Files
.github
.vscode
Architecture
Core
Crash
Screens
CrashDetails.cpp
CrashHandler.cpp
KBDrv.cpp
SFrame.cpp
UserHandler.cpp
chfcts.hpp
Driver
Interrupts
Memory
Video
CPU.cpp
Debugger.cpp
Disk.cpp
Lock.cpp
PeripheralComponentInterconnect.cpp
Power.cpp
README.md
Random.cpp
StackGuard.cpp
Symbols.cpp
SystemManagementBIOS.cpp
Time.cpp
Timer.cpp
UndefinedBehaviorSanitization.c
UniversalAsynchronousReceiverTransmitter.cpp
crashhandler.hpp
smbios.hpp
ubsan.h
Execute
FileSystem
Files
GUI
Library
Network
Profiling
Recovery
SystemCalls
Tasking
Tests
include
.gitignore
DAPI.hpp
Doxyfile
Fex.hpp
KConfig.cpp
KThread.cpp
Kernel.cpp
LICENSE
Makefile
README.md
dump.sh
kernel.h
syscalls.h
Kernel/Core/Crash/UserHandler.cpp
2022-12-21 00:43:51 +02:00

351 lines
17 KiB
C++

#include "../crashhandler.hpp"
#include "chfcts.hpp"
#include <display.hpp>
#include <printf.h>
#include <debug.h>
#include <smp.hpp>
#include <cpu.hpp>
#if defined(__amd64__)
#include "../../Architecture/amd64/cpu/gdt.hpp"
#elif defined(__i386__)
#elif defined(__aarch64__)
#endif
#include "../../kernel.h"
static const char *PageFaultDescriptions[8] = {
"Supervisory process tried to read a non-present page entry\n",
"Supervisory process tried to read a page and caused a protection fault\n",
"Supervisory process tried to write to a non-present page entry\n",
"Supervisory process tried to write a page and caused a protection fault\n",
"User process tried to read a non-present page entry\n",
"User process tried to read a page and caused a protection fault\n",
"User process tried to write to a non-present page entry\n",
"User process tried to write a page and caused a protection fault\n"};
SafeFunction void UserModeExceptionHandler(CHArchTrapFrame *Frame)
{
CriticalSection cs;
debug("Interrupts? %s.", cs.IsInterruptsEnabled() ? "Yes" : "No");
fixme("Handling user mode exception");
TaskManager->GetCurrentThread()->Status = Tasking::TaskStatus::Stopped;
CPUData *CurCPU = GetCurrentCPU();
{
CPU::x64::CR0 cr0 = CPU::x64::readcr0();
CPU::x64::CR2 cr2 = CPU::x64::readcr2();
CPU::x64::CR3 cr3 = CPU::x64::readcr3();
CPU::x64::CR4 cr4 = CPU::x64::readcr4();
CPU::x64::CR8 cr8 = CPU::x64::readcr8();
CPU::x64::EFER efer;
efer.raw = CPU::x64::rdmsr(CPU::x64::MSR_EFER);
error("Technical Informations on CPU %lld:", CurCPU->ID);
uintptr_t ds;
#if defined(__amd64__)
asmv("mov %%ds, %0"
: "=r"(ds));
#elif defined(__i386__)
asmv("mov %%ds, %0"
: "=r"(ds));
#elif defined(__aarch64__)
#endif
error("FS=%#llx GS=%#llx SS=%#llx CS=%#llx DS=%#llx",
CPU::x64::rdmsr(CPU::x64::MSR_FS_BASE), CPU::x64::rdmsr(CPU::x64::MSR_GS_BASE),
Frame->ss, Frame->cs, ds);
#if defined(__amd64__)
error("R8=%#llx R9=%#llx R10=%#llx R11=%#llx", Frame->r8, Frame->r9, Frame->r10, Frame->r11);
error("R12=%#llx R13=%#llx R14=%#llx R15=%#llx", Frame->r12, Frame->r13, Frame->r14, Frame->r15);
error("RAX=%#llx RBX=%#llx RCX=%#llx RDX=%#llx", Frame->rax, Frame->rbx, Frame->rcx, Frame->rdx);
