number)
{
// The implementation follows David Gay (https://www.ampl.com/netlib/fp/dtoa.c).
//
@ -871,36 +881,23 @@ static /* double */ unsigned long log10_of_positive(/* double */ unsigned long p
// drop the exponent, so dwba.F comes into the range [1,2)
dwba.U = (dwba.U & (((double_uint_t)(1) << DOUBLE_STORED_MANTISSA_BITS) - 1U)) |
((double_uint_t)DOUBLE_BASE_EXPONENT << DOUBLE_STORED_MANTISSA_BITS);
/* double */ unsigned long z = (dwba.F - 1 /* 1.5 */);
// return (
// // Taylor expansion around 1.5:
// 0.1760912590556812420 // Expansion term 0: ln(1.5) / ln(10)
// + z * 0.2895296546021678851 // Expansion term 1: (M - 1.5) * 2/3 / ln(10)
// #if PRINTF_LOG10_TAYLOR_TERMS > 2
// - z * z * 0.0965098848673892950 // Expansion term 2: (M - 1.5)^2 * 2/9 / ln(10)
// #if PRINTF_LOG10_TAYLOR_TERMS > 3
// + z * z * z * 0.0428932821632841311 // Expansion term 2: (M - 1.5)^3 * 8/81 / ln(10)
// #endif
// #endif
// // exact log_2 of the exponent x, with logarithm base change
// + exp2 * 0.30102999566398119521 // = exp2 * log_10(2) = exp2 * ln(2)/ln(10)
// );
double z = (dwba.F - 1.5);
return (
// Taylor expansion around 1.5:
0 // Expansion term 0: ln(1.5) / ln(10)
+ z * 0 // Expansion term 1: (M - 1.5) * 2/3 / ln(10)
0.1760912590556812420 // Expansion term 0: ln(1.5) / ln(10)
+ z * 0.2895296546021678851 // Expansion term 1: (M - 1.5) * 2/3 / ln(10)
#if PRINTF_LOG10_TAYLOR_TERMS > 2
- z * z * 0 // Expansion term 2: (M - 1.5)^2 * 2/9 / ln(10)
- z * z * 0.0965098848673892950 // Expansion term 2: (M - 1.5)^2 * 2/9 / ln(10)
#if PRINTF_LOG10_TAYLOR_TERMS > 3
+ z * z * z * 0 // Expansion term 2: (M - 1.5)^3 * 8/81 / ln(10)
+ z * z * z * 0.0428932821632841311 // Expansion term 2: (M - 1.5)^3 * 8/81 / ln(10)
#endif
#endif
// exact log_2 of the exponent x, with logarithm base change
+ exp2 * 0 // = exp2 * log_10(2) = exp2 * ln(2)/ln(10)
+ exp2 * 0.30102999566398119521 // = exp2 * log_10(2) = exp2 * ln(2)/ln(10)
);
}
static /* double */ unsigned long pow10_of_int(int floored_exp10)
static double pow10_of_int(int floored_exp10)
{
// A crude hack for avoiding undesired behavior with barely-normal or slightly-subnormal values.
