Kernel/Architecture/amd64/cpu/AdvancedProgrammableInterruptController.cpp
2023-04-10 03:11:46 +03:00

404 lines
13 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "apic.hpp"
#include <memory.hpp>
#include <uart.hpp>
#include <lock.hpp>
#include <cpu.hpp>
#include <smp.hpp>
#include <io.h>
#include "../../../kernel.h"
#include "../acpi.hpp"
NewLock(APICLock);
using namespace CPU::x64;
using namespace CPU::x86;
/*
In constructor APIC::APIC::APIC(int):
warning: left shift count >= width of type
| APICBaseAddress = BaseStruct.ApicBaseLo << 12u | BaseStruct.ApicBaseHi << 32u;
| ~~~~~~~~~~~~~~~~~~~~~~^~~~~~
*/
#pragma GCC diagnostic ignored "-Wshift-count-overflow"
namespace APIC
{
// headache
// https://www.amd.com/system/files/TechDocs/24593.pdf
// https://www.naic.edu/~phil/software/intel/318148.pdf
uint32_t APIC::Read(uint32_t Register)
{
#ifdef DEBUG
if (Register != APIC_ICRLO &&
Register != APIC_ICRHI &&
Register != APIC_ID)
debug("APIC::Read(%#lx) [x2=%d]", Register, x2APICSupported ? 1 : 0);
#endif
if (x2APICSupported)
{
if (Register != APIC_ICRHI)
return s_cst(uint32_t, rdmsr((Register >> 4) + 0x800));
else
return s_cst(uint32_t, rdmsr(0x30 + 0x800));
}
else
{
CPU::MemBar::Barrier();
uint32_t ret = *((volatile uint32_t *)((uintptr_t)APICBaseAddress + Register));
CPU::MemBar::Barrier();
return ret;
}
}
void APIC::Write(uint32_t Register, uint32_t Value)
{
#ifdef DEBUG
if (Register != APIC_EOI &&
Register != APIC_TDCR &&
Register != APIC_TIMER &&
Register != APIC_TICR &&
Register != APIC_ICRLO &&
Register != APIC_ICRHI)
debug("APIC::Write(%#lx, %#lx) [x2=%d]", Register, Value, x2APICSupported ? 1 : 0);
#endif
if (x2APICSupported)
{
if (Register != APIC_ICRHI)
wrmsr((Register >> 4) + 0x800, Value);
else
wrmsr(MSR_X2APIC_ICR, Value);
}
else
{
CPU::MemBar::Barrier();
*((volatile uint32_t *)(((uintptr_t)APICBaseAddress) + Register)) = Value;
CPU::MemBar::Barrier();
}
}
void APIC::IOWrite(uint64_t Base, uint32_t Register, uint32_t Value)
{
debug("APIC::IOWrite(%#lx, %#lx, %#lx)", Base, Register, Value);
CPU::MemBar::Barrier();
*((volatile uint32_t *)(((uintptr_t)Base))) = Register;
CPU::MemBar::Barrier();
*((volatile uint32_t *)(((uintptr_t)Base + 16))) = Value;
CPU::MemBar::Barrier();
}
uint32_t APIC::IORead(uint64_t Base, uint32_t Register)
{
debug("APIC::IORead(%#lx, %#lx)", Base, Register);
CPU::MemBar::Barrier();
*((volatile uint32_t *)(((uintptr_t)Base))) = Register;
CPU::MemBar::Barrier();
uint32_t ret = *((volatile uint32_t *)(((uintptr_t)Base + 16)));
CPU::MemBar::Barrier();
return ret;
}
void APIC::EOI() { this->Write(APIC_EOI, 0); }
void APIC::WaitForIPI()
{
InterruptCommandRegisterLow icr = {.raw = 0};
do
{
icr.raw = this->Read(APIC_ICRLO);
} while (icr.DeliveryStatus != Idle);
}
void APIC::IPI(int CPU, InterruptCommandRegisterLow icr)
{
SmartCriticalSection(APICLock);
if (x2APICSupported)
{
wrmsr(MSR_X2APIC_ICR, s_cst(uint32_t, icr.raw));
this->WaitForIPI();
}
else
{
this->Write(APIC_ICRHI, (CPU << 24));
this->Write(APIC_ICRLO, s_cst(uint32_t, icr.raw));
this->WaitForIPI();
}
}
void APIC::SendInitIPI(int CPU)
{
SmartCriticalSection(APICLock);
if (x2APICSupported)
{
InterruptCommandRegisterLow icr = {.raw = 0};
icr.DeliveryMode = INIT;
icr.Level = Assert;
wrmsr(MSR_X2APIC_ICR, s_cst(uint32_t, icr.raw));
this->WaitForIPI();
}
else
{
InterruptCommandRegisterLow icr = {.raw = 0};
