Modules/Storage/AHCI/AHCI.cpp
2023-03-08 05:48:17 +02:00

503 lines
14 KiB
C++

#include <netools.h>
#include <pci.h>
#include <io.h>
#include "../../../Kernel/DAPI.hpp"
#include "../../../Kernel/Fex.hpp"
extern "C" int DriverEntry(void *Data);
int CallbackHandler(KernelCallback *Data);
HEAD(FexFormatType_Driver, FexOSType_Fennix, DriverEntry);
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
__attribute__((section(".extended"))) FexExtended ExtendedHeader = {
.Driver = {
.Name = "AHCI",
.Type = FexDriverType_Storage,
.Callback = CallbackHandler,
.Bind = {
.Type = BIND_PCI,
.PCI = {
.VendorID = {0x8086, 0x15AD},
.DeviceID = {0x2922, 0x2829, 0x07E0},
.Class = 0x1,
.SubClass = 0x6,
.ProgIF = 0x1,
}}}};
KernelAPI *KAPI;
#define print(msg) KAPI->Util.DebugPrint((char *)(msg), KAPI->Info.DriverUID)
/* --------------------------------------------------------------------------------------------------------- */
#define ATA_DEV_BUSY 0x80
#define ATA_DEV_DRQ 0x08
#define ATA_CMD_WRITE_DMA_EX 0x35
#define ATA_CMD_READ_DMA_EX 0x25
#define HBA_PxIS_TFES (1 << 30)
#define HBA_PORT_DEV_PRESENT 0x3
#define HBA_PORT_IPM_ACTIVE 0x1
#define SATA_SIG_ATAPI 0xEB140101
#define SATA_SIG_ATA 0x00000101
#define SATA_SIG_SEMB 0xC33C0101
#define SATA_SIG_PM 0x96690101
#define HBA_PxCMD_CR 0x8000
#define HBA_PxCMD_FRE 0x0010
#define HBA_PxCMD_ST 0x0001
#define HBA_PxCMD_FR 0x4000
enum PortType
{
None = 0,
SATA = 1,
SEMB = 2,
PM = 3,
SATAPI = 4,
};
enum FIS_TYPE
{
FIS_TYPE_REG_H2D = 0x27,
FIS_TYPE_REG_D2H = 0x34,
FIS_TYPE_DMA_ACT = 0x39,
FIS_TYPE_DMA_SETUP = 0x41,
FIS_TYPE_DATA = 0x46,
FIS_TYPE_BIST = 0x58,
FIS_TYPE_PIO_SETUP = 0x5F,
FIS_TYPE_DEV_BITS = 0xA1,
};
struct HBAPort
{
uint32_t CommandListBase;
uint32_t CommandListBaseUpper;
uint32_t FISBaseAddress;
uint32_t FISBaseAddressUpper;
uint32_t InterruptStatus;
uint32_t InterruptEnable;
uint32_t CommandStatus;
uint32_t Reserved0;
uint32_t TaskFileData;
uint32_t Signature;
uint32_t SataStatus;
uint32_t SataControl;
uint32_t SataError;
uint32_t SataActive;
uint32_t CommandIssue;
uint32_t SataNotification;
uint32_t FISSwitchControl;
uint32_t Reserved1[11];
uint32_t Vendor[4];
};
struct HBAMemory
{
uint32_t HostCapability;
uint32_t GlobalHostControl;
uint32_t InterruptStatus;
uint32_t PortsImplemented;
uint32_t Version;
uint32_t CCCControl;
uint32_t CCCPorts;
uint32_t EnclosureManagementLocation;
uint32_t EnclosureManagementControl;
uint32_t HostCapabilitiesExtended;
uint32_t BIOSHandoffControlStatus;
uint8_t Reserved0[0x74];
uint8_t Vendor[0x60];
HBAPort Ports[1];
};
struct HBACommandHeader
{
uint8_t CommandFISLength : 5;
uint8_t ATAPI : 1;
uint8_t Write : 1;
uint8_t Preferable : 1;
uint8_t Reset : 1;
uint8_t BIST : 1;
uint8_t ClearBusy : 1;
uint8_t Reserved0 : 1;
uint8_t PortMultiplier : 4;
uint16_t PRDTLength;
uint32_t PRDBCount;
uint32_t CommandTableBaseAddress;
uint32_t CommandTableBaseAddressUpper;
uint32_t Reserved1[4];
};
struct HBAPRDTEntry
{
uint32_t DataBaseAddress;
uint32_t DataBaseAddressUpper;
uint32_t Reserved0;
