Kernel/exec/elf/elf_loader.cpp
2024-11-19 05:10:38 +02:00

928 lines
27 KiB
C++

/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include <exec.hpp>
#include <memory.hpp>
#include <lock.hpp>
#include <msexec.h>
#include <rand.hpp>
#include <cwalk.h>
#include <elf.h>
#include <abi.h>
#include "../../kernel.h"
using namespace Tasking;
using namespace vfs;
namespace Execute
{
void ELFObject::GenerateAuxiliaryVector_x86_32(Memory::VirtualMemoryArea *vma,
FileNode *fd,
Elf32_Ehdr ELFHeader,
uint32_t EntryPoint,
uint32_t BaseAddress)
{
assert(!"Function not implemented");
}
void ELFObject::GenerateAuxiliaryVector_x86_64(Memory::VirtualMemoryArea *vma,
FileNode *fd,
Elf64_Ehdr ELFHeader,
uint64_t EntryPoint,
uint64_t BaseAddress)
{
#if defined(a64)
char *aux_platform = (char *)vma->RequestPages(1, true); /* TODO: 4KiB is too much for this */
strcpy(aux_platform, "x86_64");
void *execfn_str = vma->RequestPages(TO_PAGES(fd->Path.size() + 1), true);
strcpy((char *)execfn_str, fd->Path.c_str());
void *at_random = vma->RequestPages(1, true);
*(uint64_t *)at_random = Random::rand16();
Elfauxv.push_back({.archaux = {.a_type = AT_NULL, .a_un = {.a_val = 0}}});
Elfauxv.push_back({.archaux = {.a_type = AT_PLATFORM, .a_un = {.a_val = (uint64_t)aux_platform}}});
Elfauxv.push_back({.archaux = {.a_type = AT_EXECFN, .a_un = {.a_val = (uint64_t)execfn_str}}});
// AT_HWCAP2 26
Elfauxv.push_back({.archaux = {.a_type = AT_RANDOM, .a_un = {.a_val = (uint64_t)at_random}}});
Elfauxv.push_back({.archaux = {.a_type = AT_SECURE, .a_un = {.a_val = (uint64_t)0}}}); /* FIXME */
Elfauxv.push_back({.archaux = {.a_type = AT_EGID, .a_un = {.a_val = (uint64_t)0}}}); /* FIXME */
Elfauxv.push_back({.archaux = {.a_type = AT_GID, .a_un = {.a_val = (uint64_t)0}}}); /* FIXME */
Elfauxv.push_back({.archaux = {.a_type = AT_EUID, .a_un = {.a_val = (uint64_t)0}}}); /* FIXME */
Elfauxv.push_back({.archaux = {.a_type = AT_UID, .a_un = {.a_val = (uint64_t)0}}}); /* FIXME */
Elfauxv.push_back({.archaux = {.a_type = AT_ENTRY, .a_un = {.a_val = (uint64_t)EntryPoint}}});
// AT_FLAGS 8
Elfauxv.push_back({.archaux = {.a_type = AT_BASE, .a_un = {.a_val = (uint64_t)BaseAddress}}});
if (ELFProgramHeaders)
{
Elfauxv.push_back({.archaux = {.a_type = AT_PHNUM, .a_un = {.a_val = (uint64_t)ELFHeader.e_phnum}}});
Elfauxv.push_back({.archaux = {.a_type = AT_PHENT, .a_un = {.a_val = (uint64_t)ELFHeader.e_phentsize}}});
Elfauxv.push_back({.archaux = {.a_type = AT_PHDR, .a_un = {.a_val = (uint64_t)ELFProgramHeaders}}});
}
// AT_CLKTCK 17
Elfauxv.push_back({.archaux = {.a_type = AT_PAGESZ, .a_un = {.a_val = (uint64_t)PAGE_SIZE}}});
// AT_HWCAP 16
// AT_SYSINFO_EHDR 33
// AT_MINSIGSTKSZ 51
#ifdef DEBUG
foreach (auto var in Elfauxv)
{
debug("auxv: %ld %#lx",
var.archaux.a_type,
var.archaux.a_un.a_val);
}
#endif
#endif
}
void ELFObject::LoadExec_x86_32(FileNode *, PCB *)
{
assert(!"Function not implemented");
}
