Kernel/tasking/scheduler/custom.cpp
2024-11-19 04:33:47 +02:00

793 lines
20 KiB
C++

/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include <scheduler.hpp>
#include <dumper.hpp>
#include <convert.h>
#include <lock.hpp>
#include <printf.h>
#include <smp.hpp>
#include <io.h>
#include "../kernel.h"
#if defined(a64)
#include "../arch/amd64/cpu/apic.hpp"
#include "../arch/amd64/cpu/gdt.hpp"
#elif defined(a32)
#include "../arch/i386/cpu/apic.hpp"
#include "../arch/i386/cpu/gdt.hpp"
#elif defined(aa64)
#endif
// #define DEBUG_SCHEDULER 1
// #define DEBUG_GET_NEXT_AVAILABLE_PROCESS 1
// #define DEBUG_GET_NEXT_AVAILABLE_THREAD 1
// #define DEBUG_FIND_NEW_PROCESS 1
// #define DEBUG_SCHEDULER_SEARCH_PROCESS_THREAD 1
// #define DEBUG_WAKE_UP_THREADS 1
/* Global */
#ifdef DEBUG_SCHEDULER
#define DEBUG_GET_NEXT_AVAILABLE_PROCESS 1
#define DEBUG_GET_NEXT_AVAILABLE_THREAD 1
#define DEBUG_FIND_NEW_PROCESS 1
#define DEBUG_SCHEDULER_SEARCH_PROCESS_THREAD 1
#define DEBUG_WAKE_UP_THREADS 1
#define schedbg(m, ...) \
debug(m, ##__VA_ARGS__); \
__sync
#else
#define schedbg(m, ...)
#endif
/* GetNextAvailableThread */
#ifdef DEBUG_GET_NEXT_AVAILABLE_PROCESS
#define gnap_schedbg(m, ...) \
debug(m, ##__VA_ARGS__); \
__sync
#else
#define gnap_schedbg(m, ...)
#endif
/* GetNextAvailableProcess */
#ifdef DEBUG_GET_NEXT_AVAILABLE_THREAD
#define gnat_schedbg(m, ...) \
debug(m, ##__VA_ARGS__); \
__sync
#else
#define gnat_schedbg(m, ...)
#endif
/* FindNewProcess */
#ifdef DEBUG_FIND_NEW_PROCESS
#define fnp_schedbg(m, ...) \
debug(m, ##__VA_ARGS__); \
__sync
#else
#define fnp_schedbg(m, ...)
#endif
/* SchedulerSearchProcessThread */
#ifdef DEBUG_SCHEDULER_SEARCH_PROCESS_THREAD
#define sspt_schedbg(m, ...) \
debug(m, ##__VA_ARGS__); \
__sync
#else
#define sspt_schedbg(m, ...)
#endif
/* WakeUpThreads */
#ifdef DEBUG_WAKE_UP_THREADS
#define wut_schedbg(m, ...) \
debug(m, ##__VA_ARGS__); \
__sync
#else
#define wut_schedbg(m, ...)