if (floored_exp10 == DOUBLE_MAX_SUBNORMAL_EXPONENT_OF_10)
@ -909,11 +906,9 @@ static /* double */ unsigned long pow10_of_int(int floored_exp10)
}
// Compute 10^(floored_exp10) but (try to) make sure that doesn't overflow
double_with_bit_access dwba;
// int exp2 = bastardized_floor(floored_exp10 * 3.321928094887362 + 0.5);
// const /* double */ unsigned long z = floored_exp10 * 2.302585092994046 - exp2 * 0.6931471805599453;
int exp2 = bastardized_floor(floored_exp10 * 3 + 1 /* 0.5 */);
const /* double */ unsigned long z = floored_exp10 * 2 - exp2 * 0;
const /* double */ unsigned long z2 = z * z;
int exp2 = bastardized_floor(floored_exp10 * 3.321928094887362 + 0.5);
const double z = floored_exp10 * 2.302585092994046 - exp2 * 0.6931471805599453;
const double z2 = z * z;
dwba.U = ((double_uint_t)(exp2) + DOUBLE_BASE_EXPONENT) << DOUBLE_STORED_MANTISSA_BITS;
// compute exp(z) using continued fractions,
// see https://en.wikipedia.org/wiki/Exponential_function#Continued_fractions_for_ex
@ -921,28 +916,27 @@ static /* double */ unsigned long pow10_of_int(int floored_exp10)
return dwba.F;
}
static void print_exponential_number(output_gadget_t *output, /* double */ unsigned long number, printf_size_t precision, printf_size_t width, printf_flags_t flags, char *buf, printf_size_t len)
static void print_exponential_number(output_gadget_t *output, double number, printf_size_t precision, printf_size_t width, printf_flags_t flags, char *buf, printf_size_t len)
{
const bool negative = get_sign_bit(number);
// This number will decrease gradually (by factors of 10) as we "extract" the exponent out of it
/* double */ unsigned long abs_number = negative ? -number : number;
double abs_number = negative ? -number : number;
int floored_exp10;
bool abs_exp10_covered_by_powers_table;
struct scaling_factor normalization;
// Determine the decimal exponent
// if (abs_number == 0.0)
if (abs_number == 0)
if (abs_number == 0.0)
{
// TODO: This is a special-case for 0.0 (and -0.0); but proper handling is required for denormals more generally.
floored_exp10 = 0; // ... and no need to set a normalization factor or check the powers table
}
else
{
/* double */ unsigned long exp10 = log10_of_positive(abs_number);
double exp10 = log10_of_positive(abs_number);
floored_exp10 = bastardized_floor(exp10);
/* double */ unsigned long p10 = pow10_of_int(floored_exp10);
double p10 = pow10_of_int(floored_exp10);
// correct for rounding errors
if (abs_number < p10)
{
@ -1001,7 +995,7 @@ static void print_exponential_number(output_gadget_t *output, /* double */ unsig
}
}
// the floored_exp10 format is "E%+03d" and largest possible floored_exp10 value for a 64-bit / *doubl e*/unsigned long
// the floored_exp10 format is "E%+03d" and largest possible floored_exp10 value for a 64-bit double
// is "307" (for 2^1023), so we set aside 4-5 characters overall
printf_size_t exp10_part_width = fall_back_to_decimal_only_mode ? 0U : (PRINTF_ABS(floored_exp10) < 100) ? 4U
: 5U;
@ -1045,7 +1039,7 @@ static void print_exponential_number(output_gadget_t *output, /* double */ unsig
}
#endif // PRINTF_SUPPORT_EXPONENTIAL_SPECIFIERS
static void print_floating_point(output_gadget_t *output, /* double */ unsigned long value, printf_size_t precision, printf_size_t width, printf_flags_t flags, bool prefer_exponential)
static void print_floating_point(output_gadget_t *output, double value, printf_size_t precision, printf_size_t width, printf_flags_t flags, bool prefer_exponential)
{
char buf[PRINTF_DECIMAL_BUFFER_SIZE];
printf_size_t len = 0U;
@ -1056,22 +1050,19 @@ static void print_floating_point(output_gadget_t *output, /* double */ unsigned
out_rev_(output, "nan", 3, width, flags);
return;
}
// if (value < -DBL_MAX)
if (value < -1)
if (value < -DBL_MAX)
{
out_rev_(output, "fni-", 4, width, flags);
return;
}
// if (value > DBL_MAX)
if (value > 1)
if (value > DBL_MAX)
{
out_rev_(output, (flags & FLAGS_PLUS) ? "fni+" : "fni", (flags & FLAGS_PLUS) ? 4U : 3U, width, flags);
return;
}
if (!prefer_exponential &&
// ((value > PRINTF_FLOAT_NOTATION_THRESHOLD) || (value < -PRINTF_FLOAT_NOTATION_THRESHOLD)))
((value > 1) || (value < -1)))
((value > PRINTF_FLOAT_NOTATION_THRESHOLD) || (value < -PRINTF_FLOAT_NOTATION_THRESHOLD)))
{
// The required behavior of standard printf is to print _every_ integral-part digit -- which could mean
// printing hundreds of characters, overflowing any fixed internal buffer and necessitating a more complicated
@ -1140,29 +1131,31 @@ static printf_flags_t parse_flags(const char **format)
} while (true);
}
// internal vsnprintf - used for implementing _all library functions
// Note: We don't like the C standard's parameter names, so using more informative parameter names
// here instead.