error("RSI=%#llx RDI=%#llx RBP=%#llx RSP=%#llx", Frame->rsi, Frame->rdi, Frame->rbp, Frame->rsp);
error("RIP=%#llx RFL=%#llx INT=%#llx ERR=%#llx EFER=%#llx", Frame->rip, Frame->rflags.raw, Frame->InterruptNumber, Frame->ErrorCode, efer.raw);
#elif defined(__i386__)
error("EAX=%#llx EBX=%#llx ECX=%#llx EDX=%#llx", Frame->eax, Frame->ebx, Frame->ecx, Frame->edx);
error("ESI=%#llx EDI=%#llx EBP=%#llx ESP=%#llx", Frame->esi, Frame->edi, Frame->ebp, Frame->esp);
error("EIP=%#llx EFL=%#llx INT=%#llx ERR=%#llx EFER=%#llx", Frame->eip, Frame->eflags.raw, Frame->InterruptNumber, Frame->ErrorCode, efer.raw);
#elif defined(__aarch64__)
#endif
error("CR0=%#llx CR2=%#llx CR3=%#llx CR4=%#llx CR8=%#llx", cr0.raw, cr2.raw, cr3.raw, cr4.raw, cr8.raw);
error("CR0: PE:%s MP:%s EM:%s TS:%s ET:%s NE:%s WP:%s AM:%s NW:%s CD:%s PG:%s R0:%#x R1:%#x R2:%#x",
cr0.PE ? "True " : "False", cr0.MP ? "True " : "False", cr0.EM ? "True " : "False", cr0.TS ? "True " : "False",
cr0.ET ? "True " : "False", cr0.NE ? "True " : "False", cr0.WP ? "True " : "False", cr0.AM ? "True " : "False",
cr0.NW ? "True " : "False", cr0.CD ? "True " : "False", cr0.PG ? "True " : "False",
cr0.Reserved0, cr0.Reserved1, cr0.Reserved2);
error("CR2: PFLA: %#llx",
cr2.PFLA);
error("CR3: PWT:%s PCD:%s PDBR:%#llx",
cr3.PWT ? "True " : "False", cr3.PCD ? "True " : "False", cr3.PDBR);
error("CR4: VME:%s PVI:%s TSD:%s DE:%s PSE:%s PAE:%s MCE:%s PGE:%s PCE:%s UMIP:%s OSFXSR:%s OSXMMEXCPT:%s LA57:%s VMXE:%s SMXE:%s PCIDE:%s OSXSAVE:%s SMEP:%s SMAP:%s PKE:%s R0:%#x R1:%#x R2:%#x",
cr4.VME ? "True " : "False", cr4.PVI ? "True " : "False", cr4.TSD ? "True " : "False", cr4.DE ? "True " : "False",
cr4.PSE ? "True " : "False", cr4.PAE ? "True " : "False", cr4.MCE ? "True " : "False", cr4.PGE ? "True " : "False",
cr4.PCE ? "True " : "False", cr4.UMIP ? "True " : "False", cr4.OSFXSR ? "True " : "False", cr4.OSXMMEXCPT ? "True " : "False",
cr4.LA57 ? "True " : "False", cr4.VMXE ? "True " : "False", cr4.SMXE ? "True " : "False", cr4.PCIDE ? "True " : "False",
cr4.OSXSAVE ? "True " : "False", cr4.SMEP ? "True " : "False", cr4.SMAP ? "True " : "False", cr4.PKE ? "True " : "False",
cr4.Reserved0, cr4.Reserved1, cr4.Reserved2);
error("CR8: TPL:%d", cr8.TPL);
#if defined(__amd64__)
error("RFL: CF:%s PF:%s AF:%s ZF:%s SF:%s TF:%s IF:%s DF:%s OF:%s IOPL:%s NT:%s RF:%s VM:%s AC:%s VIF:%s VIP:%s ID:%s AlwaysOne:%d R0:%#x R1:%#x R2:%#x R3:%#x",
Frame->rflags.CF ? "True " : "False", Frame->rflags.PF ? "True " : "False", Frame->rflags.AF ? "True " : "False", Frame->rflags.ZF ? "True " : "False",
Frame->rflags.SF ? "True " : "False", Frame->rflags.TF ? "True " : "False", Frame->rflags.IF ? "True " : "False", Frame->rflags.DF ? "True " : "False",
Frame->rflags.OF ? "True " : "False", Frame->rflags.IOPL ? "True " : "False", Frame->rflags.NT ? "True " : "False", Frame->rflags.RF ? "True " : "False",
Frame->rflags.VM ? "True " : "False", Frame->rflags.AC ? "True " : "False", Frame->rflags.VIF ? "True " : "False", Frame->rflags.VIP ? "True " : "False",
