Kernel/Tasking/Task.cpp
2023-04-10 03:11:46 +03:00

897 lines
32 KiB
C++

/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include <task.hpp>
#include <dumper.hpp>
#include <convert.h>
#include <lock.hpp>
#include <printf.h>
#include <smp.hpp>
#include <io.h>
#include "../kernel.h"
#if defined(a64)
#include "../Architecture/amd64/cpu/apic.hpp"
#include "../Architecture/amd64/cpu/gdt.hpp"
#elif defined(a32)
#include "../Architecture/i386/cpu/apic.hpp"
#elif defined(aa64)
#endif
// #define DEBUG_TASKING 1
#ifdef DEBUG_TASKING
#define tskdbg(m, ...) \
debug(m, ##__VA_ARGS__); \
__sync
#else
#define tskdbg(m, ...)
#endif
NewLock(TaskingLock);
namespace Tasking
{
void Task::Schedule()
{
if (!StopScheduler)
TaskingScheduler_OneShot(1);
// APIC::InterruptCommandRegisterLow icr;
// icr.Vector = CPU::x86::IRQ16;
// icr.Level = APIC::APICLevel::Assert;
// ((APIC::APIC *)Interrupts::apic[0])->IPI(GetCurrentCPU()->ID, icr);
}
#if defined(a86)
__naked __used __no_stack_protector NIF void IdleProcessLoop()
{
asmv("IdleLoop:\n"
"hlt\n"
"jmp IdleLoop\n");
#elif defined(aa64)
__used __no_stack_protector NIF void IdleProcessLoop()
{
asmv("IdleLoop:\n"
"wfe\n"
"b IdleLoop\n");
#endif
}
SafeFunction NIF bool Task::InvalidPCB(PCB *pcb)
{
if (!pcb)
return true;
if (pcb >= (PCB *)(UINTPTR_MAX - 0x1ffe)) /* Uninitialized pointers may have uintptr_t max value instead of nullptr. */
return true;
if (pcb < (PCB *)(0x1000)) /* In this section of the memory is reserved by the kernel. */
return true;
if (!Memory::Virtual().Check((void *)pcb)) /* Check if it's mapped. */
return true;
return false;
}
SafeFunction NIF bool Task::InvalidTCB(TCB *tcb)
{
if (!tcb)
return true;
if (tcb >= (TCB *)(UINTPTR_MAX - 0x1ffe)) /* Uninitialized pointers may have uintptr_t max value instead of nullptr. */
return true;
if (tcb < (TCB *)(0x1000)) /* In this section of the memory is reserved by the kernel. */
return true;
if (!Memory::Virtual().Check((void *)tcb)) /* Check if it's mapped. */
return true;
return false;
}
SafeFunction NIF void Task::RemoveThread(TCB *Thread)
{
for (size_t i = 0; i < Thread->Parent->Threads.size(); i++)
if (Thread->Parent->Threads[i] == Thread)
{
trace("Thread \"%s\"(%d) removed from process \"%s\"(%d)",
Thread->Name, Thread->ID, Thread->Parent->Name, Thread->Parent->ID);
// Free memory
delete Thread->Stack, Thread->Stack = nullptr;
delete Thread->Memory, Thread->Memory = nullptr;
SecurityManager.DestroyToken(Thread->Security.UniqueToken);
delete Thread->Parent->Threads[i], Thread->Parent->Threads[i] = nullptr;
// Remove from the list
Thread->Parent->Threads.remove(i);
break;
}
}
SafeFunction NIF void Task::RemoveProcess(PCB *Process)
{
if (Process == nullptr)
return;
if (Process->Status == Terminated)
{
foreach (TCB *thread in Process->Threads)
RemoveThread(thread);
foreach (PCB *process in Process->Children)
RemoveProcess(process);
for (size_t i = 0; i < ListProcess.size(); i++)
{
if (ListProcess[i] == Process)
{
trace("Process \"%s\"(%d) removed from the list", Process->Name, Process->ID);
// Free memory