#endif
__naked __used nsa void __custom_sched_idle_loop()
{
#if defined(a86)
asmv("IdleLoop:");
asmv("hlt");
asmv("jmp IdleLoop");
#elif defined(aa64)
asmv("IdleLoop:");
asmv("wfe");
asmv("b IdleLoop");
#endif
}
namespace Tasking::Scheduler
{
bool Custom::RemoveThread(TCB *Thread)
{
debug("Thread \"%s\"(%d) removed from process \"%s\"(%d)",
Thread->Name, Thread->ID, Thread->Parent->Name,
Thread->Parent->ID);
delete Thread;
return true;
}
bool Custom::RemoveProcess(PCB *Process)
{
if (Process->State == Terminated)
{
delete Process;
return true;
}
foreach (TCB *Thread in Process->Threads)
{
if (Thread->State == Terminated)
RemoveThread(Thread);
}
return true;
}
PCB *Custom::GetProcessByID(TID ID)
{
foreach (auto p in ProcessList)
{
if (p->ID == ID)
return p;
}
return nullptr;
}
TCB *Custom::GetThreadByID(TID ID, PCB *Parent)
{
if (unlikely(Parent == nullptr))
return nullptr;
foreach (auto t in Parent->Threads)
{
if (t->ID == ID)
return t;
}
return nullptr;
}
void Custom::StartIdleProcess()
{
IdleProcess = ctx->CreateProcess(nullptr, (char *)"Idle",
TaskExecutionMode::Kernel, true);
for (int i = 0; i < SMP::CPUCores; i++)
{
TCB *thd = ctx->CreateThread(IdleProcess, IP(__custom_sched_idle_loop));
char IdleName[16];
sprintf(IdleName, "Idle Thread %d", i);
thd->Rename(IdleName);
thd->SetPriority(Idle);
for (int j = 0; j < MAX_CPU; j++)
thd->Info.Affinity[j] = false;
thd->Info.Affinity[i] = true;
if (unlikely(i == 0))
IdleThread = thd;
}
}
std::vector<PCB *> &Custom::GetProcessList()
{
return ProcessList;
}
void Custom::StartScheduler()
{
#if defined(a86)
if (Interrupts::apicTimer[0])
{
((APIC::Timer *)Interrupts::apicTimer[0])->OneShot(CPU::x86::IRQ16, 100);
/* FIXME: The kernel is not ready for multi-core tasking. */
return;
APIC::InterruptCommandRegister icr{};
bool x2APIC = ((APIC::APIC *)Interrupts::apic[0])->x2APIC;
if (likely(x2APIC))
{
icr.x2.VEC = s_cst(uint8_t, CPU::x86::IRQ16);
icr.x2.MT = APIC::Fixed;
icr.x2.L = APIC::Assert;
icr.x2.DES = 0xFFFFFFFF; /* Broadcast IPI to all local APICs. */
((APIC::APIC *)Interrupts::apic[0])->ICR(icr);
}
else
{
icr.VEC = s_cst(uint8_t, CPU::x86::IRQ16);
icr.MT = APIC::Fixed;
icr.L = APIC::Assert;
for (int i = 0; i < SMP::CPUCores; i++)
{
icr.DES = uint8_t(i);
((APIC::APIC *)Interrupts::apic[i])->ICR(icr);
}
}
}
#endif
}
void Custom::Yield()
{
/* This will trigger the IRQ16
instantly so we won't execute
the next instruction */
#if defined(a86)
asmv("int $0x30");
#elif defined(aa64)
asmv("svc #0x30");
#endif
}
void Custom::PushProcess(PCB *pcb)
{
this->ProcessList.push_back(pcb);
}
void Custom::PopProcess(PCB *pcb)
{
auto it = std::find(this->ProcessList.begin(),
this->ProcessList.end(), pcb);
if (it == this->ProcessList.end())
{
debug("Process %d not found in the list", pcb->ID);
return;
}
this->ProcessList.erase(it);
}
std::pair<PCB *, TCB *> Custom::GetIdle()
{
return std::make_pair(IdleProcess, IdleThread);
}
/* --------------------------------------------------------------- */
nsa void Custom::OneShot(int TimeSlice)
{
if (TimeSlice == 0)
TimeSlice = Tasking::TaskPriority::Normal;
#ifdef DEBUG
if (DebuggerIsAttached)
TimeSlice += 10;
#endif
#if defined(a86)
((APIC::Timer *)Interrupts::apicTimer[GetCurrentCPU()->ID])->OneShot(CPU::x86::IRQ16, TimeSlice);
#elif defined(aa64)
#endif
}