void ELFObject::LoadExec_x86_64(FileNode *fd, PCB *TargetProcess)
{
#if defined(a64)
std::vector<Elf64_Phdr> PhdrINTERP = ELFGetSymbolType_x86_64(fd, PT_INTERP);
foreach (auto Interp in PhdrINTERP)
{
std::string interpreterPath;
interpreterPath.resize(256);
fd->Read(interpreterPath.data(), 256, Interp.p_offset);
debug("Interpreter: %s", interpreterPath.c_str());
FileNode *ifd = fs->GetByPath(interpreterPath.c_str(), TargetProcess->Info.RootNode);
if (ifd == nullptr)
{
warn("Failed to open interpreter file: %s", interpreterPath.c_str());
continue;
}
else
{
if (GetBinaryType(interpreterPath) != BinTypeELF)
{
warn("Interpreter %s is not an ELF file", interpreterPath.c_str());
continue;
}
if (LoadInterpreter(ifd, TargetProcess))
{
/* FIXME: specify argv[1] as the location for the interpreter */
debug("Interpreter loaded successfully");
return;
}
}
}
Elf64_Ehdr ELFHeader{};
fd->Read(&ELFHeader, sizeof(Elf64_Ehdr), 0);
uintptr_t EntryPoint = ELFHeader.e_entry;
debug("Entry point is %#lx", EntryPoint);
Memory::Virtual vmm(TargetProcess->PageTable);
Memory::VirtualMemoryArea *vma = TargetProcess->vma;
debug("Target process page table is %#lx", TargetProcess->PageTable);
/* Copy segments into memory */
{
Elf64_Phdr ProgramBreakHeader{};
Elf64_Phdr ProgramHeader;
for (Elf64_Half i = 0; i < ELFHeader.e_phnum; i++)
{
fd->Read(&ProgramHeader, sizeof(Elf64_Phdr), ELFHeader.e_phoff + (i * sizeof(Elf64_Phdr)));
switch (ProgramHeader.p_type)
{
case PT_LOAD:
{
if (ProgramHeader.p_memsz == 0)
continue;
void *pAddr = vma->RequestPages(TO_PAGES(ProgramHeader.p_memsz), true);
void *vAddr = (void *)ALIGN_DOWN(ProgramHeader.p_vaddr, ProgramHeader.p_align);
uintptr_t SegDestOffset = ProgramHeader.p_vaddr - uintptr_t(vAddr);
vmm.Map(vAddr, pAddr,
ALIGN_UP(ProgramHeader.p_memsz, ProgramHeader.p_align),
Memory::RW | Memory::US);
debug("Mapped %#lx to %#lx (%ld bytes)",
vAddr, pAddr, ProgramHeader.p_memsz);
debug("Segment Offset is %#lx", SegDestOffset);
debug("Copying PT_LOAD to p: %#lx-%#lx; v: %#lx-%#lx (%ld file bytes, %ld mem bytes)",
uintptr_t(pAddr) + SegDestOffset,
uintptr_t(pAddr) + SegDestOffset + ProgramHeader.p_memsz,
ProgramHeader.p_vaddr,
ProgramHeader.p_vaddr + ProgramHeader.p_memsz,
ProgramHeader.p_filesz, ProgramHeader.p_memsz);
if (ProgramHeader.p_filesz > 0)
{
debug("%d %#lx %d", ProgramHeader.p_offset, (uint8_t *)pAddr + SegDestOffset, ProgramHeader.p_filesz);
fd->Read((uint8_t *)pAddr + SegDestOffset, ProgramHeader.p_filesz, ProgramHeader.p_offset);
}
if (ProgramHeader.p_memsz - ProgramHeader.p_filesz > 0)
{
void *zAddr = (void *)(uintptr_t(pAddr) + SegDestOffset + ProgramHeader.p_filesz);
debug("Zeroing %d bytes at %#lx",
ProgramHeader.p_memsz - ProgramHeader.p_filesz, zAddr);
memset(zAddr, 0, ProgramHeader.p_memsz - ProgramHeader.p_filesz);
}
ProgramBreakHeader = ProgramHeader;
break;
}
case PT_NOTE:
{
Elf64_Nhdr NoteHeader;
