mirror of
https://github.com/EnderIce2/Fennix.git
synced 2025-07-02 02:49:15 +00:00
Merge remote-tracking branch 'Kernel/master'
This commit is contained in:
104
Kernel/core/memory/brk.cpp
Normal file
104
Kernel/core/memory/brk.cpp
Normal file
@ -0,0 +1,104 @@
|
||||
/*
|
||||
This file is part of Fennix Kernel.
|
||||
|
||||
Fennix Kernel is free software: you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public License as
|
||||
published by the Free Software Foundation, either version 3 of
|
||||
the License, or (at your option) any later version.
|
||||
|
||||
Fennix Kernel is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <memory/brk.hpp>
|
||||
#include <memory/virtual.hpp>
|
||||
#include <memory/vma.hpp>
|
||||
#include <assert.h>
|
||||
#include <errno.h>
|
||||
#include <debug.h>
|
||||
|
||||
namespace Memory
|
||||
{
|
||||
void *ProgramBreak::brk(void *Address)
|
||||
{
|
||||
if (HeapStart == 0x0 || Break == 0x0)
|
||||
{
|
||||
error("HeapStart or Break is 0x0");
|
||||
return (void *)-EAGAIN;
|
||||
}
|
||||
|
||||
/* Get the current program break. */
|
||||
if (Address == nullptr)
|
||||
return (void *)Break;
|
||||
|
||||
/* Check if the address is valid. */
|
||||
if ((uintptr_t)Address < HeapStart)
|
||||
{
|
||||
debug("Address %#lx is less than HeapStart %#lx", Address, HeapStart);
|
||||
return (void *)-ENOMEM;
|
||||
}
|
||||
|
||||
Virtual vmm(this->Table);
|
||||
|
||||
if ((uintptr_t)Address > Break)
|
||||
{
|
||||
/* Allocate more memory. */
|
||||
ssize_t Pages = TO_PAGES(uintptr_t(Address) - Break);
|
||||
void *Allocated = vma->RequestPages(Pages);
|
||||
if (Allocated == nullptr)
|
||||
return (void *)-ENOMEM;
|
||||
|
||||
/* Map the allocated pages. */
|
||||
for (ssize_t i = 0; i < Pages; i++)
|
||||
{
|
||||
void *VirtAddr = (void *)(Break + (i * PAGE_SIZE));
|
||||
void *PhysAddr = (void *)(uintptr_t(Allocated) + (i * PAGE_SIZE));
|
||||
debug("Mapping %#lx to %#lx", VirtAddr, PhysAddr);
|
||||
vmm.Map(VirtAddr, PhysAddr, RW | US);
|
||||
}
|
||||
|
||||
Break = ROUND_UP(uintptr_t(Address), PAGE_SIZE);
|
||||
debug("Round up %#lx to %#lx", Address, Break);
|
||||
return Address;
|
||||
}
|
||||
|
||||
/* Free memory. */
|
||||
ssize_t Pages = TO_PAGES(Break - uintptr_t(Address));
|
||||
vma->FreePages((void *)Break, Pages);
|
||||
|
||||
/* Unmap the freed pages. */
|
||||
for (ssize_t i = 0; i < Pages; i++)
|
||||
{
|
||||
uint64_t Page = Break - (i * 0x1000);
|
||||
vmm.Remap((void *)Page, (void *)Page, RW);
|
||||
debug("Unmapping %#lx", Page);
|
||||
}
|
||||
|
||||
Break = (uint64_t)Address;
|
||||
return (void *)Break;
|
||||
}
|
||||
|
||||
ProgramBreak::ProgramBreak(PageTable *Table, VirtualMemoryArea *vma)
|
||||
{
|
||||
assert(Table != nullptr);
|
||||
assert(vma != nullptr);
|
||||
|
||||
debug("+ %#lx", this);
|
||||
|
||||
this->Table = Table;
|
||||
this->vma = vma;
|
||||
}
|
||||
|
||||
ProgramBreak::~ProgramBreak()
|
||||
{
|
||||
debug("- %#lx", this);
|
||||
|
||||
/* Do nothing because VirtualMemoryArea
|
||||
will be destroyed later. */
|
||||
}
|
||||
}
|
212
Kernel/core/memory/find_bitmap_region.cpp
Normal file
212
Kernel/core/memory/find_bitmap_region.cpp
Normal file
@ -0,0 +1,212 @@
|
||||
/*
|
||||
This file is part of Fennix Kernel.
|
||||
|
||||
Fennix Kernel is free software: you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public License as
|
||||
published by the Free Software Foundation, either version 3 of
|
||||
the License, or (at your option) any later version.
|
||||
|
||||
Fennix Kernel is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <memory.hpp>
|
||||
|
||||
#include <acpi.hpp>
|
||||
#include <debug.h>
|
||||
#include <elf.h>
|
||||
#ifdef DEBUG
|
||||
#include <uart.hpp>
|
||||
#endif
|
||||
|
||||
#include "../../kernel.h"
|
||||
|
||||
namespace Memory
|
||||
{
|
||||
__no_sanitize("alignment") void Physical::FindBitmapRegion(uintptr_t &BitmapAddress,
|
||||
size_t &BitmapAddressSize)
|
||||
{
|
||||
size_t BitmapSize = (size_t)(bInfo.Memory.Size / PAGE_SIZE) / 8 + 1;
|
||||
|
||||
uintptr_t KernelStart = (uintptr_t)bInfo.Kernel.PhysicalBase;
|
||||
uintptr_t KernelEnd = (uintptr_t)bInfo.Kernel.PhysicalBase + bInfo.Kernel.Size;
|
||||
|
||||
uintptr_t SectionsStart = 0x0;
|
||||
uintptr_t SectionsEnd = 0x0;
|
||||
|
||||
uintptr_t Symbols = 0x0;
|
||||
uintptr_t StringAddress = 0x0;
|
||||
size_t SymbolSize = 0;
|
||||
size_t StringSize = 0;
|
||||
|
||||
uintptr_t RSDPStart = 0x0;
|
||||
uintptr_t RSDPEnd = 0x0;
|
||||
|
||||
if (bInfo.Kernel.Symbols.Num &&
|
||||
bInfo.Kernel.Symbols.EntSize &&
|
||||
bInfo.Kernel.Symbols.Shndx)
|
||||
{
|
||||
char *sections = r_cst(char *, bInfo.Kernel.Symbols.Sections);
|
||||
|
||||
SectionsStart = (uintptr_t)sections;
|
||||
SectionsEnd = (uintptr_t)sections + bInfo.Kernel.Symbols.EntSize *
|
||||
bInfo.Kernel.Symbols.Num;
|
||||
|
||||
for (size_t i = 0; i < bInfo.Kernel.Symbols.Num; ++i)
|
||||
{
|
||||
Elf_Shdr *sym = (Elf_Shdr *)§ions[bInfo.Kernel.Symbols.EntSize * i];
|
||||
Elf_Shdr *str = (Elf_Shdr *)§ions[bInfo.Kernel.Symbols.EntSize *
|
||||
sym->sh_link];
|
||||
|
||||
if (sym->sh_type == SHT_SYMTAB &&
|
||||
str->sh_type == SHT_STRTAB)
|
||||
{
|
||||
Symbols = (uintptr_t)sym->sh_addr;
|
||||
StringAddress = (uintptr_t)str->sh_addr;
|
||||
SymbolSize = (size_t)sym->sh_size;
|
||||
StringSize = (size_t)str->sh_size;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#if defined(a86)
|
||||
if (bInfo.RSDP)
|
||||
{
|
||||
RSDPStart = (uintptr_t)bInfo.RSDP;
|
||||
RSDPEnd = (uintptr_t)bInfo.RSDP + sizeof(BootInfo::RSDPInfo);
|
||||
|
||||
#ifdef DEBUG
|
||||
ACPI::ACPI::ACPIHeader *ACPIPtr;
|
||||
bool XSDT = false;
|
||||
|
||||
if (bInfo.RSDP->Revision >= 2 && bInfo.RSDP->XSDTAddress)
|
||||
{
|
||||
ACPIPtr = (ACPI::ACPI::ACPIHeader *)bInfo.RSDP->XSDTAddress;
|
||||
XSDT = true;
|
||||
}
|
||||
else
|
||||
ACPIPtr = (ACPI::ACPI::ACPIHeader *)(uintptr_t)bInfo.RSDP->RSDTAddress;
|
||||
|
||||
if (Memory::Virtual().Check(ACPIPtr))
|
||||
{
|
||||
size_t TableSize = ((ACPIPtr->Length - sizeof(ACPI::ACPI::ACPIHeader)) /
|
||||
(XSDT ? 8 : 4));
|
||||
debug("There are %d ACPI tables", TableSize);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
#elif defined(aa64)
|
||||
#endif
|
||||
|
||||
for (uint64_t i = 0; i < bInfo.Memory.Entries; i++)
|
||||
{
|
||||
if (bInfo.Memory.Entry[i].Type == Usable)
|
||||
{
|
||||
uintptr_t RegionAddress = (uintptr_t)bInfo.Memory.Entry[i].BaseAddress;
|
||||
uintptr_t RegionSize = bInfo.Memory.Entry[i].Length;
|
||||
|
||||
/* We don't want to use the first 1MB of memory. */
|
||||
if (RegionAddress <= 0xFFFFF)
|
||||
continue;
|
||||
|
||||
if ((BitmapSize + 0x100) > RegionSize)
|
||||
{
|
||||
debug("Region %p-%p (%d MiB) is too small for bitmap.",
|
||||
(void *)RegionAddress,
|
||||
(void *)(RegionAddress + RegionSize),
|
||||
TO_MiB(RegionSize));
|
||||
continue;
|
||||
}
|
||||
|
||||
BitmapAddress = RegionAddress;
|
||||
BitmapAddressSize = RegionSize;
|
||||
|
||||
struct AddrRange
|
||||
{
|
||||
uintptr_t Start;
|
||||
uintptr_t End;
|
||||
};
|
||||
|
||||
auto SortAddresses = [](AddrRange *Array, size_t n)
|
||||
{
|
||||
size_t MinimumIndex;
|
||||
for (size_t i = 0; i < n - 1; i++)
|
||||
{
|
||||
MinimumIndex = i;
|
||||
for (size_t j = i + 1; j < n; j++)
|
||||
if (Array[j].Start < Array[MinimumIndex].Start)
|
||||
MinimumIndex = j;
|
||||
|
||||
AddrRange tmp = Array[MinimumIndex];
|
||||
Array[MinimumIndex] = Array[i];
|
||||
Array[i] = tmp;
|
||||
}
|
||||
};
|
||||
|
||||
AddrRange PtrArray[] =
|
||||
{
|
||||
{KernelStart,
|
||||
KernelEnd},
|
||||
{SectionsStart,
|
||||
SectionsEnd},
|
||||
{Symbols,
|
||||
Symbols + SymbolSize},
|
||||
{StringAddress,
|
||||
StringAddress + StringSize},
|
||||
{RSDPStart,
|
||||
RSDPEnd},
|
||||
{(uintptr_t)bInfo.Kernel.FileBase,
|
||||
(uintptr_t)bInfo.Kernel.FileBase + bInfo.Kernel.Size},
|
||||
{(uintptr_t)bInfo.Modules[0].Address,
|
||||
(uintptr_t)bInfo.Modules[0].Address + bInfo.Modules[0].Size},
|
||||
{(uintptr_t)bInfo.Modules[1].Address,
|
||||
(uintptr_t)bInfo.Modules[1].Address + bInfo.Modules[1].Size},
|
||||
{(uintptr_t)bInfo.Modules[2].Address,
|
||||
(uintptr_t)bInfo.Modules[2].Address + bInfo.Modules[2].Size},
|
||||
{(uintptr_t)bInfo.Modules[3].Address,
|
||||
(uintptr_t)bInfo.Modules[3].Address + bInfo.Modules[3].Size},
|
||||
/* MAX_MODULES == 4 */
|
||||
};
|
||||
|
||||
SortAddresses(PtrArray, sizeof(PtrArray) / sizeof(PtrArray[0]));
|
||||
|
||||
for (size_t i = 0; i < sizeof(PtrArray) / sizeof(PtrArray[0]); i++)
|
||||
{
|
||||
if (PtrArray[i].Start == 0x0)
|
||||
continue;
|
||||
|
||||
uintptr_t Start = PtrArray[i].Start;
|
||||
uintptr_t End = PtrArray[i].End;
|
||||
debug("%#lx - %#lx", Start, End);
|
||||
|
||||
if (RegionAddress >= Start &&
|
||||
End <= (RegionAddress + RegionSize))
|
||||
{
|
||||
BitmapAddress = End;
|
||||
BitmapAddressSize = RegionSize - (End - RegionAddress);
|
||||
}
|
||||
}
|
||||
|
||||
if ((BitmapSize + 0x100) > BitmapAddressSize)
|
||||
{
|
||||
debug("Region %p-%p (%d MiB) is too small for bitmap.",
|
||||
(void *)BitmapAddress,
|
||||
(void *)(BitmapAddress + BitmapAddressSize),
|
||||
TO_MiB(BitmapAddressSize));
|
||||
continue;
|
||||
}
|
||||
|
||||
debug("Found free memory for bitmap: %p (%d MiB)",
|
||||
(void *)BitmapAddress,
|
||||
TO_MiB(BitmapAddressSize));
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
154
Kernel/core/memory/heap_allocators/Xalloc/README.md
Normal file
154
Kernel/core/memory/heap_allocators/Xalloc/README.md
Normal file
@ -0,0 +1,154 @@
|
||||
# Xalloc
|
||||
|
||||
Xalloc is a custom memory allocator designed for hobby operating systems.
|
||||
Written in C++ and provides a simple and efficient way to manage memory in your hobby OS.
|
||||
|
||||
#### ❗ This project is still in development and is not ready for use in production environments. ❗
|
||||
|
||||
---
|
||||
|
||||
## Features
|
||||
|
||||
- **Simple API** - Simple API for allocating and freeing memory.
|
||||
|
||||
- **Efficient** - Uses a free-list to manage memory and is designed to be fast.
|
||||
|
||||
- **No dependencies** - No dependencies and is designed to be easy to integrate into your OS.
|
||||
|
||||
---
|
||||
|
||||
## Getting Started
|
||||
|
||||
### Implementing missing functions
|
||||
|
||||
You will need to implement the following functions in your OS:
|
||||
|
||||
##### Wrapper.cpp
|
||||
```cpp
|
||||
extern "C" void *Xalloc_REQUEST_PAGES(Xsize_t Pages)
|
||||
{
|
||||
// ...
|
||||
}
|
||||
|
||||
extern "C" void Xalloc_FREE_PAGES(void *Address, Xsize_t Pages)
|
||||
{
|
||||
// ...
|
||||
}
|
||||
|
||||
/* Mandatory only if Xalloc_MapPages is set to true */
|
||||
extern "C" void Xalloc_MAP_MEMORY(void *VirtualAddress, void *PhysicalAddress, Xsize_t Flags)
|
||||
{
|
||||
// ...
|
||||
}
|
||||
|
||||
/* Mandatory only if Xalloc_MapPages is set to true */
|
||||
extern "C" void Xalloc_UNMAP_MEMORY(void *VirtualAddress)
|
||||
{
|
||||
// ...
|
||||
}
|
||||
```
|
||||
|
||||
##### Xalloc.hpp
|
||||
```cpp
|
||||
#define Xalloc_StopOnFail <bool> /* Infinite loop on failure */
|
||||
#define Xalloc_MapPages <bool> /* Map pages on allocation */
|
||||
#define Xalloc_PAGE_SIZE <page size> /* <-- Replace with your page size */
|
||||
#define Xalloc_trace(m, ...) <trace function>
|
||||
#define Xalloc_warn(m, ...) <warning function>
|
||||
#define Xalloc_err(m, ...) <error function>
|
||||
|
||||
#define XallocV1_def <define a lock> /* eg. std::mutex Xalloc_lock; */
|
||||
#define XallocV1_lock <lock function>
|
||||
#define XallocV1_unlock <unlock function>
|
||||
|
||||
/* Same as above */
|
||||
#define XallocV2_def <define a lock>
|
||||
#define XallocV2_lock <lock function>
|
||||
#define XallocV2_unlock <unlock function>
|
||||
```
|
||||
|
||||
### Typical usage
|
||||
|
||||
```cpp
|
||||
#include "Xalloc.hpp"
|
||||
|
||||
Xalloc::V1 *XallocV1Allocator = nullptr;
|
||||
|
||||
int main()
|
||||
{
|
||||
/* Virtual Base User SMAP */
|
||||
XallocV1Allocator = new Xalloc::V1((void *)0xFFFFA00000000000, false, false);
|
||||
|
||||
void *p = XallocV1Allocator->malloc(1234);
|
||||
/* ... */
|
||||
XallocV1Allocator->free(p);
|
||||
delete XallocV1Allocator;
|
||||
return 0;
|
||||
}
|
||||
```
|
||||
|
||||
or
|
||||
|
||||
```cpp
|
||||
#include "Xalloc.hpp"
|
||||
|
||||
int main()
|
||||
{
|
||||
/* Virtual Base User SMAP */
|
||||
Xalloc::V1 XallocV1Allocator((void *)0xFFFFA00000000000, false, false);
|
||||
|
||||
void *p = XallocV1Allocator.malloc(1234);
|
||||
/* ... */
|
||||
XallocV1Allocator.free(p);
|
||||
return 0;
|
||||
}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## API
|
||||
|
||||
### Xalloc::V1
|
||||
|
||||
```cpp
|
||||
void *malloc(Xsize_t Size);
|
||||
```
|
||||
Allocates a block of memory of size `Size` bytes.
|
||||
If `Size` is 0, then `nullptr` is returned.
|
||||
- `Size` - The size of the block to allocate in bytes.
|
||||
|
||||
<br><br>
|
||||
|
||||
```cpp
|
||||
void free(void *Address);
|
||||
```
|
||||
Frees the memory block pointed to by `Address`.
|
||||
If `Address` is `nullptr`, then no operation is performed.
|
||||
- `Address` - The address of the memory block to free.
|
||||
|
||||
<br><br>
|
||||
|
||||
```cpp
|
||||
void *calloc(Xsize_t NumberOfBlocks, Xsize_t Size);
|
||||
```
|
||||
Allocates a block of memory for an array of `NumberOfBlocks` elements, each of them `Size` bytes long.
|
||||
If `NumberOfBlocks` or `Size` is 0, then `nullptr` is returned.
|
||||
- `NumberOfBlocks` - The number of elements to allocate.
|
||||
- `Size` - The size of each element in bytes.
|
||||
|
||||
<br><br>
|
||||
|
||||
```cpp
|
||||
void *realloc(void *Address, Xsize_t Size);
|
||||
```
|
||||
Changes the size of the memory block pointed to by `Address` to `Size` bytes.
|
||||
If `Address` is `nullptr`, then the call is equivalent to `malloc(Size)`.
|
||||
If `Size` is equal to zero, and `Address` is not `nullptr`, then the call is equivalent to `free(Address)`.
|
||||
- `Address` - The address of the memory block to resize.
|
||||
- `Size` - The new size of the memory block in bytes.
|
||||
|
||||
---
|
||||
|
||||
## To-do
|
||||
|
||||
- [ ] Multiple free-lists for different block sizes
|
40
Kernel/core/memory/heap_allocators/Xalloc/Wrapper.cpp
Normal file
40
Kernel/core/memory/heap_allocators/Xalloc/Wrapper.cpp
Normal file
@ -0,0 +1,40 @@
|
||||
/*
|
||||
This file is part of Fennix Kernel.
|
||||
|
||||
Fennix Kernel is free software: you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public License as
|
||||
published by the Free Software Foundation, either version 3 of
|
||||
the License, or (at your option) any later version.
|
||||
|
||||
Fennix Kernel is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include "Xalloc.hpp"
|
||||
|
||||
#include <memory.hpp>
|
||||
|
||||
extern "C" void *Xalloc_REQUEST_PAGES(Xsize_t Pages)
|
||||
{
|
||||
return KernelAllocator.RequestPages(Pages);
|
||||
}
|
||||
|
||||
extern "C" void Xalloc_FREE_PAGES(void *Address, Xsize_t Pages)
|
||||
{
|
||||
KernelAllocator.FreePages(Address, Pages);
|
||||
}
|
||||
|
||||
extern "C" void Xalloc_MAP_MEMORY(void *VirtualAddress, void *PhysicalAddress, Xsize_t Flags)
|
||||
{
|
||||
Memory::Virtual(KernelPageTable).Map(VirtualAddress, PhysicalAddress, Flags);
|
||||
}
|
||||
|
||||
extern "C" void Xalloc_UNMAP_MEMORY(void *VirtualAddress)
|
||||
{
|
||||
Memory::Virtual(KernelPageTable).Unmap(VirtualAddress);
|
||||
}
|
236
Kernel/core/memory/heap_allocators/Xalloc/Xalloc.hpp
Normal file
236
Kernel/core/memory/heap_allocators/Xalloc/Xalloc.hpp
Normal file
@ -0,0 +1,236 @@
|
||||
/*
|
||||
This file is part of Fennix Kernel.
|
||||
|
||||
Fennix Kernel is free software: you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public License as
|
||||
published by the Free Software Foundation, either version 3 of
|
||||
the License, or (at your option) any later version.
|
||||
|
||||
Fennix Kernel is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef __FENNIX_KERNEL_Xalloc_H__
|
||||
#define __FENNIX_KERNEL_Xalloc_H__
|
||||
|
||||
#include <memory.hpp>
|
||||
#include <lock.hpp>
|
||||
#include <debug.h>
|
||||
|
||||
typedef __UINT8_TYPE__ Xuint8_t;
|
||||
typedef __SIZE_TYPE__ Xsize_t;
|
||||
typedef __UINTPTR_TYPE__ Xuintptr_t;
|
||||
|
||||
#define Xalloc_StopOnFail true
|
||||
#define Xalloc_MapPages false
|
||||
#define Xalloc_PAGE_SIZE PAGE_SIZE
|
||||
#define Xalloc_trace(m, ...) trace(m, ##__VA_ARGS__)
|
||||
#define Xalloc_warn(m, ...) warn(m, ##__VA_ARGS__)
|
||||
#define Xalloc_err(m, ...) error(m, ##__VA_ARGS__)
|
||||
|
||||
#define XallocV1_def NewLock(XallocV1Lock)
|
||||
#define XallocV1_lock XallocV1Lock.Lock(__FUNCTION__)
|
||||
#define XallocV1_unlock XallocV1Lock.Unlock()
|
||||
|
||||
#define XallocV2_def NewLock(XallocV2Lock)
|
||||
#define XallocV2_lock XallocV2Lock.Lock(__FUNCTION__)
|
||||
#define XallocV2_unlock XallocV2Lock.Unlock()
|
||||
|
||||
namespace Xalloc
|
||||
{
|
||||
class V1
|
||||
{
|
||||
private:
|
||||
void *BaseVirtualAddress = nullptr;
|
||||
void *FirstBlock = nullptr;
|
||||
void *LastBlock = nullptr;
|
||||
|
||||
bool UserMapping = false;
|
||||
bool SMAPUsed = false;
|
||||
|
||||
public:
|
||||
/** @brief Execute "stac" instruction if the kernel has SMAP enabled */
|
||||
void Xstac();
|
||||
|
||||
/** @brief Execute "clac" instruction if the kernel has SMAP enabled */
|
||||
void Xclac();
|
||||
|
||||
/**
|
||||
* @brief Arrange the blocks to optimize the memory usage
|
||||
* The allocator is not arranged by default
|
||||
* to avoid performance issues.
|
||||
* This function will defragment the memory
|
||||
* and free the unused blocks.
|
||||
*
|
||||
* You should call this function when the
|
||||
* kernel is idle or when is not using
|
||||
* the allocator.
|
||||
*/
|
||||
void Arrange();
|
||||
|
||||
/**
|
||||
* @brief Allocate a new memory block
|
||||
*
|
||||
* @param Size Size of the block to allocate.
|
||||
* @return void* Pointer to the allocated block.
|
||||
*/
|
||||
void *malloc(Xsize_t Size);
|
||||
|
||||
/**
|
||||
* @brief Free a previously allocated block
|
||||
*
|
||||
* @param Address Address of the block to free.
|
||||
*/
|
||||
void free(void *Address);
|
||||
|
||||
/**
|
||||
* @brief Allocate a new memory block
|
||||
*
|
||||
* @param NumberOfBlocks Number of blocks to allocate.
|
||||
* @param Size Size of the block to allocate.
|
||||
* @return void* Pointer to the allocated block.
|
||||
*/
|
||||
void *calloc(Xsize_t NumberOfBlocks, Xsize_t Size);
|
||||
|
||||
/**
|
||||
* @brief Reallocate a previously allocated block
|
||||
*
|
||||
* @param Address Address of the block to reallocate.
|
||||
* @param Size New size of the block.
|
||||
* @return void* Pointer to the reallocated block.
|
||||
*/
|
||||
void *realloc(void *Address, Xsize_t Size);
|
||||
|
||||
/**
|
||||
* @brief Construct a new Allocator object
|
||||
*
|
||||
* @param BaseVirtualAddress Virtual address to map the pages.
|
||||
* @param UserMode Map the new pages with USER flag?
|
||||
* @param SMAPEnabled Does the kernel has Supervisor Mode Access Prevention enabled?
