Working on memory mapping

This commit is contained in:
Alex
2022-10-14 01:48:08 +03:00
parent 6cf44540fb
commit 5fbe75636b
17 changed files with 3970 additions and 2 deletions

View File

@ -5,6 +5,9 @@
} }
], ],
"settings": { "settings": {
"debug.allowBreakpointsEverywhere": true "debug.allowBreakpointsEverywhere": true,
"files.associations": {
"efi.h": "c"
}
} }
} }

View File

@ -6,7 +6,8 @@ LD = ld
OBJCOPY = objcopy OBJCOPY = objcopy
C_SOURCES = $(shell find ./src -type f -name '*.c') C_SOURCES = $(shell find ./src -type f -name '*.c')
OBJ = $(C_SOURCES:.c=.o) CPP_SOURCES = $(shell find ./src -type f -name '*.cpp')
OBJ = $(C_SOURCES:.c=.o) $(CPP_SOURCES:.cpp=.o)
GNUEFI_RELEASE_VERSION=3.0.14 GNUEFI_RELEASE_VERSION=3.0.14
@ -39,6 +40,9 @@ BOOTX64: $(OBJ)
$(info Compiling $<) $(info Compiling $<)
$(CC) -Ignu-efi/inc -Ignu-efi/inc/x86_64 -Ignu-efi/inc/protocol -fpic -ffreestanding -fno-stack-protector -fno-stack-check -fshort-wchar -mno-red-zone -maccumulate-outgoing-args -c $< -o $@ $(CC) -Ignu-efi/inc -Ignu-efi/inc/x86_64 -Ignu-efi/inc/protocol -fpic -ffreestanding -fno-stack-protector -fno-stack-check -fshort-wchar -mno-red-zone -maccumulate-outgoing-args -c $< -o $@
%.o: %.cpp
$(info Compiling $<)
$(CC) -Ignu-efi/inc -Ignu-efi/inc/x86_64 -Ignu-efi/inc/protocol -fpermissive -fpic -ffreestanding -fno-stack-protector -fno-stack-check -fshort-wchar -mno-red-zone -maccumulate-outgoing-args -c $< -o $@
clean: clean:
rm -f $(NAME) $(OBJ) BOOTX64.EFI rm -f $(NAME) $(OBJ) BOOTX64.EFI

28
UEFI/src/Bitmap.cpp Normal file
View File

@ -0,0 +1,28 @@
#include "bitmap.hpp"
bool Bitmap::operator[](uint64_t index) { return Get(index); }
bool Bitmap::Get(uint64_t index)
{
if (index > Size * 8)
return false;
uint64_t byteIndex = index / 8;
uint8_t bitIndex = index % 8;
uint8_t bitIndexer = 0b10000000 >> bitIndex;
if ((Buffer[byteIndex] & bitIndexer) > 0)
return true;
return false;
}
bool Bitmap::Set(uint64_t index, bool value)
{
if (index > Size * 8)
return false;
uint64_t byteIndex = index / 8;
uint8_t bitIndex = index % 8;
uint8_t bitIndexer = 0b10000000 >> bitIndex;
Buffer[byteIndex] &= ~bitIndexer;
if (value)
Buffer[byteIndex] |= bitIndexer;
return true;
}

View File

@ -1,13 +1,79 @@
#include <efi.h> #include <efi.h>
#include <efilib.h> #include <efilib.h>
#include "Memory/memory.hpp"
#include "FileLoader.h" #include "FileLoader.h"
#include "printf.h"
void port_byte_out(short unsigned int port, unsigned char value)
{
__asm__ volatile("outb %0, %1"
:
: "a"(value), "Nd"(port));
}
unsigned char port_byte_in(short unsigned int port)
{
unsigned char ReturnValue;
__asm__ volatile("inb %1, %0"
: "=a"(ReturnValue)
: "Nd"(port));
return ReturnValue;
}
int strlen(const char s[])
{
int i = 0;
while (s[i] != '\0')
++i;
return i;
}
int init_serial()
{
// TODO: fix crash on virtualbox (or virtualbox is faulty???????????)
port_byte_out(0x3F8 + 1, 0x00);
port_byte_out(0x3F8 + 3, 0x80);
port_byte_out(0x3F8 + 0, 0x03);
port_byte_out(0x3F8 + 1, 0x00);
port_byte_out(0x3F8 + 3, 0x03);
port_byte_out(0x3F8 + 2, 0xC7);
port_byte_out(0x3F8 + 4, 0x0B);
port_byte_out(0x3F8 + 4, 0x1E);
port_byte_out(0x3F8 + 0, 0xAE);
if (port_byte_in(0x3F8 + 0) != 0xAE)
{
return -1; // serial port is faulty
}
port_byte_out(0x3F8 + 4, 0x0F);
return 0;
}
void printf(const char *format, ...)
{
va_list args;
va_start(args, format);
printf_(format, args);
va_end(args);
}
extern void putchar(char c)
{
while ((port_byte_in(0x3F8 + 5) & 0x20) == 0)
;
port_byte_out(0x3F8, c);
}
EFI_STATUS EFIAPI efi_main(EFI_HANDLE ImageHandle, EFI_SYSTEM_TABLE *SystemTable) EFI_STATUS EFIAPI efi_main(EFI_HANDLE ImageHandle, EFI_SYSTEM_TABLE *SystemTable)
{ {
InitializeLib(ImageHandle, SystemTable); InitializeLib(ImageHandle, SystemTable);
SystemTable->BootServices->SetWatchdogTimer(0, 0, 0, NULL); SystemTable->BootServices->SetWatchdogTimer(0, 0, 0, NULL);
Print(L"Lynx Bootloader © EnderIce2 2022\n"); Print(L"Lynx Bootloader © EnderIce2 2022\n");
Print(L"UEFI not implemented\n");
while (1)
asm("hlt");
InitializeMemoryManagement(ImageHandle, SystemTable);
EFI_FILE *Kernel = LoadFile(NULL, L"kernel.fsys", ImageHandle, SystemTable); EFI_FILE *Kernel = LoadFile(NULL, L"kernel.fsys", ImageHandle, SystemTable);
if (Kernel == NULL) if (Kernel == NULL)

146
UEFI/src/Memory/Memory.cpp Normal file
View File

@ -0,0 +1,146 @@
#include "memory.hpp"
#include "liballoc_1_1.h"
extern "C" void printf(const char *format, ...);
extern uint64_t ImageBase, _text, _etext, _data, _edata, _data_size;
using namespace Memory;
Physical KernelAllocator;
PageTable *KernelPageTable = nullptr;
static void *memset(void *s, int c, size_t n)
{
unsigned int i;
for (i = 0; i < n; i++)
((char *)s)[i] = c;
return s;
}
extern "C" void InitializeMemoryManagement(EFI_HANDLE ImageHandle, EFI_SYSTEM_TABLE *SystemTable)
{
printf("Initializing Physical Memory Manager\n");
KernelAllocator = Physical();
KernelAllocator.Init(ImageHandle, SystemTable);
printf("Memory Info: %dMB / %dMB (%dMB reserved)",
(KernelAllocator.GetUsedMemory() / 1024 / 1024),
(KernelAllocator.GetTotalMemory() / 1024 / 1024),
(KernelAllocator.GetReservedMemory() / 1024 / 1024));
KernelPageTable = (PageTable *)KernelAllocator.RequestPage();
memset(KernelPageTable, 0, PAGE_SIZE);
Virtual kva = Virtual(KernelPageTable);
printf("Mapping...\n");
uint64_t BootloaderStart = (uint64_t)&ImageBase;
uint64_t BootloaderTextEnd = (uint64_t)&_text;
uint64_t BootloaderDataEnd = (uint64_t)&_data;
uint64_t BootloaderEnd = (uint64_t)&ImageBase + (uint64_t)&_etext + (uint64_t)&_edata;
uint64_t VirtualOffsetNormalVMA = NORMAL_VMA_OFFSET;
uint64_t BaseKernelMapAddress = (uint64_t)0; // TODO: Info->Kernel.PhysicalBase;
EFI_MEMORY_DESCRIPTOR *memDesc = nullptr;
UINTN MapSize, MapKey;
UINTN DescriptorSize;
UINT32 DescriptorVersion;
{
SystemTable->BootServices->GetMemoryMap(&MapSize, memDesc, &MapKey, &DescriptorSize, &DescriptorVersion);
SystemTable->BootServices->AllocatePool(EfiLoaderData, MapSize, (void **)&memDesc);
SystemTable->BootServices->GetMemoryMap(&MapSize, memDesc, &MapKey, &DescriptorSize, &DescriptorVersion);
}
for (uint64_t t = 0; t < MapSize / DescriptorSize; t += PAGE_SIZE)
{
kva.Map((void *)t, (void *)t, PTFlag::RW);
kva.Map((void *)VirtualOffsetNormalVMA, (void *)t, PTFlag::RW);
VirtualOffsetNormalVMA += PAGE_SIZE;
}
EFI_GRAPHICS_OUTPUT_MODE_INFORMATION *info;
UINTN SizeOfInfo, numModes = 0; //, MaximumSupportedMode = 0;
EFI_STATUS status;
EFI_GRAPHICS_OUTPUT_PROTOCOL *gop;
EFI_GUID gopGuid = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
status = uefi_call_wrapper(BS->LocateProtocol, 3, &gopGuid, NULL, (void **)&gop);
if (EFI_ERROR(status))
{
printf("Unable to locate the Graphics Output Protocol.\n");
}
status = uefi_call_wrapper(gop->QueryMode, 4, gop, gop->Mode == NULL ? 0 : gop->Mode->Mode, &SizeOfInfo, &info);
if (status == EFI_NOT_STARTED)
{
printf("The EFI not started!\n");
status = uefi_call_wrapper(gop->SetMode, 2, gop, 0);
}
/* Mapping Framebuffer address */
int itrfb = 0;
while (1)
{
for (uint64_t fb_base = (uint64_t)gop->Mode->FrameBufferBase;
fb_base < ((uint64_t)gop->Mode->FrameBufferBase + ((gop->Mode->Info->PixelsPerScanLine) + PAGE_SIZE));
fb_base += PAGE_SIZE)
kva.Map((void *)fb_base, (void *)fb_base, PTFlag::RW | PTFlag::US);
itrfb++;
}
/* Kernel mapping */
for (uint64_t k = BootloaderStart; k < BootloaderTextEnd; k += PAGE_SIZE)
{
kva.Map((void *)k, (void *)BaseKernelMapAddress, PTFlag::RW);
KernelAllocator.LockPage((void *)BaseKernelMapAddress);
BaseKernelMapAddress += PAGE_SIZE;
}
for (uint64_t k = BootloaderTextEnd; k < BootloaderDataEnd; k += PAGE_SIZE)
{
kva.Map((void *)k, (void *)BaseKernelMapAddress, PTFlag::RW);
KernelAllocator.LockPage((void *)BaseKernelMapAddress);
BaseKernelMapAddress += PAGE_SIZE;
}
for (uint64_t k = BootloaderDataEnd; k < BootloaderEnd; k += PAGE_SIZE)
{
kva.Map((void *)k, (void *)BaseKernelMapAddress, PTFlag::RW);
KernelAllocator.LockPage((void *)BaseKernelMapAddress);
BaseKernelMapAddress += PAGE_SIZE;
}
printf("\nStart: %#llx - Text End: %#llx - End: %#llx\nStart Physical: %#llx - End Physical: %#llx",
BootloaderStart, BootloaderTextEnd, BootloaderEnd, /* Info->Kernel.PhysicalBase */ 0, BaseKernelMapAddress - PAGE_SIZE);
/* BootloaderStart BootloaderTextEnd KernelRoDataEnd BootloaderEnd
Kernel Start & Text Start ------ Text End ------ Kernel Rodata End ------ Kernel Data End & Kernel End
*/
printf("Applying new page table from address %p", KernelPageTable);
__asm__ volatile("mov %0, %%cr3" ::"r"(KernelPageTable));
}
extern "C" void *HeapMalloc(uint64_t Size) { return PREFIX(malloc)(Size); }
extern "C" void *HeapCalloc(uint64_t n, uint64_t Size) { return PREFIX(calloc)(n, Size); }
extern "C" void *HeapRealloc(void *Address, uint64_t Size) { return PREFIX(realloc)(Address, Size); }
extern "C" void HeapFree(void *Address)
{
PREFIX(free)
(Address);
}
void *operator new(uint64_t Size) { return HeapMalloc(Size); }
void *operator new[](uint64_t Size) { return HeapMalloc(Size); }
void operator delete(void *Pointer) { HeapFree(Pointer); }
void operator delete[](void *Pointer) { HeapFree(Pointer); }
void operator delete(void *Pointer, long unsigned int Size) { HeapFree(Pointer); }
void operator delete[](void *Pointer, long unsigned int Size) { HeapFree(Pointer); }
EXTERNC int liballoc_lock() {}
EXTERNC int liballoc_unlock() {}
EXTERNC void *liballoc_alloc(size_t Pages) { return KernelAllocator.RequestPages(Pages); }
EXTERNC int liballoc_free(void *Address, size_t Pages)
{
KernelAllocator.FreePages(Address, Pages);
return 0;
}