fd->Read(&NoteHeader, sizeof(Elf64_Nhdr), ProgramHeader.p_offset);
switch (NoteHeader.n_type)
{
case NT_PRSTATUS:
{
Elf64_Prstatus prstatus;
fd->Read(&prstatus, sizeof(Elf64_Prstatus), ProgramHeader.p_offset + sizeof(Elf64_Nhdr));
debug("PRSTATUS: %#lx", prstatus.pr_reg[0]);
break;
}
case NT_PRPSINFO:
{
Elf64_Prpsinfo prpsinfo;
fd->Read(&prpsinfo, sizeof(Elf64_Prpsinfo), ProgramHeader.p_offset + sizeof(Elf64_Nhdr));
debug("PRPSINFO: %s", prpsinfo.pr_fname);
break;
}
case NT_PLATFORM:
{
char platform[256];
fd->Read(&platform, sizeof(platform), ProgramHeader.p_offset + sizeof(Elf64_Nhdr));
debug("PLATFORM: %s", platform);
break;
}
case NT_AUXV:
{
Elf64_auxv_t auxv;
fd->Read(&auxv, sizeof(Elf64_auxv_t), ProgramHeader.p_offset + sizeof(Elf64_Nhdr));
debug("AUXV: %#lx", auxv.a_un.a_val);
break;
}
default:
{
fixme("Unhandled note type: %#lx", NoteHeader.n_type);
break;
}
}
break;
}
case PT_TLS:
{
size_t tlsSize = ProgramHeader.p_memsz;
debug("TLS Size: %ld (%ld pages)",
tlsSize, TO_PAGES(tlsSize));
void *tlsMemory = vma->RequestPages(TO_PAGES(tlsSize));
fd->Read(tlsMemory, tlsSize, ProgramHeader.p_offset);
TargetProcess->TLS = {
.pBase = uintptr_t(tlsMemory),
.vBase = ProgramHeader.p_vaddr,
.Align = ProgramHeader.p_align,
.Size = ProgramHeader.p_memsz,
.fSize = ProgramHeader.p_filesz,
};
break;
}
case PT_PHDR:
{
ELFProgramHeaders = (void *)ProgramHeader.p_vaddr;
debug("ELFProgramHeaders: %#lx", ELFProgramHeaders);
break;
}
case 0x6474E550: /* PT_GNU_EH_FRAME */
{
fixme("PT_GNU_EH_FRAME");
break;
}
case 0x6474e551: /* PT_GNU_STACK */
{
fixme("PT_GNU_STACK");
break;
}
case 0x6474e552: /* PT_GNU_RELRO */
{
fixme("PT_GNU_RELRO");
break;
}
case 0x6474e553: /* PT_GNU_PROPERTY */
{
fixme("PT_GNU_PROPERTY");
break;
}
case PT_INTERP:
break;
default:
{
fixme("Unhandled program header type: %#lx",
ProgramHeader.p_type);
break;
}
}
}
if (!ELFProgramHeaders)
fixme("ELFProgramHeaders is null");
/* Set program break */
uintptr_t ProgramBreak = ROUND_UP(ProgramBreakHeader.p_vaddr +
ProgramBreakHeader.p_memsz,
PAGE_SIZE);
TargetProcess->ProgramBreak->InitBrk(ProgramBreak);
}
debug("Entry Point: %#lx", EntryPoint);
this->GenerateAuxiliaryVector_x86_64(vma, fd, ELFHeader,
EntryPoint, 0);
this->ip = EntryPoint;
this->IsElfValid = true;
#endif
}
void ELFObject::LoadDyn_x86_32(FileNode *, PCB *)
{
assert(!"Function not implemented");
}
void ELFObject::LoadDyn_x86_64(FileNode *fd, PCB *TargetProcess)
{
#if defined(a64)
std::vector<Elf64_Phdr> PhdrINTERP = ELFGetSymbolType_x86_64(fd, PT_INTERP);
foreach (auto Interp in PhdrINTERP)
{
std::string interpreterPath;
interpreterPath.resize(256);
fd->Read(interpreterPath.data(), 256, Interp.p_offset);
debug("Interpreter: %s", (const char *)interpreterPath.c_str());
FileNode *ifd = fs->GetByPath(interpreterPath.c_str(), TargetProcess->Info.RootNode);
if (ifd == nullptr)
{
warn("Failed to open interpreter file: %s", interpreterPath.c_str());
continue;
}
else