icr.DeliveryMode = INIT;
icr.Level = Assert;
this->Write(APIC_ICRHI, (CPU << 24));
this->Write(APIC_ICRLO, s_cst(uint32_t, icr.raw));
this->WaitForIPI();
}
}
void APIC::SendStartupIPI(int CPU, uint64_t StartupAddress)
{
SmartCriticalSection(APICLock);
if (x2APICSupported)
{
InterruptCommandRegisterLow icr = {.raw = 0};
icr.Vector = s_cst(uint8_t, StartupAddress >> 12);
icr.DeliveryMode = Startup;
icr.Level = Assert;
wrmsr(MSR_X2APIC_ICR, s_cst(uint32_t, icr.raw));
this->WaitForIPI();
}
else
{
InterruptCommandRegisterLow icr = {.raw = 0};
icr.Vector = s_cst(uint8_t, StartupAddress >> 12);
icr.DeliveryMode = Startup;
icr.Level = Assert;
this->Write(APIC_ICRHI, (CPU << 24));
this->Write(APIC_ICRLO, s_cst(uint32_t, icr.raw));
this->WaitForIPI();
}
}
uint32_t APIC::IOGetMaxRedirect(uint32_t APICID)
{
uint32_t TableAddress = (this->IORead((((ACPI::MADT *)PowerManager->GetMADT())->ioapic[APICID]->Address), GetIOAPICVersion));
return ((IOAPICVersion *)&TableAddress)->MaximumRedirectionEntry;
}
void APIC::RawRedirectIRQ(uint16_t Vector, uint32_t GSI, uint16_t Flags, int CPU, int Status)
{
uint64_t Value = Vector;
int64_t IOAPICTarget = -1;
for (uint64_t i = 0; ((ACPI::MADT *)PowerManager->GetMADT())->ioapic[i] != 0; i++)
if (((ACPI::MADT *)PowerManager->GetMADT())->ioapic[i]->GSIBase <= GSI)
if (((ACPI::MADT *)PowerManager->GetMADT())->ioapic[i]->GSIBase + IOGetMaxRedirect(s_cst(uint32_t, i)) > GSI)
{
IOAPICTarget = i;
break;
}
if (IOAPICTarget == -1)
{
error("No ISO table found for I/O APIC");
return;
}
// TODO: IOAPICRedirectEntry Entry = {.raw = 0};
if (Flags & ActiveHighLow)
Value |= (1 << 13);
if (Flags & EdgeLevel)
Value |= (1 << 15);
if (!Status)
Value |= (1 << 16);
Value |= (((uintptr_t)CPU) << 56);
uint32_t IORegister = (GSI - ((ACPI::MADT *)PowerManager->GetMADT())->ioapic[IOAPICTarget]->GSIBase) * 2 + 16;
this->IOWrite(((ACPI::MADT *)PowerManager->GetMADT())->ioapic[IOAPICTarget]->Address, IORegister, (uint32_t)Value);
this->IOWrite(((ACPI::MADT *)PowerManager->GetMADT())->ioapic[IOAPICTarget]->Address, IORegister + 1, (uint32_t)(Value >> 32));
}
void APIC::RedirectIRQ(int CPU, uint16_t IRQ, int Status)
{
for (uint64_t i = 0; i < ((ACPI::MADT *)PowerManager->GetMADT())->iso.size(); i++)
if (((ACPI::MADT *)PowerManager->GetMADT())->iso[i]->IRQSource == IRQ)
{
debug("[ISO %d] Mapping to source IRQ%#d GSI:%#lx on CPU %d",
i, ((ACPI::MADT *)PowerManager->GetMADT())->iso[i]->IRQSource, ((ACPI::MADT *)PowerManager->GetMADT())->iso[i]->GSI, CPU);
this->RawRedirectIRQ(((ACPI::MADT *)PowerManager->GetMADT())->iso[i]->IRQSource + 0x20, ((ACPI::MADT *)PowerManager->GetMADT())->iso[i]->GSI, ((ACPI::MADT *)PowerManager->GetMADT())->iso[i]->Flags, CPU, Status);
return;
}
debug("Mapping IRQ%d on CPU %d", IRQ, CPU);
this->RawRedirectIRQ(IRQ + 0x20, IRQ, 0, CPU, Status);
}
void APIC::RedirectIRQs(int CPU)
{
SmartCriticalSection(APICLock);
debug("Redirecting IRQs...");
for (uint8_t i = 0; i < 16; i++)
this->RedirectIRQ(CPU, i, 1);
debug("Redirecting IRQs completed.");
}
APIC::APIC(int Core)
{
SmartCriticalSection(APICLock);
APIC_BASE BaseStruct = {.raw = rdmsr(MSR_APIC_BASE)};
uint64_t BaseLow = BaseStruct.ApicBaseLo;
uint64_t BaseHigh = BaseStruct.ApicBaseHi;
this->APICBaseAddress = BaseLow << 12u | BaseHigh << 32u;
trace("APIC Address: %#lx", this->APICBaseAddress);