View File

@ -0,0 +1,284 @@
#include "memory.hpp"
extern "C" void printf(const char *format, ...);
namespace Memory
{
uint64_t Physical::GetTotalMemory()
{
return this->TotalMemory;
}
uint64_t Physical::GetFreeMemory()
{
return this->FreeMemory;
}
uint64_t Physical::GetReservedMemory()
{
return this->ReservedMemory;
}
uint64_t Physical::GetUsedMemory()
{
return this->UsedMemory;
}
bool Physical::SwapPage(void *Address)
{
printf("%p", Address);
return false;
}
bool Physical::SwapPages(void *Address, uint64_t PageCount)
{
for (uint64_t i = 0; i < PageCount; i++)
if (!this->SwapPage((void *)((uint64_t)Address + (i * PAGE_SIZE))))
return false;
return false;
}
bool Physical::UnswapPage(void *Address)
{
printf("%p", Address);
return false;
}
bool Physical::UnswapPages(void *Address, uint64_t PageCount)
{
for (uint64_t i = 0; i < PageCount; i++)
if (!this->UnswapPage((void *)((uint64_t)Address + (i * PAGE_SIZE))))
return false;
return false;
}
void *Physical::RequestPage()
{
for (; PageBitmapIndex < PageBitmap.Size * 8; PageBitmapIndex++)
{
if (PageBitmap[PageBitmapIndex] == true)
continue;
this->LockPage((void *)(PageBitmapIndex * PAGE_SIZE));
return (void *)(PageBitmapIndex * PAGE_SIZE);
}
if (this->SwapPage((void *)(PageBitmapIndex * PAGE_SIZE)))
{
this->LockPage((void *)(PageBitmapIndex * PAGE_SIZE));
return (void *)(PageBitmapIndex * PAGE_SIZE);
}
printf("Out of memory! (Free: %ldMB; Used: %ldMB; Reserved: %ldMB)", (FreeMemory / 1024 / 1024), (UsedMemory / 1024 / 1024), (ReservedMemory / 1024 / 1024));
while (1)
__asm__("hlt");
return nullptr;
}
void *Physical::RequestPages(uint64_t Count)
{
for (; PageBitmapIndex < PageBitmap.Size * 8; PageBitmapIndex++)
{
if (PageBitmap[PageBitmapIndex] == true)
continue;
for (uint64_t Index = PageBitmapIndex; Index < PageBitmap.Size * 8; Index++)
{
if (PageBitmap[Index] == true)
continue;
for (uint64_t i = 0; i < Count; i++)
if (PageBitmap[Index + i] == true)
goto NextPage;
this->LockPages((void *)(Index * PAGE_SIZE), Count);
return (void *)(Index * PAGE_SIZE);
NextPage:
Index += Count;
continue;
}
}
if (this->SwapPages((void *)(PageBitmapIndex * PAGE_SIZE), Count))
{
this->LockPages((void *)(PageBitmapIndex * PAGE_SIZE), Count);
return (void *)(PageBitmapIndex * PAGE_SIZE);
}
printf("Out of memory! (Free: %ldMB; Used: %ldMB; Reserved: %ldMB)", (FreeMemory / 1024 / 1024), (UsedMemory / 1024 / 1024), (ReservedMemory / 1024 / 1024));
while (1)
__asm__("hlt");
return nullptr;
}
void Physical::FreePage(void *Address)
{
if (Address == nullptr)
{
printf("Null pointer passed to FreePage.");
return;
}
uint64_t Index = (uint64_t)Address / PAGE_SIZE;
if (PageBitmap[Index] == false)
return;
if (PageBitmap.Set(Index, false))
{
FreeMemory += PAGE_SIZE;
UsedMemory -= PAGE_SIZE;
if (PageBitmapIndex > Index)
PageBitmapIndex = Index;
}
}
void Physical::FreePages(void *Address, uint64_t Count)
{
if (Address == nullptr || Count == 0)
{
printf("%s%s passed to FreePages.", Address == nullptr ? "Null pointer" : "", Count == 0 ? "Zero count" : "");
return;
}
for (uint64_t t = 0; t < Count; t++)
this->FreePage((void *)((uint64_t)Address + (t * PAGE_SIZE)));
}
void Physical::LockPage(void *Address)
{
if (Address == nullptr)
printf("Trying to lock null address.");
uint64_t Index = (uint64_t)Address / PAGE_SIZE;
if (PageBitmap[Index] == true)
return;
if (PageBitmap.Set(Index, true))
{
FreeMemory -= PAGE_SIZE;
UsedMemory += PAGE_SIZE;
}
}
void Physical::LockPages(void *Address, uint64_t PageCount)
{
if (Address == nullptr || PageCount == 0)
printf("Trying to lock %s%s.", Address ? "null address" : "", PageCount ? "0 pages" : "");
for (uint64_t i = 0; i < PageCount; i++)
this->LockPage((void *)((uint64_t)Address + (i * PAGE_SIZE)));
}
void Physical::ReservePage(void *Address)
{
if (Address == nullptr)
printf("Trying to reserve null address.");
uint64_t Index = (uint64_t)Address / PAGE_SIZE;
if (PageBitmap[Index] == true)
return;
if (PageBitmap.Set(Index, true))
{
FreeMemory -= PAGE_SIZE;
ReservedMemory += PAGE_SIZE;
}
}
void Physical::ReservePages(void *Address, uint64_t PageCount)
{
if (Address == nullptr || PageCount == 0)
printf("Trying to reserve %s%s.", Address ? "null address" : "", PageCount ? "0 pages" : "");
for (uint64_t t = 0; t < PageCount; t++)
this->ReservePage((void *)((uint64_t)Address + (t * PAGE_SIZE)));
}
void Physical::UnreservePage(void *Address)
{
if (Address == nullptr)
printf("Trying to unreserve null address.");
uint64_t Index = (uint64_t)Address / PAGE_SIZE;
if (PageBitmap[Index] == false)
return;
if (PageBitmap.Set(Index, false))
{
FreeMemory += PAGE_SIZE;
ReservedMemory -= PAGE_SIZE;
if (PageBitmapIndex > Index)
PageBitmapIndex = Index;
}
}
void Physical::UnreservePages(void *Address, uint64_t PageCount)
{
if (Address == nullptr || PageCount == 0)
printf("Trying to unreserve %s%s.", Address ? "null address" : "", PageCount ? "0 pages" : "");
for (uint64_t t = 0; t < PageCount; t++)
this->UnreservePage((void *)((uint64_t)Address + (t * PAGE_SIZE)));
}
void Physical::Init(EFI_HANDLE ImageHandle, EFI_SYSTEM_TABLE *SystemTable)
{
printf("Initializing physical memory manager...\n");
EFI_MEMORY_DESCRIPTOR *memDesc = nullptr;
UINTN MapSize, MapKey;
UINTN DescriptorSize;
UINT32 DescriptorVersion;
{
SystemTable->BootServices->GetMemoryMap(&MapSize, memDesc, &MapKey, &DescriptorSize, &DescriptorVersion);
SystemTable->BootServices->AllocatePool(EfiLoaderData, MapSize, (void **)&memDesc);
SystemTable->BootServices->GetMemoryMap(&MapSize, memDesc, &MapKey, &DescriptorSize, &DescriptorVersion);
}
uint64_t MemoryMapSize = MapSize / DescriptorSize;
static uint64_t MemorySizeBytes = 0;
void *LargestFreeMemorySegment = nullptr;
uint64_t LargestFreeMemorySegmentSize = 0;
uint64_t MemorySize = MapSize;
TotalMemory = MemorySize;
FreeMemory = MemorySize;
for (int i = 0; i < MemoryMapSize; i++)
{
EFI_MEMORY_DESCRIPTOR *Descriptor = (EFI_MEMORY_DESCRIPTOR *)((uint64_t)memDesc + (i * DescriptorSize));
MemorySizeBytes += Descriptor->NumberOfPages * 4096;
switch (Descriptor->Type)
{
case EfiConventionalMemory:
if ((Descriptor->NumberOfPages * 4096) > LargestFreeMemorySegmentSize)
{
LargestFreeMemorySegment = (void *)Descriptor->PhysicalStart;
LargestFreeMemorySegmentSize = Descriptor->NumberOfPages * 4096;
printf("Largest free memory segment: %p (%dKB)",
(void *)Descriptor->PhysicalStart,
((Descriptor->NumberOfPages * 4096) / 1024));
}
break;
}
}
uint64_t BitmapSize = ALIGN_UP((MemorySize / 0x1000) / 8, 0x1000);
printf("Initializing Bitmap (%p %dKB)", LargestFreeMemorySegment, (BitmapSize / 1024));
PageBitmap.Size = BitmapSize;
PageBitmap.Buffer = (uint8_t *)LargestFreeMemorySegment;
for (uint64_t i = 0; i < BitmapSize; i++)
*(uint8_t *)(PageBitmap.Buffer + i) = 0;
this->ReservePages(0, MemorySize / PAGE_SIZE + 1);
for (uint64_t i = 0; i < MemoryMapSize; i++)
{
EFI_MEMORY_DESCRIPTOR *Descriptor = (EFI_MEMORY_DESCRIPTOR *)((uint64_t)memDesc + (i * DescriptorSize));
if (Descriptor->Type == EfiConventionalMemory)
this->UnreservePages((void *)Descriptor->PhysicalStart, (Descriptor->NumberOfPages * 4096) / PAGE_SIZE + 1);
}
this->ReservePages(0, 0x100); // Reserve between 0 and 0x100000
this->LockPages(PageBitmap.Buffer, PageBitmap.Size / PAGE_SIZE + 1);
}
Physical::Physical() {}
Physical::~Physical() {}
}

