Kernel/Modules/Intel/Gigabit.cpp
2023-05-20 04:31:14 +03:00

370 lines
9.3 KiB
C++

#include "gigabit.hpp"
#include <net/net.hpp>
#include <debug.h>
#include <pci.hpp>
#include <io.h>
#include "../../DAPI.hpp"
#include "../drv.hpp"
using namespace PCI;
namespace Gigabit
{
KernelAPI KAPI;
PCIDeviceHeader *PCIBaseAddress;
uint32_t CurrentPacket;
BARData BAR;
bool EEPROMAvailable;
uint16_t RXCurrent;
uint16_t TXCurrent;
RXDescriptor *RX[E1000_NUM_RX_DESC];
TXDescriptor *TX[E1000_NUM_TX_DESC];
MediaAccessControl MAC;
InternetProtocol::Version4 IP;
void WriteCMD(uint16_t Address, uint32_t Value)
{
if (BAR.Type == 0)
mmioout32(BAR.MemoryBase + Address, Value);
else
{
outportl(BAR.IOBase, Address);
outportl(BAR.IOBase + 4, Value);
}
}
uint32_t ReadCMD(uint16_t Address)
{
if (BAR.Type == 0)
return mmioin32(BAR.MemoryBase + Address);
else
{
outportl(BAR.IOBase, Address);
return inportl(BAR.IOBase + 0x4);
}
}
uint32_t ReadEEPROM(uint8_t Address)
{
uint16_t Data = 0;
uint32_t temp = 0;
if (EEPROMAvailable)
{
WriteCMD(REG::EEPROM, (1) | ((uint32_t)(Address) << 8));
while (!((temp = ReadCMD(REG::EEPROM)) & (1 << 4)))
;
}
else
{
WriteCMD(REG::EEPROM, (1) | ((uint32_t)(Address) << 2));
while (!((temp = ReadCMD(REG::EEPROM)) & (1 << 1)))
;
}
Data = (uint16_t)((temp >> 16) & 0xFFFF);
return Data;
}
MediaAccessControl GetMAC()
{
MediaAccessControl mac;
if (EEPROMAvailable)
{
uint32_t temp;
temp = ReadEEPROM(0);
mac.Address[0] = temp & 0xff;
mac.Address[1] = (uint8_t)(temp >> 8);
temp = ReadEEPROM(1);
mac.Address[2] = temp & 0xff;
mac.Address[3] = (uint8_t)(temp >> 8);
temp = ReadEEPROM(2);
mac.Address[4] = temp & 0xff;
mac.Address[5] = (uint8_t)(temp >> 8);
}
else
{
uint8_t *BaseMac8 = (uint8_t *)(BAR.MemoryBase + 0x5400);
uint32_t *BaseMac32 = (uint32_t *)(BAR.MemoryBase + 0x5400);
if (BaseMac32[0] != 0)
for (int i = 0; i < 6; i++)
mac.Address[i] = BaseMac8[i];
else
{
error("No MAC address found.");
return MediaAccessControl();
}
}
return mac;
}
void InitializeRX()
{
debug("Initializing RX...");
uintptr_t Ptr = (uintptr_t)KAPI.Memory.RequestPage((((sizeof(RXDescriptor) * E1000_NUM_RX_DESC + 16)) / KAPI.Memory.PageSize) + 1);
for (int i = 0; i < E1000_NUM_RX_DESC; i++)
{
RX[i] = (RXDescriptor *)(Ptr + i * 16);
RX[i]->Address = (uint64_t)(uintptr_t)KAPI.Memory.RequestPage(((8192 + 16) / KAPI.Memory.PageSize) + 1);
RX[i]->Status = 0;
}
WriteCMD(REG::TXDESCLO, (uint32_t)(Ptr >> 32));
WriteCMD(REG::TXDESCHI, (uint32_t)(Ptr & 0xFFFFFFFF));
WriteCMD(REG::RXDESCLO, (uint32_t)Ptr);
WriteCMD(REG::RXDESCHI, 0);
WriteCMD(REG::RXDESCLEN, E1000_NUM_RX_DESC * 16);
WriteCMD(REG::RXDESCHEAD, 0);
WriteCMD(REG::RXDESCTAIL, E1000_NUM_RX_DESC - 1);
RXCurrent = 0;
WriteCMD(REG::RCTRL, RCTL::EN | RCTL::SBP | RCTL::UPE | RCTL::MPE | RCTL::LBM_NONE | RTCL::RDMTS_HALF | RCTL::BAM | RCTL::SECRC | RCTL::BSIZE_8192);
}
void InitializeTX()
{
debug("Initializing TX...");
