2024-05-18 07:42:01 +03:00

607 lines
16 KiB
Plaintext

/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#pragma once
#include <type_traits>
#include <functional>
#include <cstddef>
#include <utility>
#include <limits>
#include <new>
#include <debug.h>
namespace std
{
namespace __memory__detail
{
template <class>
constexpr bool is_unbounded_array_v = false;
template <class T>
constexpr bool is_unbounded_array_v<T[]> = true;
template <class>
constexpr bool is_bounded_array_v = false;
template <class T, std::size_t N>
constexpr bool is_bounded_array_v<T[N]> = true;
}
template <class T, class... Args>
constexpr T *construct_at(T *p, Args &&...args)
{
return ::new (static_cast<void *>(p)) T(std::forward<Args>(args)...);
}
template <class T>
constexpr void destroy_at(T *p)
{
p->~T();
}
template <class T>
T *addressof(T &arg)
{
return reinterpret_cast<T *>(&const_cast<char &>(reinterpret_cast<const volatile char &>(arg)));
}
template <class T>
const T *addressof(const T &&) = delete;
template <class InputIt, class Size, class NoThrowForwardIt>
NoThrowForwardIt uninitialized_copy_n(InputIt first, Size count, NoThrowForwardIt d_first)
{
using ValueType = typename std::iterator_traits<NoThrowForwardIt>::value_type;
NoThrowForwardIt current = d_first;
try
{
for (Size i = 0; i < count; ++i, (void)++current, ++first)
{
::new (static_cast<void *>(std::addressof(*current))) ValueType(*first);
}
return current;
}
catch (...)
{
for (; d_first != current; ++d_first)
{
d_first->~ValueType();
}
throw;
}
}
template <class ExecutionPolicy, class ForwardIt, class Size, class NoThrowForwardIt>
NoThrowForwardIt uninitialized_copy_n(ExecutionPolicy &&policy, ForwardIt first, Size count, NoThrowForwardIt d_first)
{
return uninitialized_copy_n(first, count, d_first);
}
template <class ForwardIt, class Size, class T>
ForwardIt uninitialized_fill_n(ForwardIt first, Size count, const T &value)
{
using V = typename std::iterator_traits<ForwardIt>::value_type;
ForwardIt current = first;
try
{
for (; count > 0; ++current, (void)--count)
::new (static_cast<void *>(std::addressof(*current))) V(value);
return current;
}
catch (...)
{
for (; first != current; ++first)
first->~V();
throw;
}
}
template <class ExecutionPolicy, class ForwardIt, class Size, class T>
ForwardIt uninitialized_fill_n(ExecutionPolicy &&policy, ForwardIt first, Size count, const T &value)
{
return uninitialized_fill_n(first, count, value);
}
template <class Ptr>
struct pointer_traits
{
using pointer = Ptr;
using element_type = typename Ptr::element_type;
using difference_type = typename Ptr::difference_type;
template <class U>
using rebind = typename Ptr::template rebind<U>;
static pointer pointer_to(element_type &r) noexcept
{
return Ptr::pointer_to(r);
}
};
template <class T>
struct pointer_traits<T *>
{
using pointer = T *;
using element_type = T;
using difference_type = std::ptrdiff_t;
template <class U>
using rebind = U *;
static pointer pointer_to(element_type &r) noexcept
{
return std::addressof(r);
}
};
template <class Pointer, class SizeType = std::size_t>
struct allocation_result
{
Pointer ptr;
SizeType count;
};
template <class Alloc>
struct allocator_traits
{
typedef Alloc allocator_type;
typedef typename Alloc::value_type value_type;
typedef typename Alloc::pointer pointer;
typedef typename Alloc::const_pointer const_pointer;
// typedef typename Alloc::void_pointer void_pointer;
// typedef typename Alloc::const_void_pointer const_void_pointer;
// typedef typename std::pointer_traits<pointer>::rebind<void> void_pointer;
// typedef typename std::pointer_traits<pointer>::rebind<const void> const_void_pointer;