uint32_t ByteCount : 22;
uint32_t Reserved1 : 9;
uint32_t InterruptOnCompletion : 1;
};
struct HBACommandTable
{
uint8_t CommandFIS[64];
uint8_t ATAPICommand[16];
uint8_t Reserved[48];
HBAPRDTEntry PRDTEntry[];
};
struct FIS_REG_H2D
{
uint8_t FISType;
uint8_t PortMultiplier : 4;
uint8_t Reserved0 : 3;
uint8_t CommandControl : 1;
uint8_t Command;
uint8_t FeatureLow;
uint8_t LBA0;
uint8_t LBA1;
uint8_t LBA2;
uint8_t DeviceRegister;
uint8_t LBA3;
uint8_t LBA4;
uint8_t LBA5;
uint8_t FeatureHigh;
uint8_t CountLow;
uint8_t CountHigh;
uint8_t ISOCommandCompletion;
uint8_t Control;
uint8_t Reserved1[4];
};
struct BARData
{
uint8_t Type;
uint64_t IOBase;
uint64_t MemoryBase;
};
typedef enum
{
_URC_NO_REASON = 0,
_URC_FOREIGN_EXCEPTION_CAUGHT = 1,
_URC_FATAL_PHASE2_ERROR = 2,
_URC_FATAL_PHASE1_ERROR = 3,
_URC_NORMAL_STOP = 4,
_URC_END_OF_STACK = 5,
_URC_HANDLER_FOUND = 6,
_URC_INSTALL_CONTEXT = 7,
_URC_CONTINUE_UNWIND = 8
} _Unwind_Reason_Code;
struct _Unwind_Context;
typedef unsigned _Unwind_Exception_Class __attribute__((__mode__(__DI__)));
typedef unsigned _Unwind_Word __attribute__((__mode__(__unwind_word__)));
typedef void (*_Unwind_Exception_Cleanup_Fn)(_Unwind_Reason_Code, struct _Unwind_Exception *);
typedef int _Unwind_Action;
struct _Unwind_Exception
{
_Unwind_Exception_Class exception_class;
_Unwind_Exception_Cleanup_Fn exception_cleanup;
#if !defined(__USING_SJLJ_EXCEPTIONS__) && defined(__SEH__)
_Unwind_Word private_[6];
#else
_Unwind_Word private_1;
_Unwind_Word private_2;
#endif
} __attribute__((__aligned__));
extern "C" _Unwind_Reason_Code __gxx_personality_v0(int, _Unwind_Action, _Unwind_Exception_Class, _Unwind_Exception *, _Unwind_Context *)
{
print("__gxx_personality_v0");
return _URC_NO_REASON;
}
extern "C" void _Unwind_Resume(_Unwind_Exception *) { print("_Unwind_Resume"); }
void *operator new(size_t Size) { return KAPI->Memory.RequestPage(Size / KAPI->Memory.PageSize + 1); }
void operator delete(void *Ptr) { KAPI->Memory.FreePage(Ptr, 1); } // Potential memory leak
void operator delete(void *Ptr, size_t Size) { KAPI->Memory.FreePage(Ptr, Size / KAPI->Memory.PageSize + 1); }
class Port
{
public:
PortType AHCIPortType;
HBAPort *HBAPortPtr;
uint8_t *Buffer;
uint8_t PortNumber;
Port(PortType Type, HBAPort *PortPtr, uint8_t PortNumber)
{
this->AHCIPortType = Type;
this->HBAPortPtr = PortPtr;
this->Buffer = static_cast<uint8_t *>(KAPI->Memory.RequestPage(1));
KAPI->Util.memset(this->Buffer, 0, KAPI->Memory.PageSize);
this->PortNumber = PortNumber;
}
~Port() { KAPI->Memory.FreePage(Buffer, 1); }
void StartCMD()
{
while (HBAPortPtr->CommandStatus & HBA_PxCMD_CR)
;
HBAPortPtr->CommandStatus |= HBA_PxCMD_FRE;
HBAPortPtr->CommandStatus |= HBA_PxCMD_ST;
}
void StopCMD()
{
HBAPortPtr->CommandStatus &= ~HBA_PxCMD_ST;
HBAPortPtr->CommandStatus &= ~HBA_PxCMD_FRE;
while (true)
{
if (HBAPortPtr->CommandStatus & HBA_PxCMD_FR)
continue;
if (HBAPortPtr->CommandStatus & HBA_PxCMD_CR)
continue;
break;
}
}
void Configure()
{
StopCMD();
void *NewBase = KAPI->Memory.RequestPage(1);