{
debug("ifd: %p, interpreter: %s", ifd, interpreterPath.c_str());
if (GetBinaryType(interpreterPath) != BinTypeELF)
{
warn("Interpreter %s is not an ELF file", interpreterPath.c_str());
continue;
}
if (LoadInterpreter(ifd, TargetProcess))
{
debug("Interpreter loaded successfully");
return;
}
}
}
Elf64_Ehdr ELFHeader{};
fd->Read(&ELFHeader, sizeof(Elf64_Ehdr), 0);
uintptr_t EntryPoint = ELFHeader.e_entry;
debug("Entry point is %#lx", EntryPoint);
Memory::Virtual vmm(TargetProcess->PageTable);
Memory::VirtualMemoryArea *vma = TargetProcess->vma;
uintptr_t BaseAddress = 0;
/* Copy segments into memory */
{
Elf64_Phdr ProgramBreakHeader{};
Elf64_Phdr ProgramHeader;
size_t SegmentsSize = 0;
for (Elf64_Half i = 0; i < ELFHeader.e_phnum; i++)
{
fd->Read(&ProgramHeader, sizeof(Elf64_Phdr), ELFHeader.e_phoff + (i * sizeof(Elf64_Phdr)));
if (ProgramHeader.p_type == PT_LOAD ||
ProgramHeader.p_type == PT_DYNAMIC)
{
if (SegmentsSize < ProgramHeader.p_vaddr + ProgramHeader.p_memsz)
{
SegmentsSize = ProgramHeader.p_vaddr + ProgramHeader.p_memsz;
ProgramBreakHeader = ProgramHeader;
}
}
}
debug("SegmentsSize: %#lx", SegmentsSize);
/* TODO: Check if this is correct and/or it needs more
complex calculations & allocations */
void *SegmentsAddress = vma->RequestPages(TO_PAGES(SegmentsSize) + 1, true);
BaseAddress = (uintptr_t)SegmentsAddress;
debug("BaseAddress: %#lx, End: %#lx (%#lx)", BaseAddress,
BaseAddress + FROM_PAGES(TO_PAGES(SegmentsSize)),
SegmentsSize);
for (Elf64_Half i = 0; i < ELFHeader.e_phnum; i++)
{
fd->Read(&ProgramHeader, sizeof(Elf64_Phdr), ELFHeader.e_phoff + (i * sizeof(Elf64_Phdr)));
switch (ProgramHeader.p_type)
{
case PT_LOAD:
{
/* Because this is ET_DYN, we can load the segments
anywhere we want. */
uintptr_t SegmentDestination = BaseAddress + ProgramHeader.p_vaddr;
if (ProgramHeader.p_memsz == 0)
continue;
debug("Copying PT_LOAD to %#lx-%#lx (%ld file bytes, %ld mem bytes)",
SegmentDestination, SegmentDestination + ProgramHeader.p_memsz,
ProgramHeader.p_filesz, ProgramHeader.p_memsz);
if (ProgramHeader.p_filesz > 0)
{
fd->Read(SegmentDestination, ProgramHeader.p_filesz, ProgramHeader.p_offset);
}
if (ProgramHeader.p_memsz - ProgramHeader.p_filesz > 0)
{
void *zAddr = (void *)(SegmentDestination + ProgramHeader.p_filesz);
memset(zAddr, 0, ProgramHeader.p_memsz - ProgramHeader.p_filesz);
}
break;
}
case PT_DYNAMIC:
{
/* PT_DYNAMIC contains the dynamic linking information for the
executable or shared library. */
uintptr_t DynamicSegmentDestination = BaseAddress + ProgramHeader.p_vaddr;
if (ProgramHeader.p_memsz == 0)
continue;
debug("Copying PT_DYNAMIC to %#lx-%#lx (%ld file bytes, %ld mem bytes)",
DynamicSegmentDestination, DynamicSegmentDestination + ProgramHeader.p_memsz,
ProgramHeader.p_filesz, ProgramHeader.p_memsz);
if (ProgramHeader.p_filesz > 0)
{
fd->Read(DynamicSegmentDestination, ProgramHeader.p_filesz, ProgramHeader.p_offset);
}