typedef typename Alloc::difference_type difference_type;
typedef typename Alloc::size_type size_type;
// typedef typename Alloc::propagate_on_container_copy_assignment propagate_on_container_copy_assignment;
typedef typename std::false_type propagate_on_container_copy_assignment;
typedef typename Alloc::propagate_on_container_move_assignment propagate_on_container_move_assignment;
typedef typename std::false_type propagate_on_container_swap;
typedef typename Alloc::is_always_equal is_always_equal;
template <class T>
using rebind_alloc = typename Alloc::template rebind<T>::other;
template <class T>
using rebind_traits = allocator_traits<rebind_alloc<T>>;
[[nodiscard]] static constexpr pointer allocate(Alloc &a, size_type n)
{
return a.allocate(n);
}
// [[nodiscard]] static constexpr pointer allocate(Alloc &a, size_type n, const_void_pointer hint)
// {
// return a.allocate(n, hint);
// }
[[nodiscard]] static constexpr std::allocation_result<pointer, size_type> allocate_at_least(Alloc &a, size_type n)
{
return a.allocate_at_least(n);
}
static constexpr void deallocate(Alloc &a, pointer p, size_type n)
{
a.deallocate(p, n);
}
template <class T, class... Args>
static constexpr void construct(Alloc &a, T *p, Args &&...args)
{
std::construct_at(p, std::forward<Args>(args)...);
}
template <class T>
static constexpr void destroy(Alloc &a, T *p)
{
std::destroy_at(p);
}
static constexpr size_type max_size(const Alloc &a)
{
return a.max_size();
}
static constexpr Alloc select_on_container_copy_construction(const Alloc &a)
{
return a;
}
};
template <class T>
struct allocator
{
public:
typedef T value_type;
typedef T *pointer;
typedef const T *const_pointer;
typedef T &reference;
typedef const T &const_reference;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef std::true_type propagate_on_container_move_assignment;
typedef std::true_type is_always_equal;
template <class U>
struct rebind
{
typedef allocator<U> other;
};
allocator() {}
allocator(const allocator &other) {}
template <class U>
allocator(const allocator<U> &other) {}
~allocator() {}
pointer allocate(size_type n, const void *hint = 0)
{
return static_cast<pointer>(::operator new(n * sizeof(T)));
}
std::allocation_result<T *, std::size_t> allocate_at_least(std::size_t n)
{
return {static_cast<T *>(::operator new(n * sizeof(T))), n};
}
void deallocate(T *p, std::size_t n)
{
::operator delete(p);
}
pointer address(reference x) const { return &x; }
const_pointer address(const_reference x) const { return &x; }
};
template <class T>
struct default_delete
{
constexpr default_delete() noexcept = default;
template <class U>
constexpr default_delete(const default_delete<U> &d) noexcept {}
constexpr void operator()(T *ptr) const { delete ptr; }
};
template <class T>
struct default_delete<T[]>
{
constexpr default_delete() noexcept = default;
template <class U>
constexpr default_delete(const default_delete<U[]> &d) noexcept {}
template <class U>
constexpr void operator()(U *ptr) const { delete[] ptr; }
};
template <class T, class Deleter = std::default_delete<T>>
class unique_ptr
{
public:
using pointer = T *; // std::remove_reference<Deleter>::type::pointer;
using element_type = T;
using deleter_type = Deleter;
private:
pointer _ptr;
public:
#pragma region Member Functions
constexpr unique_ptr() noexcept : _ptr(nullptr) {}
constexpr unique_ptr(std::nullptr_t) noexcept : _ptr(nullptr) {}
constexpr explicit unique_ptr(pointer p) noexcept : _ptr(p) {}
// constexpr unique_ptr(pointer p, /* TODO */ d1) noexcept : _ptr(p) {}
// constexpr unique_ptr(pointer p, /* TODO */ d2) noexcept : _ptr(p) {}