|
||||
*/
|
||||
V1(void *BaseVirtualAddress, bool UserMode, bool SMAPEnabled);
|
||||
|
||||
/**
|
||||
* @brief Destroy the Allocator object
|
||||
*
|
||||
*/
|
||||
~V1();
|
||||
};
|
||||
|
||||
class V2
|
||||
{
|
||||
private:
|
||||
class Block
|
||||
{
|
||||
public:
|
||||
int Sanity = 0xA110C;
|
||||
Block *Next = nullptr;
|
||||
bool IsFree = true;
|
||||
V2 *ctx = nullptr;
|
||||
|
||||
Xuint8_t *Data = nullptr;
|
||||
Xsize_t DataSize = 0;
|
||||
|
||||
void Check();
|
||||
Block(Xsize_t Size, V2 *ctx);
|
||||
~Block();
|
||||
void *operator new(Xsize_t);
|
||||
void operator delete(void *Address);
|
||||
} __attribute__((packed, aligned((16))));
|
||||
|
||||
/* The base address of the virtual memory */
|
||||
Xuintptr_t BaseVirtualAddress = 0x0;
|
||||
|
||||
/* The size of the heap */
|
||||
Xsize_t HeapSize = 0x0;
|
||||
|
||||
/* The used size of the heap */
|
||||
Xsize_t HeapUsed = 0x0;
|
||||
|
||||
Block *FirstBlock = nullptr;
|
||||
|
||||
Xuint8_t *AllocateHeap(Xsize_t Size);
|
||||
void FreeHeap(Xuint8_t *At, Xsize_t Size);
|
||||
|
||||
Xsize_t Align(Xsize_t Size);
|
||||
void *FindFreeBlock(Xsize_t Size,
|
||||
Block *&CurrentBlock);
|
||||
|
||||
public:
|
||||
/**
|
||||
* Arrange the blocks to optimize the memory
|
||||
* usage.
|
||||
* The allocator is not arranged by default
|
||||
* to avoid performance issues.
|
||||
* This function will defragment the memory
|
||||
* and free the unused blocks.
|
||||
*
|
||||
* You should call this function when the
|
||||
* kernel is idle or when is not using the
|
||||
* allocator.
|
||||
*/
|
||||
void Arrange();
|
||||
|
||||
/**
|
||||
* Allocate a new memory block
|
||||
*
|
||||
* @param Size Size of the block to allocate.
|
||||
* @return void* Pointer to the allocated
|
||||
* block.
|
||||
*/
|
||||
void *malloc(Xsize_t Size);
|
||||
|
||||
/**
|
||||
* Free a previously allocated block
|
||||
*
|
||||
* @param Address Address of the block to
|
||||
* free.
|
||||
*/
|
||||
void free(void *Address);
|
||||
|
||||
/**
|
||||
* Allocate a new memory block
|
||||
*
|
||||
* @param NumberOfBlocks Number of blocks
|
||||
* to allocate.
|
||||
* @param Size Size of the block to allocate.
|
||||
* @return void* Pointer to the allocated
|
||||
* block.
|
||||
*/
|
||||
void *calloc(Xsize_t NumberOfBlocks,
|
||||
Xsize_t Size);
|
||||
|
||||
/**
|
||||
* Reallocate a previously allocated block
|
||||
*
|
||||
* @param Address Address of the block
|
||||
* to reallocate.
|
||||
* @param Size New size of the block.
|
||||
* @return void* Pointer to the reallocated
|
||||
* block.
|
||||
*/
|
||||
void *realloc(void *Address, Xsize_t Size);
|
||||
|
||||
/**
|
||||
* Construct a new Allocator object
|
||||
*
|
||||
* @param VirtualBase Virtual address
|
||||
* to map the pages.
|
||||
*/
|
||||
V2(void *VirtualBase);
|
||||
|
||||
/**
|
||||
* Destroy the Allocator object
|
||||
*/
|
||||
~V2();
|
||||
|
||||
friend class Block;
|
||||
};
|
||||
}
|
||||
|
||||
#endif // !__FENNIX_KERNEL_Xalloc_H__
|
290
Kernel/core/memory/heap_allocators/Xalloc/XallocV1.cpp
Normal file
290
Kernel/core/memory/heap_allocators/Xalloc/XallocV1.cpp
Normal file
@ -0,0 +1,290 @@
|
||||
/*
|
||||
This file is part of Fennix Kernel.
|
||||
|
||||
Fennix Kernel is free software: you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public License as
|
||||
published by the Free Software Foundation, either version 3 of
|
||||
the License, or (at your option) any later version.
|
||||
|
||||
Fennix Kernel is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include "Xalloc.hpp"
|
||||
|
||||
XallocV1_def;
|
||||
|
||||
#define XALLOC_CONCAT(x, y) x##y
|
||||
#define XStoP(d) (((d) + PAGE_SIZE - 1) / PAGE_SIZE)
|
||||
#define XPtoS(d) ((d)*PAGE_SIZE)
|
||||
#define Xalloc_BlockSanityKey 0xA110C
|
||||
|
||||
extern "C" void *Xalloc_REQUEST_PAGES(Xsize_t Pages);
|
||||
extern "C" void Xalloc_FREE_PAGES(void *Address, Xsize_t Pages);
|
||||
extern "C" void Xalloc_MAP_MEMORY(void *VirtualAddress, void *PhysicalAddress, Xsize_t Flags);
|
||||
extern "C" void Xalloc_UNMAP_MEMORY(void *VirtualAddress);
|
||||
|
||||
// TODO: Change memcpy with an optimized version
|
||||
void *Xmemcpy(void *__restrict__ Destination, const void *__restrict__ Source, Xsize_t Length)
|
||||
{
|
||||
unsigned char *dst = (unsigned char *)Destination;
|
||||
const unsigned char *src = (const unsigned char *)Source;
|
||||
for (Xsize_t i = 0; i < Length; i++)
|
||||
dst[i] = src[i];
|
||||
return Destination;
|
||||
}
|
||||
|
||||
// TODO: Change memset with an optimized version
|
||||
void *Xmemset(void *__restrict__ Destination, int Data, Xsize_t Length)
|
||||
{
|
||||
unsigned char *Buffer = (unsigned char *)Destination;
|
||||
for (Xsize_t i = 0; i < Length; i++)
|
||||
Buffer[i] = (unsigned char)Data;
|
||||
return Destination;
|
||||
}
|
||||
|
||||
namespace Xalloc
|
||||
{
|
||||
class Block
|
||||
{
|
||||
public:
|
||||
void *Address = nullptr;
|
||||
|
||||
int Sanity = Xalloc_BlockSanityKey;
|
||||
Xsize_t Size = 0;
|
||||
Block *Next = nullptr;
|
||||
Block *Last = nullptr;
|
||||
bool IsFree = true;
|
||||
|
||||
bool Check()
|
||||
{
|
||||
if (this->Sanity != Xalloc_BlockSanityKey)
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
Block(Xsize_t Size)
|
||||
{
|
||||
this->Address = Xalloc_REQUEST_PAGES(XStoP(Size + 1));
|
||||
this->Size = Size;
|
||||
Xmemset(this->Address, 0, Size);
|
||||
}
|
||||
|
||||
~Block()
|
||||
{
|
||||
Xalloc_FREE_PAGES(this->Address, XStoP(this->Size + 1));
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Overload new operator to allocate memory from the heap
|
||||
* @param Size Unused
|
||||
* @return void* Pointer to the allocated memory
|
||||
*/
|
||||
void *operator new(Xsize_t Size)
|
||||
{
|
||||
void *ptr = Xalloc_REQUEST_PAGES(XStoP(sizeof(Block)));
|
||||
return ptr;
|
||||
(void)(Size);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Overload delete operator to free memory from the heap
|
||||
* @param Address Pointer to the memory to free
|
||||
*/
|
||||
void operator delete(void *Address)
|
||||
{
|
||||
Xalloc_FREE_PAGES(Address, XStoP(sizeof(Block)));
|
||||
}
|
||||
} __attribute__((packed, aligned((16))));
|
||||
|
||||
class SmartSMAPClass
|
||||
{
|
||||
private:
|
||||
V1 *allocator = nullptr;
|
||||
|
||||
public:
|
||||
SmartSMAPClass(V1 *allocator)
|
||||
{
|
||||
this->allocator = allocator;
|
||||
this->allocator->Xstac();
|
||||
}
|
||||
~SmartSMAPClass() { this->allocator->Xclac(); }
|
||||
};
|
||||
#define SmartSMAP SmartSMAPClass XALLOC_CONCAT(SmartSMAP##_, __COUNTER__)(this)
|
||||
|
||||
void V1::Xstac()
|
||||
{
|
||||
if (this->SMAPUsed)
|
||||
{
|
||||
#if defined(a86)
|
||||
asm volatile("stac" ::
|
||||
: "cc");
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
void V1::Xclac()
|
||||
{
|
||||
if (this->SMAPUsed)
|
||||
{
|
||||
#if defined(a86)
|
||||
asm volatile("clac" ::
|
||||
: "cc");
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
void V1::Arrange()
|
||||
{
|
||||
Xalloc_err("Arrange() is not implemented yet!");
|
||||
}
|
||||
|
||||
void *V1::malloc(Xsize_t Size)
|
||||
{
|
||||
if (Size == 0)
|
||||
{
|
||||
Xalloc_warn("Attempted to allocate 0 bytes!");
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
SmartSMAP;
|
||||
XallocV1_lock;
|
||||
|
||||
if (this->FirstBlock == nullptr)
|
||||
{
|
||||
this->FirstBlock = new Block(Size);
|
||||
((Block *)this->FirstBlock)->IsFree = false;
|
||||
XallocV1_unlock;
|
||||
return ((Block *)this->FirstBlock)->Address;
|
||||
}
|
||||
|
||||
Block *CurrentBlock = ((Block *)this->FirstBlock);
|
||||
while (CurrentBlock != nullptr)
|
||||
{
|
||||
if (!CurrentBlock->Check())
|
||||
{
|
||||
Xalloc_err("Block %#lx has an invalid sanity key! (%#x != %#x)",
|
||||
(Xsize_t)CurrentBlock, CurrentBlock->Sanity, Xalloc_BlockSanityKey);
|
||||
while (Xalloc_StopOnFail)
|
||||
;
|
||||
}
|
||||
else if (CurrentBlock->IsFree && CurrentBlock->Size >= Size)
|
||||
{
|
||||
CurrentBlock->IsFree = false;
|
||||
Xmemset(CurrentBlock->Address, 0, Size);
|
||||
XallocV1_unlock;
|
||||
return CurrentBlock->Address;
|
||||
}
|
||||
CurrentBlock = CurrentBlock->Next;
|
||||
}
|
||||
|
||||
CurrentBlock = ((Block *)this->FirstBlock);
|
||||
while (CurrentBlock->Next != nullptr)
|
||||
CurrentBlock = CurrentBlock->Next;
|
||||
|
||||
CurrentBlock->Next = new Block(Size);
|
||||
((Block *)CurrentBlock->Next)->Last = CurrentBlock;
|
||||
((Block *)CurrentBlock->Next)->IsFree = false;
|
||||
XallocV1_unlock;
|
||||
return ((Block *)CurrentBlock->Next)->Address;
|
||||
}
|
||||
|
||||
void V1::free(void *Address)
|
||||
{
|
||||
if (Address == nullptr)
|
||||
{
|
||||
Xalloc_warn("Attempted to free a null pointer!");
|
||||
return;
|
||||
}
|
||||
|
||||
SmartSMAP;
|
||||
XallocV1_lock;
|
||||
|
||||
Block *CurrentBlock = ((Block *)this->FirstBlock);
|
||||
while (CurrentBlock != nullptr)
|
||||
{
|
||||
if (!CurrentBlock->Check())
|
||||
{
|
||||
Xalloc_err("Block %#lx has an invalid sanity key! (%#x != %#x)",
|
||||
(Xsize_t)CurrentBlock, CurrentBlock->Sanity, Xalloc_BlockSanityKey);
|
||||
while (Xalloc_StopOnFail)
|
||||
;
|
||||
}
|
||||
else if (CurrentBlock->Address == Address)
|
||||
{
|
||||
if (CurrentBlock->IsFree)
|
||||
{
|
||||
Xalloc_warn("Attempted to free an already freed pointer!");
|
||||
XallocV1_unlock;
|
||||
return;
|
||||
}
|
||||
|
||||
CurrentBlock->IsFree = true;
|
||||
XallocV1_unlock;
|
||||
return;
|
||||
}
|
||||
CurrentBlock = CurrentBlock->Next;
|
||||
}
|
||||
|
||||
Xalloc_err("Invalid address %#lx.", Address);
|
||||
XallocV1_unlock;
|
||||
}
|
||||
|
||||
void *V1::calloc(Xsize_t NumberOfBlocks, Xsize_t Size)
|
||||
{
|
||||
if (NumberOfBlocks == 0 || Size == 0)
|
||||
{
|
||||
Xalloc_warn("The %s%s%s is 0!",
|
||||
NumberOfBlocks == 0 ? "NumberOfBlocks" : "",
|
||||
NumberOfBlocks == 0 && Size == 0 ? " and " : "",
|
||||
Size == 0 ? "Size" : "");
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
return this->malloc(NumberOfBlocks * Size);
|
||||
}
|
||||
|
||||
void *V1::realloc(void *Address, Xsize_t Size)
|
||||
{
|
||||
if (Address == nullptr)
|
||||
return this->malloc(Size);
|
||||
|
||||
if (Size == 0)
|
||||
{
|
||||
this->free(Address);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// SmartSMAP;
|
||||
// XallocV1_lock;
|
||||
// ...
|
||||
// XallocV1_unlock;
|
||||
|
||||
// TODO: Implement realloc
|
||||
this->free(Address);
|
||||
return this->malloc(Size);
|
||||
}
|
||||
|
||||
V1::V1(void *BaseVirtualAddress, bool UserMode, bool SMAPEnabled)
|
||||
{
|
||||
SmartSMAP;
|
||||
XallocV1_lock;
|
||||
this->SMAPUsed = SMAPEnabled;
|
||||
this->UserMapping = UserMode;
|
||||
this->BaseVirtualAddress = BaseVirtualAddress;
|
||||
XallocV1_unlock;
|
||||
}
|
||||
|
||||
V1::~V1()
|
||||
{
|
||||
SmartSMAP;
|
||||
XallocV1_lock;
|
||||
Xalloc_trace("Destructor not implemented yet.");
|
||||
XallocV1_unlock;
|
||||
}
|
||||
}
|
281
Kernel/core/memory/heap_allocators/Xalloc/XallocV2.cpp
Normal file
281
Kernel/core/memory/heap_allocators/Xalloc/XallocV2.cpp
Normal file
@ -0,0 +1,281 @@
|
||||
/*
|
||||
This file is part of Fennix Kernel.
|
||||
|
||||
Fennix Kernel is free software: you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public License as
|
||||
published by the Free Software Foundation, either version 3 of
|
||||
the License, or (at your option) any later version.
|
||||
|
||||
Fennix Kernel is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include "Xalloc.hpp"
|
||||
|
||||
XallocV2_def;
|
||||
|
||||
#define XALLOC_CONCAT(x, y) x##y
|
||||
#define XStoP(d) (((d) + PAGE_SIZE - 1) / PAGE_SIZE)
|
||||
#define XPtoS(d) ((d)*PAGE_SIZE)
|
||||
|
||||
extern "C" void *Xalloc_REQUEST_PAGES(Xsize_t Pages);
|
||||
extern "C" void Xalloc_FREE_PAGES(void *Address, Xsize_t Pages);
|
||||
extern "C" void Xalloc_MAP_MEMORY(void *VirtualAddress,
|
||||
void *PhysicalAddress,
|
||||
Xsize_t Flags);
|
||||
extern "C" void Xalloc_UNMAP_MEMORY(void *VirtualAddress);
|
||||
|
||||
#define Xalloc_BlockSanityKey 0xA110C
|
||||
|
||||
/*
|
||||
[ IN DEVELOPMENT ]
|
||||
*/
|
||||
|
||||
namespace Xalloc
|
||||
{
|
||||
void V2::Block::Check()
|
||||
{
|
||||
if (unlikely(this->Sanity != Xalloc_BlockSanityKey))
|
||||
{
|
||||
Xalloc_err("Block %#lx has an invalid sanity key! (%#x != %#x)",
|
||||
this, this->Sanity, Xalloc_BlockSanityKey);
|
||||
|
||||
while (Xalloc_StopOnFail)
|
||||
;
|
||||
}
|
||||
}
|
||||
|
||||
V2::Block::Block(Xsize_t Size, V2 *ctx)
|
||||
{
|
||||
this->ctx = ctx;
|
||||
this->Data = ctx->AllocateHeap(Size);
|
||||
this->DataSize = Size;
|
||||
}
|
||||
|
||||
V2::Block::~Block()
|
||||
{
|
||||
}
|
||||
|
||||
void *V2::Block::operator new(Xsize_t)
|
||||
{
|
||||
constexpr Xsize_t bPgs = XStoP(sizeof(Block));
|
||||
void *ptr = Xalloc_REQUEST_PAGES(bPgs);
|
||||
/* TODO: Do something with the rest of
|
||||
the allocated memory */
|
||||
return ptr;
|
||||
}
|
||||
|
||||
void V2::Block::operator delete(void *Address)
|
||||
{
|
||||
constexpr Xsize_t bPgs = XStoP(sizeof(Block));
|
||||
Xalloc_FREE_PAGES(Address, bPgs);
|
||||
}
|
||||
|
||||
/* ========================================= */
|
||||
|
||||
Xuint8_t *V2::AllocateHeap(Xsize_t Size)
|
||||
{
|
||||
Size = this->Align(Size);
|
||||
Xsize_t Pages = XStoP(Size);
|
||||
|
||||
Xuint8_t *FinalAddress = 0x0;
|
||||
if (this->HeapUsed + Size >= this->HeapSize)
|
||||
{
|
||||
void *Address = Xalloc_REQUEST_PAGES(Pages);
|
||||
void *VirtualAddress = (void *)(this->BaseVirtualAddress + this->HeapSize);
|
||||
if (Xalloc_MapPages)
|
||||
{
|
||||
for (Xsize_t i = 0; i < Pages; i++)
|
||||
{
|
||||
Xuintptr_t Page = i * Xalloc_PAGE_SIZE;
|
||||
void *vAddress = (void *)((Xuintptr_t)VirtualAddress + Page);
|
||||
Xalloc_MAP_MEMORY(vAddress, (void *)((Xuintptr_t)Address + Page), 0x3);
|
||||
}
|
||||
}
|
||||
|
||||
this->HeapSize += XPtoS(Pages);
|
||||
FinalAddress = (Xuint8_t *)VirtualAddress;
|
||||
}
|
||||
else
|
||||
FinalAddress = (Xuint8_t *)(this->BaseVirtualAddress + this->HeapUsed);
|
||||
|
||||
this->HeapUsed += Size;
|
||||
return (uint8_t *)FinalAddress;
|
||||
}
|
||||
|
||||
void V2::FreeHeap(Xuint8_t *At, Xsize_t Size)
|
||||
{
|
||||
Xsize_t Pages = XStoP(Size);
|
||||
|
||||
if (Xalloc_MapPages)
|
||||
{
|
||||
for (Xsize_t i = 0; i < Pages; i++)
|
||||
{
|
||||
Xuintptr_t Page = i * Xalloc_PAGE_SIZE;
|
||||
void *VirtualAddress = (void *)((Xuintptr_t)At + Page);
|
||||
Xalloc_UNMAP_MEMORY(VirtualAddress);
|
||||
}
|
||||
}
|
||||
|
||||
Xalloc_FREE_PAGES(At, Pages);
|
||||
this->HeapUsed -= Size;
|
||||
}
|
||||
|
||||
Xsize_t V2::Align(Xsize_t Size)
|
||||
{
|
||||
return (Size + 0xF) & ~0xF;
|
||||
}
|
||||
|
||||
void *V2::FindFreeBlock(Xsize_t Size, Block *&CurrentBlock)
|
||||
{
|
||||
if (this->FirstBlock == nullptr)
|
||||
{
|
||||
this->FirstBlock = new Block(Size, this);
|
||||
this->FirstBlock->IsFree = false;
|
||||
return this->FirstBlock->Data;
|
||||
}
|
||||
|
||||
while (true)
|
||||
{
|
||||
CurrentBlock->Check();
|
||||
|
||||
/* FIXME: This will waste a lot of space
|
||||
need better algorithm */
|
||||
if (CurrentBlock->IsFree &&
|
||||
CurrentBlock->DataSize >= Size)
|
||||
{
|
||||
CurrentBlock->IsFree = false;
|
||||
return CurrentBlock->Data;
|
||||
}
|
||||
|
||||
if (CurrentBlock->Next == nullptr)
|
||||
break;
|
||||
|
||||
CurrentBlock = CurrentBlock->Next;
|
||||
}
|
||||
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
void V2::Arrange()
|
||||
{
|
||||
Xalloc_err("Arrange() is not implemented yet!");
|
||||
}
|
||||
|
||||
void *V2::malloc(Xsize_t Size)
|
||||
{
|
||||
if (Size == 0)
|
||||
{
|
||||
Xalloc_warn("Attempted to allocate 0 bytes!");
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
XallocV2_lock;
|
||||
Block *CurrentBlock = this->FirstBlock;
|
||||
void *ret = this->FindFreeBlock(Size, CurrentBlock);
|
||||
if (ret)
|
||||
{
|
||||
XallocV2_unlock;
|
||||
return ret;
|
||||
}
|
||||
|
||||
CurrentBlock->Next = new Block(Size, this);
|
||||
CurrentBlock->Next->IsFree = false;
|
||||
XallocV2_unlock;
|
||||
return CurrentBlock->Next->Data;
|
||||
}
|
||||
|
||||
void V2::free(void *Address)
|
||||
{
|
||||
if (Address == nullptr)
|
||||
{
|
||||
Xalloc_warn("Attempted to free a null pointer!");
|
||||
return;
|
||||
}
|
||||
|
||||
XallocV2_lock;
|
||||
|
||||
Block *CurrentBlock = ((Block *)this->FirstBlock);
|
||||
while (CurrentBlock != nullptr)
|
||||
{
|
||||
CurrentBlock->Check();
|
||||
|
||||
if (CurrentBlock->Data == Address)
|
||||
{
|
||||
if (CurrentBlock->IsFree)
|
||||
Xalloc_warn("Attempted to free an already freed block! %#lx", Address);
|
||||
|
||||
CurrentBlock->IsFree = true;
|
||||
XallocV2_unlock;
|
||||
return;
|
||||
}
|
||||
CurrentBlock = CurrentBlock->Next;
|
||||
}
|
||||
|
||||
Xalloc_err("Invalid address %#lx.", Address);
|
||||
XallocV2_unlock;
|
||||
}
|
||||
|
||||
void *V2::calloc(Xsize_t NumberOfBlocks, Xsize_t Size)
|
||||
{
|
||||
if (NumberOfBlocks == 0 || Size == 0)
|
||||
{
|
||||
Xalloc_warn("The %s%s%s is 0!",
|
||||
NumberOfBlocks == 0 ? "NumberOfBlocks" : "",
|
||||
NumberOfBlocks == 0 && Size == 0 ? " and " : "",
|
||||
Size == 0 ? "Size" : "");
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
return this->malloc(NumberOfBlocks * Size);
|
||||
}
|
||||
|
||||
void *V2::realloc(void *Address, Xsize_t Size)
|
||||
{
|
||||
if (Address == nullptr && Size != 0)
|
||||
return this->malloc(Size);
|
||||
|
||||
if (Size == 0)
|
||||
{
|
||||
this->free(Address);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// XallocV2_lock;
|
||||
// ...
|
||||
// XallocV2_unlock;
|
||||
|
||||
// TODO: Implement realloc
|
||||
static int once = 0;
|
||||
if (!once++)
|
||||
Xalloc_trace("realloc is stub!");
|
||||
this->free(Address);
|
||||
return this->malloc(Size);
|
||||
}
|
||||
|
||||
V2::V2(void *VirtualBase)
|
||||
{
|
||||
if (VirtualBase == 0x0 && Xalloc_MapPages)
|
||||
{
|
||||
Xalloc_err("VirtualBase is 0x0 and Xalloc_MapPages is true!");
|
||||
while (true)
|
||||
;
|
||||
}
|
||||
|
||||
XallocV2_lock;
|
||||
this->BaseVirtualAddress = Xuintptr_t(VirtualBase);
|
||||
XallocV2_unlock;
|
||||
}
|
||||
|
||||
V2::~V2()
|
||||
{
|
||||
XallocV2_lock;
|
||||
Xalloc_trace("Destructor not implemented yet.");
|
||||
XallocV2_unlock;
|
||||
}
|
||||
}
|
796
Kernel/core/memory/heap_allocators/liballoc_1_1/liballoc_1_1.c
Normal file
796
Kernel/core/memory/heap_allocators/liballoc_1_1/liballoc_1_1.c
Normal file
@ -0,0 +1,796 @@
|
||||
#include "liballoc_1_1.h"
|
||||
#include <convert.h>
|
||||
|
||||
#pragma GCC diagnostic ignored "-Wconversion"
|
||||
#pragma GCC diagnostic ignored "-Wsign-conversion"
|
||||
|
||||
/** Durand's Amazing Super Duper Memory functions. */
|
||||
|
||||
#define VERSION "1.1"
|
||||
#define ALIGNMENT 16ul // 4ul ///< This is the byte alignment that memory must be allocated on. IMPORTANT for GTK and other stuff.
|
||||
|
||||
#define ALIGN_TYPE char /// unsigned char[16] /// unsigned short
|
||||
#define ALIGN_INFO sizeof(ALIGN_TYPE) * 16 ///< Alignment information is stored right before the pointer. This is the number of bytes of information stored there.