if (ProgramHeader.p_memsz - ProgramHeader.p_filesz > 0)
{
void *zAddr = (void *)(DynamicSegmentDestination + ProgramHeader.p_filesz);
memset(zAddr, 0, ProgramHeader.p_memsz - ProgramHeader.p_filesz);
}
break;
}
case PT_PHDR:
{
ELFProgramHeaders = (void *)(BaseAddress + ProgramHeader.p_vaddr);
debug("ELFProgramHeaders: %#lx", ELFProgramHeaders);
break;
}
case 0x6474E550: /* PT_GNU_EH_FRAME */
{
fixme("PT_GNU_EH_FRAME");
break;
}
case 0x6474e551: /* PT_GNU_STACK */
{
fixme("PT_GNU_STACK");
break;
}
case 0x6474e552: /* PT_GNU_RELRO */
{
fixme("PT_GNU_RELRO");
break;
}
case 0x6474e553: /* PT_GNU_PROPERTY */
{
fixme("PT_GNU_PROPERTY");
break;
}
case PT_INTERP:
break;
default:
{
fixme("Unhandled program header type: %#lx",
ProgramHeader.p_type);
break;
}
}
}
if (!ELFProgramHeaders)
ELFProgramHeaders = (void *)(BaseAddress + ELFHeader.e_phoff);
/* Set program break */
uintptr_t ProgramBreak = ROUND_UP(BaseAddress +
ProgramBreakHeader.p_vaddr +
ProgramBreakHeader.p_memsz,
PAGE_SIZE);
TargetProcess->ProgramBreak->InitBrk(ProgramBreak);
}
EntryPoint += BaseAddress;
debug("The new ep is %#lx", EntryPoint);
// std::vector<Elf64_Dyn> JmpRel = ELFGetDynamicTag_x86_64(fd, DT_JMPREL);
// std::vector<Elf64_Dyn> SymTab = ELFGetDynamicTag_x86_64(fd, DT_SYMTAB);
// std::vector<Elf64_Dyn> StrTab = ELFGetDynamicTag_x86_64(fd, DT_STRTAB);
// std::vector<Elf64_Dyn> RelaDyn = ELFGetDynamicTag_x86_64(fd, DT_RELA);
// std::vector<Elf64_Dyn> RelaDynSize = ELFGetDynamicTag_x86_64(fd, DT_RELASZ);
// size_t JmpRelSize = JmpRel.size();
// size_t SymTabSize = SymTab.size();
// size_t StrTabSize = StrTab.size();
// size_t RelaDynSize_v = RelaDyn.size();
// if (JmpRelSize < 1)
// {
// debug("No DT_JMPREL");
// }
// if (SymTabSize < 1)
// {
// debug("No DT_SYMTAB");
// }
// if (StrTabSize < 1)
// {
// debug("No DT_STRTAB");
// }
// if (RelaDynSize_v < 1)
// {
// debug("No DT_RELA");
// }
// if (RelaDynSize[0].d_un.d_val < 1)
// {
// debug("DT_RELASZ is < 1");
// }
// if (JmpRelSize > 0 && SymTabSize > 0 && StrTabSize > 0)
// {
// debug("JmpRel: %#lx, SymTab: %#lx, StrTab: %#lx",
// JmpRel[0].d_un.d_ptr, SymTab[0].d_un.d_ptr,
// StrTab[0].d_un.d_ptr);
// Elf64_Rela *_JmpRel = (Elf64_Rela *)((uintptr_t)BaseAddress + JmpRel[0].d_un.d_ptr);
// Elf64_Sym *_SymTab = (Elf64_Sym *)((uintptr_t)BaseAddress + SymTab[0].d_un.d_ptr);
// char *_DynStr = (char *)((uintptr_t)BaseAddress + StrTab[0].d_un.d_ptr);
// Elf64_Rela *_RelaDyn = (Elf64_Rela *)((uintptr_t)BaseAddress + RelaDyn[0].d_un.d_ptr);
// Elf64_Shdr shdr;
// for (Elf64_Half i = 0; i < ELFHeader.e_shnum; i++)
// {
// fd->Read(&shdr, sizeof(Elf64_Shdr), ELFHeader.e_shoff + i * sizeof(Elf64_Shdr));
// char sectionName[32];
// Elf64_Shdr n_shdr;
// fd->Read(&n_shdr, sizeof(Elf64_Shdr), ELFHeader.e_shoff + ELFHeader.e_shstrndx * sizeof(Elf64_Shdr));
// fd->Read(sectionName, sizeof(sectionName), n_shdr.sh_offset + shdr.sh_name);