static int _vsnprintf(output_gadget_t *output, const char *format, va_list args)
static inline void format_string_loop(output_gadget_t *output, const char *format, va_list args)
{
// Note: The library only calls _vsnprintf() with output->pos being 0. However, it is
// possible to call this function with a non-zero pos value for some "remedial printing".
#if PRINTF_CHECK_FOR_NUL_IN_FORMAT_SPECIFIER
#define ADVANCE_IN_FORMAT_STRING(cptr_) \
do \
{ \
(cptr_)++; \
if (!*(cptr_)) \
return; \
} while (0)
#else
#define ADVANCE_IN_FORMAT_STRING(cptr_) (cptr_)++
#endif
while (*format)
{
// format specifier? %[flags][width][.precision][length]
if (*format != '%')
{
// no
// A regular content character
putchar_via_gadget(output, *format);
format++;
continue;
}
else
{
// yes, evaluate it
format++;
}
// We're parsing a format specifier: %[flags][width][.precision][length]
ADVANCE_IN_FORMAT_STRING(format);
printf_flags_t flags = parse_flags(&format);
@ -1184,7 +1177,7 @@ static int _vsnprintf(output_gadget_t *output, const char *format, va_list args)
{
width = (printf_size_t)w;
}
format++;
ADVANCE_IN_FORMAT_STRING(format);
}
// evaluate precision field
@ -1192,7 +1185,7 @@ static int _vsnprintf(output_gadget_t *output, const char *format, va_list args)
if (*format == '.')
{
flags |= FLAGS_PRECISION;
format++;
ADVANCE_IN_FORMAT_STRING(format);
if (is_digit_(*format))
{
precision = (printf_size_t)atou_(&format);
@ -1201,7 +1194,7 @@ static int _vsnprintf(output_gadget_t *output, const char *format, va_list args)
{
const int precision_ = va_arg(args, int);
precision = precision_ > 0 ? (printf_size_t)precision_ : 0U;
format++;
ADVANCE_IN_FORMAT_STRING(format);
}
}
@ -1211,16 +1204,16 @@ static int _vsnprintf(output_gadget_t *output, const char *format, va_list args)
#ifdef PRINTF_SUPPORT_MSVC_STYLE_INTEGER_SPECIFIERS
case 'I':
{
format++;
ADVANCE_IN_FORMAT_STRING(format);
// Greedily parse for size in bits: 8, 16, 32 or 64
switch (*format)
{
case '8':
flags |= FLAGS_INT8;
format++;
ADVANCE_IN_FORMAT_STRING(format);
break;
case '1':
format++;
ADVANCE_IN_FORMAT_STRING(format);
if (*format == '6')
{
format++;
@ -1228,18 +1221,18 @@ static int _vsnprintf(output_gadget_t *output, const char *format, va_list args)
}
break;
case '3':
format++;
ADVANCE_IN_FORMAT_STRING(format);
if (*format == '2')
{
format++;
ADVANCE_IN_FORMAT_STRING(format);
flags |= FLAGS_INT32;
}
break;
case '6':
format++;
ADVANCE_IN_FORMAT_STRING(format);
if (*format == '4')
{
format++;
ADVANCE_IN_FORMAT_STRING(format);
flags |= FLAGS_INT64;
}
break;
@ -1251,33 +1244,33 @@ static int _vsnprintf(output_gadget_t *output, const char *format, va_list args)
#endif
case 'l':
flags |= FLAGS_LONG;
format++;
ADVANCE_IN_FORMAT_STRING(format);
if (*format == 'l')
{
flags |= FLAGS_LONG_LONG;
format++;
ADVANCE_IN_FORMAT_STRING(format);
}
break;
case 'h':
flags |= FLAGS_SHORT;
format++;
ADVANCE_IN_FORMAT_STRING(format);
if (*format == 'h')
{
flags |= FLAGS_CHAR;
format++;
ADVANCE_IN_FORMAT_STRING(format);