uintptr_t Ptr = (uintptr_t)KAPI.Memory.RequestPage(((sizeof(TXDescriptor) * E1000_NUM_RX_DESC + 16) / KAPI.Memory.PageSize) + 1);
for (short i = 0; i < E1000_NUM_TX_DESC; i++)
{
TX[i] = (TXDescriptor *)((uintptr_t)Ptr + i * 16);
TX[i]->Address = 0;
TX[i]->Command = 0;
TX[i]->Status = TSTA::DD;
}
WriteCMD(REG::TXDESCHI, (uint32_t)((uint64_t)Ptr >> 32));
WriteCMD(REG::TXDESCLO, (uint32_t)((uint64_t)Ptr & 0xFFFFFFFF));
WriteCMD(REG::TXDESCLEN, E1000_NUM_TX_DESC * 16);
WriteCMD(REG::TXDESCHEAD, 0);
WriteCMD(REG::TXDESCTAIL, 0);
TXCurrent = 0;
WriteCMD(REG::TCTRL, TCTL::EN_ | TCTL::PSP | (15 << TCTL::CT_SHIFT) | (64 << TCTL::COLD_SHIFT) | TCTL::RTLC);
WriteCMD(REG::TCTRL, 0b0110000000000111111000011111010);
WriteCMD(REG::TIPG, 0x0060200A);
}
int DriverEntry(void *Data)
{
if (!Data)
return INVALID_KERNEL_API;
KAPI = *(KernelAPI *)Data;
if (KAPI.Version.Major < 0 || KAPI.Version.Minor < 0 || KAPI.Version.Patch < 0)
return KERNEL_API_VERSION_NOT_SUPPORTED;
return OK;
}
int CallbackHandler(KernelCallback *Data)
{
switch (Data->Reason)
{
case AcknowledgeReason:
{
debug("Kernel acknowledged the driver.");
break;
}
case ConfigurationReason:
{
debug("Driver received configuration data.");
PCIBaseAddress = reinterpret_cast<PCIDeviceHeader *>(Data->RawPtr);
switch (PCIBaseAddress->DeviceID)
{
case 0x100E:
{
trace("Found Intel 82540EM Gigabit Ethernet Controller.");
PCIBaseAddress->Command |= PCI_COMMAND_MASTER | PCI_COMMAND_IO | PCI_COMMAND_MEMORY;
uint32_t PCIBAR0 = ((PCIHeader0 *)PCIBaseAddress)->BAR0;
uint32_t PCIBAR1 = ((PCIHeader0 *)PCIBaseAddress)->BAR1;
BAR.Type = PCIBAR0 & 1;
BAR.IOBase = (uint16_t)(PCIBAR1 & (~3));
BAR.MemoryBase = PCIBAR0 & (~15);
// Detect EEPROM
WriteCMD(REG::EEPROM, 0x1);
for (int i = 0; i < 1000 && !EEPROMAvailable; i++)
if (ReadCMD(REG::EEPROM) & 0x10)
EEPROMAvailable = true;
else
EEPROMAvailable = false;
// Get MAC address
if (!GetMAC().Valid())
return NOT_AVAILABLE;
else
debug("MAC address found.");
MAC = GetMAC();
// Start link
uint32_t cmdret = ReadCMD(REG::CTRL);
WriteCMD(REG::CTRL, cmdret | ECTRL::SLU);
for (int i = 0; i < 0x80; i++)
WriteCMD((uint16_t)(0x5200 + i * 4), 0);
WriteCMD(REG::IMASK, 0x1F6DC);
WriteCMD(REG::IMASK, 0xFF & ~4);
ReadCMD(0xC0);
InitializeRX();
InitializeTX();
return OK;
}
case 0x100F:
{
trace("Found Intel 82545EM Gigabit Ethernet Controller.");
PCIBaseAddress->Command |= PCI_COMMAND_MASTER | PCI_COMMAND_IO | PCI_COMMAND_MEMORY;
uint32_t PCIBAR0 = ((PCIHeader0 *)PCIBaseAddress)->BAR0;
uint32_t PCIBAR1 = ((PCIHeader0 *)PCIBaseAddress)->BAR1;
BAR.Type = PCIBAR0 & 1;
BAR.IOBase = (uint16_t)(PCIBAR1 & (~3));
BAR.MemoryBase = PCIBAR0 & (~15);
// Detect EEPROM
WriteCMD(REG::EEPROM, 0x1);
for (int i = 0; i < 1000 && !EEPROMAvailable; i++)
if (ReadCMD(REG::EEPROM) & 0x10)
EEPROMAvailable = true;
else
EEPROMAvailable = false;
// Get MAC address
if (!GetMAC().Valid())
return NOT_AVAILABLE;
else
debug("MAC address found.");