Frame->rflags.ID ? "True " : "False", Frame->rflags.AlwaysOne,
Frame->rflags.Reserved0, Frame->rflags.Reserved1, Frame->rflags.Reserved2, Frame->rflags.Reserved3);
#elif defined(__i386__)
error("EFL: CF:%s PF:%s AF:%s ZF:%s SF:%s TF:%s IF:%s DF:%s OF:%s IOPL:%s NT:%s RF:%s VM:%s AC:%s VIF:%s VIP:%s ID:%s AlwaysOne:%d R0:%#x R1:%#x R2:%#x",
Frame->eflags.CF ? "True " : "False", Frame->eflags.PF ? "True " : "False", Frame->eflags.AF ? "True " : "False", Frame->eflags.ZF ? "True " : "False",
Frame->eflags.SF ? "True " : "False", Frame->eflags.TF ? "True " : "False", Frame->eflags.IF ? "True " : "False", Frame->eflags.DF ? "True " : "False",
Frame->eflags.OF ? "True " : "False", Frame->eflags.IOPL ? "True " : "False", Frame->eflags.NT ? "True " : "False", Frame->eflags.RF ? "True " : "False",
Frame->eflags.VM ? "True " : "False", Frame->eflags.AC ? "True " : "False", Frame->eflags.VIF ? "True " : "False", Frame->eflags.VIP ? "True " : "False",
Frame->eflags.ID ? "True " : "False", Frame->eflags.AlwaysOne,
Frame->eflags.Reserved0, Frame->eflags.Reserved1, Frame->eflags.Reserved2);
#elif defined(__aarch64__)
#endif
error("EFER: SCE:%s LME:%s LMA:%s NXE:%s SVME:%s LMSLE:%s FFXSR:%s TCE:%s R0:%#x R1:%#x R2:%#x",
efer.SCE ? "True " : "False", efer.LME ? "True " : "False", efer.LMA ? "True " : "False", efer.NXE ? "True " : "False",
efer.SVME ? "True " : "False", efer.LMSLE ? "True " : "False", efer.FFXSR ? "True " : "False", efer.TCE ? "True " : "False",
efer.Reserved0, efer.Reserved1, efer.Reserved2);
}
switch (Frame->InterruptNumber)
{
case CPU::x64::DivideByZero:
{
break;
}
case CPU::x64::Debug:
{
break;
}
case CPU::x64::NonMaskableInterrupt:
{
break;
}
case CPU::x64::Breakpoint:
{
break;
}
case CPU::x64::Overflow:
{
break;
}
case CPU::x64::BoundRange:
{
break;
}
case CPU::x64::InvalidOpcode:
{
break;
}
case CPU::x64::DeviceNotAvailable:
{
break;
}
case CPU::x64::DoubleFault:
{
break;
}
case CPU::x64::CoprocessorSegmentOverrun:
{
break;
}
case CPU::x64::InvalidTSS:
{
break;
}
case CPU::x64::SegmentNotPresent:
{
break;
}
case CPU::x64::StackSegmentFault:
{
break;
}
case CPU::x64::GeneralProtectionFault:
{
break;
}
case CPU::x64::PageFault:
{
uintptr_t CheckPageFaultAddress = 0;
CPU::x64::PageFaultErrorCode params = {.raw = (uint32_t)Frame->ErrorCode};
#if defined(__amd64__)
CheckPageFaultAddress = CPU::x64::readcr2().PFLA;
if (CheckPageFaultAddress == 0)
CheckPageFaultAddress = Frame->rip;
error("An exception occurred at %#lx by %#lx", CPU::x64::readcr2().PFLA, Frame->rip);
#elif defined(__i386__)
error("An exception occurred at %#lx by %#lx", CPU::x64::readcr2().PFLA, Frame->eip);
#elif defined(__aarch64__)
#endif
error("Page: %s", params.P ? "Present" : "Not Present");
error("Write Operation: %s", params.W ? "Read-Only" : "Read-Write");
error("Processor Mode: %s", params.U ? "User-Mode" : "Kernel-Mode");