|
||||
|
||||
#define USE_CASE1
|
||||
#define USE_CASE2
|
||||
#define USE_CASE3
|
||||
#define USE_CASE4
|
||||
#define USE_CASE5
|
||||
|
||||
/** This macro will conveniently align our pointer upwards */
|
||||
#define ALIGN(ptr) \
|
||||
if (ALIGNMENT > 1) \
|
||||
{ \
|
||||
uintptr_t diff; \
|
||||
ptr = (void *)((uintptr_t)ptr + ALIGN_INFO); \
|
||||
diff = (uintptr_t)ptr & (ALIGNMENT - 1); \
|
||||
if (diff != 0) \
|
||||
{ \
|
||||
diff = ALIGNMENT - diff; \
|
||||
ptr = (void *)((uintptr_t)ptr + diff); \
|
||||
} \
|
||||
*((ALIGN_TYPE *)((uintptr_t)ptr - ALIGN_INFO)) = \
|
||||
diff + ALIGN_INFO; \
|
||||
}
|
||||
|
||||
#define UNALIGN(ptr) \
|
||||
if (ALIGNMENT > 1) \
|
||||
{ \
|
||||
uintptr_t diff = *((ALIGN_TYPE *)((uintptr_t)ptr - ALIGN_INFO)); \
|
||||
if (diff < (ALIGNMENT + ALIGN_INFO)) \
|
||||
{ \
|
||||
ptr = (void *)((uintptr_t)ptr - diff); \
|
||||
} \
|
||||
}
|
||||
|
||||
#define LIBALLOC_MAGIC 0xc001c0de
|
||||
#define LIBALLOC_DEAD 0xdeaddead
|
||||
|
||||
// #define LIBALLOCDEBUG 1
|
||||
#define LIBALLOCINFO 1
|
||||
|
||||
#if defined LIBALLOCDEBUG || defined LIBALLOCINFO
|
||||
// #include <stdio.h>
|
||||
// #include <stdlib.h>
|
||||
#include <debug.h>
|
||||
|
||||
// #define FLUSH() fflush(stdout)
|
||||
#define FLUSH()
|
||||
#define atexit(x)
|
||||
#define printf(m, ...) trace(m, ##__VA_ARGS__)
|
||||
|
||||
#endif
|
||||
|
||||
/** A structure found at the top of all system allocated
|
||||
* memory blocks. It details the usage of the memory block.
|
||||
*/
|
||||
struct liballoc_major
|
||||
{
|
||||
struct liballoc_major *prev; ///< Linked list information.
|
||||
struct liballoc_major *next; ///< Linked list information.
|
||||
unsigned int pages; ///< The number of pages in the block.
|
||||
unsigned int size; ///< The number of pages in the block.
|
||||
unsigned int usage; ///< The number of bytes used in the block.
|
||||
struct liballoc_minor *first; ///< A pointer to the first allocated memory in the block.
|
||||
};
|
||||
|
||||
/** This is a structure found at the beginning of all
|
||||
* sections in a major block which were allocated by a
|
||||
* malloc, calloc, realloc call.
|
||||
*/
|
||||
struct liballoc_minor
|
||||
{
|
||||
struct liballoc_minor *prev; ///< Linked list information.
|
||||
struct liballoc_minor *next; ///< Linked list information.
|
||||
struct liballoc_major *block; ///< The owning block. A pointer to the major structure.
|
||||
unsigned int magic; ///< A magic number to idenfity correctness.
|
||||
unsigned int size; ///< The size of the memory allocated. Could be 1 byte or more.
|
||||
unsigned int req_size; ///< The size of memory requested.
|
||||
};
|
||||
|
||||
static struct liballoc_major *l_memRoot = NULL; ///< The root memory block acquired from the system.
|
||||
static struct liballoc_major *l_bestBet = NULL; ///< The major with the most free memory.
|
||||
|
||||
static unsigned int l_pageSize = 4096; ///< The size of an individual page. Set up in liballoc_init.
|
||||
static unsigned int l_pageCount = 16; ///< The number of pages to request per chunk. Set up in liballoc_init.
|
||||
static unsigned long long l_allocated = 0; ///< Running total of allocated memory.
|
||||
static unsigned long long l_inuse = 0; ///< Running total of used memory.
|
||||
|
||||
static long long l_warningCount = 0; ///< Number of warnings encountered
|
||||
static long long l_errorCount = 0; ///< Number of actual errors
|
||||
static long long l_possibleOverruns = 0; ///< Number of possible overruns
|
||||
|
||||
// *********** HELPER FUNCTIONS *******************************
|
||||
|
||||
__no_sanitize("undefined") static void *liballoc_memset(void *s, int c, size_t n)
|
||||
{
|
||||
return memset(s, c, n);
|
||||
unsigned int i;
|
||||
for (i = 0; i < n; i++)
|
||||
((char *)s)[i] = c;
|
||||
|
||||
return s;
|
||||
}
|
||||
__no_sanitize("undefined") static void *liballoc_memcpy(void *s1, const void *s2, size_t n)
|
||||
{
|
||||
return memcpy(s1, s2, n);
|
||||
char *cdest;
|
||||
char *csrc;
|
||||
unsigned int *ldest = (unsigned int *)s1;
|
||||
unsigned int *lsrc = (unsigned int *)s2;
|
||||
|
||||
while (n >= sizeof(unsigned int))
|
||||
{
|
||||
*ldest++ = *lsrc++;
|
||||
n -= sizeof(unsigned int);
|
||||
}
|
||||
|
||||
cdest = (char *)ldest;
|
||||
csrc = (char *)lsrc;
|
||||
|
||||
while (n > 0)
|
||||
{
|
||||
*cdest++ = *csrc++;
|
||||
n -= 1;
|
||||
}
|
||||
|
||||
return s1;
|
||||
}
|
||||
|
||||
#if defined LIBALLOCDEBUG || defined LIBALLOCINFO
|
||||
__no_sanitize("undefined") static void liballoc_dump()
|
||||
{
|
||||
#ifdef LIBALLOCDEBUG
|
||||
struct liballoc_major *maj = l_memRoot;
|
||||
struct liballoc_minor *min = NULL;
|
||||
#endif
|
||||
|
||||
printf("liballoc: ------ Memory data ---------------\n");
|
||||
printf("liballoc: System memory allocated: %i bytes\n", l_allocated);
|
||||
printf("liballoc: Memory in used (malloc'ed): %i bytes\n", l_inuse);
|
||||
printf("liballoc: Warning count: %i\n", l_warningCount);
|
||||
printf("liballoc: Error count: %i\n", l_errorCount);
|
||||
printf("liballoc: Possible overruns: %i\n", l_possibleOverruns);
|
||||
|
||||
#ifdef LIBALLOCDEBUG
|
||||
while (maj != NULL)
|
||||
{
|
||||
printf("liballoc: %lx: total = %i, used = %i\n",
|
||||
maj,
|
||||
maj->size,
|
||||
maj->usage);
|
||||
|
||||
min = maj->first;
|
||||
while (min != NULL)
|
||||
{
|
||||
printf("liballoc: %lx: %i bytes\n",
|
||||
min,
|
||||
min->size);
|
||||
min = min->next;
|
||||
}
|
||||
|
||||
maj = maj->next;
|
||||
}
|
||||
#endif
|
||||
|
||||
FLUSH();
|
||||
}
|
||||
#endif
|
||||
|
||||
// ***************************************************************
|
||||
|
||||
__no_sanitize("undefined") static struct liballoc_major *allocate_new_page(unsigned int size)
|
||||
{
|
||||
unsigned int st;
|
||||
struct liballoc_major *maj;
|
||||
|
||||
// This is how much space is required.
|
||||
st = size + sizeof(struct liballoc_major);
|
||||
st += sizeof(struct liballoc_minor);
|
||||
|
||||
// Perfect amount of space?
|
||||
if ((st % l_pageSize) == 0)
|
||||
st = st / (l_pageSize);
|
||||
else
|
||||
st = st / (l_pageSize) + 1;
|
||||
// No, add the buffer.
|
||||
|
||||
// Make sure it's >= the minimum size.
|
||||
if (st < l_pageCount)
|
||||
st = l_pageCount;
|
||||
|
||||
maj = (struct liballoc_major *)liballoc_alloc(st);
|
||||
|
||||
if (maj == NULL)
|
||||
{
|
||||
l_warningCount += 1;
|
||||
#if defined LIBALLOCDEBUG || defined LIBALLOCINFO
|
||||
printf("liballoc: WARNING: liballoc_alloc( %i ) return NULL\n", st);
|
||||
FLUSH();
|
||||
#endif
|
||||
return NULL; // uh oh, we ran out of memory.
|
||||
}
|
||||
|
||||
maj->prev = NULL;
|
||||
maj->next = NULL;
|
||||
maj->pages = st;
|
||||
maj->size = st * l_pageSize;
|
||||
maj->usage = sizeof(struct liballoc_major);
|
||||
maj->first = NULL;
|
||||
|
||||
l_allocated += maj->size;
|
||||
|
||||
#ifdef LIBALLOCDEBUG
|
||||
printf("liballoc: Resource allocated %lx of %i pages (%i bytes) for %i size.\n", maj, st, maj->size, size);
|
||||
|
||||
printf("liballoc: Total memory usage = %i KB\n", (int)((l_allocated / (1024))));
|
||||
FLUSH();
|
||||
#endif
|
||||
|
||||
return maj;
|
||||
}
|
||||
|
||||
__no_sanitize("undefined") void *PREFIX(malloc)(size_t req_size)
|
||||
{
|
||||
int startedBet = 0;
|
||||
unsigned long long bestSize = 0;
|
||||
void *p = NULL;
|
||||
uintptr_t diff;
|
||||
struct liballoc_major *maj;
|
||||
struct liballoc_minor *min;
|
||||
struct liballoc_minor *new_min;
|
||||
unsigned long size = req_size;
|
||||
|
||||
// For alignment, we adjust size so there's enough space to align.
|
||||
if (ALIGNMENT > 1)
|
||||
{
|
||||
size += ALIGNMENT + ALIGN_INFO;
|
||||
}
|
||||
// So, ideally, we really want an alignment of 0 or 1 in order
|
||||
// to save space.
|
||||
|
||||
liballoc_lock();
|
||||
|
||||
if (size == 0)
|
||||
{
|
||||
l_warningCount += 1;
|
||||
#if defined LIBALLOCDEBUG || defined LIBALLOCINFO
|
||||
printf("liballoc: WARNING: alloc( 0 ) called from %lx\n",
|
||||
__builtin_return_address(0));
|
||||
FLUSH();
|
||||
#endif
|
||||
liballoc_unlock();
|
||||
return PREFIX(malloc)(1);
|
||||
}
|
||||
|
||||
if (l_memRoot == NULL)
|
||||
{
|
||||
#if defined LIBALLOCDEBUG || defined LIBALLOCINFO
|
||||
#ifdef LIBALLOCDEBUG
|
||||
printf("liballoc: initialization of liballoc " VERSION "\n");
|
||||
#endif
|
||||
atexit(liballoc_dump);
|
||||
FLUSH();
|
||||
#endif
|
||||
|
||||
// This is the first time we are being used.
|
||||
l_memRoot = allocate_new_page(size);
|
||||
if (l_memRoot == NULL)
|
||||
{
|
||||
liballoc_unlock();
|
||||
#ifdef LIBALLOCDEBUG
|
||||
printf("liballoc: initial l_memRoot initialization failed\n", p);
|
||||
FLUSH();
|
||||
#endif
|
||||
return NULL;
|
||||
}
|
||||
|
||||
#ifdef LIBALLOCDEBUG
|
||||
printf("liballoc: set up first memory major %lx\n", l_memRoot);
|
||||
FLUSH();
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef LIBALLOCDEBUG
|
||||
printf("liballoc: %lx PREFIX(malloc)( %i ): ",
|
||||
__builtin_return_address(0),
|
||||
size);
|
||||
FLUSH();
|
||||
#endif
|
||||
|
||||
// Now we need to bounce through every major and find enough space....
|
||||
|
||||
maj = l_memRoot;
|
||||
startedBet = 0;
|
||||
|
||||
// Start at the best bet....
|
||||
if (l_bestBet != NULL)
|
||||
{
|
||||
bestSize = l_bestBet->size - l_bestBet->usage;
|
||||
|
||||
if (bestSize > (size + sizeof(struct liballoc_minor)))
|
||||
{
|
||||
maj = l_bestBet;
|
||||
startedBet = 1;
|
||||
}
|
||||
}
|
||||
|
||||
while (maj != NULL)
|
||||
{
|
||||
diff = maj->size - maj->usage;
|
||||
// free memory in the block
|
||||
|
||||
if (bestSize < diff)
|
||||
{
|
||||
// Hmm.. this one has more memory then our bestBet. Remember!
|
||||
l_bestBet = maj;
|
||||
bestSize = diff;
|
||||
}
|
||||
|
||||
#ifdef USE_CASE1
|
||||
|
||||
// CASE 1: There is not enough space in this major block.
|
||||
if (diff < (size + sizeof(struct liballoc_minor)))
|
||||
{
|
||||
#ifdef LIBALLOCDEBUG
|
||||
printf("CASE 1: Insufficient space in block %lx\n", maj);
|
||||
FLUSH();
|
||||
#endif
|
||||
|
||||
// Another major block next to this one?
|
||||
if (maj->next != NULL)
|
||||
{
|
||||
maj = maj->next; // Hop to that one.
|
||||
continue;
|
||||
}
|
||||
|
||||
if (startedBet == 1) // If we started at the best bet,
|
||||
{ // let's start all over again.
|
||||
maj = l_memRoot;
|
||||
startedBet = 0;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Create a new major block next to this one and...
|
||||
maj->next = allocate_new_page(size); // next one will be okay.
|
||||
if (maj->next == NULL)
|
||||
break; // no more memory.
|
||||
maj->next->prev = maj;
|
||||
maj = maj->next;
|
||||
|
||||
// .. fall through to CASE 2 ..
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef USE_CASE2
|
||||
|
||||
// CASE 2: It's a brand new block.
|
||||
if (maj->first == NULL)
|
||||
{
|
||||
maj->first = (struct liballoc_minor *)((uintptr_t)maj + sizeof(struct liballoc_major));
|
||||
|
||||
maj->first->magic = LIBALLOC_MAGIC;
|
||||
maj->first->prev = NULL;
|
||||
maj->first->next = NULL;
|
||||
maj->first->block = maj;
|
||||
maj->first->size = size;
|
||||
maj->first->req_size = req_size;
|
||||
maj->usage += size + sizeof(struct liballoc_minor);
|
||||
|
||||
l_inuse += size;
|
||||
|
||||
p = (void *)((uintptr_t)(maj->first) + sizeof(struct liballoc_minor));
|
||||
|
||||
ALIGN(p);
|
||||
|
||||
#ifdef LIBALLOCDEBUG
|
||||
printf("CASE 2: returning %lx\n", p);
|
||||
FLUSH();
|
||||
#endif
|
||||
liballoc_unlock(); // release the lock
|
||||
return p;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef USE_CASE3
|
||||
|
||||
// CASE 3: Block in use and enough space at the start of the block.
|
||||
diff = (uintptr_t)(maj->first);
|
||||
diff -= (uintptr_t)maj;
|
||||
diff -= sizeof(struct liballoc_major);
|
||||
|
||||
if (diff >= (size + sizeof(struct liballoc_minor)))
|
||||
{
|
||||
// Yes, space in front. Squeeze in.
|
||||
maj->first->prev = (struct liballoc_minor *)((uintptr_t)maj + sizeof(struct liballoc_major));
|
||||
maj->first->prev->next = maj->first;
|
||||
maj->first = maj->first->prev;
|
||||
|
||||
maj->first->magic = LIBALLOC_MAGIC;
|
||||
maj->first->prev = NULL;
|
||||
maj->first->block = maj;
|
||||
maj->first->size = size;
|
||||
maj->first->req_size = req_size;
|
||||
maj->usage += size + sizeof(struct liballoc_minor);
|
||||
|
||||
l_inuse += size;
|
||||
|
||||
p = (void *)((uintptr_t)(maj->first) + sizeof(struct liballoc_minor));
|
||||
ALIGN(p);
|
||||
|
||||
#ifdef LIBALLOCDEBUG
|
||||
printf("CASE 3: returning %lx\n", p);
|
||||
FLUSH();
|
||||
#endif
|
||||
liballoc_unlock(); // release the lock
|
||||
return p;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef USE_CASE4
|
||||
|
||||
// CASE 4: There is enough space in this block. But is it contiguous?
|
||||
min = maj->first;
|
||||
|
||||
// Looping within the block now...
|
||||
while (min != NULL)
|
||||
{
|
||||
// CASE 4.1: End of minors in a block. Space from last and end?
|
||||
if (min->next == NULL)
|
||||
{
|
||||
// the rest of this block is free... is it big enough?
|
||||
diff = (uintptr_t)(maj) + maj->size;
|
||||
diff -= (uintptr_t)min;
|
||||
diff -= sizeof(struct liballoc_minor);
|
||||
diff -= min->size;
|
||||
// minus already existing usage..
|
||||
|
||||
if (diff >= (size + sizeof(struct liballoc_minor)))
|
||||
{
|
||||
// yay....
|
||||
min->next = (struct liballoc_minor *)((uintptr_t)min + sizeof(struct liballoc_minor) + min->size);
|
||||
min->next->prev = min;
|
||||
min = min->next;
|
||||
min->next = NULL;
|
||||
min->magic = LIBALLOC_MAGIC;
|
||||
min->block = maj;
|
||||
min->size = size;
|
||||
min->req_size = req_size;
|
||||
maj->usage += size + sizeof(struct liballoc_minor);
|
||||
|
||||
l_inuse += size;
|
||||
|
||||
p = (void *)((uintptr_t)min + sizeof(struct liballoc_minor));
|
||||
ALIGN(p);
|
||||
|
||||
#ifdef LIBALLOCDEBUG
|
||||
printf("CASE 4.1: returning %lx\n", p);
|
||||
FLUSH();
|
||||
#endif
|
||||
liballoc_unlock(); // release the lock
|
||||
return p;
|
||||
}
|
||||
}
|
||||
|
||||
// CASE 4.2: Is there space between two minors?
|
||||
if (min->next != NULL)
|
||||
{
|
||||
// is the difference between here and next big enough?
|
||||
diff = (uintptr_t)(min->next);
|
||||
diff -= (uintptr_t)min;
|
||||
diff -= sizeof(struct liballoc_minor);
|
||||
diff -= min->size;
|
||||
// minus our existing usage.
|
||||
|
||||
if (diff >= (size + sizeof(struct liballoc_minor)))
|
||||
{
|
||||
// yay......
|
||||
new_min = (struct liballoc_minor *)((uintptr_t)min + sizeof(struct liballoc_minor) + min->size);
|
||||
|
||||
new_min->magic = LIBALLOC_MAGIC;
|
||||
new_min->next = min->next;
|
||||
new_min->prev = min;
|
||||
new_min->size = size;
|
||||
new_min->req_size = req_size;
|
||||
new_min->block = maj;
|
||||
min->next->prev = new_min;
|
||||
min->next = new_min;
|
||||
maj->usage += size + sizeof(struct liballoc_minor);
|
||||
|
||||
l_inuse += size;
|
||||
|
||||
p = (void *)((uintptr_t)new_min + sizeof(struct liballoc_minor));
|
||||
ALIGN(p);
|
||||
|
||||
#ifdef LIBALLOCDEBUG
|
||||
printf("CASE 4.2: returning %lx\n", p);
|
||||
FLUSH();
|
||||
#endif
|
||||
|
||||
liballoc_unlock(); // release the lock
|
||||
return p;
|
||||
}
|
||||
} // min->next != NULL
|
||||
|
||||
min = min->next;
|
||||
} // while min != NULL ...
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef USE_CASE5
|
||||
|
||||
// CASE 5: Block full! Ensure next block and loop.
|
||||
if (maj->next == NULL)
|
||||
{
|
||||
#ifdef LIBALLOCDEBUG
|
||||
printf("CASE 5: block full\n");
|
||||
FLUSH();
|
||||
#endif
|
||||
|
||||
if (startedBet == 1)
|
||||
{
|
||||
maj = l_memRoot;
|
||||
startedBet = 0;
|
||||
continue;
|
||||
}
|
||||
|
||||
// we've run out. we need more...
|
||||
maj->next = allocate_new_page(size); // next one guaranteed to be okay
|
||||
if (maj->next == NULL)
|
||||
break; // uh oh, no more memory.....
|
||||
maj->next->prev = maj;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
maj = maj->next;
|
||||
} // while (maj != NULL)
|
||||
|
||||
liballoc_unlock(); // release the lock
|
||||
|
||||
#ifdef LIBALLOCDEBUG
|
||||
printf("All cases exhausted. No memory available.\n");
|
||||
FLUSH();
|
||||
#endif
|
||||
#if defined LIBALLOCDEBUG || defined LIBALLOCINFO
|
||||
printf("liballoc: WARNING: PREFIX(malloc)( %i ) returning NULL.\n", size);
|
||||
liballoc_dump();
|
||||
FLUSH();
|
||||
#endif
|
||||
return NULL;
|
||||
}
|
||||
|
||||
__no_sanitize("undefined") void PREFIX(free)(void *ptr)
|
||||
{
|
||||
struct liballoc_minor *min;
|
||||
struct liballoc_major *maj;
|
||||
|
||||
if (ptr == NULL)
|
||||
{
|
||||
l_warningCount += 1;
|
||||
#if defined LIBALLOCDEBUG || defined LIBALLOCINFO
|
||||
printf("liballoc: WARNING: PREFIX(free)( NULL ) called from %lx\n",
|
||||
__builtin_return_address(0));
|
||||
FLUSH();
|
||||
#endif
|
||||
return;
|
||||
}
|
||||
|
||||
UNALIGN(ptr);
|
||||
|
||||
liballoc_lock(); // lockit
|
||||
|
||||
min = (struct liballoc_minor *)((uintptr_t)ptr - sizeof(struct liballoc_minor));
|
||||
|
||||
if (min->magic != LIBALLOC_MAGIC)
|
||||
{
|
||||
l_errorCount += 1;
|
||||
|
||||
// Check for overrun errors. For all bytes of LIBALLOC_MAGIC
|
||||
if (
|
||||
((min->magic & 0xFFFFFF) == (LIBALLOC_MAGIC & 0xFFFFFF)) ||
|
||||
((min->magic & 0xFFFF) == (LIBALLOC_MAGIC & 0xFFFF)) ||
|
||||
((min->magic & 0xFF) == (LIBALLOC_MAGIC & 0xFF)))
|
||||
{
|
||||
l_possibleOverruns += 1;
|
||||
#if defined LIBALLOCDEBUG || defined LIBALLOCINFO
|
||||
printf("liballoc: ERROR: Possible 1-3 byte overrun for magic %lx != %lx\n",
|
||||
min->magic,
|
||||
LIBALLOC_MAGIC);
|
||||
FLUSH();
|
||||
#endif
|
||||
}
|
||||
|
||||
if (min->magic == LIBALLOC_DEAD)
|
||||
{
|
||||
#if defined LIBALLOCDEBUG || defined LIBALLOCINFO
|
||||
printf("liballoc: ERROR: multiple PREFIX(free)() attempt on %lx from %lx.\n",
|
||||
ptr,
|
||||
__builtin_return_address(0));
|
||||
FLUSH();
|
||||
#endif
|
||||
}
|
||||
else
|
||||
{
|
||||
#if defined LIBALLOCDEBUG || defined LIBALLOCINFO
|
||||
printf("liballoc: ERROR: Bad PREFIX(free)( %lx ) called from %lx\n",
|
||||
ptr,
|
||||
__builtin_return_address(0));
|
||||
FLUSH();
|
||||
#endif
|
||||
}
|
||||
|
||||
// being lied to...
|
||||
liballoc_unlock(); // release the lock
|
||||
return;
|
||||
}
|
||||
|
||||
#ifdef LIBALLOCDEBUG
|
||||
printf("liballoc: %lx PREFIX(free)( %lx ): ",
|
||||
__builtin_return_address(0),
|
||||
ptr);
|
||||
FLUSH();
|
||||
#endif
|
||||
|
||||
maj = min->block;
|
||||
|
||||
l_inuse -= min->size;
|
||||
|
||||
maj->usage -= (min->size + sizeof(struct liballoc_minor));
|
||||
min->magic = LIBALLOC_DEAD; // No mojo.
|
||||
|
||||
if (min->next != NULL)
|
||||
min->next->prev = min->prev;
|
||||
if (min->prev != NULL)
|
||||
min->prev->next = min->next;
|
||||
|
||||
if (min->prev == NULL)
|
||||
maj->first = min->next;
|
||||
// Might empty the block. This was the first
|
||||
// minor.
|
||||
|
||||
// We need to clean up after the majors now....
|
||||
|
||||
if (maj->first == NULL) // Block completely unused.