delete ListProcess[i]->IPC, ListProcess[i]->IPC = nullptr;
delete ListProcess[i]->ELFSymbolTable, ListProcess[i]->ELFSymbolTable = nullptr;
SecurityManager.DestroyToken(ListProcess[i]->Security.UniqueToken);
if (ListProcess[i]->Security.TrustLevel == TaskTrustLevel::User)
KernelAllocator.FreePages((void *)ListProcess[i]->PageTable, TO_PAGES(sizeof(Memory::PageTable4) + 1));
// Remove the process from parent's children list
if (ListProcess[i]->Parent)
for (size_t j = 0; j < ListProcess[i]->Parent->Children.size(); j++)
{
if (ListProcess[i]->Parent->Children[j] == ListProcess[i])
{
ListProcess[i]->Parent->Children.remove(j);
break;
}
}
// Delete process directory
vfs->Delete(ListProcess[i]->ProcessDirectory, true);
// Free memory
delete ListProcess[i], ListProcess[i] = nullptr;
// Remove from the list
ListProcess.remove(i);
break;
}
}
}
else
{
foreach (TCB *thread in Process->Threads)
if (thread->Status == Terminated)
RemoveThread(thread);
}
}
SafeFunction NIF void Task::UpdateUserTime(TaskInfo *Info)
{
// TODO
Info->UserTime++;
}
SafeFunction NIF void Task::UpdateKernelTime(TaskInfo *Info)
{
// TODO
Info->KernelTime++;
}
SafeFunction NIF void Task::UpdateUsage(TaskInfo *Info, int Core)
{
if (Info->Affinity[Core] == true)
{
// TODO: Not working(?)
uint64_t CounterNow = CPU::Counter();
Info->OldUserTime = Info->CurrentUserTime;
Info->OldKernelTime = Info->CurrentKernelTime;
Info->CurrentUserTime = Info->UserTime;
Info->CurrentKernelTime = Info->KernelTime;
Info->Usage[Core] = (Info->CurrentUserTime - Info->OldUserTime) + (Info->CurrentKernelTime - Info->OldKernelTime);
Info->Usage[Core] = (Info->Usage[Core] * 100) / (CounterNow - Info->SpawnTime);
Info->OldUserTime = Info->CurrentUserTime;
Info->OldKernelTime = Info->CurrentKernelTime;
Info->CurrentUserTime = Info->UserTime;
Info->CurrentKernelTime = Info->KernelTime;
}
}
void ThreadDoExit()
{
// TODO: How I can lock the scheduler without causing a deadlock?
CPUData *CPUData = GetCurrentCPU();
CPUData->CurrentThread->Status = TaskStatus::Terminated;
debug("\"%s\"(%d) exited with code: %#lx", CPUData->CurrentThread->Name, CPUData->CurrentThread->ID, CPUData->CurrentThread->ExitCode);
CPU::Halt(true);
}
PCB *Task::GetCurrentProcess() { return GetCurrentCPU()->CurrentProcess.Load(); }
TCB *Task::GetCurrentThread() { return GetCurrentCPU()->CurrentThread.Load(); }
PCB *Task::GetProcessByID(UPID ID)
{
for (size_t i = 0; i < ListProcess.size(); i++)
if (ListProcess[i]->ID == ID)
return ListProcess[i];
return nullptr;
}
TCB *Task::GetThreadByID(UTID ID)
{
for (size_t i = 0; i < ListProcess.size(); i++)
for (size_t j = 0; j < ListProcess[i]->Threads.size(); j++)
if (ListProcess[i]->Threads[j]->ID == ID)
return ListProcess[i]->Threads[j];
return nullptr;
}
void Task::WaitForProcess(PCB *pcb)
{
if (InvalidPCB(pcb))
return;
if (pcb->Status == TaskStatus::UnknownStatus)
return;
debug("Waiting for process \"%s\"(%d)", pcb->Name, pcb->ID);
while (pcb->Status != TaskStatus::Terminated)
CPU::Pause();
}
void Task::WaitForThread(TCB *tcb)
{
if (InvalidTCB(tcb))