View File

@ -0,0 +1,119 @@
#include "memory.hpp"
extern "C" void printf(const char* format, ...);
void *memset(void *dest, int c, size_t n)
{
unsigned int i;
for (i = 0; i < n; i++)
((char *)dest)[i] = c;
return dest;
}
namespace Memory
{
void Virtual::Map(void *VirtualAddress, void *PhysicalAddress, uint64_t Flags)
{
if (!this->Table)
{
printf("No page table");
return;
}
PageMapIndexer Index = PageMapIndexer((uint64_t)VirtualAddress);
PageDirectoryEntry PDE = this->Table->Entries[Index.PDP_i];
PageTable *PDP;
if (!PDE.GetFlag(PTFlag::P))
{
PDP = (PageTable *)KernelAllocator.RequestPage();
memset(PDP, 0, PAGE_SIZE);
PDE.SetAddress((uint64_t)PDP >> 12);
PDE.SetFlag(PTFlag::P, true);
PDE.AddFlag(Flags);
this->Table->Entries[Index.PDP_i] = PDE;
}
else
PDP = (PageTable *)((uint64_t)PDE.GetAddress() << 12);
PDE = PDP->Entries[Index.PD_i];
PageTable *PD;
if (!PDE.GetFlag(PTFlag::P))
{
PD = (PageTable *)KernelAllocator.RequestPage();
memset(PD, 0, PAGE_SIZE);
PDE.SetAddress((uint64_t)PD >> 12);
PDE.SetFlag(PTFlag::P, true);
PDE.AddFlag(Flags);
PDP->Entries[Index.PD_i] = PDE;
}
else
PD = (PageTable *)((uint64_t)PDE.GetAddress() << 12);
PDE = PD->Entries[Index.PT_i];
PageTable *PT;
if (!PDE.GetFlag(PTFlag::P))
{
PT = (PageTable *)KernelAllocator.RequestPage();
memset(PT, 0, PAGE_SIZE);
PDE.SetAddress((uint64_t)PT >> 12);
PDE.SetFlag(PTFlag::P, true);
PDE.AddFlag(Flags);
PD->Entries[Index.PT_i] = PDE;
}
else
PT = (PageTable *)((uint64_t)PDE.GetAddress() << 12);
PDE = PT->Entries[Index.P_i];
PDE.SetAddress((uint64_t)PhysicalAddress >> 12);
PDE.SetFlag(PTFlag::P, true);
PDE.AddFlag(Flags);
PT->Entries[Index.P_i] = PDE;
__asm__ volatile("invlpg (%0)"
:
: "r"(VirtualAddress)
: "memory");
}
void Virtual::Map(void *VirtualAddress, void *PhysicalAddress, uint64_t PageCount, uint64_t Flags)
{
for (uint64_t i = 0; i < PageCount; i++)
this->Map((void *)((uint64_t)VirtualAddress + (i * PAGE_SIZE)), (void *)((uint64_t)PhysicalAddress + (i * PAGE_SIZE)), Flags);
}
void Virtual::Unmap(void *VirtualAddress)
{
if (!this->Table)
{
printf("No page table");
return;
}
PageMapIndexer Index = PageMapIndexer((uint64_t)VirtualAddress);
PageDirectoryEntry PDE = this->Table->Entries[Index.PDP_i];
PDE.ClearFlags();
__asm__ volatile("invlpg (%0)"
:
: "r"(VirtualAddress)
: "memory");
}
void Virtual::Unmap(void *VirtualAddress, uint64_t PageCount)
{
for (uint64_t i = 0; i < PageCount; i++)
this->Unmap((void *)((uint64_t)VirtualAddress + (i * PAGE_SIZE)));
}
Virtual::Virtual(PageTable *Table)
{
uint64_t cr3;
__asm__ volatile("mov %%cr3, %0"
: "=r"(cr3));
if (Table)
this->Table = Table;
else
this->Table = (PageTable *)cr3;
}
Virtual::~Virtual() {}
}