|
||||
{
|
||||
if (l_memRoot == maj)
|
||||
l_memRoot = maj->next;
|
||||
if (l_bestBet == maj)
|
||||
l_bestBet = NULL;
|
||||
if (maj->prev != NULL)
|
||||
maj->prev->next = maj->next;
|
||||
if (maj->next != NULL)
|
||||
maj->next->prev = maj->prev;
|
||||
l_allocated -= maj->size;
|
||||
|
||||
liballoc_free(maj, maj->pages);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (l_bestBet != NULL)
|
||||
{
|
||||
int bestSize = l_bestBet->size - l_bestBet->usage;
|
||||
int majSize = maj->size - maj->usage;
|
||||
|
||||
if (majSize > bestSize)
|
||||
l_bestBet = maj;
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef LIBALLOCDEBUG
|
||||
printf("OK\n");
|
||||
FLUSH();
|
||||
#endif
|
||||
|
||||
liballoc_unlock(); // release the lock
|
||||
}
|
||||
|
||||
__no_sanitize("undefined") void *PREFIX(calloc)(size_t nobj, size_t size)
|
||||
{
|
||||
int real_size;
|
||||
void *p;
|
||||
|
||||
real_size = nobj * size;
|
||||
|
||||
p = PREFIX(malloc)(real_size);
|
||||
|
||||
liballoc_memset(p, 0, real_size);
|
||||
|
||||
return p;
|
||||
}
|
||||
|
||||
__no_sanitize("undefined") void *PREFIX(realloc)(void *p, size_t size)
|
||||
{
|
||||
void *ptr;
|
||||
struct liballoc_minor *min;
|
||||
unsigned int real_size;
|
||||
|
||||
// Honour the case of size == 0 => free old and return NULL
|
||||
if (size == 0)
|
||||
{
|
||||
PREFIX(free)
|
||||
(p);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// In the case of a NULL pointer, return a simple malloc.
|
||||
if (p == NULL)
|
||||
return PREFIX(malloc)(size);
|
||||
|
||||
// Unalign the pointer if required.
|
||||
ptr = p;
|
||||
UNALIGN(ptr);
|
||||
|
||||
liballoc_lock(); // lockit
|
||||
|
||||
min = (struct liballoc_minor *)((uintptr_t)ptr - sizeof(struct liballoc_minor));
|
||||
|
||||
// Ensure it is a valid structure.
|
||||
if (min->magic != LIBALLOC_MAGIC)
|
||||
{
|
||||
l_errorCount += 1;
|
||||
|
||||
// Check for overrun errors. For all bytes of LIBALLOC_MAGIC
|
||||
if (
|
||||
((min->magic & 0xFFFFFF) == (LIBALLOC_MAGIC & 0xFFFFFF)) ||
|
||||
((min->magic & 0xFFFF) == (LIBALLOC_MAGIC & 0xFFFF)) ||
|
||||
((min->magic & 0xFF) == (LIBALLOC_MAGIC & 0xFF)))
|
||||
{
|
||||
l_possibleOverruns += 1;
|
||||
#if defined LIBALLOCDEBUG || defined LIBALLOCINFO
|
||||
printf("liballoc: ERROR: Possible 1-3 byte overrun for magic %lx != %lx\n",
|
||||
min->magic,
|
||||
LIBALLOC_MAGIC);
|
||||
FLUSH();
|
||||
#endif
|
||||
}
|
||||
|
||||
if (min->magic == LIBALLOC_DEAD)
|
||||
{
|
||||
#if defined LIBALLOCDEBUG || defined LIBALLOCINFO
|
||||
printf("liballoc: ERROR: multiple PREFIX(free)() attempt on %lx from %lx.\n",
|
||||
ptr,
|
||||
__builtin_return_address(0));
|
||||
FLUSH();
|
||||
#endif
|
||||
}
|
||||
else
|
||||
{
|
||||
#if defined LIBALLOCDEBUG || defined LIBALLOCINFO
|
||||
printf("liballoc: ERROR: Bad PREFIX(free)( %lx ) called from %lx\n",
|
||||
ptr,
|
||||
__builtin_return_address(0));
|
||||
FLUSH();
|
||||
#endif
|
||||
}
|
||||
|
||||
// being lied to...
|
||||
liballoc_unlock(); // release the lock
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// Definitely a memory block.
|
||||
|
||||
real_size = min->req_size;
|
||||
|
||||
if (real_size >= size)
|
||||
{
|
||||
min->req_size = size;
|
||||
liballoc_unlock();
|
||||
return p;
|
||||
}
|
||||
|
||||
liballoc_unlock();
|
||||
|
||||
// If we got here then we're reallocating to a block bigger than us.
|
||||
ptr = PREFIX(malloc)(size); // We need to allocate new memory
|
||||
liballoc_memcpy(ptr, p, real_size);
|
||||
PREFIX(free)
|
||||
(p);
|
||||
|
||||
return ptr;
|
||||
}
|
@ -0,0 +1,74 @@
|
||||
#ifndef _LIBALLOC_H
|
||||
#define _LIBALLOC_H
|
||||
|
||||
#include <types.h>
|
||||
|
||||
/** \defgroup ALLOCHOOKS liballoc hooks
|
||||
*
|
||||
* These are the OS specific functions which need to
|
||||
* be implemented on any platform that the library
|
||||
* is expected to work on.
|
||||
*/
|
||||
|
||||
/** @{ */
|
||||
|
||||
// If we are told to not define our own size_t, then we skip the define.
|
||||
// #define _HAVE_UINTPTR_T
|
||||
// typedef unsigned long uintptr_t;
|
||||
|
||||
// This lets you prefix malloc and friends
|
||||
#define PREFIX(func) kliballoc_##func
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
/** This function is supposed to lock the memory data structures. It
|
||||
* could be as simple as disabling interrupts or acquiring a spinlock.
|
||||
* It's up to you to decide.
|
||||
*
|
||||
* \return 0 if the lock was acquired successfully. Anything else is
|
||||
* failure.
|
||||
*/
|
||||
extern int liballoc_lock();
|
||||
|
||||
/** This function unlocks what was previously locked by the liballoc_lock
|
||||
* function. If it disabled interrupts, it enables interrupts. If it
|
||||
* had acquiried a spinlock, it releases the spinlock. etc.
|
||||
*
|
||||
* \return 0 if the lock was successfully released.
|
||||
*/
|
||||
extern int liballoc_unlock();
|
||||
|
||||
/** This is the hook into the local system which allocates pages. It
|
||||
* accepts an integer parameter which is the number of pages
|
||||
* required. The page size was set up in the liballoc_init function.
|
||||
*
|
||||
* \return NULL if the pages were not allocated.
|
||||
* \return A pointer to the allocated memory.
|
||||
*/
|
||||
extern void *liballoc_alloc(size_t);
|
||||
|
||||
/** This frees previously allocated memory. The void* parameter passed
|
||||
* to the function is the exact same value returned from a previous
|
||||
* liballoc_alloc call.
|
||||
*
|
||||
* The integer value is the number of pages to free.
|
||||
*
|
||||
* \return 0 if the memory was successfully freed.
|
||||
*/
|
||||
extern int liballoc_free(void *, size_t);
|
||||
|
||||
extern void *PREFIX(malloc)(size_t); ///< The standard function.
|
||||
extern void *PREFIX(realloc)(void *, size_t); ///< The standard function.
|
||||
extern void *PREFIX(calloc)(size_t, size_t); ///< The standard function.
|
||||
extern void PREFIX(free)(void *); ///< The standard function.
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
/** @} */
|
||||
|
||||
#endif
|
@ -0,0 +1,29 @@
|
||||
#include <types.h>
|
||||
#include <lock.hpp>
|
||||
#include <memory.hpp>
|
||||
|
||||
NewLock(liballocLock);
|
||||
|
||||
EXTERNC int liballoc_lock()
|
||||
{
|
||||
return liballocLock.Lock(__FUNCTION__);
|
||||
}
|
||||
|
||||
EXTERNC int liballoc_unlock()
|
||||
{
|
||||
return liballocLock.Unlock();
|
||||
}
|
||||
|
||||
EXTERNC void *liballoc_alloc(size_t Pages)
|
||||
{
|
||||
void *ret = KernelAllocator.RequestPages(Pages);
|
||||
debug("(%d) = %#lx", Pages, ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
EXTERNC int liballoc_free(void *Address, size_t Pages)
|
||||
{
|
||||
debug("(%#lx, %d)", Address, Pages);
|
||||
KernelAllocator.FreePages(Address, Pages);
|
||||
return 0;
|
||||
}
|
3597
Kernel/core/memory/heap_allocators/rpmalloc/rpmalloc.c
Normal file
3597
Kernel/core/memory/heap_allocators/rpmalloc/rpmalloc.c
Normal file
File diff suppressed because it is too large
Load Diff
371
Kernel/core/memory/heap_allocators/rpmalloc/rpmalloc.h
Normal file
371
Kernel/core/memory/heap_allocators/rpmalloc/rpmalloc.h
Normal file
@ -0,0 +1,371 @@
|
||||
/* rpmalloc.h - Memory allocator - Public Domain - 2016 Mattias Jansson
|
||||
*
|
||||
* This library provides a cross-platform lock free thread caching malloc implementation in C11.
|
||||
* The latest source code is always available at
|
||||
*
|
||||
* https://github.com/mjansson/rpmalloc
|
||||
*
|
||||
* This library is put in the public domain; you can redistribute it and/or modify it without any restrictions.
|
||||
*
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <stddef.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#if defined(__clang__) || defined(__GNUC__)
|
||||
#define RPMALLOC_EXPORT __attribute__((visibility("default")))
|
||||
#define RPMALLOC_ALLOCATOR
|
||||
#if (defined(__clang_major__) && (__clang_major__ < 4)) || (defined(__GNUC__) && defined(ENABLE_PRELOAD) && ENABLE_PRELOAD)
|
||||
#define RPMALLOC_ATTRIB_MALLOC
|
||||
#define RPMALLOC_ATTRIB_ALLOC_SIZE(size)
|
||||
#define RPMALLOC_ATTRIB_ALLOC_SIZE2(count, size)
|
||||
#else
|
||||
#define RPMALLOC_ATTRIB_MALLOC __attribute__((__malloc__))
|
||||
#define RPMALLOC_ATTRIB_ALLOC_SIZE(size) __attribute__((alloc_size(size)))
|
||||
#define RPMALLOC_ATTRIB_ALLOC_SIZE2(count, size) __attribute__((alloc_size(count, size)))
|
||||
#endif
|
||||
#define RPMALLOC_CDECL
|
||||
#elif defined(_MSC_VER)
|
||||
#define RPMALLOC_EXPORT
|
||||
#define RPMALLOC_ALLOCATOR __declspec(allocator) __declspec(restrict)
|
||||
#define RPMALLOC_ATTRIB_MALLOC
|
||||
#define RPMALLOC_ATTRIB_ALLOC_SIZE(size)
|
||||
#define RPMALLOC_ATTRIB_ALLOC_SIZE2(count, size)
|
||||
#define RPMALLOC_CDECL __cdecl
|
||||
#else
|
||||
#define RPMALLOC_EXPORT
|
||||
#define RPMALLOC_ALLOCATOR
|
||||
#define RPMALLOC_ATTRIB_MALLOC
|
||||
#define RPMALLOC_ATTRIB_ALLOC_SIZE(size)
|
||||
#define RPMALLOC_ATTRIB_ALLOC_SIZE2(count, size)
|
||||
#define RPMALLOC_CDECL
|
||||
#endif
|
||||
|
||||
//! Define RPMALLOC_CONFIGURABLE to enable configuring sizes. Will introduce
|
||||
// a very small overhead due to some size calculations not being compile time constants
|
||||
#ifndef RPMALLOC_CONFIGURABLE
|
||||
#define RPMALLOC_CONFIGURABLE 1
|
||||
#endif
|
||||
|
||||
//! Define RPMALLOC_FIRST_CLASS_HEAPS to enable heap based API (rpmalloc_heap_* functions).
|
||||
// Will introduce a very small overhead to track fully allocated spans in heaps
|
||||
#ifndef RPMALLOC_FIRST_CLASS_HEAPS
|
||||
#define RPMALLOC_FIRST_CLASS_HEAPS 0
|
||||
#endif
|
||||
|
||||
//! Flag to rpaligned_realloc to not preserve content in reallocation
|
||||
#define RPMALLOC_NO_PRESERVE 1
|
||||
//! Flag to rpaligned_realloc to fail and return null pointer if grow cannot be done in-place,
|
||||
// in which case the original pointer is still valid (just like a call to realloc which failes to allocate
|
||||
// a new block).
|
||||
#define RPMALLOC_GROW_OR_FAIL 2
|
||||
|
||||
typedef struct rpmalloc_global_statistics_t
|
||||
{
|
||||
//! Current amount of virtual memory mapped, all of which might not have been committed (only if ENABLE_STATISTICS=1)
|
||||
size_t mapped;
|
||||
//! Peak amount of virtual memory mapped, all of which might not have been committed (only if ENABLE_STATISTICS=1)
|
||||
size_t mapped_peak;
|
||||
//! Current amount of memory in global caches for small and medium sizes (<32KiB)
|
||||
size_t cached;
|
||||
//! Current amount of memory allocated in huge allocations, i.e larger than LARGE_SIZE_LIMIT which is 2MiB by default (only if ENABLE_STATISTICS=1)
|
||||
size_t huge_alloc;
|
||||
//! Peak amount of memory allocated in huge allocations, i.e larger than LARGE_SIZE_LIMIT which is 2MiB by default (only if ENABLE_STATISTICS=1)
|
||||
size_t huge_alloc_peak;
|
||||
//! Total amount of memory mapped since initialization (only if ENABLE_STATISTICS=1)
|
||||
size_t mapped_total;
|
||||
//! Total amount of memory unmapped since initialization (only if ENABLE_STATISTICS=1)
|
||||
size_t unmapped_total;
|
||||
} rpmalloc_global_statistics_t;
|
||||
|
||||
typedef struct rpmalloc_thread_statistics_t
|
||||
{
|
||||
//! Current number of bytes available in thread size class caches for small and medium sizes (<32KiB)
|
||||
size_t sizecache;
|
||||
//! Current number of bytes available in thread span caches for small and medium sizes (<32KiB)
|
||||
size_t spancache;
|
||||
//! Total number of bytes transitioned from thread cache to global cache (only if ENABLE_STATISTICS=1)
|
||||
size_t thread_to_global;
|
||||
//! Total number of bytes transitioned from global cache to thread cache (only if ENABLE_STATISTICS=1)
|
||||
size_t global_to_thread;
|
||||
//! Per span count statistics (only if ENABLE_STATISTICS=1)
|
||||
struct
|
||||
{
|
||||
//! Currently used number of spans
|
||||
size_t current;
|
||||
//! High water mark of spans used
|
||||
size_t peak;
|
||||
//! Number of spans transitioned to global cache
|
||||
size_t to_global;
|
||||
//! Number of spans transitioned from global cache
|
||||
size_t from_global;
|
||||
//! Number of spans transitioned to thread cache
|
||||
size_t to_cache;
|
||||
//! Number of spans transitioned from thread cache
|
||||
size_t from_cache;
|
||||
//! Number of spans transitioned to reserved state
|
||||
size_t to_reserved;
|
||||
//! Number of spans transitioned from reserved state
|
||||
size_t from_reserved;
|
||||
//! Number of raw memory map calls (not hitting the reserve spans but resulting in actual OS mmap calls)
|
||||
size_t map_calls;
|
||||
} span_use[64];
|
||||
//! Per size class statistics (only if ENABLE_STATISTICS=1)
|
||||
struct
|
||||
{
|
||||
//! Current number of allocations
|
||||
size_t alloc_current;
|
||||
//! Peak number of allocations
|
||||
size_t alloc_peak;
|
||||
//! Total number of allocations
|
||||
size_t alloc_total;
|
||||
//! Total number of frees
|
||||
size_t free_total;
|
||||
//! Number of spans transitioned to cache
|
||||
size_t spans_to_cache;
|
||||
//! Number of spans transitioned from cache
|
||||
size_t spans_from_cache;
|
||||
//! Number of spans transitioned from reserved state
|
||||
size_t spans_from_reserved;
|
||||
//! Number of raw memory map calls (not hitting the reserve spans but resulting in actual OS mmap calls)
|
||||
size_t map_calls;
|
||||
} size_use[128];
|
||||
} rpmalloc_thread_statistics_t;
|
||||
|
||||
typedef struct rpmalloc_config_t
|
||||
{
|
||||
//! Map memory pages for the given number of bytes. The returned address MUST be
|
||||
// aligned to the rpmalloc span size, which will always be a power of two.
|
||||
// Optionally the function can store an alignment offset in the offset variable
|
||||
// in case it performs alignment and the returned pointer is offset from the
|
||||
// actual start of the memory region due to this alignment. The alignment offset
|
||||
// will be passed to the memory unmap function. The alignment offset MUST NOT be
|
||||
// larger than 65535 (storable in an uint16_t), if it is you must use natural
|
||||
// alignment to shift it into 16 bits. If you set a memory_map function, you
|
||||
// must also set a memory_unmap function or else the default implementation will
|
||||
// be used for both. This function must be thread safe, it can be called by
|
||||
// multiple threads simultaneously.
|
||||
void *(*memory_map)(size_t size, size_t *offset);
|
||||
//! Unmap the memory pages starting at address and spanning the given number of bytes.
|
||||
// If release is set to non-zero, the unmap is for an entire span range as returned by
|
||||
// a previous call to memory_map and that the entire range should be released. The
|
||||
// release argument holds the size of the entire span range. If release is set to 0,
|
||||
// the unmap is a partial decommit of a subset of the mapped memory range.
|
||||
// If you set a memory_unmap function, you must also set a memory_map function or
|
||||
// else the default implementation will be used for both. This function must be thread
|
||||
// safe, it can be called by multiple threads simultaneously.
|
||||
void (*memory_unmap)(void *address, size_t size, size_t offset, size_t release);
|
||||
//! Called when an assert fails, if asserts are enabled. Will use the standard assert()
|
||||
// if this is not set.
|
||||
void (*error_callback)(const char *message);
|
||||
//! Called when a call to map memory pages fails (out of memory). If this callback is
|
||||
// not set or returns zero the library will return a null pointer in the allocation
|
||||
// call. If this callback returns non-zero the map call will be retried. The argument
|
||||
// passed is the number of bytes that was requested in the map call. Only used if
|
||||
// the default system memory map function is used (memory_map callback is not set).
|
||||
int (*map_fail_callback)(size_t size);
|
||||
//! Size of memory pages. The page size MUST be a power of two. All memory mapping
|
||||
// requests to memory_map will be made with size set to a multiple of the page size.
|
||||
// Used if RPMALLOC_CONFIGURABLE is defined to 1, otherwise system page size is used.
|
||||
size_t page_size;
|
||||
//! Size of a span of memory blocks. MUST be a power of two, and in [4096,262144]
|
||||
// range (unless 0 - set to 0 to use the default span size). Used if RPMALLOC_CONFIGURABLE
|
||||
// is defined to 1.
|
||||
size_t span_size;
|
||||
//! Number of spans to map at each request to map new virtual memory blocks. This can
|
||||
// be used to minimize the system call overhead at the cost of virtual memory address
|
||||
// space. The extra mapped pages will not be written until actually used, so physical
|
||||
// committed memory should not be affected in the default implementation. Will be
|
||||
// aligned to a multiple of spans that match memory page size in case of huge pages.
|
||||
size_t span_map_count;
|
||||
//! Enable use of large/huge pages. If this flag is set to non-zero and page size is
|
||||
// zero, the allocator will try to enable huge pages and auto detect the configuration.
|
||||
// If this is set to non-zero and page_size is also non-zero, the allocator will
|
||||
// assume huge pages have been configured and enabled prior to initializing the
|
||||
// allocator.
|
||||
// For Windows, see https://docs.microsoft.com/en-us/windows/desktop/memory/large-page-support
|
||||
// For Linux, see https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
|
||||
int enable_huge_pages;
|
||||
//! Respectively allocated pages and huge allocated pages names for systems
|
||||
// supporting it to be able to distinguish among anonymous regions.
|
||||
const char *page_name;
|
||||
const char *huge_page_name;
|
||||
} rpmalloc_config_t;
|
||||
|
||||
//! Initialize allocator with default configuration
|
||||
RPMALLOC_EXPORT int
|
||||
rpmalloc_initialize(void);
|
||||
|
||||
//! Initialize allocator with given configuration
|
||||
RPMALLOC_EXPORT int
|
||||
rpmalloc_initialize_config(const rpmalloc_config_t *config);
|
||||
|
||||
//! Get allocator configuration
|
||||
RPMALLOC_EXPORT const rpmalloc_config_t *
|
||||
rpmalloc_config(void);
|
||||
|
||||
//! Finalize allocator
|
||||
RPMALLOC_EXPORT void
|
||||
rpmalloc_finalize(void);
|
||||
|
||||
//! Initialize allocator for calling thread
|
||||
RPMALLOC_EXPORT void
|
||||
rpmalloc_thread_initialize(void);
|
||||
|
||||
//! Finalize allocator for calling thread
|
||||
RPMALLOC_EXPORT void
|
||||
rpmalloc_thread_finalize(int release_caches);
|
||||
|
||||
//! Perform deferred deallocations pending for the calling thread heap
|
||||
RPMALLOC_EXPORT void
|
||||
rpmalloc_thread_collect(void);
|
||||
|
||||
//! Query if allocator is initialized for calling thread
|
||||
RPMALLOC_EXPORT int
|
||||
rpmalloc_is_thread_initialized(void);
|
||||
|
||||
//! Get per-thread statistics
|
||||
RPMALLOC_EXPORT void
|
||||
rpmalloc_thread_statistics(rpmalloc_thread_statistics_t *stats);
|
||||
|
||||
//! Get global statistics
|
||||
RPMALLOC_EXPORT void
|
||||
rpmalloc_global_statistics(rpmalloc_global_statistics_t *stats);
|
||||
|
||||
//! Dump all statistics in human readable format to file (should be a FILE*)
|
||||
RPMALLOC_EXPORT void
|
||||
rpmalloc_dump_statistics(void *file);
|
||||
|
||||
//! Allocate a memory block of at least the given size
|
||||
RPMALLOC_EXPORT RPMALLOC_ALLOCATOR void *
|
||||
rpmalloc(size_t size) RPMALLOC_ATTRIB_MALLOC RPMALLOC_ATTRIB_ALLOC_SIZE(1);
|
||||
|
||||
//! Free the given memory block
|
||||
RPMALLOC_EXPORT void
|
||||
rpfree(void *ptr);
|
||||
|
||||
//! Allocate a memory block of at least the given size and zero initialize it
|
||||
RPMALLOC_EXPORT RPMALLOC_ALLOCATOR void *
|
||||
rpcalloc(size_t num, size_t size) RPMALLOC_ATTRIB_MALLOC RPMALLOC_ATTRIB_ALLOC_SIZE2(1, 2);
|
||||
|
||||
//! Reallocate the given block to at least the given size
|
||||
RPMALLOC_EXPORT RPMALLOC_ALLOCATOR void *
|
||||
rprealloc(void *ptr, size_t size) RPMALLOC_ATTRIB_MALLOC RPMALLOC_ATTRIB_ALLOC_SIZE(2);
|
||||
|
||||
//! Reallocate the given block to at least the given size and alignment,
|
||||
// with optional control flags (see RPMALLOC_NO_PRESERVE).
|
||||
// Alignment must be a power of two and a multiple of sizeof(void*),
|
||||
// and should ideally be less than memory page size. A caveat of rpmalloc
|
||||
// internals is that this must also be strictly less than the span size (default 64KiB)
|
||||
RPMALLOC_EXPORT RPMALLOC_ALLOCATOR void *
|
||||
rpaligned_realloc(void *ptr, size_t alignment, size_t size, size_t oldsize, unsigned int flags) RPMALLOC_ATTRIB_MALLOC RPMALLOC_ATTRIB_ALLOC_SIZE(3);
|
||||
|
||||
//! Allocate a memory block of at least the given size and alignment.
|
||||
// Alignment must be a power of two and a multiple of sizeof(void*),
|
||||
// and should ideally be less than memory page size. A caveat of rpmalloc
|
||||
// internals is that this must also be strictly less than the span size (default 64KiB)
|
||||
RPMALLOC_EXPORT RPMALLOC_ALLOCATOR void *
|
||||
rpaligned_alloc(size_t alignment, size_t size) RPMALLOC_ATTRIB_MALLOC RPMALLOC_ATTRIB_ALLOC_SIZE(2);
|
||||
|
||||
//! Allocate a memory block of at least the given size and alignment, and zero initialize it.
|
||||
// Alignment must be a power of two and a multiple of sizeof(void*),
|
||||
// and should ideally be less than memory page size. A caveat of rpmalloc
|
||||
// internals is that this must also be strictly less than the span size (default 64KiB)
|
||||
RPMALLOC_EXPORT RPMALLOC_ALLOCATOR void *
|
||||
rpaligned_calloc(size_t alignment, size_t num, size_t size) RPMALLOC_ATTRIB_MALLOC RPMALLOC_ATTRIB_ALLOC_SIZE2(2, 3);
|
||||
|
||||
//! Allocate a memory block of at least the given size and alignment.
|
||||
// Alignment must be a power of two and a multiple of sizeof(void*),
|
||||
// and should ideally be less than memory page size. A caveat of rpmalloc
|
||||
// internals is that this must also be strictly less than the span size (default 64KiB)
|
||||
RPMALLOC_EXPORT RPMALLOC_ALLOCATOR void *
|
||||
rpmemalign(size_t alignment, size_t size) RPMALLOC_ATTRIB_MALLOC RPMALLOC_ATTRIB_ALLOC_SIZE(2);
|
||||
|
||||
//! Allocate a memory block of at least the given size and alignment.