return;
if (tcb->Status == TaskStatus::UnknownStatus)
return;
debug("Waiting for thread \"%s\"(%d)", tcb->Name, tcb->ID);
while (tcb->Status != TaskStatus::Terminated)
CPU::Pause();
}
void Task::WaitForProcessStatus(PCB *pcb, TaskStatus status)
{
if (InvalidPCB(pcb))
return;
if (pcb->Status == TaskStatus::UnknownStatus)
return;
debug("Waiting for process \"%s\"(%d) to reach status: %d", pcb->Name, pcb->ID, status);
while (pcb->Status != status)
CPU::Pause();
}
void Task::WaitForThreadStatus(TCB *tcb, TaskStatus status)
{
if (InvalidTCB(tcb))
return;
if (tcb->Status == TaskStatus::UnknownStatus)
return;
debug("Waiting for thread \"%s\"(%d) to reach status: %d", tcb->Name, tcb->ID, status);
while (tcb->Status != status)
CPU::Pause();
}
void Task::Sleep(uint64_t Milliseconds)
{
SmartLock(TaskingLock);
TCB *thread = this->GetCurrentThread();
thread->Status = TaskStatus::Sleeping;
if (thread->Parent->Threads.size() == 1)
thread->Parent->Status = TaskStatus::Sleeping;
thread->Info.SleepUntil = TimeManager->CalculateTarget(Milliseconds);
tskdbg("Thread \"%s\"(%d) is going to sleep until %llu", thread->Name, thread->ID, thread->Info.SleepUntil);
// TaskingScheduler_OneShot(1);
// IRQ16
TaskingLock.Unlock();
#if defined(a86)
asmv("int $0x30"); /* This will trigger the IRQ16 instantly so we won't execute the next instruction */
#elif defined(aa64)
asmv("svc #0x30"); /* This will trigger the IRQ16 instantly so we won't execute the next instruction */
#endif
}
void Task::SignalShutdown()
{
fixme("SignalShutdown()");
// TODO: Implement this
// This should hang until all processes are terminated
}
void Task::CleanupProcessesThread()
{
while (true)
{
this->Sleep(1000);
foreach (auto process in ListProcess)
{
if (InvalidPCB(process))
continue;
RemoveProcess(process);
}
}
}
void Task::RevertProcessCreation(PCB *Process)
{
for (size_t i = 0; i < ListProcess.size(); i++)
{
if (ListProcess[i] == Process)
{
SecurityManager.DestroyToken(Process->Security.UniqueToken);
if (Process->Security.TrustLevel == TaskTrustLevel::User)
KernelAllocator.FreePages((void *)Process->PageTable, TO_PAGES(sizeof(Memory::PageTable4) + 1));
if (Process->Parent)
for (size_t j = 0; j < Process->Parent->Children.size(); j++)
{
if (Process->Parent->Children[j] == Process)
{
Process->Parent->Children.remove(j);
break;
}
}
delete Process->IPC, Process->IPC = nullptr;
delete Process->ELFSymbolTable, Process->ELFSymbolTable = nullptr;
delete Process, Process = nullptr;
ListProcess.remove(i);
NextPID--;
break;
}
}
}
void Task::RevertThreadCreation(TCB *Thread)
{
for (size_t j = 0; j < Thread->Parent->Threads.size(); j++)
{
if (Thread->Parent->Threads[j] == Thread)
{
Thread->Parent->Threads.remove(j);
break;
}
}
delete Thread->Stack, Thread->Stack = nullptr;
delete Thread->Memory, Thread->Memory = nullptr;
SecurityManager.DestroyToken(Thread->Security.UniqueToken);
delete Thread, Thread = nullptr;
NextTID--;
}
TCB *Task::CreateThread(PCB *Parent,
IP EntryPoint,
const char **argv,
const char **envp,
const std::vector<AuxiliaryVector> &auxv,