View File

@ -0,0 +1,787 @@
#include "liballoc_1_1.h"
/** Durand's Amazing Super Duper Memory functions. */
#define VERSION "1.1"
#define ALIGNMENT 16ul // 4ul ///< This is the byte alignment that memory must be allocated on. IMPORTANT for GTK and other stuff.
#define ALIGN_TYPE char /// unsigned char[16] /// unsigned short
#define ALIGN_INFO sizeof(ALIGN_TYPE) * 16 ///< Alignment information is stored right before the pointer. This is the number of bytes of information stored there.
#define USE_CASE1
#define USE_CASE2
#define USE_CASE3
#define USE_CASE4
#define USE_CASE5
/** This macro will conveniently align our pointer upwards */
#define ALIGN(ptr) \
if (ALIGNMENT > 1) \
{ \
uintptr_t diff; \
ptr = (void *)((uintptr_t)ptr + ALIGN_INFO); \
diff = (uintptr_t)ptr & (ALIGNMENT - 1); \
if (diff != 0) \
{ \
diff = ALIGNMENT - diff; \
ptr = (void *)((uintptr_t)ptr + diff); \
} \
*((ALIGN_TYPE *)((uintptr_t)ptr - ALIGN_INFO)) = \
diff + ALIGN_INFO; \
}
#define UNALIGN(ptr) \
if (ALIGNMENT > 1) \
{ \
uintptr_t diff = *((ALIGN_TYPE *)((uintptr_t)ptr - ALIGN_INFO)); \
if (diff < (ALIGNMENT + ALIGN_INFO)) \
{ \
ptr = (void *)((uintptr_t)ptr - diff); \
} \
}
#define LIBALLOC_MAGIC 0xc001c0de
#define LIBALLOC_DEAD 0xdeaddead
// #define LIBALLOCDEBUG 1
#define LIBALLOCINFO 1
#if defined LIBALLOCDEBUG || defined LIBALLOCINFO
// #define FLUSH() fflush(stdout)
#define FLUSH()
#define atexit(x)
#define printf(m, ...)
#endif
/** A structure found at the top of all system allocated
* memory blocks. It details the usage of the memory block.
*/
struct liballoc_major
{
struct liballoc_major *prev; ///< Linked list information.
struct liballoc_major *next; ///< Linked list information.
unsigned int pages; ///< The number of pages in the block.
unsigned int size; ///< The number of pages in the block.
unsigned int usage; ///< The number of bytes used in the block.
struct liballoc_minor *first; ///< A pointer to the first allocated memory in the block.
};
/** This is a structure found at the beginning of all
* sections in a major block which were allocated by a
* malloc, calloc, realloc call.
*/
struct liballoc_minor
{
struct liballoc_minor *prev; ///< Linked list information.
struct liballoc_minor *next; ///< Linked list information.
struct liballoc_major *block; ///< The owning block. A pointer to the major structure.
unsigned int magic; ///< A magic number to idenfity correctness.
unsigned int size; ///< The size of the memory allocated. Could be 1 byte or more.
unsigned int req_size; ///< The size of memory requested.
};
static struct liballoc_major *l_memRoot = NULL; ///< The root memory block acquired from the system.
static struct liballoc_major *l_bestBet = NULL; ///< The major with the most free memory.
static unsigned int l_pageSize = 4096; ///< The size of an individual page. Set up in liballoc_init.
static unsigned int l_pageCount = 16; ///< The number of pages to request per chunk. Set up in liballoc_init.
static unsigned long long l_allocated = 0; ///< Running total of allocated memory.
static unsigned long long l_inuse = 0; ///< Running total of used memory.
static long long l_warningCount = 0; ///< Number of warnings encountered
static long long l_errorCount = 0; ///< Number of actual errors
static long long l_possibleOverruns = 0; ///< Number of possible overruns
// *********** HELPER FUNCTIONS *******************************
static void *liballoc_memset(void *s, int c, size_t n)
{
unsigned int i;
for (i = 0; i < n; i++)
((char *)s)[i] = c;
return s;
}
static void *liballoc_memcpy(void *s1, const void *s2, size_t n)
{
char *cdest;
char *csrc;
unsigned int *ldest = (unsigned int *)s1;
unsigned int *lsrc = (unsigned int *)s2;
while (n >= sizeof(unsigned int))
{
*ldest++ = *lsrc++;
n -= sizeof(unsigned int);
}
cdest = (char *)ldest;
csrc = (char *)lsrc;
while (n > 0)
{
*cdest++ = *csrc++;
n -= 1;
}
return s1;
}
#if defined LIBALLOCDEBUG || defined LIBALLOCINFO
static void liballoc_dump()
{
#ifdef LIBALLOCDEBUG
struct liballoc_major *maj = l_memRoot;
struct liballoc_minor *min = NULL;
#endif
printf("liballoc: ------ Memory data ---------------\n");
printf("liballoc: System memory allocated: %i bytes\n", l_allocated);
printf("liballoc: Memory in used (malloc'ed): %i bytes\n", l_inuse);
printf("liballoc: Warning count: %i\n", l_warningCount);
printf("liballoc: Error count: %i\n", l_errorCount);
printf("liballoc: Possible overruns: %i\n", l_possibleOverruns);
#ifdef LIBALLOCDEBUG
while (maj != NULL)
{
printf("liballoc: %x: total = %i, used = %i\n",
maj,
maj->size,
maj->usage);
min = maj->first;
while (min != NULL)
{
printf("liballoc: %x: %i bytes\n",
min,
min->size);
min = min->next;
}
maj = maj->next;
}
#endif
FLUSH();
}
#endif
// ***************************************************************
static struct liballoc_major *allocate_new_page(unsigned int size)
{
unsigned int st;
struct liballoc_major *maj;
// This is how much space is required.
st = size + sizeof(struct liballoc_major);
st += sizeof(struct liballoc_minor);
// Perfect amount of space?
if ((st % l_pageSize) == 0)
st = st / (l_pageSize);
else
st = st / (l_pageSize) + 1;
// No, add the buffer.
// Make sure it's >= the minimum size.
if (st < l_pageCount)
st = l_pageCount;
maj = (struct liballoc_major *)liballoc_alloc(st);
if (maj == NULL)
{
l_warningCount += 1;
#if defined LIBALLOCDEBUG || defined LIBALLOCINFO
printf("liballoc: WARNING: liballoc_alloc( %i ) return NULL\n", st);
FLUSH();
#endif
return NULL; // uh oh, we ran out of memory.
}
maj->prev = NULL;
maj->next = NULL;
maj->pages = st;
maj->size = st * l_pageSize;
maj->usage = sizeof(struct liballoc_major);
maj->first = NULL;
l_allocated += maj->size;
#ifdef LIBALLOCDEBUG
printf("liballoc: Resource allocated %x of %i pages (%i bytes) for %i size.\n", maj, st, maj->size, size);
printf("liballoc: Total memory usage = %i KB\n", (int)((l_allocated / (1024))));
FLUSH();
#endif
return maj;
}
void *PREFIX(malloc)(size_t req_size)
{
int startedBet = 0;
unsigned long long bestSize = 0;
void *p = NULL;
uintptr_t diff;
struct liballoc_major *maj;
struct liballoc_minor *min;
struct liballoc_minor *new_min;
unsigned long size = req_size;
// For alignment, we adjust size so there's enough space to align.
if (ALIGNMENT > 1)
{
size += ALIGNMENT + ALIGN_INFO;
}
// So, ideally, we really want an alignment of 0 or 1 in order
// to save space.
liballoc_lock();
if (size == 0)
{
l_warningCount += 1;
#if defined LIBALLOCDEBUG || defined LIBALLOCINFO
printf("liballoc: WARNING: alloc( 0 ) called from %x\n",
__builtin_return_address(0));
FLUSH();
#endif
liballoc_unlock();
return PREFIX(malloc)(1);
}
if (l_memRoot == NULL)
{
#if defined LIBALLOCDEBUG || defined LIBALLOCINFO
#ifdef LIBALLOCDEBUG
printf("liballoc: initialization of liballoc " VERSION "\n");
#endif
atexit(liballoc_dump);
FLUSH();
#endif
// This is the first time we are being used.
l_memRoot = allocate_new_page(size);
if (l_memRoot == NULL)
{
liballoc_unlock();
#ifdef LIBALLOCDEBUG
printf("liballoc: initial l_memRoot initialization failed\n", p);
FLUSH();
#endif
return NULL;
}
#ifdef LIBALLOCDEBUG
printf("liballoc: set up first memory major %x\n", l_memRoot);
FLUSH();
#endif
}
#ifdef LIBALLOCDEBUG
printf("liballoc: %x PREFIX(malloc)( %i ): ",
__builtin_return_address(0),
size);
FLUSH();
#endif
// Now we need to bounce through every major and find enough space....
maj = l_memRoot;
startedBet = 0;
// Start at the best bet....
if (l_bestBet != NULL)
{
bestSize = l_bestBet->size - l_bestBet->usage;
if (bestSize > (size + sizeof(struct liballoc_minor)))
{
maj = l_bestBet;
startedBet = 1;
}
}
while (maj != NULL)
{
diff = maj->size - maj->usage;
// free memory in the block
if (bestSize < diff)
{
// Hmm.. this one has more memory then our bestBet. Remember!
l_bestBet = maj;
bestSize = diff;
}
#ifdef USE_CASE1
// CASE 1: There is not enough space in this major block.
if (diff < (size + sizeof(struct liballoc_minor)))
{
#ifdef LIBALLOCDEBUG
printf("CASE 1: Insufficient space in block %x\n", maj);
FLUSH();
#endif
// Another major block next to this one?
if (maj->next != NULL)
{
maj = maj->next; // Hop to that one.
continue;
}
if (startedBet == 1) // If we started at the best bet,
{ // let's start all over again.
maj = l_memRoot;
startedBet = 0;
continue;
}
// Create a new major block next to this one and...
maj->next = allocate_new_page(size); // next one will be okay.
if (maj->next == NULL)
break; // no more memory.
maj->next->prev = maj;
maj = maj->next;
// .. fall through to CASE 2 ..
}
#endif
#ifdef USE_CASE2
// CASE 2: It's a brand new block.
if (maj->first == NULL)
{