HBAPortPtr->CommandListBase = (uint32_t)(uint64_t)NewBase;
HBAPortPtr->CommandListBaseUpper = (uint32_t)((uint64_t)NewBase >> 32);
KAPI->Util.memset(reinterpret_cast<void *>(HBAPortPtr->CommandListBase), 0, 1024);
void *FISBase = KAPI->Memory.RequestPage(1);
HBAPortPtr->FISBaseAddress = (uint32_t)(uint64_t)FISBase;
HBAPortPtr->FISBaseAddressUpper = (uint32_t)((uint64_t)FISBase >> 32);
KAPI->Util.memset(FISBase, 0, 256);
HBACommandHeader *CommandHeader = (HBACommandHeader *)((uint64_t)HBAPortPtr->CommandListBase + ((uint64_t)HBAPortPtr->CommandListBaseUpper << 32));
for (int i = 0; i < 32; i++)
{
CommandHeader[i].PRDTLength = 8;
void *CommandTableAddress = KAPI->Memory.RequestPage(1);
uint64_t Address = (uint64_t)CommandTableAddress + (i << 8);
CommandHeader[i].CommandTableBaseAddress = (uint32_t)(uint64_t)Address;
CommandHeader[i].CommandTableBaseAddressUpper = (uint32_t)((uint64_t)Address >> 32);
KAPI->Util.memset(CommandTableAddress, 0, 256);
}
StartCMD();
}
bool ReadWrite(uint64_t Sector, uint32_t SectorCount, uint8_t *Buffer, bool Write)
{
if (this->PortNumber == PortType::SATAPI && Write)
{
// err("SATAPI port does not support write.");
print("SATAPI port does not support write.");
return false;
}
uint32_t SectorL = (uint32_t)Sector;
uint32_t SectorH = (uint32_t)(Sector >> 32);
HBAPortPtr->InterruptStatus = (uint32_t)-1; // Clear pending interrupt bits
HBACommandHeader *CommandHeader = reinterpret_cast<HBACommandHeader *>(HBAPortPtr->CommandListBase);
CommandHeader->CommandFISLength = sizeof(FIS_REG_H2D) / sizeof(uint32_t);
if (Write)
CommandHeader->Write = 1;
else
CommandHeader->Write = 0;
CommandHeader->PRDTLength = 1;
HBACommandTable *CommandTable = reinterpret_cast<HBACommandTable *>(CommandHeader->CommandTableBaseAddress);
KAPI->Util.memset(CommandTable, 0, sizeof(HBACommandTable) + (CommandHeader->PRDTLength - 1) * sizeof(HBAPRDTEntry));
CommandTable->PRDTEntry[0].DataBaseAddress = (uint32_t)(uint64_t)Buffer;
CommandTable->PRDTEntry[0].DataBaseAddressUpper = (uint32_t)((uint64_t)Buffer >> 32);
CommandTable->PRDTEntry[0].ByteCount = (SectorCount << 9) - 1; // 512 bytes per sector
CommandTable->PRDTEntry[0].InterruptOnCompletion = 1;
FIS_REG_H2D *CommandFIS = (FIS_REG_H2D *)(&CommandTable->CommandFIS);
CommandFIS->FISType = FIS_TYPE_REG_H2D;
CommandFIS->CommandControl = 1;
if (Write)
CommandFIS->Command = ATA_CMD_WRITE_DMA_EX;
else
CommandFIS->Command = ATA_CMD_READ_DMA_EX;
CommandFIS->LBA0 = (uint8_t)SectorL;
CommandFIS->LBA1 = (uint8_t)(SectorL >> 8);
CommandFIS->LBA2 = (uint8_t)(SectorL >> 16);
CommandFIS->LBA3 = (uint8_t)SectorH;
CommandFIS->LBA4 = (uint8_t)(SectorH >> 8);
CommandFIS->LBA5 = (uint8_t)(SectorH >> 16);
CommandFIS->DeviceRegister = 1 << 6; // LBA mode
CommandFIS->CountLow = SectorCount & 0xFF;
CommandFIS->CountHigh = (SectorCount >> 8) & 0xFF;
uint64_t Spin = 0;
while ((HBAPortPtr->TaskFileData & (ATA_DEV_BUSY | ATA_DEV_DRQ)) && Spin < 1000000)
Spin++;
if (Spin == 1000000)
{
// err("Port not responding.");