IPOffset Offset,
TaskArchitecture Architecture,
TaskCompatibility Compatibility)
{
SmartLock(TaskingLock);
TCB *Thread = new TCB;
if (Parent == nullptr)
{
Thread->Parent = this->GetCurrentProcess();
if (Thread->Parent == nullptr)
{
error("Failed to get current process. Thread cannot be created.");
delete Thread;
return nullptr;
}
}
else
Thread->Parent = Parent;
if (InvalidPCB(Parent))
{
error("Parent is invalid");
delete Thread;
return nullptr;
}
Thread->ID = this->NextTID++;
strcpy(Thread->Name, Parent->Name);
Thread->EntryPoint = EntryPoint;
Thread->Offset = Offset;
Thread->ExitCode = 0xdead;
Thread->Status = TaskStatus::Ready;
Thread->Memory = new Memory::MemMgr(Parent->PageTable, Parent->memDirectory);
Thread->FPU = (CPU::x64::FXState *)Thread->Memory->RequestPages(TO_PAGES(sizeof(CPU::x64::FXState) + 1));
memset(Thread->FPU, 0, FROM_PAGES(TO_PAGES(sizeof(CPU::x64::FXState))));
Thread->Security.TrustLevel = Parent->Security.TrustLevel;
Thread->Security.UniqueToken = SecurityManager.CreateToken();
// TODO: Is really a good idea to use the FPU in kernel mode?
Thread->FPU->mxcsr = 0b0001111110000000;
Thread->FPU->mxcsrmask = 0b1111111110111111;
Thread->FPU->fcw = 0b0000001100111111;
CPU::x64::fxrstor(Thread->FPU);
// uint16_t FCW = 0b1100111111;
// asmv("fldcw %0"
// :
// : "m"(FCW)
// : "memory");
// uint32_t MXCSR = 0b1111110000000;
// asmv("ldmxcsr %0"
// :
// : "m"(MXCSR)
// : "memory");
// CPU::x64::fxsave(Thread->FPU);
#if defined(a64)
memset(&Thread->Registers, 0, sizeof(CPU::x64::TrapFrame)); // Just in case
Thread->Registers.rip = (EntryPoint + Offset);
#elif defined(a32)
#elif defined(aa64)
#endif
switch (Parent->Security.TrustLevel)
{
case TaskTrustLevel::System:
warn("Trust level not supported.");
[[fallthrough]];
case TaskTrustLevel::Kernel:
{
Thread->Stack = new Memory::StackGuard(false, Parent->PageTable);
#if defined(a64)
SecurityManager.TrustToken(Thread->Security.UniqueToken, TTL::TrustedByKernel);
Thread->GSBase = CPU::x64::rdmsr(CPU::x64::MSRID::MSR_GS_BASE);
Thread->FSBase = CPU::x64::rdmsr(CPU::x64::MSRID::MSR_FS_BASE);
Thread->Registers.cs = GDT_KERNEL_CODE;
Thread->Registers.ss = GDT_KERNEL_DATA;
Thread->Registers.rflags.AlwaysOne = 1;
Thread->Registers.rflags.IF = 1;
Thread->Registers.rflags.ID = 1;
Thread->Registers.rsp = ((uintptr_t)Thread->Stack->GetStackTop());
POKE(uintptr_t, Thread->Registers.rsp) = (uintptr_t)ThreadDoExit;
#elif defined(a32)
#elif defined(aa64)
#endif
break;
}
case TaskTrustLevel::User:
{
Thread->Stack = new Memory::StackGuard(true, Parent->PageTable);
#if defined(a64)
SecurityManager.TrustToken(Thread->Security.UniqueToken, TTL::Untrusted);
Thread->GSBase = 0;
Thread->FSBase = 0;
Thread->Registers.cs = GDT_USER_CODE;
Thread->Registers.ss = GDT_USER_DATA;
Thread->Registers.rflags.AlwaysOne = 1;
Thread->Registers.rflags.IF = 1;
Thread->Registers.rflags.ID = 1;
Thread->Registers.rsp = ((uintptr_t)Thread->Stack->GetStackTop());
#pragma region
size_t ArgvSize = 0;
if (argv)
while (argv[ArgvSize] != nullptr)
ArgvSize++;
size_t EnvpSize = 0;
if (envp)