maj->first = (struct liballoc_minor *)((uintptr_t)maj + sizeof(struct liballoc_major));
maj->first->magic = LIBALLOC_MAGIC;
maj->first->prev = NULL;
maj->first->next = NULL;
maj->first->block = maj;
maj->first->size = size;
maj->first->req_size = req_size;
maj->usage += size + sizeof(struct liballoc_minor);
l_inuse += size;
p = (void *)((uintptr_t)(maj->first) + sizeof(struct liballoc_minor));
ALIGN(p);
#ifdef LIBALLOCDEBUG
printf("CASE 2: returning %x\n", p);
FLUSH();
#endif
liballoc_unlock(); // release the lock
return p;
}
#endif
#ifdef USE_CASE3
// CASE 3: Block in use and enough space at the start of the block.
diff = (uintptr_t)(maj->first);
diff -= (uintptr_t)maj;
diff -= sizeof(struct liballoc_major);
if (diff >= (size + sizeof(struct liballoc_minor)))
{
// Yes, space in front. Squeeze in.
maj->first->prev = (struct liballoc_minor *)((uintptr_t)maj + sizeof(struct liballoc_major));
maj->first->prev->next = maj->first;
maj->first = maj->first->prev;
maj->first->magic = LIBALLOC_MAGIC;
maj->first->prev = NULL;
maj->first->block = maj;
maj->first->size = size;
maj->first->req_size = req_size;
maj->usage += size + sizeof(struct liballoc_minor);
l_inuse += size;
p = (void *)((uintptr_t)(maj->first) + sizeof(struct liballoc_minor));
ALIGN(p);
#ifdef LIBALLOCDEBUG
printf("CASE 3: returning %x\n", p);
FLUSH();
#endif
liballoc_unlock(); // release the lock
return p;
}
#endif
#ifdef USE_CASE4
// CASE 4: There is enough space in this block. But is it contiguous?
min = maj->first;
// Looping within the block now...
while (min != NULL)
{
// CASE 4.1: End of minors in a block. Space from last and end?
if (min->next == NULL)
{
// the rest of this block is free... is it big enough?
diff = (uintptr_t)(maj) + maj->size;
diff -= (uintptr_t)min;
diff -= sizeof(struct liballoc_minor);
diff -= min->size;
// minus already existing usage..
if (diff >= (size + sizeof(struct liballoc_minor)))
{
// yay....
min->next = (struct liballoc_minor *)((uintptr_t)min + sizeof(struct liballoc_minor) + min->size);
min->next->prev = min;
min = min->next;
min->next = NULL;
min->magic = LIBALLOC_MAGIC;
min->block = maj;
min->size = size;
min->req_size = req_size;
maj->usage += size + sizeof(struct liballoc_minor);
l_inuse += size;
p = (void *)((uintptr_t)min + sizeof(struct liballoc_minor));
ALIGN(p);
#ifdef LIBALLOCDEBUG
printf("CASE 4.1: returning %x\n", p);
FLUSH();
#endif
liballoc_unlock(); // release the lock
return p;
}
}
// CASE 4.2: Is there space between two minors?
if (min->next != NULL)
{
// is the difference between here and next big enough?
diff = (uintptr_t)(min->next);
diff -= (uintptr_t)min;
diff -= sizeof(struct liballoc_minor);
diff -= min->size;
// minus our existing usage.
if (diff >= (size + sizeof(struct liballoc_minor)))
{
// yay......
new_min = (struct liballoc_minor *)((uintptr_t)min + sizeof(struct liballoc_minor) + min->size);
new_min->magic = LIBALLOC_MAGIC;
new_min->next = min->next;
new_min->prev = min;
new_min->size = size;
new_min->req_size = req_size;
new_min->block = maj;
min->next->prev = new_min;
min->next = new_min;
maj->usage += size + sizeof(struct liballoc_minor);
l_inuse += size;
p = (void *)((uintptr_t)new_min + sizeof(struct liballoc_minor));
ALIGN(p);
#ifdef LIBALLOCDEBUG
printf("CASE 4.2: returning %x\n", p);
FLUSH();
#endif
liballoc_unlock(); // release the lock
return p;
}
} // min->next != NULL
min = min->next;
} // while min != NULL ...
#endif
#ifdef USE_CASE5
// CASE 5: Block full! Ensure next block and loop.
if (maj->next == NULL)
{
#ifdef LIBALLOCDEBUG
printf("CASE 5: block full\n");
FLUSH();
#endif
if (startedBet == 1)
{
maj = l_memRoot;
startedBet = 0;
continue;
}
// we've run out. we need more...
maj->next = allocate_new_page(size); // next one guaranteed to be okay
if (maj->next == NULL)
break; // uh oh, no more memory.....
maj->next->prev = maj;
}
#endif
maj = maj->next;
} // while (maj != NULL)
liballoc_unlock(); // release the lock
#ifdef LIBALLOCDEBUG
printf("All cases exhausted. No memory available.\n");
FLUSH();
#endif
#if defined LIBALLOCDEBUG || defined LIBALLOCINFO
printf("liballoc: WARNING: PREFIX(malloc)( %i ) returning NULL.\n", size);
liballoc_dump();
FLUSH();
#endif
return NULL;
}
void PREFIX(free)(void *ptr)
{
struct liballoc_minor *min;
struct liballoc_major *maj;
if (ptr == NULL)
{
l_warningCount += 1;
#if defined LIBALLOCDEBUG || defined LIBALLOCINFO
printf("liballoc: WARNING: PREFIX(free)( NULL ) called from %x\n",
__builtin_return_address(0));
FLUSH();
#endif
return;
}
UNALIGN(ptr);
liballoc_lock(); // lockit
min = (struct liballoc_minor *)((uintptr_t)ptr - sizeof(struct liballoc_minor));
if (min->magic != LIBALLOC_MAGIC)
{
l_errorCount += 1;
// Check for overrun errors. For all bytes of LIBALLOC_MAGIC
if (
((min->magic & 0xFFFFFF) == (LIBALLOC_MAGIC & 0xFFFFFF)) ||
((min->magic & 0xFFFF) == (LIBALLOC_MAGIC & 0xFFFF)) ||
((min->magic & 0xFF) == (LIBALLOC_MAGIC & 0xFF)))
{
l_possibleOverruns += 1;
#if defined LIBALLOCDEBUG || defined LIBALLOCINFO
printf("liballoc: ERROR: Possible 1-3 byte overrun for magic %x != %x\n",
min->magic,
LIBALLOC_MAGIC);
FLUSH();
#endif
}
if (min->magic == LIBALLOC_DEAD)
{
#if defined LIBALLOCDEBUG || defined LIBALLOCINFO
printf("liballoc: ERROR: multiple PREFIX(free)() attempt on %x from %x.\n",
ptr,
__builtin_return_address(0));
FLUSH();
#endif
}
else
{
#if defined LIBALLOCDEBUG || defined LIBALLOCINFO
printf("liballoc: ERROR: Bad PREFIX(free)( %x ) called from %x\n",
ptr,
__builtin_return_address(0));
FLUSH();
#endif
}
// being lied to...
liballoc_unlock(); // release the lock
return;
}
#ifdef LIBALLOCDEBUG
printf("liballoc: %x PREFIX(free)( %x ): ",
__builtin_return_address(0),
ptr);
FLUSH();
#endif
maj = min->block;
l_inuse -= min->size;
maj->usage -= (min->size + sizeof(struct liballoc_minor));
min->magic = LIBALLOC_DEAD; // No mojo.
if (min->next != NULL)
min->next->prev = min->prev;
if (min->prev != NULL)
min->prev->next = min->next;
if (min->prev == NULL)
maj->first = min->next;
// Might empty the block. This was the first
// minor.
// We need to clean up after the majors now....
if (maj->first == NULL) // Block completely unused.
{
if (l_memRoot == maj)
l_memRoot = maj->next;
if (l_bestBet == maj)
l_bestBet = NULL;
if (maj->prev != NULL)
maj->prev->next = maj->next;
if (maj->next != NULL)
maj->next->prev = maj->prev;
l_allocated -= maj->size;
liballoc_free(maj, maj->pages);
}
else
{
if (l_bestBet != NULL)
{
int bestSize = l_bestBet->size - l_bestBet->usage;
int majSize = maj->size - maj->usage;
if (majSize > bestSize)
l_bestBet = maj;
}
}
#ifdef LIBALLOCDEBUG
printf("OK\n");
FLUSH();
#endif
liballoc_unlock(); // release the lock
}
void *PREFIX(calloc)(size_t nobj, size_t size)
{
int real_size;
void *p;
real_size = nobj * size;
p = PREFIX(malloc)(real_size);
liballoc_memset(p, 0, real_size);
return p;
}
void *PREFIX(realloc)(void *p, size_t size)
{
void *ptr;
struct liballoc_minor *min;
unsigned int real_size;
// Honour the case of size == 0 => free old and return NULL
if (size == 0)
{
PREFIX(free)
(p);
return NULL;
}
// In the case of a NULL pointer, return a simple malloc.
if (p == NULL)
return PREFIX(malloc)(size);
// Unalign the pointer if required.
ptr = p;
UNALIGN(ptr);
liballoc_lock(); // lockit
min = (struct liballoc_minor *)((uintptr_t)ptr - sizeof(struct liballoc_minor));
// Ensure it is a valid structure.
if (min->magic != LIBALLOC_MAGIC)
{
l_errorCount += 1;
// Check for overrun errors. For all bytes of LIBALLOC_MAGIC
if (
((min->magic & 0xFFFFFF) == (LIBALLOC_MAGIC & 0xFFFFFF)) ||
((min->magic & 0xFFFF) == (LIBALLOC_MAGIC & 0xFFFF)) ||
((min->magic & 0xFF) == (LIBALLOC_MAGIC & 0xFF)))
{
l_possibleOverruns += 1;
#if defined LIBALLOCDEBUG || defined LIBALLOCINFO
printf("liballoc: ERROR: Possible 1-3 byte overrun for magic %x != %x\n",
min->magic,
LIBALLOC_MAGIC);
FLUSH();
#endif
}
if (min->magic == LIBALLOC_DEAD)
{
#if defined LIBALLOCDEBUG || defined LIBALLOCINFO
printf("liballoc: ERROR: multiple PREFIX(free)() attempt on %x from %x.\n",
ptr,
__builtin_return_address(0));
FLUSH();
#endif
}
else
{
#if defined LIBALLOCDEBUG || defined LIBALLOCINFO
printf("liballoc: ERROR: Bad PREFIX(free)( %x ) called from %x\n",
ptr,
__builtin_return_address(0));
FLUSH();
#endif
}
// being lied to...
liballoc_unlock(); // release the lock
return NULL;
}
// Definitely a memory block.
real_size = min->req_size;
if (real_size >= size)
{
min->req_size = size;
liballoc_unlock();
return p;
}
liballoc_unlock();
// If we got here then we're reallocating to a block bigger than us.
ptr = PREFIX(malloc)(size); // We need to allocate new memory
liballoc_memcpy(ptr, p, real_size);
PREFIX(free)
(p);
return ptr;
}