|
||||
// Alignment must be a power of two and a multiple of sizeof(void*),
|
||||
// and should ideally be less than memory page size. A caveat of rpmalloc
|
||||
// internals is that this must also be strictly less than the span size (default 64KiB)
|
||||
RPMALLOC_EXPORT int
|
||||
rpposix_memalign(void **memptr, size_t alignment, size_t size);
|
||||
|
||||
//! Query the usable size of the given memory block (from given pointer to the end of block)
|
||||
RPMALLOC_EXPORT size_t
|
||||
rpmalloc_usable_size(void *ptr);
|
||||
|
||||
#if RPMALLOC_FIRST_CLASS_HEAPS
|
||||
|
||||
//! Heap type
|
||||
typedef struct heap_t rpmalloc_heap_t;
|
||||
|
||||
//! Acquire a new heap. Will reuse existing released heaps or allocate memory for a new heap
|
||||
// if none available. Heap API is implemented with the strict assumption that only one single
|
||||
// thread will call heap functions for a given heap at any given time, no functions are thread safe.
|
||||
RPMALLOC_EXPORT rpmalloc_heap_t *
|
||||
rpmalloc_heap_acquire(void);
|
||||
|
||||
//! Release a heap (does NOT free the memory allocated by the heap, use rpmalloc_heap_free_all before destroying the heap).
|
||||
// Releasing a heap will enable it to be reused by other threads. Safe to pass a null pointer.
|
||||
RPMALLOC_EXPORT void
|
||||
rpmalloc_heap_release(rpmalloc_heap_t *heap);
|
||||
|
||||
//! Allocate a memory block of at least the given size using the given heap.
|
||||
RPMALLOC_EXPORT RPMALLOC_ALLOCATOR void *
|
||||
rpmalloc_heap_alloc(rpmalloc_heap_t *heap, size_t size) RPMALLOC_ATTRIB_MALLOC RPMALLOC_ATTRIB_ALLOC_SIZE(2);
|
||||
|
||||
//! Allocate a memory block of at least the given size using the given heap. The returned
|
||||
// block will have the requested alignment. Alignment must be a power of two and a multiple of sizeof(void*),
|
||||
// and should ideally be less than memory page size. A caveat of rpmalloc
|
||||
// internals is that this must also be strictly less than the span size (default 64KiB).
|
||||
RPMALLOC_EXPORT RPMALLOC_ALLOCATOR void *
|
||||
rpmalloc_heap_aligned_alloc(rpmalloc_heap_t *heap, size_t alignment, size_t size) RPMALLOC_ATTRIB_MALLOC RPMALLOC_ATTRIB_ALLOC_SIZE(3);
|
||||
|
||||
//! Allocate a memory block of at least the given size using the given heap and zero initialize it.
|
||||
RPMALLOC_EXPORT RPMALLOC_ALLOCATOR void *
|
||||
rpmalloc_heap_calloc(rpmalloc_heap_t *heap, size_t num, size_t size) RPMALLOC_ATTRIB_MALLOC RPMALLOC_ATTRIB_ALLOC_SIZE2(2, 3);
|
||||
|
||||
//! Allocate a memory block of at least the given size using the given heap and zero initialize it. The returned
|
||||
// block will have the requested alignment. Alignment must either be zero, or a power of two and a multiple of sizeof(void*),
|
||||
// and should ideally be less than memory page size. A caveat of rpmalloc
|
||||
// internals is that this must also be strictly less than the span size (default 64KiB).
|
||||
RPMALLOC_EXPORT RPMALLOC_ALLOCATOR void *
|
||||
rpmalloc_heap_aligned_calloc(rpmalloc_heap_t *heap, size_t alignment, size_t num, size_t size) RPMALLOC_ATTRIB_MALLOC RPMALLOC_ATTRIB_ALLOC_SIZE2(2, 3);
|
||||
|
||||
//! Reallocate the given block to at least the given size. The memory block MUST be allocated
|
||||
// by the same heap given to this function.
|
||||
RPMALLOC_EXPORT RPMALLOC_ALLOCATOR void *
|
||||
rpmalloc_heap_realloc(rpmalloc_heap_t *heap, void *ptr, size_t size, unsigned int flags) RPMALLOC_ATTRIB_MALLOC RPMALLOC_ATTRIB_ALLOC_SIZE(3);
|
||||
|
||||
//! Reallocate the given block to at least the given size. The memory block MUST be allocated
|
||||
// by the same heap given to this function. The returned block will have the requested alignment.
|
||||
// Alignment must be either zero, or a power of two and a multiple of sizeof(void*), and should ideally be
|
||||
// less than memory page size. A caveat of rpmalloc internals is that this must also be strictly less than
|
||||
// the span size (default 64KiB).
|
||||
RPMALLOC_EXPORT RPMALLOC_ALLOCATOR void *
|
||||
rpmalloc_heap_aligned_realloc(rpmalloc_heap_t *heap, void *ptr, size_t alignment, size_t size, unsigned int flags) RPMALLOC_ATTRIB_MALLOC RPMALLOC_ATTRIB_ALLOC_SIZE(4);
|
||||
|
||||
//! Free the given memory block from the given heap. The memory block MUST be allocated
|
||||
// by the same heap given to this function.
|
||||
RPMALLOC_EXPORT void
|
||||
rpmalloc_heap_free(rpmalloc_heap_t *heap, void *ptr);
|
||||
|
||||
//! Free all memory allocated by the heap
|
||||
RPMALLOC_EXPORT void
|
||||
rpmalloc_heap_free_all(rpmalloc_heap_t *heap);
|
||||
|
||||
//! Set the given heap as the current heap for the calling thread. A heap MUST only be current heap
|
||||
// for a single thread, a heap can never be shared between multiple threads. The previous
|
||||
// current heap for the calling thread is released to be reused by other threads.
|
||||
RPMALLOC_EXPORT void
|
||||
rpmalloc_heap_thread_set_current(rpmalloc_heap_t *heap);
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@ -0,0 +1,91 @@
|
||||
/*
|
||||
This file is part of Fennix Kernel.
|
||||
|
||||
Fennix Kernel is free software: you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public License as
|
||||
published by the Free Software Foundation, either version 3 of
|
||||
the License, or (at your option) any later version.
|
||||
|
||||
Fennix Kernel is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <memory/macro.hpp>
|
||||
#include <sys/mman.h>
|
||||
#include <memory.hpp>
|
||||
#include <assert.h>
|
||||
#include <unistd.h>
|
||||
|
||||
// #include "rpmalloc.c"
|
||||
#include "../../../../kernel.h"
|
||||
|
||||
struct heap_t
|
||||
{
|
||||
char pad[56408];
|
||||
};
|
||||
|
||||
static heap_t *__rpmalloc_tls_heap = nullptr;
|
||||
EXTERNC heap_t **__memory_thread_heap(void)
|
||||
{
|
||||
if (unlikely(!TaskManager || !thisThread))
|
||||
{
|
||||
if (unlikely(!__rpmalloc_tls_heap))
|
||||
{
|
||||
__rpmalloc_tls_heap = (heap_t *)KernelAllocator.RequestPages(TO_PAGES(sizeof(heap_t)));
|
||||
debug("rpmalloc TLS heap: %#lx", __rpmalloc_tls_heap);
|
||||
memset(__rpmalloc_tls_heap, 0, sizeof(heap_t));
|
||||
assert(__rpmalloc_tls_heap);
|
||||
}
|
||||
return &__rpmalloc_tls_heap;
|
||||
}
|
||||
return &__rpmalloc_tls_heap;
|
||||
heap_t *heap = (heap_t *)thisThread->TLS.pBase;
|
||||
return (heap_t **)heap;
|
||||
}
|
||||
|
||||
EXTERNC uintptr_t __get_tid(void)
|
||||
{
|
||||
if (unlikely(!TaskManager || !thisThread))
|
||||
return (uintptr_t)-1;
|
||||
return thisThread->ID;
|
||||
}
|
||||
|
||||
EXTERNC long __rpmalloc_sysconf(int name)
|
||||
{
|
||||
switch (name)
|
||||
{
|
||||
case _SC_PAGESIZE:
|
||||
return PAGE_SIZE;
|
||||
default:
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
EXTERNC void *__rpmalloc_mmap(void *addr, size_t length, int, int, int fd, off_t offset)
|
||||
{
|
||||
assert(addr == 0 && fd == -1 && offset == 0);
|
||||
|
||||
void *ptr = KernelAllocator.RequestPages(TO_PAGES(length));
|
||||
debug("Requested %d pages, got %p", TO_PAGES(length), ptr);
|
||||
if (ptr == nullptr)
|
||||
return MAP_FAILED;
|
||||
return ptr;
|
||||
}
|
||||
|
||||
EXTERNC int __rpmalloc_munmap(void *addr, size_t length)
|
||||
{
|
||||
KernelAllocator.FreePages(addr, TO_PAGES(length));
|
||||
debug("Freed %d pages at %p", TO_PAGES(length), addr);
|
||||
return 0;
|
||||
}
|
||||
|
||||
EXTERNC int __rpmalloc_posix_madvise(void *addr, size_t length, int advice)
|
||||
{
|
||||
func("%#lx %d %d", addr, length, advice);
|
||||
return 0;
|
||||
}
|
75
Kernel/core/memory/kstack.cpp
Normal file
75
Kernel/core/memory/kstack.cpp
Normal file
@ -0,0 +1,75 @@
|
||||
/*
|
||||
This file is part of Fennix Kernel.
|
||||
|
||||
Fennix Kernel is free software: you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public License as
|
||||
published by the Free Software Foundation, either version 3 of
|
||||
the License, or (at your option) any later version.
|
||||
|
||||
Fennix Kernel is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <memory.hpp>
|
||||
|
||||
#include "../../kernel.h"
|
||||
|
||||
namespace Memory
|
||||
{
|
||||
KernelStackManager::StackAllocation KernelStackManager::DetailedAllocate(size_t Size)
|
||||
{
|
||||
SmartLock(StackLock);
|
||||
Size += 0x10;
|
||||
|
||||
size_t pagesNeeded = TO_PAGES(Size);
|
||||
size_t stackSize = pagesNeeded * PAGE_SIZE;
|
||||
|
||||
assert((CurrentStackTop - stackSize) > KERNEL_STACK_BASE);
|
||||
|
||||
void *physicalMemory = KernelAllocator.RequestPages(pagesNeeded);
|
||||
void *virtualAddress = (void *)(CurrentStackTop - stackSize);
|
||||
|
||||
Memory::Virtual vmm(KernelPageTable);
|
||||
vmm.Map(virtualAddress, physicalMemory, stackSize, Memory::RW | Memory::G);
|
||||
|
||||
AllocatedStacks.push_back({physicalMemory, virtualAddress, stackSize});
|
||||
CurrentStackTop -= stackSize;
|
||||
TotalSize += stackSize;
|
||||
return {physicalMemory, virtualAddress, stackSize};
|
||||
}
|
||||
|
||||
void *KernelStackManager::Allocate(size_t Size)
|
||||
{
|
||||
return this->DetailedAllocate(Size).VirtualAddress;
|
||||
}
|
||||
|
||||
void KernelStackManager::Free(void *Address)
|
||||
{
|
||||
SmartLock(StackLock);
|
||||
|
||||
auto it = std::find_if(AllocatedStacks.begin(), AllocatedStacks.end(),
|
||||
[Address](const StackAllocation &stack)
|
||||
{
|
||||
return stack.VirtualAddress == Address;
|
||||
});
|
||||
|
||||
if (it == AllocatedStacks.end())
|
||||
return;
|
||||
|
||||
size_t pagesToFree = TO_PAGES(it->Size);
|
||||
Memory::Virtual vmm(KernelPageTable);
|
||||
vmm.Unmap(Address, it->Size);
|
||||
KernelAllocator.FreePages(it->PhysicalAddress, pagesToFree);
|
||||
|
||||
TotalSize -= it->Size;
|
||||
AllocatedStacks.erase(it);
|
||||
}
|
||||
|
||||
KernelStackManager::KernelStackManager() {}
|
||||
KernelStackManager::~KernelStackManager() {}
|
||||
}
|
616
Kernel/core/memory/memory.cpp
Normal file
616
Kernel/core/memory/memory.cpp
Normal file
@ -0,0 +1,616 @@
|
||||
/*
|
||||
This file is part of Fennix Kernel.
|
||||
|
||||
Fennix Kernel is free software: you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public License as
|
||||
published by the Free Software Foundation, either version 3 of
|
||||
the License, or (at your option) any later version.
|
||||
|
||||
Fennix Kernel is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <memory.hpp>
|
||||
|
||||
#include <convert.h>
|
||||
#include <lock.hpp>
|
||||
#include <debug.h>
|
||||
#ifdef DEBUG
|
||||
#include <uart.hpp>
|
||||
#endif
|
||||
|
||||
#include "heap_allocators/Xalloc/Xalloc.hpp"
|
||||
#include "heap_allocators/liballoc_1_1/liballoc_1_1.h"
|
||||
#include "heap_allocators/rpmalloc/rpmalloc.h"
|
||||
#include "../../kernel.h"
|
||||
|
||||
// #define DEBUG_ALLOCATIONS 1
|
||||
|
||||
#ifdef DEBUG_ALLOCATIONS
|
||||
#define memdbg(m, ...) \
|
||||
debug(m, ##__VA_ARGS__); \
|
||||
__sync
|
||||
#else
|
||||
#define memdbg(m, ...)
|
||||
#endif
|
||||
|
||||
using namespace Memory;
|
||||
|
||||
Physical KernelAllocator;
|
||||
Memory::KernelStackManager StackManager;
|
||||
PageTable *KernelPageTable = nullptr;
|
||||
bool Page1GBSupport = false;
|
||||
bool PSESupport = false;
|
||||
|
||||
MemoryAllocatorType AllocatorType = MemoryAllocatorType::Pages;
|
||||
Xalloc::V1 *XallocV1Allocator = nullptr;
|
||||
Xalloc::V2 *XallocV2Allocator = nullptr;
|
||||
|
||||
#ifdef DEBUG
|
||||
NIF void tracepagetable(PageTable *pt)
|
||||
{
|
||||
for (int i = 0; i < 512; i++)
|
||||
{
|
||||
#if defined(a64)
|
||||
if (pt->Entries[i].Present)
|
||||
debug("Entry %03d: %x %x %x %x %x %x %x %p-%#llx", i,
|
||||
pt->Entries[i].Present, pt->Entries[i].ReadWrite,
|
||||
pt->Entries[i].UserSupervisor, pt->Entries[i].WriteThrough,
|
||||
pt->Entries[i].CacheDisable, pt->Entries[i].Accessed,
|
||||
pt->Entries[i].ExecuteDisable, pt->Entries[i].Address << 12,
|
||||
pt->Entries[i]);
|
||||
#elif defined(a32)
|
||||
#elif defined(aa64)
|
||||
#endif
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
NIF void MapEntries(PageTable *PT)
|
||||
{
|
||||
debug("mapping %d memory entries", bInfo.Memory.Entries);
|
||||
Virtual vmm = Virtual(PT);
|
||||
|
||||
for (uint64_t i = 0; i < bInfo.Memory.Entries; i++)
|
||||
{
|
||||
uintptr_t Base = r_cst(uintptr_t, bInfo.Memory.Entry[i].BaseAddress);
|
||||
size_t Length = bInfo.Memory.Entry[i].Length;
|
||||
|
||||
debug("mapping %#lx-%#lx", Base, Base + Length);
|
||||
vmm.Map((void *)Base, (void *)Base, Length, RW);
|
||||
}
|
||||
|
||||
/* Make sure 0x0 is unmapped (so we PF when nullptr is accessed) */
|
||||
vmm.Unmap((void *)0);
|
||||
}
|
||||
|
||||
NIF void MapFramebuffer(PageTable *PT)
|
||||
{
|
||||
debug("Mapping Framebuffer");
|
||||
Virtual vmm = Virtual(PT);
|
||||
int itrfb = 0;
|
||||
while (1)
|
||||
{
|
||||
if (!bInfo.Framebuffer[itrfb].BaseAddress)
|
||||
break;
|
||||
|
||||
size_t fbSize = bInfo.Framebuffer[itrfb].Pitch * bInfo.Framebuffer[itrfb].Height;
|
||||
fbSize = ALIGN_UP(fbSize, PAGE_SIZE);
|
||||
|
||||
#ifdef DEBUG
|
||||
if (DebuggerIsAttached)
|
||||
fbSize += 16 * PAGE_SIZE;
|
||||
#endif
|
||||
|
||||
if (PSESupport && Page1GBSupport)
|
||||
{
|
||||
vmm.OptimizedMap(bInfo.Framebuffer[itrfb].BaseAddress,
|
||||
bInfo.Framebuffer[itrfb].BaseAddress,
|
||||
fbSize, RW | G | KRsv);
|
||||
}
|
||||
else
|
||||
{
|
||||
vmm.Map(bInfo.Framebuffer[itrfb].BaseAddress,
|
||||
bInfo.Framebuffer[itrfb].BaseAddress,
|
||||
fbSize, RW | G | KRsv);
|
||||
}
|
||||
itrfb++;
|
||||
}
|
||||
}
|
||||
|
||||
NIF void MapKernel(PageTable *PT)
|
||||
{
|
||||
debug("Mapping Kernel");
|
||||
|
||||
/* RWX */
|
||||
uintptr_t BootstrapStart = (uintptr_t)&_bootstrap_start;
|
||||
uintptr_t BootstrapEnd = (uintptr_t)&_bootstrap_end;
|
||||
|
||||
/* RX */
|
||||
uintptr_t KernelTextStart = (uintptr_t)&_kernel_text_start;
|
||||
uintptr_t KernelTextEnd = (uintptr_t)&_kernel_text_end;
|
||||
|
||||
/* RW */
|
||||
uintptr_t KernelDataStart = (uintptr_t)&_kernel_data_start;
|
||||
uintptr_t KernelDataEnd = (uintptr_t)&_kernel_data_end;
|
||||
|
||||
/* R */
|
||||
uintptr_t KernelRoDataStart = (uintptr_t)&_kernel_rodata_start;
|
||||
uintptr_t KernelRoDataEnd = (uintptr_t)&_kernel_rodata_end;
|
||||
|
||||
/* RW */
|
||||
uintptr_t KernelBssStart = (uintptr_t)&_kernel_bss_start;
|
||||
uintptr_t KernelBssEnd = (uintptr_t)&_kernel_bss_end;
|
||||
|
||||
#ifdef DEBUG
|
||||
uintptr_t KernelStart = (uintptr_t)&_kernel_start;
|
||||
uintptr_t KernelEnd = (uintptr_t)&_kernel_end;
|
||||
#endif
|
||||
uintptr_t KernelFileStart = (uintptr_t)bInfo.Kernel.FileBase;
|
||||
uintptr_t KernelFileEnd = KernelFileStart + bInfo.Kernel.Size;
|
||||
|
||||
debug("Bootstrap: %#lx-%#lx", BootstrapStart, BootstrapEnd);
|
||||
debug("Kernel text: %#lx-%#lx", KernelTextStart, KernelTextEnd);
|
||||
debug("Kernel data: %#lx-%#lx", KernelDataStart, KernelDataEnd);
|
||||
debug("Kernel rodata: %#lx-%#lx", KernelRoDataStart, KernelRoDataEnd);
|
||||
debug("Kernel bss: %#lx-%#lx", KernelBssStart, KernelBssEnd);
|
||||
debug("Kernel: %#lx-%#lx", KernelStart, KernelEnd);
|
||||
debug("Kernel file: %#lx-%#lx", KernelFileStart, KernelFileEnd);
|
||||
|
||||
debug("File size: %ld KiB", TO_KiB(bInfo.Kernel.Size));
|
||||
debug(".bootstrap size: %ld KiB", TO_KiB(BootstrapEnd - BootstrapStart));
|
||||
debug(".text size: %ld KiB", TO_KiB(KernelTextEnd - KernelTextStart));
|
||||
debug(".data size: %ld KiB", TO_KiB(KernelDataEnd - KernelDataStart));
|
||||
debug(".rodata size: %ld KiB", TO_KiB(KernelRoDataEnd - KernelRoDataStart));
|
||||
debug(".bss size: %ld KiB", TO_KiB(KernelBssEnd - KernelBssStart));
|
||||
|
||||
uintptr_t BaseKernelMapAddress = (uintptr_t)bInfo.Kernel.PhysicalBase;
|
||||
debug("Base kernel map address: %#lx", BaseKernelMapAddress);
|
||||
uintptr_t k;
|
||||
Virtual vmm = Virtual(PT);
|
||||
|
||||
/* Bootstrap section */
|
||||
if (BaseKernelMapAddress == BootstrapStart)
|
||||
{
|
||||
for (k = BootstrapStart; k < BootstrapEnd; k += PAGE_SIZE)
|
||||
{
|
||||
vmm.Map((void *)k, (void *)BaseKernelMapAddress, RW | G | KRsv);
|
||||
KernelAllocator.ReservePage((void *)BaseKernelMapAddress);
|
||||
BaseKernelMapAddress += PAGE_SIZE;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
trace("Ignoring bootstrap section.");
|
||||
/* Bootstrap section must be mapped at 0x100000. */
|
||||
}
|
||||
|
||||
/* Text section */
|
||||
for (k = KernelTextStart; k < KernelTextEnd; k += PAGE_SIZE)
|
||||
{
|
||||
vmm.Map((void *)k, (void *)BaseKernelMapAddress, RW | G | KRsv);
|
||||
KernelAllocator.ReservePage((void *)BaseKernelMapAddress);
|
||||
BaseKernelMapAddress += PAGE_SIZE;
|
||||
}
|
||||
|
||||
/* Data section */
|
||||
for (k = KernelDataStart; k < KernelDataEnd; k += PAGE_SIZE)
|
||||
{
|
||||
vmm.Map((void *)k, (void *)BaseKernelMapAddress, RW | G | KRsv);
|
||||
KernelAllocator.ReservePage((void *)BaseKernelMapAddress);
|
||||
BaseKernelMapAddress += PAGE_SIZE;
|
||||
}
|
||||
|
||||
/* Read only data section */
|
||||
for (k = KernelRoDataStart; k < KernelRoDataEnd; k += PAGE_SIZE)
|
||||
{
|
||||
vmm.Map((void *)k, (void *)BaseKernelMapAddress, G | KRsv);
|
||||
KernelAllocator.ReservePage((void *)BaseKernelMapAddress);
|
||||
BaseKernelMapAddress += PAGE_SIZE;
|
||||
}
|
||||
|
||||
/* Block starting symbol section */
|
||||
for (k = KernelBssStart; k < KernelBssEnd; k += PAGE_SIZE)
|
||||
{
|
||||
vmm.Map((void *)k, (void *)BaseKernelMapAddress, RW | G | KRsv);
|
||||
KernelAllocator.ReservePage((void *)BaseKernelMapAddress);
|
||||
BaseKernelMapAddress += PAGE_SIZE;
|
||||
}
|
||||
|
||||
debug("Base kernel map address: %#lx", BaseKernelMapAddress);
|
||||
|
||||
/* Kernel file */
|
||||
if (KernelFileStart != 0)
|
||||
{
|
||||
for (k = KernelFileStart; k < KernelFileEnd; k += PAGE_SIZE)
|
||||
{
|
||||
vmm.Map((void *)k, (void *)k, G | KRsv);
|
||||
KernelAllocator.ReservePage((void *)k);
|
||||
}
|
||||
}
|
||||
else
|
||||
info("Cannot determine kernel file address. Ignoring.");
|
||||
}
|
||||
|
||||
NIF void CreatePageTable(PageTable *pt)
|
||||
{
|
||||
static int check_cpuid = 0;
|
||||
|
||||
if (!check_cpuid++)
|
||||
{
|
||||
if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_AMD) == 0)
|
||||
{
|
||||
CPU::x86::AMD::CPUID0x80000001 cpuid;
|
||||
PSESupport = cpuid.EDX.PSE;
|
||||
Page1GBSupport = cpuid.EDX.Page1GB;
|
||||
}
|
||||
else if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_INTEL) == 0)
|
||||
{
|
||||
CPU::x86::Intel::CPUID0x00000001 cpuid;
|
||||
PSESupport = cpuid.EDX.PSE;
|
||||
}
|
||||
|
||||
if (PSESupport)
|
||||
{
|
||||
#if defined(a64)
|
||||
CPU::x64::CR4 cr4 = CPU::x64::readcr4();
|
||||
cr4.PSE = 1;
|
||||
CPU::x64::writecr4(cr4);
|
||||
#elif defined(a32)
|
||||
CPU::x32::CR4 cr4 = CPU::x32::readcr4();
|
||||
cr4.PSE = 1;
|
||||
CPU::x32::writecr4(cr4);
|
||||
#elif defined(aa64)
|
||||
#endif
|
||||
trace("PSE Support Enabled");
|
||||
}
|
||||
|
||||
#ifdef DEBUG
|
||||
if (Page1GBSupport)
|
||||
debug("1GB Page Support Enabled");
|
||||
#endif
|
||||
}
|
||||
|
||||
/* TODO: Map faster */
|
||||
MapEntries(pt);
|
||||
MapFramebuffer(pt);
|
||||
MapKernel(pt);
|
||||
|
||||
#ifdef DEBUG
|
||||
tracepagetable(pt);
|
||||
#endif
|
||||
}
|
||||
|
||||
NIF void InitializeMemoryManagement()
|
||||
{
|
||||
#ifdef DEBUG
|
||||
#ifndef a32
|
||||
for (uint64_t i = 0; i < bInfo.Memory.Entries; i++)
|
||||
{
|
||||
uintptr_t Base = r_cst(uintptr_t, bInfo.Memory.Entry[i].BaseAddress);
|
||||
size_t Length = bInfo.Memory.Entry[i].Length;
|
||||
uintptr_t End = Base + Length;
|
||||
const char *Type = "Unknown";
|
||||
|
||||
switch (bInfo.Memory.Entry[i].Type)
|
||||
{
|
||||
case likely(Usable):
|
||||
Type = "Usable";
|
||||
break;
|
||||
case Reserved:
|
||||
Type = "Reserved";
|
||||
break;
|
||||
case ACPIReclaimable:
|
||||
Type = "ACPI Reclaimable";
|
||||
break;
|
||||
case ACPINVS:
|
||||
Type = "ACPI NVS";
|
||||
break;
|
||||
case BadMemory:
|
||||
Type = "Bad Memory";
|
||||
break;
|
||||
case BootloaderReclaimable:
|
||||
Type = "Bootloader Reclaimable";
|
||||
break;
|
||||
case KernelAndModules:
|
||||
Type = "Kernel and Modules";
|
||||
break;
|
||||
case Framebuffer:
|
||||
Type = "Framebuffer";
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
debug("%02ld: %p-%p %s",
|
||||
i,
|
||||
Base,
|
||||
End,
|
||||
Type);
|
||||
}
|
||||
#endif // a32
|
||||
#endif // DEBUG
|
||||
trace("Initializing Physical Memory Manager");
|
||||
// KernelAllocator = Physical(); <- Already called in the constructor
|
||||
KernelAllocator.Init();
|
||||
debug("Memory Info:\n\n%lld MiB / %lld MiB (%lld MiB reserved)\n",
|
||||
TO_MiB(KernelAllocator.GetUsedMemory()),
|
||||
TO_MiB(KernelAllocator.GetTotalMemory()),
|
||||
TO_MiB(KernelAllocator.GetReservedMemory()));
|
||||
|
||||
/* -- Debugging --
|
||||
size_t bmap_size = KernelAllocator.GetPageBitmap().Size;
|
||||
for (size_t i = 0; i < bmap_size; i++)
|
||||
{
|
||||
bool idx = KernelAllocator.GetPageBitmap().Get(i);
|
||||
if (idx == true)
|
||||
debug("Page %04d: %#lx", i, i * PAGE_SIZE);
|
||||
}
|
||||
|
||||
inf_loop debug("Alloc.: %#lx", KernelAllocator.RequestPage());
|
||||
*/
|
||||
|
||||
trace("Initializing Virtual Memory Manager");
|
||||
KernelPageTable = (PageTable *)KernelAllocator.RequestPages(TO_PAGES(PAGE_SIZE + 1));
|
||||
memset(KernelPageTable, 0, PAGE_SIZE);
|
||||
|
||||
CreatePageTable(KernelPageTable);
|
||||
|
||||
trace("Applying new page table from address %#lx",
|
||||
KernelPageTable);
|
||||
CPU::PageTable(KernelPageTable);
|
||||
debug("Page table updated.");
|
||||
|
||||