// debug("shdr: %s", sectionName);
// if (strcmp(sectionName, ".rela.plt") == 0)
// {
// // .rela.plt
// // R_X86_64_JUMP_SLOT
// Elf64_Xword numEntries = shdr.sh_size / shdr.sh_entsize;
// for (Elf64_Xword i = 0; i < numEntries; i++)
// {
// Elf64_Addr *GOTEntry = (Elf64_Addr *)(shdr.sh_addr +
// BaseAddress +
// i * sizeof(Elf64_Addr));
// Elf64_Rela *Rel = _JmpRel + i;
// Elf64_Xword RelType = ELF64_R_TYPE(Rel->r_info);
// switch (RelType)
// {
// case R_X86_64_JUMP_SLOT:
// {
// Elf64_Xword SymIndex = ELF64_R_SYM(Rel->r_info);
// Elf64_Sym *Sym = _SymTab + SymIndex;
// if (Sym->st_name)
// {
// char *SymName = _DynStr + Sym->st_name;
// debug("SymName: %s", SymName);
// Elf64_Sym LibSym = ELFLookupSymbol(fd, SymName);
// if (LibSym.st_value)
// {
// *GOTEntry = (Elf64_Addr)(BaseAddress + LibSym.st_value);
// debug("GOT[%ld](%#lx): %#lx",
// i, uintptr_t(GOTEntry) - BaseAddress,
// *GOTEntry);
// }
// }
// continue;
// }
// default:
// {
// fixme("Unhandled relocation type: %#lx", RelType);
// break;
// }
// }
// }
// }
// else if (strcmp(sectionName, ".rela.dyn") == 0)
// {
// // .rela.dyn
// // R_X86_64_RELATIVE
// // R_X86_64_GLOB_DAT
// if (RelaDynSize_v < 1 || RelaDynSize[0].d_un.d_val < 1)
// continue;
// Elf64_Xword numRelaDynEntries = RelaDynSize[0].d_un.d_val / sizeof(Elf64_Rela);
// for (Elf64_Xword i = 0; i < numRelaDynEntries; i++)
// {
// Elf64_Rela *Rel = _RelaDyn + i;
// Elf64_Addr *GOTEntry = (Elf64_Addr *)(Rel->r_offset + BaseAddress);
// Elf64_Xword RelType = ELF64_R_TYPE(Rel->r_info);
// switch (RelType)
// {
// case R_X86_64_RELATIVE:
// {
// *GOTEntry = (Elf64_Addr)(BaseAddress + Rel->r_addend);
// debug("GOT[%ld](%#lx): %#lx (R_X86_64_RELATIVE)",
// i, uintptr_t(GOTEntry) - BaseAddress,
// *GOTEntry);
// break;
// }
// case R_X86_64_GLOB_DAT:
// {
// Elf64_Xword SymIndex = ELF64_R_SYM(Rel->r_info);
// Elf64_Sym *Sym = _SymTab + SymIndex;
// if (Sym->st_name)
// {
// char *SymName = _DynStr + Sym->st_name;
// debug("SymName: %s", SymName);
// Elf64_Sym LibSym = ELFLookupSymbol(fd, SymName);
// if (LibSym.st_value)
// {
// *GOTEntry = (Elf64_Addr)(BaseAddress + LibSym.st_value);
// debug("GOT[%ld](%#lx): %#lx (R_X86_64_GLOB_DAT)",
// i, uintptr_t(GOTEntry) - BaseAddress,
// *GOTEntry);
// }
// }
// break;
// }
// default:
// {
// fixme("Unhandled relocation type: %#lx", RelType);
// break;
// }
// }
// }
// }
// else if (strcmp(sectionName, ".dynsym") == 0)
// {
// // .dynsym
// // STT_OBJECT
// Elf64_Sym *SymArray = (Elf64_Sym *)(shdr.sh_addr + BaseAddress);
// Elf64_Xword numEntries = shdr.sh_size / shdr.sh_entsize;
// debug("start %#lx (off %#lx), entries %ld",
// SymArray, shdr.sh_addr, numEntries);
// for (Elf64_Xword j = 0; j < numEntries; j++)
// {
// Elf64_Sym Sym = SymArray[j];
// if (Sym.st_shndx == SHN_UNDEF)
// continue;
// if (Sym.st_value == 0)
// continue;
// unsigned char SymType = ELF64_ST_TYPE(Sym.st_info);