while (envp[EnvpSize] != nullptr)
EnvpSize++;
debug("ArgvSize: %d", ArgvSize);
debug("EnvpSize: %d", EnvpSize);
/* https://articles.manugarg.com/aboutelfauxiliaryvectors.html */
/* https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.pdf#figure.3.9 */
// rsp is the top of the stack
char *Stack = (char *)Thread->Stack->GetStackPhysicalTop();
// Temporary stack pointer for strings
char *StackStrings = (char *)Stack;
char *StackStringsVirtual = (char *)Thread->Stack->GetStackTop();
// Store string pointers for later
uintptr_t *ArgvStrings = new uintptr_t[ArgvSize];
uintptr_t *EnvpStrings = new uintptr_t[EnvpSize];
for (size_t i = 0; i < ArgvSize; i++)
{
// Subtract the length of the string and the null terminator
StackStrings -= strlen(argv[i]) + 1;
StackStringsVirtual -= strlen(argv[i]) + 1;
// Store the pointer to the string
ArgvStrings[i] = (uintptr_t)StackStringsVirtual;
// Copy the string to the stack
strcpy(StackStrings, argv[i]);
}
for (size_t i = 0; i < EnvpSize; i++)
{
// Subtract the length of the string and the null terminator
StackStrings -= strlen(envp[i]) + 1;
StackStringsVirtual -= strlen(envp[i]) + 1;
// Store the pointer to the string
EnvpStrings[i] = (uintptr_t)StackStringsVirtual;
// Copy the string to the stack
strcpy(StackStrings, envp[i]);
}
// Align the stack to 16 bytes
StackStrings -= (uintptr_t)StackStrings & 0xF;
// Set "Stack" to the new stack pointer
Stack = (char *)StackStrings;
// If argv and envp sizes are odd then we need to align the stack
Stack -= (ArgvSize + EnvpSize) % 2;
// We need 8 bit pointers for the stack from here
uintptr_t *Stack64 = (uintptr_t *)Stack;
// Store the null terminator
Stack64--;
*Stack64 = AT_NULL;
// auxv_array is initialized with auxv elements. If the array is empty then we add a null terminator
std::vector<AuxiliaryVector> auxv_array = auxv;
if (auxv_array.size() == 0)
auxv_array.push_back({.archaux = {.a_type = AT_NULL, .a_un = {.a_val = 0}}});
// Store auxillary vector
foreach (AuxiliaryVector var in auxv_array)
{
// Subtract the size of the auxillary vector
Stack64 -= sizeof(Elf64_auxv_t) / sizeof(uintptr_t);
// Store the auxillary vector
POKE(Elf64_auxv_t, Stack64) = var.archaux;
// TODO: Store strings to the stack
}
// Store the null terminator
Stack64--;
*Stack64 = AT_NULL;
// Store EnvpStrings[] to the stack
Stack64 -= EnvpSize; // (1 Stack64 = 8 bits; Stack64 = 8 * EnvpSize)
for (size_t i = 0; i < EnvpSize; i++)
{
*(Stack64 + i) = (uintptr_t)EnvpStrings[i];
debug("EnvpStrings[%d]: %#lx", i, EnvpStrings[i]);
}
// Store the null terminator
Stack64--;
*Stack64 = AT_NULL;
// Store ArgvStrings[] to the stack
Stack64 -= ArgvSize; // (1 Stack64 = 8 bits; Stack64 = 8 * ArgvSize)
for (size_t i = 0; i < ArgvSize; i++)
{
*(Stack64 + i) = (uintptr_t)ArgvStrings[i];
debug("ArgvStrings[%d]: %#lx", i, ArgvStrings[i]);
}
// Store the argc
Stack64--;
*Stack64 = ArgvSize;
// Set "Stack" to the new stack pointer
Stack = (char *)Stack64;
/* We need the virtual address but because we are in the kernel we can't use the process page table.