constexpr unique_ptr(unique_ptr &&u) noexcept : _ptr(u.release()) {}
template <class U, class E>
constexpr unique_ptr(unique_ptr<U, E> &&u) noexcept : _ptr(u.release()) {}
unique_ptr(const unique_ptr &) = delete;
~unique_ptr()
{
if (_ptr == nullptr)
return;
Deleter d;
d(_ptr);
}
constexpr unique_ptr &operator=(unique_ptr &&r) noexcept
{
reset(r.release());
return *this;
}
template <class U, class E>
constexpr unique_ptr &operator=(unique_ptr<U, E> &&r) noexcept
{
reset(r.release());
return *this;
}
constexpr unique_ptr &operator=(std::nullptr_t) noexcept
{
reset();
return *this;
}
unique_ptr &operator=(const unique_ptr &) = delete;
#pragma endregion Member Functions
#pragma region Modifiers
constexpr pointer release() noexcept
{
pointer p = _ptr;
_ptr = nullptr;
return p;
}
constexpr void reset(pointer ptr = pointer()) noexcept
{
Deleter d;
d(_ptr);
_ptr = ptr;
}
void swap(unique_ptr &other) noexcept
{
pointer tmp = _ptr;
_ptr = other._ptr;
other._ptr = tmp;
}
#pragma endregion Modifiers
#pragma region Observers
constexpr pointer get() const noexcept { return _ptr; }
constexpr Deleter &get_deleter() noexcept { return _ptr; }
constexpr const Deleter &get_deleter() const noexcept { return _ptr; }
constexpr explicit operator bool() const noexcept { return get() != nullptr; }
#pragma endregion Observers
#pragma region Element Access
constexpr typename std::add_lvalue_reference<T>::type operator*() const noexcept(noexcept(*std::declval<pointer>())) { return *_ptr; }
constexpr pointer operator->() const noexcept { return _ptr; }
#pragma endregion Element Access
};
template <class T, class Deleter>
class unique_ptr<T[], Deleter>
{
public:
using pointer = T *; // std::remove_reference<Deleter>::type::pointer;
using element_type = T;
using deleter_type = Deleter;
private:
pointer _ptr;
public:
#pragma region Member Functions
constexpr unique_ptr() noexcept : _ptr(nullptr) {}
constexpr unique_ptr(std::nullptr_t) noexcept : _ptr(nullptr) {}
template <class U>
constexpr explicit unique_ptr(U p) noexcept : _ptr(p) {}
// template <class U>
// constexpr unique_ptr(U p, /* TODO */ d1) noexcept : _ptr(p) {}
// template <class U>
// constexpr unique_ptr(U p, /* TODO */ d2) noexcept : _ptr(p) {}
constexpr unique_ptr(unique_ptr &&u) noexcept : _ptr(u.release()) {}
template <class U, class E>
constexpr unique_ptr(unique_ptr<U, E> &&u) noexcept : _ptr(u.release()) {}
unique_ptr(const unique_ptr &) = delete;
~unique_ptr()
{
if (_ptr == nullptr)
return;
Deleter d;
d(_ptr);
}
constexpr unique_ptr &operator=(unique_ptr &&r) noexcept
{
reset(r.release());
return *this;
}
template <class U, class E>
constexpr unique_ptr &operator=(unique_ptr<U, E> &&r) noexcept
{
reset(r.release());
return *this;
}
constexpr unique_ptr &operator=(std::nullptr_t) noexcept
{
reset();
return *this;
}
unique_ptr &operator=(const unique_ptr &) = delete;
#pragma endregion Member Functions
#pragma region Modifiers
constexpr pointer release() noexcept
{
pointer p = _ptr;
_ptr = nullptr;
return p;
}
template <class U>
constexpr void reset(U ptr) noexcept
{
Deleter d;
d(_ptr);
_ptr = ptr;
}
constexpr void reset(std::nullptr_t = nullptr) noexcept
{
Deleter d;
d(_ptr);
_ptr = nullptr;
}
void swap(unique_ptr &other) noexcept
{
pointer tmp = _ptr;
_ptr = other._ptr;
other._ptr = tmp;
}
#pragma endregion Modifiers
#pragma region Observers
constexpr pointer get() const noexcept { return _ptr; }
constexpr Deleter &get_deleter() noexcept { return _ptr; }
constexpr const Deleter &get_deleter() const noexcept { return _ptr; }
constexpr explicit operator bool() const noexcept { return get() != nullptr; }
#pragma endregion Observers