// if (SymType == STT_OBJECT)
// {
// Elf64_Addr *GOTEntry = (Elf64_Addr *)(Sym.st_value + BaseAddress);
// *GOTEntry = (Elf64_Addr)(BaseAddress + Sym.st_value);
// debug("%ld: \"%s\" %#lx -> %#lx", j,
// _DynStr + Sym.st_name,
// uintptr_t(GOTEntry) - BaseAddress,
// *GOTEntry);
// }
// }
// }
// else if (strcmp(sectionName, ".symtab") == 0)
// {
// // .symtab
// // STT_OBJECT
// Elf64_Xword numEntries = shdr.sh_size / shdr.sh_entsize;
// Elf64_Sym *SymArray = new Elf64_Sym[numEntries];
// fd->Read(SymArray, shdr.sh_size, shdr.sh_offset);
// debug("start %#lx (off %#lx), entries %ld",
// SymArray, shdr.sh_addr, numEntries);
// for (Elf64_Xword j = 0; j < numEntries; j++)
// {
// Elf64_Sym Sym = SymArray[j];
// if (Sym.st_shndx == SHN_UNDEF)
// continue;
// if (Sym.st_value == 0)
// continue;
// unsigned char SymType = ELF64_ST_TYPE(Sym.st_info);
// if (SymType == STT_OBJECT)
// {
// Elf64_Addr *GOTEntry = (Elf64_Addr *)(Sym.st_value + BaseAddress);
// *GOTEntry = (Elf64_Addr)(BaseAddress + Sym.st_value);
// debug("%ld: \"<fixme>\" %#lx -> %#lx", j,
// /*_DynStr + Sym.st_name,*/
// uintptr_t(GOTEntry) - BaseAddress,
// *GOTEntry);
// }
// }
// delete[] SymArray;
// }
// // if (shdr.sh_type == SHT_PROGBITS &&
// // (shdr.sh_flags & SHF_WRITE) &&
// // (shdr.sh_flags & SHF_ALLOC))
// }
// }
/* ------------------------------------------------------------------------ */
debug("Entry Point: %#lx", EntryPoint);
this->GenerateAuxiliaryVector_x86_64(vma, fd, ELFHeader,
EntryPoint, BaseAddress);
this->ip = EntryPoint;
this->IsElfValid = true;
#endif
}
bool ELFObject::LoadInterpreter(FileNode *fd, PCB *TargetProcess)
{
Elf32_Ehdr ELFHeader;
fd->Read(&ELFHeader, sizeof(Elf32_Ehdr), 0);
switch (ELFHeader.e_type)
{
case ET_REL:
{
fixme("ET_REL not implemented");
break;
}
case ET_EXEC:
{
switch (ELFHeader.e_machine)
{
case EM_386:
this->LoadExec_x86_32(fd, TargetProcess);
return true;
case EM_X86_64:
this->LoadExec_x86_64(fd, TargetProcess);
return true;
case EM_ARM:
error("ARM is not supported yet!");
break;
case EM_AARCH64:
error("ARM64 is not supported yet!");
break;
default:
error("Unknown architecture: %d", ELFHeader.e_machine);
break;
}
break;
}
case ET_DYN:
{
switch (ELFHeader.e_machine)
{
case EM_386:
this->LoadDyn_x86_32(fd, TargetProcess);
return true;
case EM_X86_64:
this->LoadDyn_x86_64(fd, TargetProcess);
return true;
case EM_ARM:
error("ARM is not supported yet!");
break;
case EM_AARCH64:
error("ARM64 is not supported yet!");
break;
default:
error("Unknown architecture: %d", ELFHeader.e_machine);
break;
}
break;
}
case ET_CORE:
{
fixme("ET_CORE not implemented");
break;
}
case ET_NONE:
default:
{
error("Unknown ELF Type: %d", ELFHeader.e_type);
break;
}
}
return false;
}
ELFObject::ELFObject(std::string AbsolutePath,
PCB *TargetProcess,
const char **argv,
const char **envp)
{
if (GetBinaryType(AbsolutePath) != BinaryType::BinTypeELF)
{