print("Port not responding.");
return false;
}
HBAPortPtr->CommandIssue = 1;
Spin = 0;
int TryCount = 0;
while (true)
{
if (Spin > 100000000)
{
// err("Port %d not responding. (%d)", this->PortNumber, TryCount);
print("Port not responding.");
Spin = 0;
TryCount++;
if (TryCount > 10)
return false;
}
if ((HBAPortPtr->CommandIssue == 0))
break;
Spin++;
if (HBAPortPtr->InterruptStatus & HBA_PxIS_TFES)
{
// err("Error reading/writing (%d).", Write);
print("Error reading/writing.");
return false;
}
}
return true;
}
};
HBAMemory *ABAR;
Port *Ports[32];
uint8_t PortCount = 0;
PCIDeviceHeader *PCIBaseAddress;
const char *PortTypeName[] = {"None",
"SATA",
"SEMB",
"PM",
"SATAPI"};
PortType CheckPortType(HBAPort *Port)
{
uint32_t SataStatus = Port->SataStatus;
uint8_t InterfacePowerManagement = (SataStatus >> 8) & 0b111;
uint8_t DeviceDetection = SataStatus & 0b111;
if (DeviceDetection != HBA_PORT_DEV_PRESENT)
return PortType::None;
if (InterfacePowerManagement != HBA_PORT_IPM_ACTIVE)
return PortType::None;
switch (Port->Signature)
{
case SATA_SIG_ATAPI:
return PortType::SATAPI;
case SATA_SIG_ATA:
return PortType::SATA;
case SATA_SIG_PM:
return PortType::PM;
case SATA_SIG_SEMB:
return PortType::SEMB;
default:
return PortType::None;
}
}
int DriverEntry(void *Data)
{
if (!Data)
return INVALID_KERNEL_API;
KAPI = (KernelAPI *)Data;
if (KAPI->Version.Major < 0 || KAPI->Version.Minor < 0 || KAPI->Version.Patch < 0)
return KERNEL_API_VERSION_NOT_SUPPORTED;
return OK;
}
int CallbackHandler(KernelCallback *Data)
{
switch (Data->Reason)
{
case AcknowledgeReason:
{
print("Kernel acknowledged the driver.");
break;
}
case ConfigurationReason:
{
print("Driver received configuration data.");
PCIBaseAddress = reinterpret_cast<PCIDeviceHeader *>(Data->RawPtr);
ABAR = reinterpret_cast<HBAMemory *>(((PCIHeader0 *)PCIBaseAddress)->BAR5);
KAPI->Memory.Map((void *)ABAR, (void *)ABAR, (1 << 1));
uint32_t PortsImplemented = ABAR->PortsImplemented;
for (int i = 0; i < 32; i++)
{
if (PortsImplemented & (1 << i))
{
PortType portType = CheckPortType(&ABAR->Ports[i]);
if (portType == PortType::SATA || portType == PortType::SATAPI)
{
// trace("%s drive found at port %d", PortTypeName[portType], i);
print("SATA drive found.");
Ports[PortCount] = new Port(portType, &ABAR->Ports[i], PortCount);
PortCount++;
}
else
{
if (portType != PortType::None)
print("Unsupported port type found.");
// warn("Unsupported drive type %s found at port %d", PortTypeName[portType], i);
}
}
}
for (int i = 0; i < PortCount; i++)
Ports[i]->Configure();
break;
}
case FetchReason:
{
Data->DiskCallback.Fetch.Ports = PortCount;
Data->DiskCallback.Fetch.BytesPerSector = 512;
break;
}
case StopReason:
{
// TODO: Stop the driver.
print("Driver stopped.");
break;
}
case SendReason:
case ReceiveReason:
{
Ports[Data->DiskCallback.RW.Port]->ReadWrite(Data->DiskCallback.RW.Sector,
Data->DiskCallback.RW.SectorCount,
Data->DiskCallback.RW.Buffer,
Data->DiskCallback.RW.Write);
break;
}
default:
{
print("Unknown reason.");
break;
}
}
return OK;
}