View File

@ -0,0 +1,90 @@
#ifndef _LIBALLOC_H
#define _LIBALLOC_H
#ifndef LYNX_LIBALLOC_TYPES_H
#define LYNX_LIBALLOC_TYPES_H
typedef __UINT8_TYPE__ uint8_t;
typedef __UINT16_TYPE__ uint16_t;
typedef __UINT32_TYPE__ uint32_t;
typedef __UINT64_TYPE__ uint64_t;
typedef __SIZE_TYPE__ size_t;
typedef __UINTPTR_TYPE__ uintptr_t;
#ifndef NULL
#define NULL ((void *)0)
#endif
#define ALIGN_UP(x, align) ((__typeof__(x))(((uint64_t)(x) + ((align)-1)) & (~((align)-1))))
#define ALIGN_DOWN(x, align) ((__typeof__(x))((x) & (~((align)-1))))
#endif // !LYNX_LIBALLOC_TYPES_H
/** \defgroup ALLOCHOOKS liballoc hooks
*
* These are the OS specific functions which need to
* be implemented on any platform that the library
* is expected to work on.
*/
/** @{ */
// If we are told to not define our own size_t, then we skip the define.
//#define _HAVE_UINTPTR_T
// typedef unsigned long uintptr_t;
// This lets you prefix malloc and friends
#define PREFIX(func) kliballoc_##func
#ifdef __cplusplus
extern "C"
{
#endif
/** This function is supposed to lock the memory data structures. It
* could be as simple as disabling interrupts or acquiring a spinlock.
* It's up to you to decide.
*
* \return 0 if the lock was acquired successfully. Anything else is
* failure.
*/
extern int liballoc_lock();
/** This function unlocks what was previously locked by the liballoc_lock
* function. If it disabled interrupts, it enables interrupts. If it
* had acquiried a spinlock, it releases the spinlock. etc.
*
* \return 0 if the lock was successfully released.
*/
extern int liballoc_unlock();
/** This is the hook into the local system which allocates pages. It
* accepts an integer parameter which is the number of pages
* required. The page size was set up in the liballoc_init function.
*
* \return NULL if the pages were not allocated.
* \return A pointer to the allocated memory.
*/
extern void *liballoc_alloc(size_t);
/** This frees previously allocated memory. The void* parameter passed
* to the function is the exact same value returned from a previous
* liballoc_alloc call.
*
* The integer value is the number of pages to free.
*
* \return 0 if the memory was successfully freed.
*/
extern int liballoc_free(void *, size_t);
extern void *PREFIX(malloc)(size_t); ///< The standard function.
extern void *PREFIX(realloc)(void *, size_t); ///< The standard function.
extern void *PREFIX(calloc)(size_t, size_t); ///< The standard function.
extern void PREFIX(free)(void *); ///< The standard function.
#ifdef __cplusplus
}
#endif
/** @} */
#endif

433
UEFI/src/Memory/memory.hpp Normal file
View File

@ -0,0 +1,433 @@
#ifndef __FENNIX_KERNEL_INTERNAL_MEMORY_H__
#define __FENNIX_KERNEL_INTERNAL_MEMORY_H__
#ifndef LYNX_MEMORY_TYPES_H
#define LYNX_MEMORY_TYPES_H
typedef __UINT8_TYPE__ uint8_t;
typedef __UINT16_TYPE__ uint16_t;
typedef __UINT32_TYPE__ uint32_t;
typedef __UINT64_TYPE__ uint64_t;
typedef __SIZE_TYPE__ size_t;
typedef __UINTPTR_TYPE__ uintptr_t;
#ifndef NULL
#define NULL ((void *)0)
#endif
#ifdef __cplusplus
#define EXTERNC extern "C"
#else
#define EXTERNC
#endif
#define ALIGN_UP(x, align) ((__typeof__(x))(((uint64_t)(x) + ((align)-1)) & (~((align)-1))))
#define ALIGN_DOWN(x, align) ((__typeof__(x))((x) & (~((align)-1))))
#endif // !LYNX_MEMORY_TYPES_H
#include "../bitmap.hpp"
#include <efi.h>
#include <efilib.h>
#define PAGE_SIZE 0x1000
// to pages
#define TO_PAGES(d) (d / PAGE_SIZE + 1)
// from pages
#define FROM_PAGES(d) (d * PAGE_SIZE - 1)
#define NORMAL_VMA_OFFSET 0xFFFF800000000000
#define KERNEL_VMA_OFFSET 0xFFFFFFFF80000000
/**
* @brief KERNEL_HEAP_BASE is the base address of the kernel heap
*/
#define KERNEL_HEAP_BASE 0xFFFFC00000000000
/**
* @brief USER_HEAP_BASE is the base address of the user heap allocated by the kernel
*/
#define USER_HEAP_BASE 0xFFFFD00000000000
#ifdef __cplusplus
namespace Memory
{
/**
* @brief https://wiki.osdev.org/images/4/41/64-bit_page_tables1.png
* @brief https://wiki.osdev.org/images/6/6b/64-bit_page_tables2.png
*/
enum PTFlag
{
/** @brief Present */
P = 1 << 0,
/** @brief Read/Write */
RW = 1 << 1,
/** @brief User/Supervisor */
US = 1 << 2,
/** @brief Write-Through */
PWT = 1 << 3,
/** @brief Cache Disable */
PCD = 1 << 4,
/** @brief Accessed */
A = 1 << 5,
/** @brief Dirty */
D = 1 << 6,
/** @brief Page Size */
PS = 1 << 7,
/** @brief Global */
G = 1 << 8,
/** @brief Available 0 */
AVL0 = 1 << 9,
/** @brief Available 1 */
AVL1 = 1 << 10,
/** @brief Available 2 */
AVL2 = 1 << 11,
/** @brief Page Attribute Table */
PAT = 1 << 12,
/** @brief Available 3 */
AVL3 = (uint64_t)1 << 52,
/** @brief Available 4 */
AVL4 = (uint64_t)1 << 53,
/** @brief Available 5 */
AVL5 = (uint64_t)1 << 54,
/** @brief Available 6 */
AVL6 = (uint64_t)1 << 55,
/** @brief Available 7 */
AVL7 = (uint64_t)1 << 56,
/** @brief Available 8 */
AVL8 = (uint64_t)1 << 57,
/** @brief Available 9 */
AVL9 = (uint64_t)1 << 58,
/** @brief Protection Key 0 */
PK0 = (uint64_t)1 << 59,
/** @brief Protection Key 1 */
PK1 = (uint64_t)1 << 60,
/** @brief Protection Key 2 */
PK2 = (uint64_t)1 << 61,
/** @brief Protection Key 3 */
PK3 = (uint64_t)1 << 62,
/** @brief Execute Disable */
XD = (uint64_t)1 << 63
};
typedef union __attribute__((packed))
{
struct
{
bool Present : 1;
bool ReadWrite : 1;
bool UserSupervisor : 1;
bool WriteThrough : 1;
bool CacheDisable : 1;
bool Accessed : 1;
bool Dirty : 1;
bool PageSize : 1;
bool Global : 1;
uint8_t Available1 : 3;
bool PageAttributeTable : 1;
uint64_t Reserved : 39;
uint32_t Available2 : 7;
uint16_t ProtectionKey : 4;
bool ExecuteDisable : 1;
};
uint64_t raw;
} PDEData;
struct __attribute__((packed)) PageDirectoryEntry
{
PDEData Value;
void AddFlag(uint64_t Flag) { this->Value.raw |= Flag; }
void RemoveFlags(uint64_t Flag) { this->Value.raw &= ~Flag; }
void ClearFlags() { this->Value.raw = 0; }
void SetFlag(uint64_t Flag, bool Enabled)
{
this->Value.raw &= ~Flag;
if (Enabled)
this->Value.raw |= Flag;
}
bool GetFlag(uint64_t Flag) { return (this->Value.raw & Flag) > 0 ? true : false; }
uint64_t GetFlag() { return this->Value.raw; }
void SetAddress(uint64_t Address)
{
#if defined(__amd64__)
Address &= 0x000000FFFFFFFFFF;
this->Value.raw &= 0xFFF0000000000FFF;
this->Value.raw |= (Address << 12);
#elif defined(__i386__)
Address &= 0x000FFFFF;
this->Value.raw &= 0xFFC00003;
this->Value.raw |= (Address << 12);
#elif defined(__aarch64__)
Address &= 0x000000FFFFFFFFFF;
this->Value.raw &= 0xFFF0000000000FFF;
this->Value.raw |= (Address << 12);
#endif
}
uint64_t GetAddress()
{
#if defined(__amd64__)
return (this->Value.raw & 0x000FFFFFFFFFF000) >> 12;
#elif defined(__i386__)
return (this->Value.raw & 0x003FFFFF000) >> 12;
#elif defined(__aarch64__)
return (this->Value.raw & 0x000FFFFFFFFFF000) >> 12;
#endif
}
};
struct PageTable
{
PageDirectoryEntry Entries[512];
} __attribute__((aligned(0x1000)));
class Physical
{
private:
uint64_t TotalMemory = 0;
uint64_t FreeMemory = 0;
uint64_t ReservedMemory = 0;
uint64_t UsedMemory = 0;
uint64_t PageBitmapIndex = 0;
Bitmap PageBitmap;
void ReservePage(void *Address);
void ReservePages(void *Address, uint64_t PageCount);
void UnreservePage(void *Address);
void UnreservePages(void *Address, uint64_t PageCount);
public:
/**
* @brief Get Total Memory
*
* @return uint64_t
*/
uint64_t GetTotalMemory();
/**
* @brief Get Free Memory
*
* @return uint64_t
*/
uint64_t GetFreeMemory();
/**
* @brief Get Reserved Memory
*
* @return uint64_t
*/
uint64_t GetReservedMemory();
/**
* @brief Get Used Memory
*
* @return uint64_t
*/
uint64_t GetUsedMemory();
/**
* @brief Swap page
*
* @param Address Address of the page
* @return true if swap was successful
* @return false if swap was unsuccessful
*/
bool SwapPage(void *Address);
/**
* @brief Swap pages
*
* @param Address Address of the pages
* @param PageCount Number of pages
* @return true if swap was successful
* @return false if swap was unsuccessful
*/
bool SwapPages(void *Address, uint64_t PageCount);
/**
* @brief Unswap page
*
* @param Address Address of the page
* @return true if unswap was successful
* @return false if unswap was unsuccessful
*/
bool UnswapPage(void *Address);
/**
* @brief Unswap pages
*
* @param Address Address of the pages
* @param PageCount Number of pages
* @return true if unswap was successful
* @return false if unswap was unsuccessful
*/
bool UnswapPages(void *Address, uint64_t PageCount);
/**
* @brief Lock page
*
* @param Address Address of the page
*/
void LockPage(void *Address);
/**
* @brief Lock pages
*
* @param Address Address of the pages
* @param PageCount Number of pages
*/
void LockPages(void *Address, uint64_t PageCount);
/**
* @brief Request page
*
* @return void* Allocated page address
*/
void *RequestPage();
/**
* @brief Request pages
*
* @param PageCount Number of pages
* @return void* Allocated pages address
*/
void *RequestPages(uint64_t Count);
/**
* @brief Free page
*
* @param Address Address of the page
*/
void FreePage(void *Address);
/**
* @brief Free pages
*
* @param Address Address of the pages
* @param PageCount Number of pages
*/
void FreePages(void *Address, uint64_t Count);
/** @brief Do not use. */
void Init(EFI_HANDLE ImageHandle, EFI_SYSTEM_TABLE *SystemTable);
/** @brief Do not use. */
Physical();
/** @brief Do not use. */
~Physical();
};
class Virtual
{
private:
PageTable *Table = nullptr;
class PageMapIndexer
{
public:
uint64_t PDP_i;
uint64_t PD_i;
uint64_t PT_i;
uint64_t P_i;
PageMapIndexer(uint64_t VirtualAddress)
{
#if defined(__amd64__)
PDP_i = (VirtualAddress & ((uint64_t)0x1FF << 39)) >> 39;
PD_i = (VirtualAddress & ((uint64_t)0x1FF << 30)) >> 30;
PT_i = (VirtualAddress & ((uint64_t)0x1FF << 21)) >> 21;
P_i = (VirtualAddress & ((uint64_t)0x1FF << 12)) >> 12;
#elif defined(__i386__)
PD_i = (VirtualAddress & ((uint64_t)0x3FF << 22)) >> 22;
PT_i = (VirtualAddress & ((uint64_t)0x3FF << 12)) >> 12;
P_i = (VirtualAddress & ((uint64_t)0xFFF << 0)) >> 0;
#elif defined(__aarch64__)
PD_i = (VirtualAddress & ((uint64_t)0x1FF << 30)) >> 30;
PT_i = (VirtualAddress & ((uint64_t)0x1FF << 21)) >> 21;
P_i = (VirtualAddress & ((uint64_t)0x1FF << 12)) >> 12;
#endif
}
};
public:
/**
* @brief Map page.
*
* @param VirtualAddress Virtual address of the page.
* @param PhysicalAddress Physical address of the page.
* @param Flags Flags of the page. Check PTFlag enum.
*/
void Map(void *VirtualAddress, void *PhysicalAddress, uint64_t Flags);
/**
* @brief Map multiple pages.
*
* @param VirtualAddress First virtual address of the page.
* @param PhysicalAddress First physical address of the page.
* @param PageCount Number of pages.
* @param Flags Flags of the page. Check PTFlag enum.
*/
void Map(void *VirtualAddress, void *PhysicalAddress, uint64_t PageCount, uint64_t Flags);
/**
* @brief Unmap page.
*
* @param VirtualAddress Virtual address of the page.
*/
void Unmap(void *VirtualAddress);
/**
* @brief Unmap multiple pages.
*
* @param VirtualAddress First virtual address of the page.
* @param PageCount Number of pages.
*/
void Unmap(void *VirtualAddress, uint64_t PageCount);
/**
* @brief Construct a new Virtual object
*
* @param Table Page table. If null, it will use the current page table.
*/
Virtual(PageTable *Table = nullptr);
/**
* @brief Destroy the Virtual object
*
*/
~Virtual();
};
}
void *operator new(uint64_t Size);
void *operator new[](uint64_t Size);
void operator delete(void *Pointer);
void operator delete[](void *Pointer);
void operator delete(void *Pointer, long unsigned int Size);
void operator delete[](void *Pointer, long unsigned int Size);
extern Memory::Physical KernelAllocator;
extern Memory::PageTable *KernelPageTable;
#endif // __cplusplus
EXTERNC void InitializeMemoryManagement(EFI_HANDLE ImageHandle, EFI_SYSTEM_TABLE *SystemTable);
EXTERNC void *HeapMalloc(uint64_t Size);
EXTERNC void *HeapCalloc(uint64_t n, uint64_t Size);
EXTERNC void *HeapRealloc(void *Address, uint64_t Size);
EXTERNC void HeapFree(void *Address);
#define kmalloc(Size) HeapMalloc(Size)
#define kcalloc(n, Size) HeapCalloc(n, Size)
#define krealloc(Address, Size) HeapRealloc(Address, Size)
#define kfree(Address) HeapFree(Address)
#endif // !__FENNIX_KERNEL_INTERNAL_MEMORY_H__