/* FIXME: Read kernel params */
|
||||
AllocatorType = Config.AllocatorType;
|
||||
|
||||
switch (AllocatorType)
|
||||
{
|
||||
case MemoryAllocatorType::Pages:
|
||||
break;
|
||||
case MemoryAllocatorType::XallocV1:
|
||||
{
|
||||
XallocV1Allocator = new Xalloc::V1((void *)nullptr, false, false);
|
||||
trace("XallocV1 Allocator initialized at %#lx", XallocV1Allocator);
|
||||
break;
|
||||
}
|
||||
case MemoryAllocatorType::XallocV2:
|
||||
{
|
||||
XallocV2Allocator = new Xalloc::V2((void *)nullptr);
|
||||
trace("XallocV2 Allocator initialized at %#lx", XallocV2Allocator);
|
||||
break;
|
||||
}
|
||||
case MemoryAllocatorType::liballoc11:
|
||||
break;
|
||||
case MemoryAllocatorType::rpmalloc_:
|
||||
{
|
||||
trace("Using rpmalloc allocator");
|
||||
rpmalloc_initialize();
|
||||
break;
|
||||
rpmalloc_config_t config = {
|
||||
.memory_map = nullptr,
|
||||
.memory_unmap = nullptr,
|
||||
.error_callback = nullptr,
|
||||
.map_fail_callback = nullptr,
|
||||
.page_size = PAGE_SIZE,
|
||||
.span_size = 4 * 1024, /* 4 KiB */
|
||||
.span_map_count = 1,
|
||||
.enable_huge_pages = 0,
|
||||
.page_name = nullptr,
|
||||
.huge_page_name = nullptr};
|
||||
rpmalloc_initialize_config(&config);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
{
|
||||
error("Unknown allocator type %d", AllocatorType);
|
||||
CPU::Stop();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void *malloc(size_t Size)
|
||||
{
|
||||
if (Size == 0)
|
||||
{
|
||||
warn("Attempt to allocate 0 bytes");
|
||||
Size = 16;
|
||||
}
|
||||
|
||||
memdbg("malloc(%d)->[%s]", Size,
|
||||
KernelSymbolTable ? KernelSymbolTable->GetSymbol((uintptr_t)__builtin_return_address(0))
|
||||
: "Unknown");
|
||||
|
||||
void *ret = nullptr;
|
||||
switch (AllocatorType)
|
||||
{
|
||||
case MemoryAllocatorType::Pages:
|
||||
{
|
||||
ret = KernelAllocator.RequestPages(TO_PAGES(Size + 1));
|
||||
break;
|
||||
}
|
||||
case MemoryAllocatorType::XallocV1:
|
||||
{
|
||||
ret = XallocV1Allocator->malloc(Size);
|
||||
break;
|
||||
}
|
||||
case MemoryAllocatorType::XallocV2:
|
||||
{
|
||||
ret = XallocV2Allocator->malloc(Size);
|
||||
break;
|
||||
}
|
||||
case MemoryAllocatorType::liballoc11:
|
||||
{
|
||||
ret = PREFIX(malloc)(Size);
|
||||
break;
|
||||
}
|
||||
case MemoryAllocatorType::rpmalloc_:
|
||||
{
|
||||
ret = rpmalloc(Size);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
{
|
||||
error("Unknown allocator type %d", AllocatorType);
|
||||
CPU::Stop();
|
||||
}
|
||||
}
|
||||
|
||||
memset(ret, 0, Size);
|
||||
return ret;
|
||||
}
|
||||
|
||||
void *calloc(size_t n, size_t Size)
|
||||
{
|
||||
if (Size == 0)
|
||||
{
|
||||
warn("Attempt to allocate 0 bytes");
|
||||
Size = 16;
|
||||
}
|
||||
|
||||
memdbg("calloc(%d, %d)->[%s]", n, Size,
|
||||
KernelSymbolTable ? KernelSymbolTable->GetSymbol((uintptr_t)__builtin_return_address(0))
|
||||
: "Unknown");
|
||||
|
||||
void *ret = nullptr;
|
||||
switch (AllocatorType)
|
||||
{
|
||||
case MemoryAllocatorType::Pages:
|
||||
{
|
||||
ret = KernelAllocator.RequestPages(TO_PAGES(n * Size + 1));
|
||||
break;
|
||||
}
|
||||
case MemoryAllocatorType::XallocV1:
|
||||
{
|
||||
ret = XallocV1Allocator->calloc(n, Size);
|
||||
break;
|
||||
}
|
||||
case MemoryAllocatorType::XallocV2:
|
||||
{
|
||||
ret = XallocV2Allocator->calloc(n, Size);
|
||||
break;
|
||||
}
|
||||
case MemoryAllocatorType::liballoc11:
|
||||
{
|
||||
void *ret = PREFIX(calloc)(n, Size);
|
||||
return ret;
|
||||
}
|
||||
case MemoryAllocatorType::rpmalloc_:
|
||||
{
|
||||
ret = rpcalloc(n, Size);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
{
|
||||
error("Unknown allocator type %d", AllocatorType);
|
||||
CPU::Stop();
|
||||
}
|
||||
}
|
||||
|
||||
memset(ret, 0, n * Size);
|
||||
return ret;
|
||||
}
|
||||
|
||||
void *realloc(void *Address, size_t Size)
|
||||
{
|
||||
if (Size == 0)
|
||||
{
|
||||
warn("Attempt to allocate 0 bytes");
|
||||
Size = 16;
|
||||
}
|
||||
|
||||
memdbg("realloc(%#lx, %d)->[%s]", Address, Size,
|
||||
KernelSymbolTable ? KernelSymbolTable->GetSymbol((uintptr_t)__builtin_return_address(0))
|
||||
: "Unknown");
|
||||
|
||||
void *ret = nullptr;
|
||||
switch (AllocatorType)
|
||||
{
|
||||
case unlikely(MemoryAllocatorType::Pages):
|
||||
{
|
||||
ret = KernelAllocator.RequestPages(TO_PAGES(Size + 1)); // WARNING: Potential memory leak
|
||||
break;
|
||||
}
|
||||
case MemoryAllocatorType::XallocV1:
|
||||
{
|
||||
ret = XallocV1Allocator->realloc(Address, Size);
|
||||
break;
|
||||
}
|
||||
case MemoryAllocatorType::XallocV2:
|
||||
{
|
||||
ret = XallocV2Allocator->realloc(Address, Size);
|
||||
break;
|
||||
}
|
||||
case MemoryAllocatorType::liballoc11:
|
||||
{
|
||||
void *ret = PREFIX(realloc)(Address, Size);
|
||||
return ret;
|
||||
}
|
||||
case MemoryAllocatorType::rpmalloc_:
|
||||
{
|
||||
ret = rprealloc(Address, Size);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
{
|
||||
error("Unknown allocator type %d", AllocatorType);
|
||||
CPU::Stop();
|
||||
}
|
||||
}
|
||||
|
||||
memset(ret, 0, Size);
|
||||
return ret;
|
||||
}
|
||||
|
||||
void free(void *Address)
|
||||
{
|
||||
if (Address == nullptr)
|
||||
{
|
||||
warn("Attempt to free a null pointer");
|
||||
return;
|
||||
}
|
||||
|
||||
memdbg("free(%#lx)->[%s]", Address,
|
||||
KernelSymbolTable ? KernelSymbolTable->GetSymbol((uintptr_t)__builtin_return_address(0))
|
||||
: "Unknown");
|
||||
|
||||
switch (AllocatorType)
|
||||
{
|
||||
case unlikely(MemoryAllocatorType::Pages):
|
||||
{
|
||||
KernelAllocator.FreePage(Address); // WARNING: Potential memory leak
|
||||
break;
|
||||
}
|
||||
case MemoryAllocatorType::XallocV1:
|
||||
{
|
||||
XallocV1Allocator->free(Address);
|
||||
break;
|
||||
}
|
||||
case MemoryAllocatorType::XallocV2:
|
||||
{
|
||||
XallocV2Allocator->free(Address);
|
||||
break;
|
||||
}
|
||||
case MemoryAllocatorType::liballoc11:
|
||||
{
|
||||
PREFIX(free)
|
||||
(Address);
|
||||
break;
|
||||
}
|
||||
case MemoryAllocatorType::rpmalloc_:
|
||||
{
|
||||
rpfree(Address);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
{
|
||||
error("Unknown allocator type %d", AllocatorType);
|
||||
CPU::Stop();
|
||||
}
|
||||
}
|
||||
}
|
90
Kernel/core/memory/page_table.cpp
Normal file
90
Kernel/core/memory/page_table.cpp
Normal file
@ -0,0 +1,90 @@
|
||||
#include <memory.hpp>
|
||||
|
||||
#include <filesystem.hpp>
|
||||
#include <signal.hpp>
|
||||
#include <utsname.h>
|
||||
#include <time.h>
|
||||
|
||||
namespace Memory
|
||||
{
|
||||
void PageTable::Update()
|
||||
{
|
||||
#if defined(a86)
|
||||
asmv("mov %0, %%cr3" ::"r"(this));
|
||||
#elif defined(aa64)
|
||||
asmv("msr ttbr0_el1, %0" ::"r"(this));
|
||||
#endif
|
||||
}
|
||||
|
||||
PageTable *PageTable::Fork()
|
||||
{
|
||||
PageTable *NewTable = (PageTable *)KernelAllocator.RequestPages(TO_PAGES(sizeof(PageTable)));
|
||||
// memset(NewTable, 0, sizeof(PageTable));
|
||||
// CreatePageTable(NewTable);
|
||||
memcpy(NewTable, this, sizeof(PageTable));
|
||||
|
||||
debug("Forking page table %#lx to %#lx", this, NewTable);
|
||||
#if defined(a64)
|
||||
for (size_t i = 0; i < sizeof(Entries) / sizeof(Entries[0]); i++)
|
||||
{
|
||||
PageMapLevel4 *PML4 = &Entries[i];
|
||||
PageMapLevel4 *NewPML4 = &NewTable->Entries[i];
|
||||
if (!PML4->Present)
|
||||
continue;
|
||||
|
||||
PageDirectoryPointerTableEntryPtr *ptrPDPT = (PageDirectoryPointerTableEntryPtr *)(PML4->GetAddress() << 12);
|
||||
PageDirectoryPointerTableEntryPtr *ptrNewPDPT = (PageDirectoryPointerTableEntryPtr *)KernelAllocator.RequestPage();
|
||||
NewPML4->SetAddress((uintptr_t)ptrNewPDPT >> 12);
|
||||
for (size_t j = 0; j < sizeof(ptrPDPT->Entries) / sizeof(ptrPDPT->Entries[0]); j++)
|
||||
{
|
||||
PageDirectoryPointerTableEntry *PDPT = &ptrPDPT->Entries[j];
|
||||
PageDirectoryPointerTableEntry *NewPDPT = &ptrNewPDPT->Entries[j];
|
||||
*NewPDPT = *PDPT;
|
||||
|
||||
if (!PDPT->Present)
|
||||
continue;
|
||||
if (PDPT->PageSize)
|
||||
continue;
|
||||
|
||||
PageDirectoryEntryPtr *ptrPDE = (PageDirectoryEntryPtr *)(PDPT->GetAddress() << 12);
|
||||
PageDirectoryEntryPtr *ptrNewPDE = (PageDirectoryEntryPtr *)KernelAllocator.RequestPage();
|
||||
NewPDPT->SetAddress((uintptr_t)ptrNewPDE >> 12);
|
||||
for (size_t k = 0; k < sizeof(ptrPDE->Entries) / sizeof(ptrPDE->Entries[0]); k++)
|
||||
{
|
||||
PageDirectoryEntry *PDE = &ptrPDE->Entries[k];
|
||||
PageDirectoryEntry *NewPDE = &ptrNewPDE->Entries[k];
|
||||
*NewPDE = *PDE;
|
||||
|
||||
if (!PDE->Present)
|
||||
continue;
|
||||
if (PDE->PageSize)
|
||||
continue;
|
||||
|
||||
PageTableEntryPtr *ptrPTE = (PageTableEntryPtr *)(PDE->GetAddress() << 12);
|
||||
PageTableEntryPtr *ptrNewPTE = (PageTableEntryPtr *)KernelAllocator.RequestPage();
|
||||
NewPDE->SetAddress((uintptr_t)ptrNewPTE >> 12);
|
||||
for (size_t l = 0; l < sizeof(ptrPTE->Entries) / sizeof(ptrPTE->Entries[0]); l++)
|
||||
{
|
||||
PageTableEntry *PTE = &ptrPTE->Entries[l];
|
||||
PageTableEntry *NewPTE = &ptrNewPTE->Entries[l];
|
||||
*NewPTE = *PTE;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
#error "PageTable::Fork() not implemented for other architectures"
|
||||
#endif
|
||||
|
||||
debug("Forked page table %#lx to %#lx", this, NewTable);
|
||||
return NewTable;
|
||||
}
|
||||
|
||||
/* We can't have Memory::Virtual in the header */
|
||||
void *PageTable::__getPhysical(void *Address)
|
||||
{
|
||||
Virtual vmm(this);
|
||||
void *PhysAddr = vmm.GetPhysical((void *)Address);
|
||||
return PhysAddr;
|
||||
}
|
||||
}
|
54
Kernel/core/memory/pmi.cpp
Normal file
54
Kernel/core/memory/pmi.cpp
Normal file
@ -0,0 +1,54 @@
|
||||
/*
|
||||
This file is part of Fennix Kernel.
|
||||
|
||||
Fennix Kernel is free software: you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public License as
|
||||
published by the Free Software Foundation, either version 3 of
|
||||
the License, or (at your option) any later version.
|
||||
|
||||
Fennix Kernel is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <memory.hpp>
|
||||
|
||||
namespace Memory
|
||||
{
|
||||
Virtual::PageMapIndexer::PageMapIndexer(uintptr_t VirtualAddress)
|
||||
{
|
||||
uintptr_t Address = VirtualAddress;
|
||||
#if defined(a64)
|
||||
Address >>= 12;
|
||||
this->PTEIndex = Address & 0x1FF;
|
||||
Address >>= 9;
|
||||
this->PDEIndex = Address & 0x1FF;
|
||||
Address >>= 9;
|
||||
this->PDPTEIndex = Address & 0x1FF;
|
||||
Address >>= 9;
|
||||
this->PMLIndex = Address & 0x1FF;
|
||||
#elif defined(a32)
|
||||
Address >>= 12;
|
||||
this->PTEIndex = Address & 0x3FF;
|
||||
Address >>= 10;
|
||||
this->PDEIndex = Address & 0x3FF;
|
||||
#elif defined(aa64)
|
||||
#endif
|
||||
|
||||
if (VirtualAddress > PAGE_SIZE)
|
||||
{
|
||||
assert(
|
||||
this->PTEIndex != 0 ||
|
||||
this->PDEIndex != 0
|
||||
#if defined(a64)
|
||||
|| this->PDPTEIndex != 0 ||
|
||||
this->PMLIndex != 0
|
||||
#endif
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
356
Kernel/core/memory/pmm.cpp
Normal file
356
Kernel/core/memory/pmm.cpp
Normal file
@ -0,0 +1,356 @@
|
||||
/*
|
||||
This file is part of Fennix Kernel.
|
||||
|
||||
Fennix Kernel is free software: you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public License as
|
||||
published by the Free Software Foundation, either version 3 of
|
||||
the License, or (at your option) any later version.
|
||||
|
||||
Fennix Kernel is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <memory.hpp>
|
||||
|
||||
#include <acpi.hpp>
|
||||
#include <debug.h>
|
||||
#include <elf.h>
|
||||
#ifdef DEBUG
|
||||
#include <uart.hpp>
|
||||
#endif
|
||||
|
||||
#include "../../kernel.h"
|
||||
|
||||
namespace Memory
|
||||
{
|
||||
uint64_t Physical::GetTotalMemory()
|
||||
{
|
||||
return this->TotalMemory.load();
|
||||
}
|
||||
|
||||
uint64_t Physical::GetFreeMemory()
|
||||
{
|
||||
return this->FreeMemory.load();
|
||||
}
|
||||
|
||||
uint64_t Physical::GetReservedMemory()
|
||||
{
|
||||
return this->ReservedMemory.load();
|
||||
}
|
||||
|
||||
uint64_t Physical::GetUsedMemory()
|
||||
{
|
||||
return this->UsedMemory.load();
|
||||
}
|
||||
|
||||
bool Physical::SwapPage(void *Address)
|
||||
{
|
||||
fixme("%p", Address);
|
||||
return false;
|
||||
}
|
||||
|
||||
bool Physical::SwapPages(void *Address, size_t PageCount)
|
||||
{
|
||||
for (size_t i = 0; i < PageCount; i++)
|
||||
{
|
||||
if (!this->SwapPage((void *)((uintptr_t)Address + (i * PAGE_SIZE))))
|
||||
return false;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool Physical::UnswapPage(void *Address)
|
||||
{
|
||||
fixme("%p", Address);
|
||||
return false;
|
||||
}
|
||||
|
||||
bool Physical::UnswapPages(void *Address, size_t PageCount)
|
||||
{
|
||||
for (size_t i = 0; i < PageCount; i++)
|
||||
{
|
||||
if (!this->UnswapPage((void *)((uintptr_t)Address + (i * PAGE_SIZE))))
|
||||
return false;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void *Physical::RequestPage()
|
||||
{
|
||||
SmartLock(this->MemoryLock);
|
||||
|
||||
for (; PageBitmapIndex < PageBitmap.Size * 8; PageBitmapIndex++)
|
||||
{
|
||||
if (PageBitmap[PageBitmapIndex] == true)
|
||||
continue;
|
||||
|
||||
this->LockPage((void *)(PageBitmapIndex * PAGE_SIZE));
|
||||
return (void *)(PageBitmapIndex * PAGE_SIZE);
|
||||
}
|
||||
|
||||
if (this->SwapPage((void *)(PageBitmapIndex * PAGE_SIZE)))
|
||||
{
|
||||
this->LockPage((void *)(PageBitmapIndex * PAGE_SIZE));
|
||||
return (void *)(PageBitmapIndex * PAGE_SIZE);
|
||||
}
|
||||
|
||||
if (TaskManager && !TaskManager->IsPanic())
|
||||
{
|
||||
error("Out of memory! Killing current process...");
|
||||
TaskManager->KillProcess(thisProcess, Tasking::KILL_OOM);
|
||||
TaskManager->Yield();
|
||||
}
|
||||
|
||||
error("Out of memory! (Free: %ld MiB; Used: %ld MiB; Reserved: %ld MiB)",
|
||||
TO_MiB(FreeMemory.load()), TO_MiB(UsedMemory.load()), TO_MiB(ReservedMemory.load()));
|
||||
KPrint("Out of memory! (Free: %ld MiB; Used: %ld MiB; Reserved: %ld MiB)",
|
||||
TO_MiB(FreeMemory.load()), TO_MiB(UsedMemory.load()), TO_MiB(ReservedMemory.load()));
|
||||
debug("Raw values: free %#lx used %#lx reserved %#lx",
|
||||
FreeMemory.load(), UsedMemory.load(), ReservedMemory.load());
|
||||
CPU::Stop();
|
||||
__builtin_unreachable();
|
||||
}
|
||||
|
||||
void *Physical::RequestPages(size_t Count)
|
||||
{
|
||||
SmartLock(this->MemoryLock);
|
||||
|
||||
for (; PageBitmapIndex < PageBitmap.Size * 8; PageBitmapIndex++)
|
||||
{
|
||||
if (PageBitmap[PageBitmapIndex] == true)
|
||||
continue;
|
||||
|
||||
for (uint64_t Index = PageBitmapIndex; Index < PageBitmap.Size * 8; Index++)
|
||||
{
|
||||
if (PageBitmap[Index] == true)
|
||||
continue;
|
||||
|
||||
for (size_t i = 0; i < Count; i++)
|
||||
{
|
||||
if (PageBitmap[Index + i] == true)
|
||||
goto NextPage;
|
||||
}
|
||||
|
||||
this->LockPages((void *)(Index * PAGE_SIZE), Count);
|
||||
return (void *)(Index * PAGE_SIZE);
|
||||
|
||||
NextPage:
|
||||
Index += Count;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
if (this->SwapPages((void *)(PageBitmapIndex * PAGE_SIZE), Count))
|
||||
{
|
||||
this->LockPages((void *)(PageBitmapIndex * PAGE_SIZE), Count);
|
||||
return (void *)(PageBitmapIndex * PAGE_SIZE);
|
||||
}
|
||||
|
||||
if (TaskManager && !TaskManager->IsPanic())
|
||||
{
|
||||
error("Out of memory! Killing current process...");
|
||||
TaskManager->KillProcess(thisProcess, Tasking::KILL_OOM);
|
||||
TaskManager->Yield();
|
||||
}
|
||||
|
||||
error("Out of memory! (Free: %ld MiB; Used: %ld MiB; Reserved: %ld MiB)",
|
||||
TO_MiB(FreeMemory.load()), TO_MiB(UsedMemory.load()), TO_MiB(ReservedMemory.load()));
|
||||
KPrint("Out of memory! (Free: %ld MiB; Used: %ld MiB; Reserved: %ld MiB)",
|
||||
TO_MiB(FreeMemory.load()), TO_MiB(UsedMemory.load()), TO_MiB(ReservedMemory.load()));
|
||||
debug("Raw values: free %#lx used %#lx reserved %#lx",
|
||||
FreeMemory.load(), UsedMemory.load(), ReservedMemory.load());
|
||||
CPU::Halt(true);
|
||||
__builtin_unreachable();
|
||||
}
|
||||
|
||||
void Physical::FreePage(void *Address)
|
||||
{
|
||||
SmartLock(this->MemoryLock);
|
||||
|
||||
if (unlikely(Address == nullptr))
|
||||
{
|
||||
warn("Null pointer passed to FreePage.");
|
||||
return;
|
||||
}
|
||||
|
||||
size_t Index = (size_t)Address / PAGE_SIZE;
|
||||
|
||||
if (unlikely(PageBitmap[Index] == false))
|
||||
{
|
||||
warn("Tried to free an already free page. (%p)",
|
||||
Address);
|
||||
return;
|
||||
}
|
||||
|
||||
if (PageBitmap.Set(Index, false))
|
||||
{
|
||||
FreeMemory.fetch_add(PAGE_SIZE);
|
||||
UsedMemory.fetch_sub(PAGE_SIZE);
|
||||
if (PageBitmapIndex > Index)
|
||||
PageBitmapIndex = Index;
|
||||
}
|
||||
}
|
||||
|
||||
void Physical::FreePages(void *Address, size_t Count)
|
||||
{
|
||||
if (unlikely(Address == nullptr || Count == 0))
|
||||
{
|
||||
warn("%s%s%s passed to FreePages.", Address == nullptr ? "Null pointer " : "", Address == nullptr && Count == 0 ? "and " : "", Count == 0 ? "Zero count" : "");
|
||||
return;
|
||||
}
|
||||
for (size_t t = 0; t < Count; t++)
|
||||
this->FreePage((void *)((uintptr_t)Address + (t * PAGE_SIZE)));
|
||||
}
|
||||
|
||||
void Physical::LockPage(void *Address)
|
||||
{
|
||||
if (unlikely(Address == nullptr))
|
||||
warn("Trying to lock null address.");
|
||||
|
||||
uintptr_t Index = (uintptr_t)Address / PAGE_SIZE;
|
||||
|
||||
if (unlikely(PageBitmap[Index] == true))
|
||||
return;
|
||||
|
||||
if (PageBitmap.Set(Index, true))
|
||||
{
|
||||
FreeMemory.fetch_sub(PAGE_SIZE);
|
||||
UsedMemory.fetch_add(PAGE_SIZE);
|
||||
}
|
||||
}
|
||||
|
||||
void Physical::LockPages(void *Address, size_t PageCount)
|
||||
{
|
||||
if (unlikely(Address == nullptr || PageCount == 0))
|
||||
warn("Trying to lock %s%s.",
|
||||
Address ? "null address" : "",
|
||||
PageCount ? "0 pages" : "");
|
||||
|
||||
for (size_t i = 0; i < PageCount; i++)
|
||||
this->LockPage((void *)((uintptr_t)Address + (i * PAGE_SIZE)));
|
||||
}
|
||||
|
||||
void Physical::ReservePage(void *Address)
|
||||
{
|
||||
if (unlikely(Address == nullptr))
|
||||
warn("Trying to reserve null address.");
|
||||
|
||||
uintptr_t Index = (Address == NULL) ? 0 : (uintptr_t)Address / PAGE_SIZE;
|
||||
|
||||
if (unlikely(PageBitmap[Index] == true))
|
||||
return;
|
||||
|
||||
if (PageBitmap.Set(Index, true))
|
||||
{
|
||||
FreeMemory.fetch_sub(PAGE_SIZE);
|
||||
ReservedMemory.fetch_add(PAGE_SIZE);
|
||||
}
|
||||
}
|
||||
|
||||
void Physical::ReservePages(void *Address, size_t PageCount)
|
||||
{
|
||||
if (unlikely(Address == nullptr || PageCount == 0))
|
||||
warn("Trying to reserve %s%s.",
|
||||
Address ? "null address" : "",
|
||||
PageCount ? "0 pages" : "");
|
||||
|
||||
for (size_t t = 0; t < PageCount; t++)
|
||||
{
|
||||
uintptr_t Index = ((uintptr_t)Address + (t * PAGE_SIZE)) / PAGE_SIZE;
|
||||
|
||||
if (unlikely(PageBitmap[Index] == true))
|
||||
return;
|
||||
|
||||
if (PageBitmap.Set(Index, true))
|
||||
{
|
||||
FreeMemory.fetch_sub(PAGE_SIZE);
|
||||
ReservedMemory.fetch_add(PAGE_SIZE);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Physical::UnreservePage(void *Address)
|
||||
{
|
||||
if (unlikely(Address == nullptr))
|
||||
warn("Trying to unreserve null address.");
|
||||
|
||||
uintptr_t Index = (Address == NULL) ? 0 : (uintptr_t)Address / PAGE_SIZE;
|
||||
|
||||
if (unlikely(PageBitmap[Index] == false))
|
||||
return;
|
||||
|
||||
if (PageBitmap.Set(Index, false))
|
||||
{
|
||||
FreeMemory.fetch_add(PAGE_SIZE);
|
||||
ReservedMemory.fetch_sub(PAGE_SIZE);
|
||||
if (PageBitmapIndex > Index)
|
||||
PageBitmapIndex = Index;
|
||||
}
|
||||
}
|
||||
|
||||
void Physical::UnreservePages(void *Address, size_t PageCount)
|
||||
{
|
||||
if (unlikely(Address == nullptr || PageCount == 0))
|
||||
warn("Trying to unreserve %s%s.",
|
||||
Address ? "null address" : "",
|
||||
PageCount ? "0 pages" : "");
|
||||
|
||||
for (size_t t = 0; t < PageCount; t++)
|
||||
{
|
||||
uintptr_t Index = ((uintptr_t)Address + (t * PAGE_SIZE)) / PAGE_SIZE;
|
||||
|
||||
if (unlikely(PageBitmap[Index] == false))
|
||||
return;
|
||||
|
||||
if (PageBitmap.Set(Index, false))
|
||||
{
|
||||
FreeMemory.fetch_add(PAGE_SIZE);
|
||||
ReservedMemory.fetch_sub(PAGE_SIZE);
|
||||
if (PageBitmapIndex > Index)
|
||||
PageBitmapIndex = Index;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Physical::Init()
|
||||
{
|
||||
SmartLock(this->MemoryLock);
|
||||
|
||||
uint64_t MemorySize = bInfo.Memory.Size;
|
||||
debug("Memory size: %lld bytes (%ld pages)",
|
||||
MemorySize, TO_PAGES(MemorySize));
|
||||
TotalMemory.store(MemorySize);
|
||||
FreeMemory.store(MemorySize);
|
||||
|
||||
size_t BitmapSize = (size_t)(MemorySize / PAGE_SIZE) / 8 + 1;
|
||||
uintptr_t BitmapAddress = 0x0;
|
||||
size_t BitmapAddressSize = 0;
|
||||
|
||||
FindBitmapRegion(BitmapAddress, BitmapAddressSize);
|
||||
if (BitmapAddress == 0x0)
|
||||
{
|
||||
error("No free memory found!");
|
||||
CPU::Stop();
|
||||
}
|
||||
|
||||
debug("Initializing Bitmap at %p-%p (%d Bytes)",
|
||||
BitmapAddress,
|
||||
(void *)(BitmapAddress + BitmapSize),
|
||||
BitmapSize);
|
||||
|
||||
PageBitmap.Size = BitmapSize;
|
||||
PageBitmap.Buffer = (uint8_t *)BitmapAddress;
|
||||
for (size_t i = 0; i < BitmapSize; i++)
|
||||
*(uint8_t *)(PageBitmap.Buffer + i) = 0;
|
||||
|
||||
ReserveEssentials();
|
||||
}
|
||||
|
||||
Physical::Physical() {}
|
||||
Physical::~Physical() {}
|
||||
}
|
207
Kernel/core/memory/reserve_essentials.cpp
Normal file
207
Kernel/core/memory/reserve_essentials.cpp
Normal file
@ -0,0 +1,207 @@
|
||||
/*
|
||||
This file is part of Fennix Kernel.