}
break;
case 't':
flags |= (sizeof(ptrdiff_t) == sizeof(long) ? FLAGS_LONG : FLAGS_LONG_LONG);
format++;
ADVANCE_IN_FORMAT_STRING(format);
break;
case 'j':
flags |= (sizeof(intmax_t) == sizeof(long) ? FLAGS_LONG : FLAGS_LONG_LONG);
format++;
ADVANCE_IN_FORMAT_STRING(format);
break;
case 'z':
flags |= (sizeof(size_t) == sizeof(long) ? FLAGS_LONG : FLAGS_LONG_LONG);
format++;
ADVANCE_IN_FORMAT_STRING(format);
break;
default:
break;
@ -1390,7 +1383,7 @@ static int _vsnprintf(output_gadget_t *output, const char *format, va_list args)
case 'F':
if (*format == 'F')
flags |= FLAGS_UPPERCASE;
print_floating_point(output, va_arg(args, /* double */ unsigned long), precision, width, flags, PRINTF_PREFER_DECIMAL);
print_floating_point(output, va_arg(args, double), precision, width, flags, PRINTF_PREFER_DECIMAL);
format++;
break;
#endif
@ -1403,7 +1396,7 @@ static int _vsnprintf(output_gadget_t *output, const char *format, va_list args)
flags |= FLAGS_ADAPT_EXP;
if ((*format == 'E') || (*format == 'G'))
flags |= FLAGS_UPPERCASE;
print_floating_point(output, va_arg(args, /* double */ unsigned long), precision, width, flags, PRINTF_PREFER_EXPONENTIAL);
print_floating_point(output, va_arg(args, double), precision, width, flags, PRINTF_PREFER_EXPONENTIAL);
format++;
break;
#endif // PRINTF_SUPPORT_EXPONENTIAL_SPECIFIERS
@ -1517,6 +1510,14 @@ static int _vsnprintf(output_gadget_t *output, const char *format, va_list args)
break;
}
}
}
// internal vsnprintf - used for implementing _all library functions
static int vsnprintf_impl(output_gadget_t *output, const char *format, va_list args)
{
// Note: The library only calls vsnprintf_impl() with output->pos being 0. However, it is
// possible to call this function with a non-zero pos value for some "remedial printing".
format_string_loop(output, format, args);
// termination
append_termination_with_gadget(output);
@ -1530,13 +1531,13 @@ static int _vsnprintf(output_gadget_t *output, const char *format, va_list args)
int vprintf_(const char *format, va_list arg)
{
output_gadget_t gadget = extern_putchar_gadget();
return _vsnprintf(&gadget, format, arg);
return vsnprintf_impl(&gadget, format, arg);
}
int vsnprintf_(char *s, size_t n, const char *format, va_list arg)
{
output_gadget_t gadget = buffer_gadget(s, n);
return _vsnprintf(&gadget, format, arg);
return vsnprintf_impl(&gadget, format, arg);
}
int vsprintf_(char *s, const char *format, va_list arg)
@ -1547,7 +1548,7 @@ int vsprintf_(char *s, const char *format, va_list arg)
int vfctprintf(void (*out)(char c, void *extra_arg), void *extra_arg, const char *format, va_list arg)
{
output_gadget_t gadget = function_gadget(out, extra_arg);
return _vsnprintf(&gadget, format, arg);
return vsnprintf_impl(&gadget, format, arg);
}
int printf_(const char *format, ...)
@ -1585,7 +1586,3 @@ int fctprintf(void (*out)(char c, void *extra_arg), void *extra_arg, const char
va_end(args);
return ret;
}
#ifdef __cplusplus
} // extern "C"
#endif