error("%s is not an ELF file or is invalid.", AbsolutePath.c_str());
return;
}
FileNode *fd = fs->GetByPath(AbsolutePath.c_str(), TargetProcess->Info.RootNode);
if (fd == nullptr)
{
error("Failed to open %s, errno: %d", AbsolutePath.c_str(), fd);
return;
}
debug("Opened %s", AbsolutePath.c_str());
int argc = 0;
int envc = 0;
while (argv[argc] != nullptr)
argc++;
while (envp[envc] != nullptr)
envc++;
Elf32_Ehdr ELFHeader{};
fd->Read(&ELFHeader, sizeof(Elf32_Ehdr), 0);
std::vector<Elf64_Phdr> PhdrINTERP = ELFGetSymbolType_x86_64(fd, PT_INTERP);
const char *ElfInterpPath = nullptr;
if (!PhdrINTERP.empty() && ELFHeader.e_type == ET_DYN)
{
ElfInterpPath = new char[256];
fd->Read(ElfInterpPath, 256, PhdrINTERP.front().p_offset);
debug("Interpreter: %s", ElfInterpPath);
argc++;
}
// ELFargv = new const char *[argc + 2];
size_t argv_size = argc + 2 * sizeof(char *);
ELFargv = (const char **)TargetProcess->vma->RequestPages(TO_PAGES(argv_size));
int interAdd = 0;
if (ElfInterpPath)
{
size_t interp_size = strlen(ElfInterpPath) + 1;
ELFargv[0] = (const char *)TargetProcess->vma->RequestPages(TO_PAGES(interp_size));
strcpy((char *)ELFargv[0], ElfInterpPath);
delete[] ElfInterpPath;
interAdd++;
}
for (int i = interAdd; i < argc; i++)
{
assert(argv[i - interAdd] != nullptr);
size_t arg_size = strlen(argv[i - interAdd]) + 1;
ELFargv[i] = (const char *)TargetProcess->vma->RequestPages(TO_PAGES(arg_size));
strcpy((char *)ELFargv[i], argv[i - interAdd]);
}
ELFargv[argc] = nullptr;
// ELFenvp = new const char *[envc + 1];
size_t envp_size = envc + 1 * sizeof(char *);
ELFenvp = (const char **)TargetProcess->vma->RequestPages(TO_PAGES(envp_size));
for (int i = 0; i < envc; i++)
{
assert(envp[i] != nullptr);
size_t env_size = strlen(envp[i]) + 1;
ELFenvp[i] = (const char *)TargetProcess->vma->RequestPages(TO_PAGES(env_size));
strcpy((char *)ELFenvp[i], envp[i]);
}
ELFenvp[envc] = nullptr;
switch (ELFHeader.e_type)
{
case ET_REL:
{
fixme("ET_REL not implemented");
break;
}
case ET_EXEC:
{
switch (ELFHeader.e_machine)
{
case EM_386:
this->LoadExec_x86_32(fd, TargetProcess);
break;
case EM_X86_64:
this->LoadExec_x86_64(fd, TargetProcess);
break;
case EM_ARM:
error("ARM is not supported yet!");
break;
case EM_AARCH64:
error("ARM64 is not supported yet!");
break;
default:
error("Unknown architecture: %d", ELFHeader.e_machine);
break;
}
break;
}
case ET_DYN:
{
switch (ELFHeader.e_machine)
{
case EM_386:
this->LoadDyn_x86_32(fd, TargetProcess);
break;
case EM_X86_64:
this->LoadDyn_x86_64(fd, TargetProcess);
break;
case EM_ARM:
error("ARM is not supported yet!");
break;
case EM_AARCH64:
error("ARM64 is not supported yet!");
break;
default:
error("Unknown architecture: %d", ELFHeader.e_machine);
break;
}
break;
}
case ET_CORE:
{
fixme("ET_CORE not implemented");
break;
}
case ET_NONE:
default:
{
error("Unknown ELF Type: %d", ELFHeader.e_type);
break;
}
}
}
ELFObject::~ELFObject()
{
}
}