error("CPU Reserved Bits: %s", params.R ? "Reserved" : "Unreserved");
error("Caused By An Instruction Fetch: %s", params.I ? "Yes" : "No");
error("Caused By A Protection-Key Violation: %s", params.PK ? "Yes" : "No");
error("Caused By A Shadow Stack Access: %s", params.SS ? "Yes" : "No");
error("Caused By An SGX Violation: %s", params.SGX ? "Yes" : "No");
if (Frame->ErrorCode & 0x00000008)
error("One or more page directory entries contain reserved bits which are set to 1.");
else
error(PageFaultDescriptions[Frame->ErrorCode & 0b111]);
#ifdef DEBUG
if (CurCPU)
{
Memory::Virtual vma = Memory::Virtual(CurCPU->CurrentProcess->PageTable);
bool PageAvailable = vma.Check((void *)CheckPageFaultAddress);
debug("Page available (Check(...)): %s. %s",
PageAvailable ? "Yes" : "No",
(params.P && !PageAvailable) ? "CR2 == Present; Check() != Present??????" : "CR2 confirms Check() result.");
if (PageAvailable)
{
bool Present = vma.Check((void *)CheckPageFaultAddress);
bool ReadWrite = vma.Check((void *)CheckPageFaultAddress, Memory::PTFlag::RW);
bool User = vma.Check((void *)CheckPageFaultAddress, Memory::PTFlag::US);
bool WriteThrough = vma.Check((void *)CheckPageFaultAddress, Memory::PTFlag::PWT);
bool CacheDisabled = vma.Check((void *)CheckPageFaultAddress, Memory::PTFlag::PCD);
bool Accessed = vma.Check((void *)CheckPageFaultAddress, Memory::PTFlag::A);
bool Dirty = vma.Check((void *)CheckPageFaultAddress, Memory::PTFlag::D);
bool Global = vma.Check((void *)CheckPageFaultAddress, Memory::PTFlag::G);
/* ... */
debug("Page available: %s", Present ? "Yes" : "No");
debug("Page read/write: %s", ReadWrite ? "Yes" : "No");
debug("Page user/kernel: %s", User ? "User" : "Kernel");
debug("Page write-through: %s", WriteThrough ? "Yes" : "No");
debug("Page cache disabled: %s", CacheDisabled ? "Yes" : "No");
debug("Page accessed: %s", Accessed ? "Yes" : "No");
debug("Page dirty: %s", Dirty ? "Yes" : "No");
debug("Page global: %s", Global ? "Yes" : "No");
if (Present)
{
uintptr_t CheckPageFaultLinearAddress = (uintptr_t)CheckPageFaultAddress;
CheckPageFaultLinearAddress &= 0xFFFFFFFFFFFFF000;
debug("%#lx -> %#lx", CheckPageFaultAddress, CheckPageFaultLinearAddress);
Memory::Virtual::PageMapIndexer Index = Memory::Virtual::PageMapIndexer((uintptr_t)CheckPageFaultLinearAddress);
debug("Index for %#lx is PML:%d PDPTE:%d PDE:%d PTE:%d",
CheckPageFaultLinearAddress,
Index.PMLIndex,
Index.PDPTEIndex,
Index.PDEIndex,
Index.PTEIndex);
Memory::PageMapLevel4 PML4 = CurCPU->CurrentProcess->PageTable->Entries[Index.PMLIndex];
Memory::PageDirectoryPointerTableEntryPtr *PDPTE = (Memory::PageDirectoryPointerTableEntryPtr *)((uintptr_t)PML4.GetAddress() << 12);
Memory::PageDirectoryEntryPtr *PDE = (Memory::PageDirectoryEntryPtr *)((uintptr_t)PDPTE->Entries[Index.PDPTEIndex].GetAddress() << 12);
Memory::PageTableEntryPtr *PTE = (Memory::PageTableEntryPtr *)((uintptr_t)PDE->Entries[Index.PDEIndex].GetAddress() << 12);