Memory::Virtual().Map((void *)this->APICBaseAddress, (void *)this->APICBaseAddress, Memory::PTFlag::RW | Memory::PTFlag::PCD);
bool x2APICSupported = false;
if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_AMD) == 0)
{
CPU::x86::AMD::CPUID0x00000001 cpuid;
cpuid.Get();
if (cpuid.ECX.x2APIC)
{
// x2APICSupported = cpuid.ECX.x2APIC;
fixme("x2APIC is supported");
}
}
else if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_INTEL) == 0)
{
CPU::x86::Intel::CPUID0x00000001 cpuid;
cpuid.Get();
if (cpuid.ECX.x2APIC)
{
// x2APICSupported = cpuid.ECX.x2APIC;
fixme("x2APIC is supported");
}
}
if (x2APICSupported)
{
this->x2APICSupported = true;
wrmsr(MSR_APIC_BASE, (rdmsr(MSR_APIC_BASE) | (1 << 11)) & ~(1 << 10));
BaseStruct.EN = 1;
wrmsr(MSR_APIC_BASE, BaseStruct.raw);
}
else
{
BaseStruct.EN = 1;
wrmsr(MSR_APIC_BASE, BaseStruct.raw);
}
this->Write(APIC_TPR, 0x0);
// this->Write(APIC_SVR, this->Read(APIC_SVR) | 0x100); // 0x1FF or 0x100 ? on https://wiki.osdev.org/APIC is 0x100
if (!this->x2APICSupported)
{
this->Write(APIC_DFR, 0xF0000000);
this->Write(APIC_LDR, this->Read(APIC_ID));
}
ACPI::MADT *madt = (ACPI::MADT *)PowerManager->GetMADT();
for (size_t i = 0; i < madt->nmi.size(); i++)
{
if (madt->nmi[i]->processor != 0xFF && Core != madt->nmi[i]->processor)
return;
uint32_t nmi = 0x402;
if (madt->nmi[i]->flags & 2)
nmi |= 1 << 13;
if (madt->nmi[i]->flags & 8)
nmi |= 1 << 15;
if (madt->nmi[i]->lint == 0)
this->Write(APIC_LINT0, nmi);
else if (madt->nmi[i]->lint == 1)
this->Write(APIC_LINT1, nmi);
}
// Setup the spurrious interrupt vector
Spurious Spurious = {.raw = this->Read(APIC_SVR)};
Spurious.Vector = IRQ223; // TODO: Should I map the IRQ to something?
Spurious.Software = 1;
this->Write(APIC_SVR, s_cst(uint32_t, Spurious.raw));
static int once = 0;
if (!once++)
{
// Disable PIT
outb(0x43, 0x28);
outb(0x40, 0x0);
// Disable PIC
outb(0x21, 0xFF);
outb(0xA1, 0xFF);
}
}
APIC::~APIC() {}
void Timer::OnInterruptReceived(TrapFrame *Frame) { UNUSED(Frame); }
void Timer::OneShot(uint32_t Vector, uint64_t Miliseconds)
{
SmartCriticalSection(APICLock);
LVTTimer timer = {.raw = 0};
timer.Vector = s_cst(uint8_t, Vector);
timer.TimerMode = 0;
if (strcmp(CPU::Hypervisor(), x86_CPUID_VENDOR_TCG) != 0)
this->lapic->Write(APIC_TDCR, DivideBy128);
else
this->lapic->Write(APIC_TDCR, DivideBy16);
this->lapic->Write(APIC_TICR, s_cst(uint32_t, Ticks * Miliseconds));
this->lapic->Write(APIC_TIMER, s_cst(uint32_t, timer.raw));
}
Timer::Timer(APIC *apic) : Interrupts::Handler(0) /* IRQ0 */
{
SmartCriticalSection(APICLock);
this->lapic = apic;
LVTTimerDivide Divider = DivideBy16;
trace("Initializing APIC timer on CPU %d", GetCurrentCPU()->ID);
this->lapic->Write(APIC_TDCR, Divider);
this->lapic->Write(APIC_TICR, 0xFFFFFFFF);
TimeManager->Sleep(1);
// Mask the timer
this->lapic->Write(APIC_TIMER, 0x10000 /* LVTTimer.Mask flag */);
Ticks = 0xFFFFFFFF - this->lapic->Read(APIC_TCCR);
// Config for IRQ0 timer
LVTTimer timer = {.raw = 0};
timer.Vector = IRQ0;
timer.Mask = Unmasked;
timer.TimerMode = LVTTimerMode::OneShot;
// Initialize APIC timer
this->lapic->Write(APIC_TDCR, Divider);
this->lapic->Write(APIC_TICR, s_cst(uint32_t, Ticks));
this->lapic->Write(APIC_TIMER, s_cst(uint32_t, timer.raw));
trace("%d APIC Timer %d ticks in.", GetCurrentCPU()->ID, Ticks);
KPrint("APIC Timer: \e8888FF%ld\eCCCCCC ticks.", Ticks);
}
Timer::~Timer()
{
}
}