|
||||
|
||||
Fennix Kernel is free software: you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public License as
|
||||
published by the Free Software Foundation, either version 3 of
|
||||
the License, or (at your option) any later version.
|
||||
|
||||
Fennix Kernel is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <memory.hpp>
|
||||
|
||||
#include <acpi.hpp>
|
||||
#include <debug.h>
|
||||
#include <elf.h>
|
||||
#ifdef DEBUG
|
||||
#include <uart.hpp>
|
||||
#endif
|
||||
|
||||
#include "../../kernel.h"
|
||||
|
||||
namespace Memory
|
||||
{
|
||||
__no_sanitize("alignment") void Physical::ReserveEssentials()
|
||||
{
|
||||
debug("Reserving pages...");
|
||||
/* The bootloader won't give us the entire mapping, so we
|
||||
reserve everything and then unreserve the usable pages. */
|
||||
this->ReservePages(0, TO_PAGES(bInfo.Memory.Size));
|
||||
debug("Unreserving usable pages...");
|
||||
|
||||
for (uint64_t i = 0; i < bInfo.Memory.Entries; i++)
|
||||
{
|
||||
if (bInfo.Memory.Entry[i].Type == Usable)
|
||||
{
|
||||
if (uintptr_t(bInfo.Memory.Entry[i].BaseAddress) <= 0xFFFFF)
|
||||
continue;
|
||||
|
||||
this->UnreservePages(bInfo.Memory.Entry[i].BaseAddress,
|
||||
TO_PAGES(bInfo.Memory.Entry[i].Length));
|
||||
}
|
||||
}
|
||||
|
||||
debug("Reserving 0x0-0xFFFFF range...");
|
||||
// this->ReservePage((void *)0x0); /* Trampoline stack, gdt, idt, etc... */
|
||||
// this->ReservePages((void *)0x2000, 4); /* TRAMPOLINE_START */
|
||||
|
||||
/* Reserve the lower part of memory. (0x0-0xFFFFF)
|
||||
This includes: BIOS, EBDA, VGA, SMP, etc...
|
||||
https://wiki.osdev.org/Memory_Map_(x86)
|
||||
*/
|
||||
this->ReservePages((void *)0x0, TO_PAGES(0xFFFFF));
|
||||
|
||||
debug("Reserving bitmap region %#lx-%#lx...",
|
||||
PageBitmap.Buffer,
|
||||
(void *)((uintptr_t)PageBitmap.Buffer + PageBitmap.Size));
|
||||
|
||||
this->ReservePages(PageBitmap.Buffer, TO_PAGES(PageBitmap.Size));
|
||||
|
||||
debug("Reserving kernel physical region %#lx-%#lx...",
|
||||
bInfo.Kernel.PhysicalBase,
|
||||
(void *)((uintptr_t)bInfo.Kernel.PhysicalBase + bInfo.Kernel.Size));
|
||||
|
||||
this->ReservePages(bInfo.Kernel.PhysicalBase, TO_PAGES(bInfo.Kernel.Size));
|
||||
|
||||
debug("Reserving kernel file and symbols...");
|
||||
if (bInfo.Kernel.FileBase)
|
||||
this->ReservePages(bInfo.Kernel.FileBase, TO_PAGES(bInfo.Kernel.Size));
|
||||
|
||||
if (bInfo.Kernel.Symbols.Num &&
|
||||
bInfo.Kernel.Symbols.EntSize &&
|
||||
bInfo.Kernel.Symbols.Shndx)
|
||||
{
|
||||
char *sections = r_cst(char *, bInfo.Kernel.Symbols.Sections);
|
||||
debug("Reserving sections region %#lx-%#lx...",
|
||||
sections,
|
||||
(void *)((uintptr_t)sections + bInfo.Kernel.Symbols.EntSize *
|
||||
bInfo.Kernel.Symbols.Num));
|
||||
|
||||
this->ReservePages(sections, TO_PAGES(bInfo.Kernel.Symbols.EntSize *
|
||||
bInfo.Kernel.Symbols.Num));
|
||||
|
||||
Elf_Sym *Symbols = nullptr;
|
||||
uint8_t *StringAddress = nullptr;
|
||||
|
||||
#if defined(a64) || defined(aa64)
|
||||
Elf64_Xword SymbolSize = 0;
|
||||
Elf64_Xword StringSize = 0;
|
||||
#elif defined(a32)
|
||||
Elf32_Word SymbolSize = 0;
|
||||
Elf32_Word StringSize = 0;
|
||||
#endif
|
||||
|
||||
for (size_t i = 0; i < bInfo.Kernel.Symbols.Num; ++i)
|
||||
{
|
||||
Elf_Shdr *sym = (Elf_Shdr *)§ions[bInfo.Kernel.Symbols.EntSize * i];
|
||||
Elf_Shdr *str = (Elf_Shdr *)§ions[bInfo.Kernel.Symbols.EntSize *
|
||||
sym->sh_link];
|
||||
|
||||
if (sym->sh_type == SHT_SYMTAB &&
|
||||
str->sh_type == SHT_STRTAB)
|
||||
{
|
||||
Symbols = (Elf_Sym *)sym->sh_addr;
|
||||
StringAddress = (uint8_t *)str->sh_addr;
|
||||
SymbolSize = (int)sym->sh_size;
|
||||
StringSize = (int)str->sh_size;
|
||||
debug("Symbol table found, %d entries (%ld KiB)",
|
||||
SymbolSize / sym->sh_entsize,
|
||||
TO_KiB(SymbolSize));
|
||||
this->ReservePages(Symbols, TO_PAGES(SymbolSize));
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (Symbols)
|
||||
{
|
||||
debug("Reserving symbol table region %#lx-%#lx...",
|
||||
Symbols, (void *)((uintptr_t)Symbols + SymbolSize));
|
||||
this->ReservePages(Symbols, TO_PAGES(SymbolSize));
|
||||
}
|
||||
|
||||
if (StringAddress)
|
||||
{
|
||||
debug("Reserving string table region %#lx-%#lx...",
|
||||
StringAddress, (void *)((uintptr_t)StringAddress + StringSize));
|
||||
this->ReservePages(StringAddress, TO_PAGES(StringSize));
|
||||
}
|
||||
}
|
||||
|
||||
debug("Reserving kernel modules...");
|
||||
|
||||
for (uint64_t i = 0; i < MAX_MODULES; i++)
|
||||
{
|
||||
if (bInfo.Modules[i].Address == 0x0)
|
||||
continue;
|
||||
|
||||
debug("Reserving module %s (%#lx-%#lx)...", bInfo.Modules[i].CommandLine,
|
||||
bInfo.Modules[i].Address,
|
||||
(void *)((uintptr_t)bInfo.Modules[i].Address + bInfo.Modules[i].Size));
|
||||
|
||||
this->ReservePages((void *)bInfo.Modules[i].Address,
|
||||
TO_PAGES(bInfo.Modules[i].Size));
|
||||
}
|
||||
|
||||
#if defined(a86)
|
||||
if (bInfo.RSDP)
|
||||
{
|
||||
debug("Reserving RSDT region %#lx-%#lx...", bInfo.RSDP,
|
||||
(void *)((uintptr_t)bInfo.RSDP + sizeof(BootInfo::RSDPInfo)));
|
||||
|
||||
this->ReservePages(bInfo.RSDP, TO_PAGES(sizeof(BootInfo::RSDPInfo)));
|
||||
|
||||
ACPI::ACPI::ACPIHeader *ACPIPtr;
|
||||
bool XSDT = false;
|
||||
|
||||
if (bInfo.RSDP->Revision >= 2 && bInfo.RSDP->XSDTAddress)
|
||||
{
|
||||
ACPIPtr = (ACPI::ACPI::ACPIHeader *)bInfo.RSDP->XSDTAddress;
|
||||
XSDT = true;
|
||||
}
|
||||
else
|
||||
ACPIPtr = (ACPI::ACPI::ACPIHeader *)(uintptr_t)bInfo.RSDP->RSDTAddress;
|
||||
|
||||
debug("Reserving RSDT...");
|
||||
this->ReservePages((void *)bInfo.RSDP, TO_PAGES(sizeof(BootInfo::RSDPInfo)));
|
||||
|
||||
if (!Memory::Virtual().Check(ACPIPtr))
|
||||
{
|
||||
error("ACPI table is located in an unmapped region.");
|
||||
return;
|
||||
}
|
||||
|
||||
size_t TableSize = ((ACPIPtr->Length - sizeof(ACPI::ACPI::ACPIHeader)) /
|
||||
(XSDT ? 8 : 4));
|
||||
debug("Reserving %d ACPI tables...", TableSize);
|
||||
|
||||
for (size_t t = 0; t < TableSize; t++)
|
||||
{
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wint-to-pointer-cast"
|
||||
// TODO: Should I be concerned about unaligned memory access?
|
||||
ACPI::ACPI::ACPIHeader *SDTHdr = nullptr;
|
||||
if (XSDT)
|
||||
SDTHdr =
|
||||
(ACPI::ACPI::ACPIHeader *)(*(uint64_t *)((uint64_t)ACPIPtr +
|
||||
sizeof(ACPI::ACPI::ACPIHeader) +
|
||||
(t * 8)));
|
||||
else
|
||||
SDTHdr =
|
||||
(ACPI::ACPI::ACPIHeader *)(*(uint32_t *)((uint64_t)ACPIPtr +
|
||||
sizeof(ACPI::ACPI::ACPIHeader) +
|
||||
(t * 4)));
|
||||
#pragma GCC diagnostic pop
|
||||
this->ReservePages(SDTHdr, TO_PAGES(SDTHdr->Length));
|
||||
}
|
||||
}
|
||||
#elif defined(aa64)
|
||||
#endif
|
||||
}
|
||||
}
|
164
Kernel/core/memory/stack_guard.cpp
Normal file
164
Kernel/core/memory/stack_guard.cpp
Normal file
@ -0,0 +1,164 @@
|
||||
/*
|
||||
This file is part of Fennix Kernel.
|
||||
|
||||
Fennix Kernel is free software: you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public License as
|
||||
published by the Free Software Foundation, either version 3 of
|
||||
the License, or (at your option) any later version.
|
||||
|
||||
Fennix Kernel is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <memory.hpp>
|
||||
|
||||
#include <debug.h>
|
||||
|
||||
namespace Memory
|
||||
{
|
||||
bool StackGuard::Expand(uintptr_t FaultAddress)
|
||||
{
|
||||
if (!this->UserMode)
|
||||
assert(!"Kernel mode stack expansion not implemented");
|
||||
|
||||
if (FaultAddress < USER_STACK_END ||
|
||||
FaultAddress > USER_STACK_BASE)
|
||||
{
|
||||
info("Fault address %#lx is not in range of stack %#lx - %#lx",
|
||||
FaultAddress, USER_STACK_END, USER_STACK_BASE);
|
||||
return false; /* It's not about the stack. */
|
||||
}
|
||||
|
||||
uintptr_t roundFA = ROUND_DOWN(FaultAddress, PAGE_SIZE);
|
||||
uintptr_t diff = (uintptr_t)this->StackBottom - roundFA;
|
||||
size_t stackPages = TO_PAGES(diff);
|
||||
stackPages = stackPages < 1 ? 1 : stackPages;
|
||||
|
||||
debug("roundFA: %#lx, sb: %#lx, diff: %#lx, stackPages: %d",
|
||||
roundFA, this->StackBottom, diff, stackPages);
|
||||
|
||||
void *AllocatedStack = vma->RequestPages(stackPages);
|
||||
debug("AllocatedStack: %#lx", AllocatedStack);
|
||||
|
||||
for (size_t i = 0; i < stackPages; i++)
|
||||
{
|
||||
void *vAddress = (void *)((uintptr_t)this->StackBottom - (i * PAGE_SIZE));
|
||||
void *pAddress = (void *)((uintptr_t)AllocatedStack + (i * PAGE_SIZE));
|
||||
|
||||
vma->Map(vAddress, pAddress, PAGE_SIZE, PTFlag::RW | PTFlag::US);
|
||||
AllocatedPages ap = {
|
||||
.PhysicalAddress = pAddress,
|
||||
.VirtualAddress = vAddress,
|
||||
};
|
||||
AllocatedPagesList.push_back(ap);
|
||||
debug("Mapped %#lx to %#lx", pAddress, vAddress);
|
||||
}
|
||||
|
||||
this->StackBottom = (void *)((uintptr_t)this->StackBottom - (stackPages * PAGE_SIZE));
|
||||
this->Size += stackPages * PAGE_SIZE;
|
||||
debug("Stack expanded to %#lx", this->StackBottom);
|
||||
this->Expanded = true;
|
||||
return true;
|
||||
}
|
||||
|
||||
void StackGuard::Fork(StackGuard *Parent)
|
||||
{
|
||||
if (!this->UserMode)
|
||||
assert(!"Kernel mode stack fork not implemented");
|
||||
|
||||
this->UserMode = Parent->UserMode;
|
||||
this->StackBottom = Parent->StackBottom;
|
||||
this->StackTop = Parent->StackTop;
|
||||
this->StackPhysicalBottom = Parent->StackPhysicalBottom;
|
||||
this->StackPhysicalTop = Parent->StackPhysicalTop;
|
||||
this->Size = Parent->Size;
|
||||
this->Expanded = Parent->Expanded;
|
||||
|
||||
std::list<AllocatedPages> ParentAllocatedPages = Parent->GetAllocatedPages();
|
||||
foreach (auto Page in ParentAllocatedPages)
|
||||
{
|
||||
void *NewPhysical = vma->RequestPages(1);
|
||||
debug("Forking address %#lx to %#lx", Page.PhysicalAddress, NewPhysical);
|
||||
memcpy(NewPhysical, Page.PhysicalAddress, PAGE_SIZE);
|
||||
vma->Remap(Page.VirtualAddress, NewPhysical, PTFlag::RW | PTFlag::US);
|
||||
|
||||
AllocatedPages ap = {
|
||||
.PhysicalAddress = NewPhysical,
|
||||
.VirtualAddress = Page.VirtualAddress,
|
||||
};
|
||||
AllocatedPagesList.push_back(ap);
|
||||
debug("Mapped %#lx to %#lx", NewPhysical, Page.VirtualAddress);
|
||||
}
|
||||
}
|
||||
|
||||
StackGuard::StackGuard(bool User, VirtualMemoryArea *_vma)
|
||||
{
|
||||
this->UserMode = User;
|
||||
this->vma = _vma;
|
||||
|
||||
if (this->UserMode)
|
||||
{
|
||||
void *AllocatedStack = vma->RequestPages(TO_PAGES(USER_STACK_SIZE));
|
||||
this->StackBottom = (void *)USER_STACK_BASE;
|
||||
this->StackTop = (void *)(USER_STACK_BASE + USER_STACK_SIZE);
|
||||
this->StackPhysicalBottom = AllocatedStack;
|
||||
this->StackPhysicalTop = (void *)((uintptr_t)AllocatedStack + USER_STACK_SIZE);
|
||||
this->Size = USER_STACK_SIZE;
|
||||
|
||||
debug("AllocatedStack: %#lx", AllocatedStack);
|
||||
|
||||
for (size_t i = 0; i < TO_PAGES(USER_STACK_SIZE); i++)
|
||||
{
|
||||
void *vAddress = (void *)(USER_STACK_BASE + (i * PAGE_SIZE));
|
||||
void *pAddress = (void *)((uintptr_t)AllocatedStack + (i * PAGE_SIZE));
|
||||
vma->Map(vAddress, pAddress, PAGE_SIZE, PTFlag::RW | PTFlag::US);
|
||||
|
||||
AllocatedPages ap = {
|
||||
.PhysicalAddress = pAddress,
|
||||
.VirtualAddress = vAddress,
|
||||
};
|
||||
AllocatedPagesList.push_back(ap);
|
||||
debug("Mapped %#lx to %#lx", pAddress, vAddress);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
Memory::KernelStackManager::StackAllocation sa = StackManager.DetailedAllocate(LARGE_STACK_SIZE);
|
||||
this->StackBottom = sa.VirtualAddress;
|
||||
this->StackTop = (void *)((uintptr_t)this->StackBottom + LARGE_STACK_SIZE);
|
||||
this->StackPhysicalBottom = sa.PhysicalAddress;
|
||||
this->StackPhysicalTop = (void *)((uintptr_t)this->StackPhysicalBottom + LARGE_STACK_SIZE);
|
||||
this->Size = LARGE_STACK_SIZE;
|
||||
|
||||
debug("StackBottom: %#lx", this->StackBottom);
|
||||
|
||||
for (size_t i = 0; i < TO_PAGES(LARGE_STACK_SIZE); i++)
|
||||
{
|
||||
AllocatedPages pa = {
|
||||
.PhysicalAddress = (void *)((uintptr_t)this->StackPhysicalBottom + (i * PAGE_SIZE)),
|
||||
.VirtualAddress = (void *)((uintptr_t)this->StackBottom + (i * PAGE_SIZE)),
|
||||
};
|
||||
AllocatedPagesList.push_back(pa);
|
||||
}
|
||||
}
|
||||
|
||||
debug("Allocated stack at %#lx", this->StackBottom);
|
||||
debug("Stack Range: %#lx - %#lx", this->StackBottom, this->StackTop);
|
||||
}
|
||||
|
||||
StackGuard::~StackGuard()
|
||||
{
|
||||
if (!this->UserMode)
|
||||
{
|
||||
for (auto Page : this->AllocatedPagesList)
|
||||
StackManager.Free(Page.VirtualAddress);
|
||||
}
|
||||
|
||||
/* VMA will free the stack */
|
||||
}
|
||||
}
|
142
Kernel/core/memory/va.cpp
Normal file
142
Kernel/core/memory/va.cpp
Normal file
@ -0,0 +1,142 @@
|
||||
/*
|
||||
This file is part of Fennix Kernel.
|
||||
|
||||
Fennix Kernel is free software: you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public License as
|
||||
published by the Free Software Foundation, either version 3 of
|
||||
the License, or (at your option) any later version.