So we modify the physical address and store how much we need to subtract to get the virtual address for RSP. */
uintptr_t SubtractStack = (uintptr_t)Thread->Stack->GetStackPhysicalTop() - (uintptr_t)Stack;
debug("SubtractStack: %#lx", SubtractStack);
// Set the stack pointer to the new stack
Thread->Registers.rsp = ((uintptr_t)Thread->Stack->GetStackTop() - SubtractStack);
delete[] ArgvStrings;
delete[] EnvpStrings;
#ifdef DEBUG
DumpData("Stack Data", (void *)((uintptr_t)Thread->Stack->GetStackPhysicalTop() - (uintptr_t)SubtractStack), SubtractStack);
#endif
Thread->Registers.rdi = (uintptr_t)ArgvSize; // argc
Thread->Registers.rsi = (uintptr_t)(Thread->Registers.rsp + 8); // argv
Thread->Registers.rcx = (uintptr_t)EnvpSize; // envc
Thread->Registers.rdx = (uintptr_t)(Thread->Registers.rsp + 8 + (8 * ArgvSize) + 8); // envp
#pragma endregion
/* We need to leave the libc's crt to make a syscall when the Thread is exited or we are going to get GPF or PF exception. */
Memory::Virtual uva = Memory::Virtual(Parent->PageTable);
if (!uva.Check((void *)Offset, Memory::PTFlag::US))
{
error("Offset is not user accessible");
uva.Map((void *)Offset, (void *)Offset, Memory::PTFlag::RW | Memory::PTFlag::US); // We try one more time.
}
#elif defined(a32)
#elif defined(aa64)
#endif
#ifdef DEBUG_TASKING
DumpData(Thread->Name, Thread->Stack, STACK_SIZE);
#endif
break;
}
default:
{
error("Unknown elevation.");
delete Thread->Stack;
this->NextTID--;
delete Thread;
return nullptr;
}
}
Thread->Info = {};
Thread->Info.SpawnTime = CPU::Counter();
Thread->Info.Year = 0;
Thread->Info.Month = 0;
Thread->Info.Day = 0;
Thread->Info.Hour = 0;
Thread->Info.Minute = 0;
Thread->Info.Second = 0;
for (int i = 0; i < MAX_CPU; i++)
{
Thread->Info.Usage[i] = 0;
Thread->Info.Affinity[i] = true;
}
Thread->Info.Priority = TaskPriority::Normal;
Thread->Info.Architecture = Architecture;
Thread->Info.Compatibility = Compatibility;
#ifdef DEBUG
#ifdef a64
debug("Thread offset is %#lx (EntryPoint: %#lx) => RIP: %#lx", Thread->Offset, Thread->EntryPoint, Thread->Registers.rip);
if (Parent->Security.TrustLevel == TaskTrustLevel::User)
debug("Thread stack region is %#lx-%#lx (U) and rsp is %#lx", Thread->Stack->GetStackBottom(), Thread->Stack->GetStackTop(), Thread->Registers.rsp);
else
debug("Thread stack region is %#lx-%#lx (K) and rsp is %#lx", Thread->Stack->GetStackBottom(), Thread->Stack->GetStackTop(), Thread->Registers.rsp);
#elif defined(a32)
debug("Thread offset is %#lx (EntryPoint: %#lx) => RIP: %#lx", Thread->Offset, Thread->EntryPoint, Thread->Registers.eip);
if (Parent->Security.TrustLevel == TaskTrustLevel::User)
debug("Thread stack region is %#lx-%#lx (U) and rsp is %#lx", Thread->Stack->GetStackBottom(), Thread->Stack->GetStackTop(), Thread->Registers.esp);
else
debug("Thread stack region is %#lx-%#lx (K) and rsp is %#lx", Thread->Stack->GetStackBottom(), Thread->Stack->GetStackTop(), Thread->Registers.esp);