nsa void Custom::UpdateUsage(TaskInfo *Info, TaskExecutionMode Mode, int Core)
{
UNUSED(Core);
uint64_t CurrentTime = TimeManager->GetCounter();
uint64_t TimePassed = Info->LastUpdateTime - CurrentTime;
Info->LastUpdateTime = CurrentTime;
if (Mode == TaskExecutionMode::User)
Info->UserTime += TimePassed;
else
Info->KernelTime += TimePassed;
}
nsa NIF bool Custom::FindNewProcess(void *CPUDataPointer)
{
CPUData *CurrentCPU = (CPUData *)CPUDataPointer;
fnp_schedbg("%d processes", ProcessList.size());
#ifdef DEBUG_FIND_NEW_PROCESS
foreach (auto process in ProcessList)
fnp_schedbg("Process %d %s", process->ID,
process->Name);
#endif
foreach (auto process in ProcessList)
{
switch (process->State.load())
{
case TaskState::Ready:
fnp_schedbg("Ready process (%s)%d",
process->Name, process->ID);
break;
default:
fnp_schedbg("Process \"%s\"(%d) status %d",
process->Name, process->ID,
process->State);
/* We don't actually remove the process. RemoveProcess
firstly checks if it's terminated, if not, it will
loop through Threads and call RemoveThread on
terminated threads. */
RemoveProcess(process);
continue;
}
foreach (auto thread in process->Threads)
{
if (thread->State.load() != TaskState::Ready)
continue;
if (thread->Info.Affinity[CurrentCPU->ID] == false)
continue;
CurrentCPU->CurrentProcess = process;
CurrentCPU->CurrentThread = thread;
return true;
}
}
fnp_schedbg("No process to run.");
return false;
}
nsa NIF bool Custom::GetNextAvailableThread(void *CPUDataPointer)
{
CPUData *CurrentCPU = (CPUData *)CPUDataPointer;
size_t ThreadsSize = CurrentCPU->CurrentProcess->Threads.size();
for (size_t i = 0; i < ThreadsSize; i++)
{
if (CurrentCPU->CurrentProcess->Threads[i] == CurrentCPU->CurrentThread.load())
{
size_t TempIndex = i;
RetryAnotherThread:
if (TempIndex + 1 >= ThreadsSize)
break;
TCB *nextThread = CurrentCPU->CurrentProcess->Threads[TempIndex + 1];
gnat_schedbg("\"%s\"(%d) and next thread is \"%s\"(%d)",
CurrentCPU->CurrentProcess->Threads[i]->Name,
CurrentCPU->CurrentProcess->Threads[i]->ID,
nextThread->Name, nextThread->ID);
if (nextThread->State.load() != TaskState::Ready)
{
gnat_schedbg("Thread %d is not ready", nextThread->ID);
TempIndex++;
goto RetryAnotherThread;
}
if (nextThread->Info.Affinity[CurrentCPU->ID] == false)
continue;
CurrentCPU->CurrentThread = nextThread;
gnat_schedbg("[thd 0 -> end] Scheduling thread %d parent of %s->%d Procs %d",
nextThread->ID, nextThread->Parent->Name,
ThreadsSize, ProcessList.size());
return true;
}
#ifdef DEBUG
else
{
gnat_schedbg("Thread %d is not the current one",
CurrentCPU->CurrentProcess->Threads[i]->ID);
}
#endif
}
return false;
}
nsa NIF bool Custom::GetNextAvailableProcess(void *CPUDataPointer)
{
CPUData *CurrentCPU = (CPUData *)CPUDataPointer;
bool Skip = true;
foreach (auto process in ProcessList)
{
if (process == CurrentCPU->CurrentProcess.load())
{
Skip = false;
gnap_schedbg("Found current process %#lx", process);
continue;
}
if (Skip)
{
gnap_schedbg("Skipping process %#lx", process);
continue;
}
if (process->State.load() != TaskState::Ready)
{
gnap_schedbg("Process %d is not ready", process->ID);
continue;
}
foreach (auto thread in process->Threads)
{
if (thread->State.load() != TaskState::Ready)
{
gnap_schedbg("Thread %d is not ready", thread->ID);
continue;
}
if (thread->Info.Affinity[CurrentCPU->ID] == false)
continue;