View File

33
UEFI/src/bitmap.hpp Normal file
View File

@ -0,0 +1,33 @@
#pragma once
#ifndef LYNX_BITMAP_TYPES_H
#define LYNX_BITMAP_TYPES_H
typedef __UINT8_TYPE__ uint8_t;
typedef __UINT16_TYPE__ uint16_t;
typedef __UINT32_TYPE__ uint32_t;
typedef __UINT64_TYPE__ uint64_t;
typedef __SIZE_TYPE__ size_t;
typedef __UINTPTR_TYPE__ uintptr_t;
#ifndef NULL
#define NULL ((void *)0)
#endif
#define ALIGN_UP(x, align) ((__typeof__(x))(((uint64_t)(x) + ((align)-1)) & (~((align)-1))))
#define ALIGN_DOWN(x, align) ((__typeof__(x))((x) & (~((align)-1))))
#endif // !LYNX_BITMAP_TYPES_H
#ifdef __cplusplus
class Bitmap
{
public:
size_t Size;
uint8_t *Buffer;
bool operator[](uint64_t index);
bool Set(uint64_t index, bool value);
bool Get(uint64_t index);
};
#endif // __cplusplus

157
UEFI/src/cxxabi.cpp Normal file
View File

@ -0,0 +1,157 @@
#ifndef LYNX_CXXABI_TYPES_H
#define LYNX_CXXABI_TYPES_H
typedef __UINT8_TYPE__ uint8_t;
typedef __UINT16_TYPE__ uint16_t;
typedef __UINT32_TYPE__ uint32_t;
typedef __UINT64_TYPE__ uint64_t;
typedef __SIZE_TYPE__ size_t;
typedef __UINTPTR_TYPE__ uintptr_t;
#ifndef NULL
#define NULL ((void *)0)
#endif
#define ALIGN_UP(x, align) ((__typeof__(x))(((uint64_t)(x) + ((align)-1)) & (~((align)-1))))
#define ALIGN_DOWN(x, align) ((__typeof__(x))((x) & (~((align)-1))))
#endif // !LYNX_CXXABI_TYPES_H
extern "C" void printf(const char *format, ...);
// TODO: complete implementation for everything
// TODO: https://wiki.osdev.org/C%2B%2B
#define ATEXIT_MAX_FUNCS 128
typedef unsigned uarch_t;
struct atexit_func_entry_t
{
/*
* Each member is at least 4 bytes large. Such that each entry is 12bytes.
* 128 * 12 = 1.5KB exact.
**/
void (*destructor_func)(void *);
void *obj_ptr;
void *dso_handle;
};
typedef enum
{
_URC_NO_REASON = 0,
_URC_FOREIGN_EXCEPTION_CAUGHT = 1,
_URC_FATAL_PHASE2_ERROR = 2,
_URC_FATAL_PHASE1_ERROR = 3,
_URC_NORMAL_STOP = 4,
_URC_END_OF_STACK = 5,
_URC_HANDLER_FOUND = 6,
_URC_INSTALL_CONTEXT = 7,
_URC_CONTINUE_UNWIND = 8
} _Unwind_Reason_Code;
struct _Unwind_Context;
typedef unsigned _Unwind_Exception_Class __attribute__((__mode__(__DI__)));
typedef unsigned _Unwind_Word __attribute__((__mode__(__unwind_word__)));
typedef void (*_Unwind_Exception_Cleanup_Fn)(_Unwind_Reason_Code, struct _Unwind_Exception *);
typedef int _Unwind_Action;
struct _Unwind_Exception
{
_Unwind_Exception_Class exception_class;
_Unwind_Exception_Cleanup_Fn exception_cleanup;
#if !defined(__USING_SJLJ_EXCEPTIONS__) && defined(__SEH__)
_Unwind_Word private_[6];
#else
_Unwind_Word private_1;
_Unwind_Word private_2;
#endif
} __attribute__((__aligned__));
extern void *__dso_handle = 0;
atexit_func_entry_t __atexit_funcs[ATEXIT_MAX_FUNCS];
uarch_t __atexit_func_count = 0;
extern "C" int __cxa_atexit(void (*f)(void *), void *objptr, void *dso)
{
printf("__cxa_atexit( %p %p %p ) triggered.", f, objptr, dso);
if (__atexit_func_count >= ATEXIT_MAX_FUNCS)
return -1;
__atexit_funcs[__atexit_func_count].destructor_func = f;
__atexit_funcs[__atexit_func_count].obj_ptr = objptr;
__atexit_funcs[__atexit_func_count].dso_handle = dso;
__atexit_func_count++;
return 0;
}
extern "C" void __cxa_finalize(void *f)
{
printf("__cxa_finalize( %p ) triggered.", f);
uarch_t i = __atexit_func_count;
if (!f)
{
while (i--)
if (__atexit_funcs[i].destructor_func)
(*__atexit_funcs[i].destructor_func)(__atexit_funcs[i].obj_ptr);
return;
}
while (i--)
if (__atexit_funcs[i].destructor_func == f)
{
(*__atexit_funcs[i].destructor_func)(__atexit_funcs[i].obj_ptr);
__atexit_funcs[i].destructor_func = 0;
}
}
extern "C" _Unwind_Reason_Code __gxx_personality_v0(int version, _Unwind_Action actions, _Unwind_Exception_Class exception_class, _Unwind_Exception *ue_header, _Unwind_Context *context)
{
printf("__gxx_personality_v0( %d %p %p %p %p ) triggered.", version, actions, exception_class, ue_header, context);
return _URC_NO_REASON;
}
extern "C" void _Unwind_Resume(struct _Unwind_Exception *exc) { printf("_Unwind_Resume( %p ) triggered.", exc); }
extern "C" void *__cxa_allocate_exception(uint64_t thrown_size) throw()
{
printf("__cxa_allocate_exception( %#llu ) triggered.", thrown_size);
return (void *)0;
}
extern "C" void __cxa_throw(void *thrown_object, void *tinfo, void (*dest)(void *)) { printf("__cxa_throw( %p %p %p ) triggered.", thrown_object, tinfo, dest); }
extern "C" void __cxa_rethrow() { printf("__cxa_rethrow() triggered."); }
extern "C" void __cxa_pure_virtual() { printf("__cxa_pure_virtual() triggered."); }
extern "C" void __cxa_throw_bad_array_new_length() { printf("__cxa_throw_bad_array_new_length() triggered."); }
extern "C" void __cxa_free_exception(void *thrown_exception) { printf("__cxa_free_exception( %p ) triggered.", thrown_exception); }
#if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 4)
extern "C" void *__cxa_begin_catch(void *e) throw()
#else
extern "C" void *__cxa_begin_catch(void *e)
#endif
{
printf("__cxa_begin_catch( %p ) triggered.", e);
return (void *)0;
}
extern "C" void __cxa_end_catch() { printf("__cxa_end_catch() triggered."); }
__extension__ typedef int __guard __attribute__((mode(__DI__)));
extern "C" int __cxa_guard_acquire(__guard *g)
{
printf("__cxa_guard_acquire( %p ) triggered.", g);
return !*(char *)(g);
}
extern "C" void __cxa_guard_release(__guard *g)
{
printf("__cxa_guard_release( %p ) triggered.", g);
*(char *)g = 1;
}
extern "C" void __cxa_guard_abort(__guard *g) { printf("__cxa_guard_abort( %p ) triggered.", g); }