#elif defined(aa64)
#endif
debug("Created thread \"%s\"(%d) in process \"%s\"(%d)",
Thread->Name, Thread->ID,
Thread->Parent->Name, Thread->Parent->ID);
#endif
Parent->Threads.push_back(Thread);
return Thread;
}
PCB *Task::CreateProcess(PCB *Parent,
const char *Name,
TaskTrustLevel TrustLevel, void *Image,
bool DoNotCreatePageTable)
{
SmartLock(TaskingLock);
PCB *Process = new PCB;
Process->ID = this->NextPID++;
strcpy(Process->Name, Name);
if (Parent == nullptr)
Process->Parent = this->GetCurrentProcess();
else
Process->Parent = Parent;
Process->ExitCode = 0xdead;
Process->Status = TaskStatus::Ready;
Process->Security.TrustLevel = TrustLevel;
Process->Security.UniqueToken = SecurityManager.CreateToken();
char ProcFSName[16];
sprintf(ProcFSName, "%ld", Process->ID);
Process->ProcessDirectory = vfs->Create(ProcFSName, VirtualFileSystem::NodeFlags::DIRECTORY, ProcFS);
Process->memDirectory = vfs->Create("mem", VirtualFileSystem::NodeFlags::DIRECTORY, Process->ProcessDirectory);
Process->IPC = new InterProcessCommunication::IPC((void *)Process);
switch (TrustLevel)
{
case TaskTrustLevel::System:
warn("Trust level not supported.");
[[fallthrough]];
case TaskTrustLevel::Kernel:
{
SecurityManager.TrustToken(Process->Security.UniqueToken, TTL::TrustedByKernel);
#if defined(a64)
if (!DoNotCreatePageTable)
Process->PageTable = (Memory::PageTable4 *)CPU::x64::readcr3().raw;
#elif defined(a32)
#elif defined(aa64)
#endif
break;
}
case TaskTrustLevel::User:
{
SecurityManager.TrustToken(Process->Security.UniqueToken, TTL::Untrusted);
#if defined(a64)
if (!DoNotCreatePageTable)
{
Process->PageTable = (Memory::PageTable4 *)KernelAllocator.RequestPages(TO_PAGES(sizeof(Memory::PageTable4) + 1));
memcpy(Process->PageTable, (void *)KernelPageTable, PAGE_SIZE);
}
#elif defined(a32)
#elif defined(aa64)
#endif
break;
}
default:
{
error("Unknown elevation.");
this->NextPID--;
delete Process;
return nullptr;
}
}
Process->Info = {};
Process->Info.SpawnTime = CPU::Counter();
Process->Info.Year = 0;
Process->Info.Month = 0;
Process->Info.Day = 0;
Process->Info.Hour = 0;
Process->Info.Minute = 0;
Process->Info.Second = 0;
for (int i = 0; i < MAX_CPU; i++)
{
Process->Info.Usage[i] = 0;
Process->Info.Affinity[i] = true;
}
Process->Info.Priority = TaskPriority::Normal;
debug("Process page table: %#lx", Process->PageTable);
debug("Created process \"%s\"(%d) in process \"%s\"(%d)",
Process->Name, Process->ID,
Parent ? Process->Parent->Name : "None",
Parent ? Process->Parent->ID : 0);
if (Image)
{
// TODO: Check if it's ELF
Process->ELFSymbolTable = new SymbolResolver::Symbols((uintptr_t)Image);
}
else
debug("No image provided for process \"%s\"(%d)", Process->Name, Process->ID);
if (Parent)
Parent->Children.push_back(Process);
ListProcess.push_back(Process);
return Process;
}
Task::Task(const IP EntryPoint) : Interrupts::Handler(16) /* IRQ16 */
{
SmartLock(TaskingLock);
#if defined(a64)
// Map the IRQ16 to the first CPU.