debug("# %03d-%03d-%03d-%03d: P:%s RW:%s US:%s PWT:%s PCB:%s A:%s NX:%s Address:%#lx",
Index.PMLIndex, 0, 0, 0,
PML4.Present ? "1" : "0",
PML4.ReadWrite ? "1" : "0",
PML4.UserSupervisor ? "1" : "0",
PML4.WriteThrough ? "1" : "0",
PML4.CacheDisable ? "1" : "0",
PML4.Accessed ? "1" : "0",
PML4.ExecuteDisable ? "1" : "0",
PML4.GetAddress() << 12);
debug("# %03d-%03d-%03d-%03d: P:%s RW:%s US:%s PWT:%s PCB:%s A:%s NX:%s Address:%#lx",
Index.PMLIndex, Index.PDPTEIndex, 0, 0,
PDPTE->Entries[Index.PDPTEIndex].Present ? "1" : "0",
PDPTE->Entries[Index.PDPTEIndex].ReadWrite ? "1" : "0",
PDPTE->Entries[Index.PDPTEIndex].UserSupervisor ? "1" : "0",
PDPTE->Entries[Index.PDPTEIndex].WriteThrough ? "1" : "0",
PDPTE->Entries[Index.PDPTEIndex].CacheDisable ? "1" : "0",
PDPTE->Entries[Index.PDPTEIndex].Accessed ? "1" : "0",
PDPTE->Entries[Index.PDPTEIndex].ExecuteDisable ? "1" : "0",
PDPTE->Entries[Index.PDPTEIndex].GetAddress() << 12);
debug("# %03d-%03d-%03d-%03d: P:%s RW:%s US:%s PWT:%s PCB:%s A:%s NX:%s Address:%#lx",
Index.PMLIndex, Index.PDPTEIndex, Index.PDEIndex, 0,
PDE->Entries[Index.PDEIndex].Present ? "1" : "0",
PDE->Entries[Index.PDEIndex].ReadWrite ? "1" : "0",
PDE->Entries[Index.PDEIndex].UserSupervisor ? "1" : "0",
PDE->Entries[Index.PDEIndex].WriteThrough ? "1" : "0",
PDE->Entries[Index.PDEIndex].CacheDisable ? "1" : "0",
PDE->Entries[Index.PDEIndex].Accessed ? "1" : "0",
PDE->Entries[Index.PDEIndex].ExecuteDisable ? "1" : "0",
PDE->Entries[Index.PDEIndex].GetAddress() << 12);
debug("# %03d-%03d-%03d-%03d: P:%s RW:%s US:%s PWT:%s PCB:%s A:%s D:%s PAT:%s G:%s PK:%d NX:%s Address:%#lx",
Index.PMLIndex, Index.PDPTEIndex, Index.PDEIndex, Index.PTEIndex,
PTE->Entries[Index.PTEIndex].Present ? "1" : "0",
PTE->Entries[Index.PTEIndex].ReadWrite ? "1" : "0",
PTE->Entries[Index.PTEIndex].UserSupervisor ? "1" : "0",
PTE->Entries[Index.PTEIndex].WriteThrough ? "1" : "0",
PTE->Entries[Index.PTEIndex].CacheDisable ? "1" : "0",
PTE->Entries[Index.PTEIndex].Accessed ? "1" : "0",
PTE->Entries[Index.PTEIndex].Dirty ? "1" : "0",
PTE->Entries[Index.PTEIndex].PageAttributeTable ? "1" : "0",
PTE->Entries[Index.PTEIndex].Global ? "1" : "0",
PTE->Entries[Index.PTEIndex].ProtectionKey,
PTE->Entries[Index.PTEIndex].ExecuteDisable ? "1" : "0",
PTE->Entries[Index.PTEIndex].GetAddress() << 12);
}
}
}
#endif
if (CurCPU)
if (CurCPU->CurrentThread->Stack->Expand(CPU::x64::readcr2().raw))
{
debug("Stack expanded");
TaskManager->GetCurrentThread()->Status = Tasking::TaskStatus::Ready;
return;
}
break;
}
case CPU::x64::x87FloatingPoint:
{
break;
}
case CPU::x64::AlignmentCheck:
{
break;
}
case CPU::x64::MachineCheck:
{
break;
}
case CPU::x64::SIMDFloatingPoint:
{
break;
}
case CPU::x64::Virtualization:
{
break;
}
case CPU::x64::Security:
{
break;
}
default:
{
break;
}
}
TaskManager->GetCurrentThread()->Status = Tasking::TaskStatus::Terminated;
__sync_synchronize();
error("End of report.");
CPU::Interrupts(CPU::Enable);
debug("Interrupts enabled back.");
return;
}