|
||||
|
||||
Fennix Kernel is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <memory/table.hpp>
|
||||
#include <memory/va.hpp>
|
||||
#include <cpu.hpp>
|
||||
#include <debug.h>
|
||||
#include <bitset>
|
||||
|
||||
#include "../../kernel.h"
|
||||
|
||||
namespace Memory
|
||||
{
|
||||
VirtualAllocation::AllocatedPages VirtualAllocation::RequestPages(size_t Count)
|
||||
{
|
||||
func("%lld", Count);
|
||||
|
||||
void *pAddress = KernelAllocator.RequestPages(Count);
|
||||
memset(pAddress, 0, FROM_PAGES(Count));
|
||||
|
||||
Virtual vmm(this->Table);
|
||||
SmartLock(MgrLock);
|
||||
forItr(itr, AllocatedPagesList)
|
||||
{
|
||||
if (likely(itr->Free == false))
|
||||
continue;
|
||||
|
||||
if (itr->PageCount == Count)
|
||||
{
|
||||
itr->Free = false;
|
||||
vmm.Map(itr->VirtualAddress, pAddress, FROM_PAGES(Count), RW | KRsv | G);
|
||||
return *itr;
|
||||
}
|
||||
|
||||
if (itr->PageCount > Count)
|
||||
{
|
||||
/* Split the block */
|
||||
void *vAddress = itr->VirtualAddress;
|
||||
void *pAddress = itr->PhysicalAddress;
|
||||
size_t PageCount = itr->PageCount;
|
||||
|
||||
AllocatedPagesList.erase(itr);
|
||||
|
||||
AllocatedPagesList.push_back({(void *)((uintptr_t)pAddress + FROM_PAGES(Count)),
|
||||
(void *)((uintptr_t)vAddress + FROM_PAGES(Count)),
|
||||
PageCount - Count, true});
|
||||
AllocatedPagesList.push_back({pAddress, vAddress, Count, false});
|
||||
|
||||
vmm.Map(vAddress, pAddress, FROM_PAGES(Count), RW | KRsv | G);
|
||||
debug("Split region %#lx-%#lx", vAddress, (uintptr_t)vAddress + FROM_PAGES(Count));
|
||||
debug("Free region %#lx-%#lx", (uintptr_t)vAddress + FROM_PAGES(Count), (uintptr_t)vAddress + FROM_PAGES(PageCount - Count));
|
||||
return AllocatedPagesList.back();
|
||||
}
|
||||
}
|
||||
|
||||
/* Allocate new region */
|
||||
void *vAddress = CurrentBase;
|
||||
vmm.Map(vAddress, pAddress, FROM_PAGES(Count), RW | KRsv | G);
|
||||
AllocatedPagesList.push_back({pAddress, vAddress, Count, false});
|
||||
debug("New region %#lx-%#lx", vAddress, (uintptr_t)vAddress + FROM_PAGES(Count));
|
||||
CurrentBase = (void *)((uintptr_t)CurrentBase + FROM_PAGES(Count));
|
||||
assert(USER_ALLOC_END > (uintptr_t)CurrentBase);
|
||||
return AllocatedPagesList.back();
|
||||
}
|
||||
|
||||
void VirtualAllocation::FreePages(void *Address, size_t Count)
|
||||
{
|
||||
func("%#lx, %lld", Address, Count);
|
||||
|
||||
SmartLock(MgrLock);
|
||||
foreach (auto &apl in AllocatedPagesList)
|
||||
{
|
||||
if (apl.VirtualAddress != Address)
|
||||
continue;
|
||||
|
||||
if (apl.PageCount != Count)
|
||||
{
|
||||
error("Page count mismatch! (Allocated: %lld, Requested: %lld)",
|
||||
apl.PageCount, Count);
|
||||
return;
|
||||
}
|
||||
|
||||
Virtual vmm(this->Table);
|
||||
for (size_t i = 0; i < Count; i++)
|
||||
{
|
||||
void *AddressToUnmap = (void *)((uintptr_t)Address + FROM_PAGES(i));
|
||||
vmm.Unmap(AddressToUnmap);
|
||||
}
|
||||
|
||||
KernelAllocator.FreePages(Address, Count);
|
||||
apl.Free = true;
|
||||
debug("Freed region %#lx-%#lx", Address, (uintptr_t)Address + FROM_PAGES(Count));
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
void VirtualAllocation::MapTo(AllocatedPages ap, PageTable *TargetTable)
|
||||
{
|
||||
func("%#lx, %#lx", ap.VirtualAddress, TargetTable);
|
||||
|
||||
Virtual vmm(TargetTable);
|
||||
vmm.Map(ap.VirtualAddress, ap.PhysicalAddress, FROM_PAGES(ap.PageCount), RW | KRsv | G);
|
||||
}
|
||||
|
||||
VirtualAllocation::VirtualAllocation(void *Base)
|
||||
: BaseAddress(Base), CurrentBase(Base),
|
||||
Table((PageTable *)CPU::PageTable())
|
||||
{
|
||||
func("%#lx", Base);
|
||||
}
|
||||
|
||||
VirtualAllocation::~VirtualAllocation()
|
||||
{
|
||||
/* No need to remap pages, the page table will be destroyed */
|
||||
|
||||
Virtual vmm(this->Table);
|
||||
foreach (auto ap in AllocatedPagesList)
|
||||
{
|
||||
KernelAllocator.FreePages(ap.PhysicalAddress, ap.PageCount);
|
||||
|
||||
for (size_t i = 0; i < ap.PageCount; i++)
|
||||
{
|
||||
void *AddressToUnmap = (void *)((uintptr_t)ap.VirtualAddress + FROM_PAGES(i));
|
||||
vmm.Unmap(AddressToUnmap);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
494
Kernel/core/memory/vma.cpp
Normal file
494
Kernel/core/memory/vma.cpp
Normal file
@ -0,0 +1,494 @@
|
||||
/*
|
||||
This file is part of Fennix Kernel.
|
||||
|
||||
Fennix Kernel is free software: you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public License as
|
||||
published by the Free Software Foundation, either version 3 of
|
||||
the License, or (at your option) any later version.
|
||||
|
||||
Fennix Kernel is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <memory/vma.hpp>
|
||||
#include <memory/table.hpp>
|
||||
#include <cpu.hpp>
|
||||
#include <debug.h>
|
||||
#include <bitset>
|
||||
|
||||
#include "../../kernel.h"
|
||||
|
||||
namespace Memory
|
||||
{
|
||||
uint64_t VirtualMemoryArea::GetAllocatedMemorySize()
|
||||
{
|
||||
SmartLock(MgrLock);
|
||||
uint64_t Size = 0;
|
||||
foreach (auto ap in AllocatedPagesList)
|
||||
Size += ap.PageCount;
|
||||
return FROM_PAGES(Size);
|
||||
}
|
||||
|
||||
void *VirtualMemoryArea::RequestPages(size_t Count, bool User, bool Protect)
|
||||
{
|
||||
func("%lld, %s, %s", Count,
|
||||
User ? "true" : "false",
|
||||
Protect ? "true" : "false");
|
||||
|
||||
void *Address = KernelAllocator.RequestPages(Count);
|
||||
memset(Address, 0, Count * PAGE_SIZE);
|
||||
|
||||
int Flags = PTFlag::RW;
|
||||
if (User)
|
||||
Flags |= PTFlag::US;
|
||||
if (Protect)
|
||||
Flags |= PTFlag::KRsv;
|
||||
|
||||
Virtual vmm(this->Table);
|
||||
|
||||
SmartLock(MgrLock);
|
||||
|
||||
vmm.Map(Address, Address, FROM_PAGES(Count), Flags);
|
||||
AllocatedPagesList.push_back({Address, Count, Protect});
|
||||
debug("%#lx +{%#lx, %lld}", this, Address, Count);
|
||||
return Address;
|
||||
}
|
||||
|
||||
void VirtualMemoryArea::FreePages(void *Address, size_t Count)
|
||||
{
|
||||
func("%#lx, %lld", Address, Count);
|
||||
|
||||
SmartLock(MgrLock);
|
||||
forItr(itr, AllocatedPagesList)
|
||||
{
|
||||
if (itr->Address != Address)
|
||||
continue;
|
||||
|
||||
if (itr->Protected)
|
||||
{
|
||||
error("Address %#lx is protected", Address);
|
||||
return;
|
||||
}
|
||||
|
||||
/** TODO: Advanced checks. Allow if the page count is less than the requested one.
|
||||
* This will allow the user to free only a part of the allocated pages.
|
||||
*
|
||||
* But this will be in a separate function because we need to specify if we
|
||||
* want to free from the start or from the end and return the new address.
|
||||
*/
|
||||
if (itr->PageCount != Count)
|
||||
{
|
||||
error("Page count mismatch! (Allocated: %lld, Requested: %lld)",
|
||||
itr->PageCount, Count);
|
||||
return;
|
||||
}
|
||||
|
||||
Virtual vmm(this->Table);
|
||||
for (size_t i = 0; i < Count; i++)
|
||||
{
|
||||
void *AddressToMap = (void *)((uintptr_t)Address + (i * PAGE_SIZE));
|
||||
vmm.Remap(AddressToMap, AddressToMap, PTFlag::RW);
|
||||
}
|
||||
|
||||
KernelAllocator.FreePages(Address, Count);
|
||||
AllocatedPagesList.erase(itr);
|
||||
debug("%#lx -{%#lx, %lld}", this, Address, Count);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
void VirtualMemoryArea::DetachAddress(void *Address)
|
||||
{
|
||||
func("%#lx", Address);
|
||||
|
||||
SmartLock(MgrLock);
|
||||
forItr(itr, AllocatedPagesList)
|
||||
{
|
||||
if (itr->Address == Address)
|
||||
{
|
||||
if (itr->Protected)
|
||||
{
|
||||
error("Address %#lx is protected", Address);
|
||||
return;
|
||||
}
|
||||
|
||||
AllocatedPagesList.erase(itr);
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void *VirtualMemoryArea::CreateCoWRegion(void *Address,
|
||||
size_t Length,
|
||||
bool Read, bool Write, bool Exec,
|
||||
bool Fixed, bool Shared)
|
||||
{
|
||||
func("%#lx, %lld, %s, %s, %s, %s, %s", Address, Length,
|
||||
Read ? "true" : "false",
|
||||
Write ? "true" : "false",
|
||||
Exec ? "true" : "false",
|
||||
Fixed ? "true" : "false",
|
||||
Shared ? "true" : "false");
|
||||
|
||||
Virtual vmm(this->Table);
|
||||
|
||||
// FIXME
|
||||
// for (uintptr_t j = uintptr_t(Address);
|
||||
// j < uintptr_t(Address) + Length;
|
||||
// j += PAGE_SIZE)
|
||||
// {
|
||||
// if (vmm.Check((void *)j, G))
|
||||
// {
|
||||
// if (Fixed)
|
||||
// return (void *)-EINVAL;
|
||||
// Address = (void *)(j + PAGE_SIZE);
|
||||
// }
|
||||
// }
|
||||
|
||||
bool AnyAddress = Address == nullptr;
|
||||
debug("AnyAddress: %s", AnyAddress ? "true" : "false");
|
||||
|
||||
if (AnyAddress)
|
||||
{
|
||||
Address = this->RequestPages(TO_PAGES(Length), true);
|
||||
debug("Allocated %#lx-%#lx for pt %#lx",
|
||||
Address, (uintptr_t)Address + Length, this->Table);
|
||||
return Address;
|
||||
}
|
||||
|
||||
SmartLock(MgrLock);
|
||||
if (vmm.Check(Address, PTFlag::KRsv))
|
||||
{
|
||||
error("Cannot create CoW region at %#lx", Address);
|
||||
return (void *)-EPERM;
|
||||
}
|
||||
|
||||
debug("unmapping %#lx-%#lx", Address, (uintptr_t)Address + Length);
|
||||
vmm.Unmap(Address, Length);
|
||||
debug("mapping cow at %#lx-%#lx", Address, (uintptr_t)Address + Length);
|
||||
vmm.Map(Address, nullptr, Length, PTFlag::CoW);
|
||||
debug("CoW region created at range %#lx-%#lx for pt %#lx",
|
||||
Address, (uintptr_t)Address + Length, this->Table);
|
||||
|
||||
SharedRegion sr{
|
||||
.Address = Address,
|
||||
.Read = Read,
|
||||
.Write = Write,
|
||||
.Exec = Exec,
|
||||
.Fixed = Fixed,
|
||||
.Shared = Shared,
|
||||
.Length = Length,
|
||||
.ReferenceCount = 0,
|
||||
};
|
||||
SharedRegions.push_back(sr);
|
||||
debug("CoW region created at %#lx for pt %#lx",
|
||||
Address, this->Table);
|
||||
return Address;
|
||||
}
|
||||
|
||||
bool VirtualMemoryArea::HandleCoW(uintptr_t PFA)
|
||||
{
|
||||
func("%#lx", PFA);
|
||||
Virtual vmm(this->Table);
|
||||
PageTableEntry *pte = vmm.GetPTE((void *)PFA);
|
||||
|
||||
debug("ctx: %#lx", this);
|
||||
|
||||
if (!pte)
|
||||
{
|
||||
/* Unmapped page */
|
||||
debug("PTE is null!");
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!pte->CopyOnWrite)
|
||||
{
|
||||
debug("PFA %#lx is not CoW (pt %#lx) (flags %#lx)",
|
||||
PFA, this->Table, pte->raw);
|
||||
return false;
|
||||
}
|
||||
|
||||
foreach (auto sr in SharedRegions)
|
||||
{
|
||||
uintptr_t Start = (uintptr_t)sr.Address;
|
||||
uintptr_t End = (uintptr_t)sr.Address + sr.Length;
|
||||
debug("Start: %#lx, End: %#lx (PFA: %#lx)",
|
||||
Start, End, PFA);
|
||||
|
||||
if (PFA >= Start && PFA < End)
|
||||
{
|
||||
if (sr.Shared)
|
||||
{
|
||||
fixme("Shared CoW");
|
||||
return false;
|
||||
}
|
||||
|
||||
void *pAddr = this->RequestPages(1);
|
||||
if (pAddr == nullptr)
|
||||
return false;
|
||||
memset(pAddr, 0, PAGE_SIZE);
|
||||
|
||||
assert(pte->Present == true);
|
||||
pte->ReadWrite = sr.Write;
|
||||
pte->UserSupervisor = sr.Read;
|
||||
pte->ExecuteDisable = sr.Exec;
|
||||
|
||||
pte->CopyOnWrite = false;
|
||||
debug("PFA %#lx is CoW (pt %#lx, flags %#lx)",
|
||||
PFA, this->Table, pte->raw);
|
||||
#if defined(a64)
|
||||
CPU::x64::invlpg((void *)PFA);
|
||||
#elif defined(a32)
|
||||
CPU::x32::invlpg((void *)PFA);
|
||||
#endif
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
debug("%#lx not found in CoW regions", PFA);
|
||||
return false;
|
||||
}
|
||||
|
||||
void VirtualMemoryArea::FreeAllPages()
|
||||
{
|
||||
SmartLock(MgrLock);
|
||||
foreach (auto ap in AllocatedPagesList)
|
||||
{
|
||||
KernelAllocator.FreePages(ap.Address, ap.PageCount);
|
||||
Virtual vmm(this->Table);
|
||||
for (size_t i = 0; i < ap.PageCount; i++)
|
||||
vmm.Remap((void *)((uintptr_t)ap.Address + (i * PAGE_SIZE)),
|
||||
(void *)((uintptr_t)ap.Address + (i * PAGE_SIZE)),
|
||||
PTFlag::RW);
|
||||
}
|
||||
AllocatedPagesList.clear();
|
||||
}
|
||||
|
||||
void VirtualMemoryArea::Fork(VirtualMemoryArea *Parent)
|
||||
{
|
||||
func("%#lx", Parent);
|
||||
assert(Parent);
|
||||
|
||||
debug("parent apl:%d sr:%d [P:%#lx C:%#lx]",
|
||||
Parent->AllocatedPagesList.size(), Parent->SharedRegions.size(),
|
||||
Parent->Table, this->Table);
|
||||
debug("ctx: this: %#lx parent: %#lx", this, Parent);
|
||||
|
||||
Virtual vmm(this->Table);
|
||||
SmartLock(MgrLock);
|
||||
foreach (auto &ap in Parent->AllocatedPagesList)
|
||||
{
|
||||
if (ap.Protected)
|
||||
{
|
||||
debug("Protected %#lx-%#lx", ap.Address,
|
||||
(uintptr_t)ap.Address + (ap.PageCount * PAGE_SIZE));
|
||||
continue; /* We don't want to modify these pages. */
|
||||
}
|
||||
|
||||
MgrLock.Unlock();
|
||||
void *Address = this->RequestPages(ap.PageCount);
|
||||
MgrLock.Lock(__FUNCTION__);
|
||||
if (Address == nullptr)
|
||||
return;
|
||||
|
||||
memcpy(Address, ap.Address, FROM_PAGES(ap.PageCount));
|
||||
|
||||
for (size_t i = 0; i < ap.PageCount; i++)
|
||||
{
|
||||
void *AddressToMap = (void *)((uintptr_t)ap.Address + (i * PAGE_SIZE));
|
||||
void *RealAddress = (void *)((uintptr_t)Address + (i * PAGE_SIZE));
|
||||
|
||||
#if defined(a86)
|
||||
PageTableEntry *pte = vmm.GetPTE(AddressToMap);
|
||||
uintptr_t Flags = 0;
|
||||
Flags |= pte->Present ? (uintptr_t)PTFlag::P : 0;
|
||||
Flags |= pte->ReadWrite ? (uintptr_t)PTFlag::RW : 0;
|
||||
Flags |= pte->UserSupervisor ? (uintptr_t)PTFlag::US : 0;
|
||||
Flags |= pte->CopyOnWrite ? (uintptr_t)PTFlag::CoW : 0;
|
||||
Flags |= pte->KernelReserve ? (uintptr_t)PTFlag::KRsv : 0;
|
||||
|
||||
debug("Mapping %#lx to %#lx (flags %s/%s/%s/%s/%s)",
|
||||
RealAddress, AddressToMap,
|
||||
Flags & PTFlag::P ? "P" : "-",
|
||||
Flags & PTFlag::RW ? "RW" : "-",
|
||||
Flags & PTFlag::US ? "US" : "-",
|
||||
Flags & PTFlag::CoW ? "CoW" : "-",
|
||||
Flags & PTFlag::KRsv ? "KRsv" : "-");
|
||||
MgrLock.Unlock();
|
||||
this->Map(AddressToMap, RealAddress, PAGE_SIZE, Flags);
|
||||
MgrLock.Lock(__FUNCTION__);
|
||||
#else
|
||||
#error "Not implemented"
|
||||
#endif
|
||||
}
|
||||
|
||||
debug("Forked %#lx-%#lx", ap.Address,
|
||||
(uintptr_t)ap.Address + (ap.PageCount * PAGE_SIZE));
|
||||
}
|
||||
|
||||
foreach (auto &sr in Parent->SharedRegions)
|
||||
{
|
||||
MgrLock.Unlock();
|
||||
void *Address = this->CreateCoWRegion(sr.Address, sr.Length,
|
||||
sr.Read, sr.Write, sr.Exec,
|
||||
sr.Fixed, sr.Shared);
|
||||
MgrLock.Lock(__FUNCTION__);
|
||||
if (Address == nullptr)
|
||||
return;
|
||||
memcpy(Address, sr.Address, sr.Length);
|
||||
debug("Forked CoW region %#lx-%#lx", sr.Address,
|
||||
(uintptr_t)sr.Address + sr.Length);
|
||||
}
|
||||
}
|
||||
|
||||
int VirtualMemoryArea::Map(void *VirtualAddress, void *PhysicalAddress,
|
||||
size_t Length, uint64_t Flags)
|
||||
{
|
||||
Virtual vmm(this->Table);
|
||||
SmartLock(MgrLock);
|
||||
|
||||
uintptr_t intVirtualAddress = (uintptr_t)VirtualAddress;
|
||||
uintptr_t intPhysicalAddress = (uintptr_t)PhysicalAddress;
|
||||
|
||||
for (uintptr_t va = intVirtualAddress;
|
||||
va < intVirtualAddress + Length; va += PAGE_SIZE)
|
||||
{
|
||||
if (vmm.Check(VirtualAddress, PTFlag::KRsv))
|
||||
{
|
||||
error("Virtual address %#lx is reserved", VirtualAddress);
|
||||
return -EPERM;
|
||||
}
|
||||
}
|
||||
|
||||
for (uintptr_t va = intPhysicalAddress;
|
||||
va < intPhysicalAddress + Length; va += PAGE_SIZE)
|
||||
{
|
||||
if (vmm.Check(PhysicalAddress, PTFlag::KRsv))
|
||||
{
|
||||
error("Physical address %#lx is reserved", PhysicalAddress);
|
||||
return -EPERM;
|
||||
}
|
||||
}
|
||||
|
||||
vmm.Map(VirtualAddress, PhysicalAddress, Length, Flags);
|
||||
debug("Mapped %#lx-%#lx to %#lx-%#lx (flags %#lx)",
|
||||
VirtualAddress, intVirtualAddress + Length,
|
||||
PhysicalAddress, intPhysicalAddress + Length,
|
||||
Flags);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int VirtualMemoryArea::Remap(void *VirtualAddress, void *PhysicalAddress, uint64_t Flags)
|
||||
{
|
||||
Virtual vmm(this->Table);
|
||||
SmartLock(MgrLock);
|
||||
|
||||
if (vmm.Check(VirtualAddress, PTFlag::KRsv))
|
||||
{
|
||||
error("Virtual address %#lx is reserved", VirtualAddress);
|
||||
return -EPERM;
|
||||
}
|
||||
|
||||
if (vmm.Check(PhysicalAddress, PTFlag::KRsv))
|
||||
{
|
||||
error("Physical address %#lx is reserved", PhysicalAddress);
|
||||
return -EPERM;
|
||||
}
|
||||
|
||||
vmm.Remap(VirtualAddress, PhysicalAddress, Flags);
|
||||
debug("Remapped %#lx to %#lx (flags %#lx)",
|
||||
VirtualAddress, PhysicalAddress, Flags);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int VirtualMemoryArea::Unmap(void *VirtualAddress, size_t Length)
|
||||
{
|
||||
Virtual vmm(this->Table);
|
||||
SmartLock(MgrLock);
|
||||
|
||||
uintptr_t intVirtualAddress = (uintptr_t)VirtualAddress;
|
||||
|
||||
for (uintptr_t va = intVirtualAddress;
|
||||
va < intVirtualAddress + Length; va += PAGE_SIZE)
|
||||
{
|
||||
if (vmm.Check(VirtualAddress, PTFlag::KRsv))
|
||||
{
|
||||
error("Virtual address %#lx is reserved", VirtualAddress);
|
||||
return -EPERM;
|
||||
}
|
||||
}
|
||||
|
||||
vmm.Unmap(VirtualAddress, Length);
|
||||
debug("Unmapped %#lx-%#lx", VirtualAddress, intVirtualAddress + Length);
|
||||
return 0;
|
||||
}
|
||||
|
||||
void *VirtualMemoryArea::__UserCheckAndGetAddress(void *Address, size_t Length)
|
||||
{
|
||||
Virtual vmm(this->Table);
|
||||
SmartLock(MgrLock);
|
||||
|
||||
void *pAddress = this->Table->Get(Address);
|
||||
if (pAddress == nullptr)
|
||||
{
|
||||
debug("Virtual address %#lx returns nullptr", Address);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
uintptr_t intAddress = (uintptr_t)Address;
|
||||
intAddress = ALIGN_DOWN(intAddress, PAGE_SIZE);
|
||||
for (uintptr_t va = intAddress; va < intAddress + Length; va += PAGE_SIZE)
|
||||
{
|
||||
if (vmm.Check((void *)va, PTFlag::US))
|
||||
continue;
|
||||
|
||||
debug("Unable to get address %#lx, page is not user accessible", va);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
return pAddress;
|
||||
}
|
||||
|
||||
int VirtualMemoryArea::__UserCheck(void *Address, size_t Length)
|
||||
{
|
||||
Virtual vmm(this->Table);
|
||||
SmartLock(MgrLock);
|
||||
|
||||
if (vmm.Check(Address, PTFlag::US))
|
||||
return 0;
|
||||
|
||||
debug("Address %#lx is not user accessible", Address);
|
||||
return -EFAULT;
|
||||
}
|
||||
|
||||
VirtualMemoryArea::VirtualMemoryArea(PageTable *_Table)
|
||||
: Table(_Table)
|
||||
{
|
||||
SmartLock(MgrLock);
|
||||
if (_Table == nullptr)
|
||||
{
|
||||
if (TaskManager)
|
||||
{
|
||||
Tasking::PCB *pcb = thisProcess;
|
||||
assert(pcb);
|
||||
this->Table = thisProcess->PageTable;
|
||||
}
|
||||
else
|
||||
this->Table = (PageTable *)CPU::PageTable();
|
||||
}
|
||||
}
|
||||
|
||||
VirtualMemoryArea::~VirtualMemoryArea()
|
||||
{
|
||||
/* No need to remap pages, the page table will be destroyed */
|
||||
|
||||
SmartLock(MgrLock);
|
||||
foreach (auto ap in AllocatedPagesList)
|
||||
KernelAllocator.FreePages(ap.Address, ap.PageCount);
|
||||
}
|
||||
}
|
44
Kernel/core/memory/vmm.cpp
Normal file
44
Kernel/core/memory/vmm.cpp
Normal file
@ -0,0 +1,44 @@
|
||||
/*
|
||||
This file is part of Fennix Kernel.
|
||||
|
||||
Fennix Kernel is free software: you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public License as
|
||||
published by the Free Software Foundation, either version 3 of
|
||||
the License, or (at your option) any later version.
|
||||
|
||||
Fennix Kernel is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <memory.hpp>
|
||||
|
||||
#include <convert.h>
|
||||
#include <debug.h>
|
||||
|
||||
#include "../../kernel.h"
|
||||
|
||||
namespace Memory
|
||||
{
|
||||
Virtual::Virtual(PageTable *Table)
|
||||
{
|
||||
if (Table)
|
||||
this->pTable = Table;
|
||||
else
|
||||
this->pTable = thisPageTable;
|
||||
|
||||
// debug("+ %#lx (PT: %#lx) %s", this, this->pTable,
|
||||
// KernelSymbolTable
|
||||
// ? KernelSymbolTable->GetSymbol((uintptr_t)__builtin_return_address(0))
|
||||
// : "Unknown");
|
||||
}
|
||||
|
||||
Virtual::~Virtual()
|
||||
{
|
||||
// debug("- %#lx", this);
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user