1606
UEFI/src/printf.c Normal file

File diff suppressed because it is too large Load Diff

195
UEFI/src/printf.h Normal file
View File

@ -0,0 +1,195 @@
/**
* @author (c) Eyal Rozenberg <eyalroz1@gmx.com>
* 2021-2022, Haifa, Palestine/Israel
* @author (c) Marco Paland (info@paland.com)
* 2014-2019, PALANDesign Hannover, Germany
*
* @note Others have made smaller contributions to this file: see the
* contributors page at https://github.com/eyalroz/printf/graphs/contributors
* or ask one of the authors.
*
* @brief Small stand-alone implementation of the printf family of functions
* (`(v)printf`, `(v)s(n)printf` etc., geared towards use on embedded systems with
* a very limited resources.
*
* @note the implementations are thread-safe; re-entrant; use no functions from
* the standard library; and do not dynamically allocate any memory.
*
* @license The MIT License (MIT)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef PRINTF_H_
#define PRINTF_H_
#include <stdarg.h>
#include <stddef.h>
#ifdef __cplusplus
extern "C"
{
#endif
#ifdef __GNUC__
#define ATTR_PRINTF(one_based_format_index, first_arg) \
__attribute__((format(__printf__, (one_based_format_index), (first_arg))))
#define ATTR_VPRINTF(one_based_format_index) ATTR_PRINTF((one_based_format_index), 0)
#else
#define ATTR_PRINTF((one_based_format_index), (first_arg))
#define ATTR_VPRINTF(one_based_format_index)
#endif
#ifndef PRINTF_ALIAS_STANDARD_FUNCTION_NAMES
#define PRINTF_ALIAS_STANDARD_FUNCTION_NAMES 0
#endif
#if PRINTF_ALIAS_STANDARD_FUNCTION_NAMES
#define printf_ printf
#define sprintf_ sprintf
#define vsprintf_ vsprintf
#define snprintf_ snprintf
#define vsnprintf_ vsnprintf
#define vprintf_ vprintf
#endif
// If you want to include this implementation file directly rather than
// link against, this will let you control the functions' visibility,
// e.g. make them static so as not to clash with other objects also
// using them.
#ifndef PRINTF_VISIBILITY
#define PRINTF_VISIBILITY
#endif
/**
* Prints/send a single character to some opaque output entity
*
* @note This function is not implemented by the library, only declared; you must provide an
* implementation if you wish to use the @ref printf / @ref vprintf function (and possibly
* for linking against the library, if your toolchain does not support discarding unused functions)
*
* @note The output could be as simple as a wrapper for the `write()` system call on a Unix-like
* system, or even libc's @ref putchar , for replicating actual functionality of libc's @ref printf
* function; but on an embedded system it may involve interaction with a special output device,
* like a UART, etc.
*
* @note in libc's @ref putchar, the parameter type is an int; this was intended to support the
* representation of either a proper character or EOF in a variable - but this is really not
* meaningful to pass into @ref putchar and is discouraged today. See further discussion in:
* @link https://stackoverflow.com/q/17452847/1593077
*
* @param c the single character to print
*/
PRINTF_VISIBILITY
void putchar(char c);
/**
* An implementation of the C standard's printf/vprintf
*
* @note you must implement a @ref putchar_ function for using this function - it invokes @ref putchar_
* rather than directly performing any I/O (which insulates it from any dependence on the operating system
* and external libraries).
*
* @param format A string specifying the format of the output, with %-marked specifiers of how to interpret
* additional arguments.
* @param arg Additional arguments to the function, one for each %-specifier in @p format string
* @return The number of characters written into @p s, not counting the terminating null character
*/
///@{
PRINTF_VISIBILITY
int printf_(const char *format, ...) ATTR_PRINTF(1, 2);
PRINTF_VISIBILITY
int vprintf_(const char *format, va_list arg) ATTR_VPRINTF(1);
///@}
/**
* An implementation of the C standard's sprintf/vsprintf
*
* @note For security considerations (the potential for exceeding the buffer bounds), please consider using
* the size-constrained variant, @ref snprintf / @ref vsnprintf , instead.
*
* @param s An array in which to store the formatted string. It must be large enough to fit the formatted
* output!
* @param format A string specifying the format of the output, with %-marked specifiers of how to interpret
* additional arguments.
* @param arg Additional arguments to the function, one for each specifier in @p format
* @return The number of characters written into @p s, not counting the terminating null character
*/
///@{
PRINTF_VISIBILITY
int sprintf_(char *s, const char *format, ...) ATTR_PRINTF(2, 3);
PRINTF_VISIBILITY
int vsprintf_(char *s, const char *format, va_list arg) ATTR_VPRINTF(2);
///@}
/**
* An implementation of the C standard's snprintf/vsnprintf
*
* @param s An array in which to store the formatted string. It must be large enough to fit either the
* entire formatted output, or at least @p n characters. Alternatively, it can be NULL, in which case
* nothing will be printed, and only the number of characters which _could_ have been printed is
* tallied and returned.
* @param n The maximum number of characters to write to the array, including a terminating null character
* @param format A string specifying the format of the output, with %-marked specifiers of how to interpret
* additional arguments.
* @param arg Additional arguments to the function, one for each specifier in @p format
* @return The number of characters that COULD have been written into @p s, not counting the terminating
* null character. A value equal or larger than @p n indicates truncation. Only when the returned value
* is non-negative and less than @p n, the null-terminated string has been fully and successfully printed.
*/
///@{
PRINTF_VISIBILITY
int snprintf_(char *s, size_t count, const char *format, ...) ATTR_PRINTF(3, 4);
PRINTF_VISIBILITY
int vsnprintf_(char *s, size_t count, const char *format, va_list arg) ATTR_VPRINTF(3);
///@}
/**
* printf/vprintf with user-specified output function
*
* An alternative to @ref printf_, in which the output function is specified dynamically
* (rather than @ref putchar_ being used)
*
* @param out An output function which takes one character and a type-erased additional parameters
* @param extra_arg The type-erased argument to pass to the output function @p out with each call
* @param format A string specifying the format of the output, with %-marked specifiers of how to interpret
* additional arguments.
* @param arg Additional arguments to the function, one for each specifier in @p format
* @return The number of characters for which the output f unction was invoked, not counting the terminating null character
*
*/
PRINTF_VISIBILITY
int fctprintf(void (*out)(char c, void *extra_arg), void *extra_arg, const char *format, ...) ATTR_PRINTF(3, 4);
PRINTF_VISIBILITY
int vfctprintf(void (*out)(char c, void *extra_arg), void *extra_arg, const char *format, va_list arg) ATTR_VPRINTF(3);
#if PRINTF_ALIAS_STANDARD_FUNCTION_NAMES
#undef printf_
#undef sprintf_
#undef vsprintf_
#undef snprintf_
#undef vsnprintf_
#undef vprintf_
#endif
#ifdef __cplusplus
}
#endif
#endif // PRINTF_H_

17
UEFI/types.h Normal file
View File

@ -0,0 +1,17 @@
#ifndef LYNX_TYPES_H
#define LYNX_TYPES_H
typedef __UINT8_TYPE__ uint8_t;
typedef __UINT16_TYPE__ uint16_t;
typedef __UINT32_TYPE__ uint32_t;
typedef __UINT64_TYPE__ uint64_t;
typedef __SIZE_TYPE__ size_t;
typedef __UINTPTR_TYPE__ uintptr_t;
#ifndef NULL
#define NULL ((void *)0)
#endif
#define ALIGN_UP(x, align) ((__typeof__(x))(((uint64_t)(x) + ((align)-1)) & (~((align)-1))))
#define ALIGN_DOWN(x, align) ((__typeof__(x))((x) & (~((align)-1))))
#endif // !LYNX_TYPES_H