((APIC::APIC *)Interrupts::apic[0])->RedirectIRQ(0, CPU::x86::IRQ16 - CPU::x86::IRQ0, 1);
#elif defined(a32)
#elif defined(aa64)
#endif
KPrint("Starting Tasking With Instruction Pointer: %p (\e666666%s\eCCCCCC)", EntryPoint, KernelSymbolTable->GetSymbolFromAddress(EntryPoint));
TaskingLock.Unlock();
#if defined(a64)
TaskArchitecture Arch = TaskArchitecture::x64;
#elif defined(a32)
TaskArchitecture Arch = TaskArchitecture::x32;
#elif defined(aa64)
TaskArchitecture Arch = TaskArchitecture::ARM64;
#endif
PCB *kproc = CreateProcess(nullptr, "Kernel", TaskTrustLevel::Kernel);
TCB *kthrd = CreateThread(kproc, EntryPoint, nullptr, nullptr, std::vector<AuxiliaryVector>(), 0, Arch);
kthrd->Rename("Main Thread");
debug("Created Kernel Process: %s and Thread: %s", kproc->Name, kthrd->Name);
TaskingLock.Lock(__FUNCTION__);
bool MONITORSupported = false;
if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_AMD) == 0)
{
CPU::x86::AMD::CPUID0x00000001 cpuid;
cpuid.Get();
MONITORSupported = cpuid.ECX.MONITOR;
}
else if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_INTEL) == 0)
{
CPU::x86::Intel::CPUID0x00000001 cpuid;
cpuid.Get();
MONITORSupported = cpuid.ECX.MONITOR;
}
if (MONITORSupported)
{
trace("CPU has MONITOR/MWAIT support.");
}
if (!CPU::Interrupts(CPU::Check))
{
error("Interrupts are not enabled.");
CPU::Interrupts(CPU::Enable);
}
TaskingLock.Unlock();
IdleProcess = CreateProcess(nullptr, (char *)"Idle", TaskTrustLevel::Kernel);
for (int i = 0; i < SMP::CPUCores; i++)
{
IdleThread = CreateThread(IdleProcess, reinterpret_cast<uintptr_t>(IdleProcessLoop));
char IdleName[16];
sprintf(IdleName, "Idle Thread %d", i);
IdleThread->Rename(IdleName);
IdleThread->SetPriority(Idle);
for (int j = 0; j < MAX_CPU; j++)
IdleThread->Info.Affinity[j] = false;
IdleThread->Info.Affinity[i] = true;
}
debug("Tasking Started");
#if defined(a64)
((APIC::Timer *)Interrupts::apicTimer[0])->OneShot(CPU::x86::IRQ16, 100);
/* FIXME: The kernel is not ready for multi-core tasking. */
// for (int i = 1; i < SMP::CPUCores; i++)
// {
// ((APIC::Timer *)Interrupts::apicTimer[i])->OneShot(CPU::x86::IRQ16, 100);
// APIC::InterruptCommandRegisterLow icr;
// icr.Vector = CPU::x86::IRQ16;
// icr.Level = APIC::APICLevel::Assert;
// ((APIC::APIC *)Interrupts::apic[0])->IPI(i, icr);
// }
#elif defined(a32)
#elif defined(aa64)
#endif
}
Task::~Task()
{
debug("Destructor called");
{
SmartLock(TaskingLock);
foreach (PCB *Process in ListProcess)
{
foreach (TCB *Thread in Process->Threads)
{
if (Thread == GetCurrentCPU()->CurrentThread.Load() ||
Thread == CleanupThread)
continue;
this->KillThread(Thread, 0xFFFF);
}
if (Process == GetCurrentCPU()->CurrentProcess.Load())
continue;
this->KillProcess(Process, 0xFFFF);
}
}
while (ListProcess.size() > 0)
{
trace("Waiting for %d processes to terminate", ListProcess.size());
int NotTerminated = 0;
foreach (PCB *Process in ListProcess)
{
debug("Process %s(%d) is still running (or waiting to be removed status %#lx)", Process->Name, Process->ID, Process->Status);
if (Process->Status == TaskStatus::Terminated)
continue;
NotTerminated++;
}
if (NotTerminated == 1)
break;
TaskingScheduler_OneShot(100);
}
trace("Tasking stopped");
}
}