MAC = GetMAC();
return NOT_IMPLEMENTED;
}
case 0x10D3:
{
trace("Found Intel 82574L Gigabit Ethernet Controller.");
PCIBaseAddress->Command |= PCI_COMMAND_MASTER | PCI_COMMAND_IO | PCI_COMMAND_MEMORY;
uint32_t PCIBAR0 = ((PCIHeader0 *)PCIBaseAddress)->BAR0;
uint32_t PCIBAR1 = ((PCIHeader0 *)PCIBaseAddress)->BAR1;
BAR.Type = PCIBAR0 & 1;
BAR.IOBase = (uint16_t)(PCIBAR1 & (~3));
BAR.MemoryBase = PCIBAR0 & (~15);
// Detect EEPROM
WriteCMD(REG::EEPROM, 0x1);
for (int i = 0; i < 1000 && !EEPROMAvailable; i++)
if (ReadCMD(REG::EEPROM) & 0x10)
EEPROMAvailable = true;
else
EEPROMAvailable = false;
// Get MAC address
if (!GetMAC().Valid())
return NOT_AVAILABLE;
else
debug("MAC address found.");
MAC = GetMAC();
return NOT_IMPLEMENTED;
}
case 0x10EA:
{
fixme("Found Intel I217-LM Gigabit Ethernet Controller.");
return NOT_IMPLEMENTED;
}
case 0x153A:
{
fixme("Found Intel 82577LM Gigabit Ethernet Controller.");
return NOT_IMPLEMENTED;
}
default:
{
error("Unsupported Intel Ethernet Controller.");
return DEVICE_NOT_SUPPORTED;
}
}
return ERROR;
}
case FetchReason:
{
memcpy(Data->NetworkCallback.Fetch.Name, (void *)"Intel Gigabit Ethernet Controller", 34);
Data->NetworkCallback.Fetch.MAC = MAC.ToHex();
break;
}
case SendReason:
{
TX[TXCurrent]->Address = (uint64_t)Data->NetworkCallback.Send.Data;
TX[TXCurrent]->Length = (uint16_t)Data->NetworkCallback.Send.Length;
TX[TXCurrent]->Command = CMD::EOP | CMD::IFCS | CMD::RS;
TX[TXCurrent]->Status = 0;
uint16_t OldTXCurrent = TXCurrent;
TXCurrent = (uint16_t)((TXCurrent + 1) % E1000_NUM_TX_DESC);
WriteCMD(REG::TXDESCTAIL, TXCurrent);
while (!(TX[OldTXCurrent]->Status & 0xFF))
;
break;
}
case StopReason:
{
// Clearing Enable bit in Receive Control Register
uint32_t cmdret = ReadCMD(REG::RCTRL);
WriteCMD(REG::RCTRL, cmdret & ~RCTL::EN);
// Masking Interrupt Mask, Interrupt Throttling Rate & Interrupt Auto-Mask
WriteCMD(REG::IMASK, 0x00000000);
WriteCMD(REG::ITR, 0x00000000);
WriteCMD(REG::IAM, 0x00000000);
// Clearing SLU bit in Device Control Register
cmdret = ReadCMD(REG::CTRL);
WriteCMD(REG::CTRL, cmdret & ~ECTRL::SLU);
// Clear the Interrupt Cause Read register by reading it
ReadCMD(REG::ICR);
// Powering down the device (?)
WriteCMD(REG::CTRL, PCTRL::POWER_DOWN);
/* TODO: Stop link; further testing required */
debug("Driver stopped.");
break;
}
default:
{
warn("Unknown reason.");
break;
}
}
return OK;
}
int InterruptCallback(CPURegisters *)
{
WriteCMD(REG::IMASK, 0x1);
uint32_t status = ReadCMD(0xC0);
UNUSED(status);
while ((RX[RXCurrent]->Status & 0x1))
{
uint8_t *Data = (uint8_t *)RX[RXCurrent]->Address;
uint16_t DataLength = RX[RXCurrent]->Length;
KAPI.Command.Network.ReceivePacket(KAPI.Info.DriverUID, Data, DataLength);
RX[RXCurrent]->Status = 0;
uint16_t OldRXCurrent = RXCurrent;
RXCurrent = (uint16_t)((RXCurrent + 1) % E1000_NUM_RX_DESC);
WriteCMD(REG::RXDESCTAIL, OldRXCurrent);
}
return OK;
}
}