#pragma region Element Access
constexpr T &operator[](std::size_t i) const { return _ptr[i]; }
#pragma endregion Element Access
};
template <class T, class... Args>
std::enable_if_t<!std::is_array<T>::value, std::unique_ptr<T>>
make_unique(Args &&...args)
{
return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
}
template <class T>
std::enable_if_t<__memory__detail::is_unbounded_array_v<T>, std::unique_ptr<T>>
make_unique(std::size_t n)
{
return std::unique_ptr<T>(new std::remove_extent_t<T>[n]());
}
template <class T, class... Args>
std::enable_if_t<__memory__detail::is_bounded_array_v<T>> make_unique(Args &&...) = delete;
template <class T>
requires(!std::is_array_v<T>)
std::unique_ptr<T> make_unique_for_overwrite()
{
return std::unique_ptr<T>(new T);
}
template <class T>
requires std::is_unbounded_array_v<T>
std::unique_ptr<T> make_unique_for_overwrite(std::size_t n)
{
return std::unique_ptr<T>(new std::remove_extent_t<T>[n]);
}
template <class T, class... Args>
requires std::is_bounded_array_v<T>
void make_unique_for_overwrite(Args &&...) = delete;
template <class T1, class D1, class T2, class D2>
constexpr bool operator==(const unique_ptr<T1, D1> &x, const unique_ptr<T2, D2> &y) { return x.get() == y.get(); }
template <class T1, class D1, class T2, class D2>
bool operator<(const unique_ptr<T1, D1> &x, const unique_ptr<T2, D2> &y)
{
return std::less<typename std::common_type<typename unique_ptr<T1, D1>::pointer, typename unique_ptr<T2, D2>::pointer>::type>()(x.get(), y.get());
}
template <class T1, class D1, class T2, class D2>
bool operator<=(const unique_ptr<T1, D1> &x, const unique_ptr<T2, D2> &y) { return !(y < x); }
template <class T1, class D1, class T2, class D2>
bool operator>(const unique_ptr<T1, D1> &x, const unique_ptr<T2, D2> &y) { return y < x; }
template <class T1, class D1, class T2, class D2>
bool operator>=(const unique_ptr<T1, D1> &x, const unique_ptr<T2, D2> &y) { return !(x < y); }
// operator<=>(const unique_ptr<T1, D1> &x, const unique_ptr<T2, D2> &y);
template <class T, class D>
constexpr bool operator==(const unique_ptr<T, D> &x, std::nullptr_t) noexcept { return !x; }
template <class T, class D>
constexpr bool operator<(const unique_ptr<T, D> &x, std::nullptr_t) { return std::less<typename unique_ptr<T, D>::pointer>()(x.get(), nullptr); }
template <class T, class D>
constexpr bool operator<(std::nullptr_t, const unique_ptr<T, D> &y) { return std::less<typename unique_ptr<T, D>::pointer>()(nullptr, y.get()); }
template <class T, class D>
constexpr bool operator<=(const unique_ptr<T, D> &x, std::nullptr_t) { return !(nullptr < x); }
template <class T, class D>
constexpr bool operator<=(std::nullptr_t, const unique_ptr<T, D> &y) { return !(y < nullptr); }
template <class T, class D>
constexpr bool operator>(const unique_ptr<T, D> &x, std::nullptr_t) { return nullptr < x; }
template <class T, class D>
constexpr bool operator>(std::nullptr_t, const unique_ptr<T, D> &y) { return y < nullptr; }
template <class T, class D>
constexpr bool operator>=(const unique_ptr<T, D> &x, std::nullptr_t) { return !(x < nullptr); }
template <class T, class D>
constexpr bool operator>=(std::nullptr_t, const unique_ptr<T, D> &y) { return !(nullptr < y); }
// operator<=>(const unique_ptr<T, D> &x, std::nullptr_t);
// template <class CharT, class Traits, class Y, class D>
// std::basic_ostream<CharT, Traits> &operator<<(std::basic_ostream<CharT, Traits> &os, const std::unique_ptr<Y, D> &p)
// {
// return os << p.get();
// }
template <class T, class D>
void swap(std::unique_ptr<T, D> &lhs, std::unique_ptr<T, D> &rhs) noexcept
{
lhs.swap(rhs);
}
}