CurrentCPU->CurrentProcess = process;
CurrentCPU->CurrentThread = thread;
gnap_schedbg("[cur proc+1 -> first thd] Scheduling thread %d %s->%d (Total Procs %d)",
thread->ID, thread->Name, process->Threads.size(), ProcessList.size());
return true;
}
}
gnap_schedbg("No process to run.");
return false;
}
nsa NIF bool Custom::SchedulerSearchProcessThread(void *CPUDataPointer)
{
CPUData *CurrentCPU = (CPUData *)CPUDataPointer;
foreach (auto process in ProcessList)
{
if (process->State.load() != TaskState::Ready)
{
sspt_schedbg("Process %d is not ready", process->ID);
continue;
}
foreach (auto thread in process->Threads)
{
if (thread->State.load() != TaskState::Ready)
{
sspt_schedbg("Thread %d is not ready", thread->ID);
continue;
}
if (thread->Info.Affinity[CurrentCPU->ID] == false)
continue;
CurrentCPU->CurrentProcess = process;
CurrentCPU->CurrentThread = thread;
sspt_schedbg("[proc 0 -> end -> first thd] Scheduling thread %d parent of %s->%d (Procs %d)",
thread->ID, thread->Parent->Name, process->Threads.size(), ProcessList.size());
return true;
}
}
return false;
}
nsa NIF void Custom::UpdateProcessState()
{
foreach (auto process in ProcessList)
{
if (process->State.load() == TaskState::Terminated)
continue;
if (process->Threads.size() == 1)
{
process->State.exchange(process->Threads.front()->State.load());
continue;
}
bool AllThreadsSleeping = true;
foreach (auto thread in process->Threads)
{
if (thread->State.load() == TaskState::Terminated)
continue;
if (thread->State.load() != TaskState::Sleeping)
{
AllThreadsSleeping = false;
break;
}
}
if (AllThreadsSleeping)
process->State.store(TaskState::Sleeping);
else if (process->State.load() == TaskState::Sleeping)
process->State.store(TaskState::Ready);
}
}
nsa NIF void Custom::WakeUpThreads()
{
foreach (auto process in ProcessList)
{
Tasking::TaskState pState = process->State.load();
if (pState != TaskState::Ready &&
pState != TaskState::Sleeping &&
pState != TaskState::Blocked)
continue;
foreach (auto thread in process->Threads)
{
if (likely(thread->State.load() != TaskState::Sleeping))
continue;
/* Check if the thread is ready to wake up. */
if (unlikely(thread->Info.SleepUntil < TimeManager->GetCounter()))
{
if (pState == TaskState::Sleeping)
process->State.store(TaskState::Ready);
thread->State.store(TaskState::Ready);
thread->Info.SleepUntil = 0;
wut_schedbg("Thread \"%s\"(%d) woke up.", thread->Name, thread->ID);
}
else
{
wut_schedbg("Thread \"%s\"(%d) is not ready to wake up. (SleepUntil: %d, Counter: %d)",
thread->Name, thread->ID, thread->Info.SleepUntil, TimeManager->GetCounter());
}
}
}
}
nsa NIF void Custom::CleanupTerminated()
{
foreach (auto pcb in ProcessList)
{
if (pcb->State.load() == TaskState::Terminated)
{
debug("Found terminated process %s(%d)", pcb->Name, pcb->ID);
delete pcb;
continue;
}
foreach (TCB *tcb in pcb->Threads)
{
if (tcb->State == Terminated)
delete tcb;
}
}
}
nsa NIF void Custom::Schedule(CPU::SchedulerFrame *Frame)
{
if (unlikely(StopScheduler))
{
warn("Scheduler stopped.");
return;
}
bool ProcessNotChanged = false;
uint64_t SchedTmpTicks = TimeManager->GetCounter();
this->LastTaskTicks.store(size_t(SchedTmpTicks - this->SchedulerTicks.load()));
CPUData *CurrentCPU = GetCurrentCPU();
this->LastCore.store(CurrentCPU->ID);
schedbg("Scheduler called on CPU %d.", CurrentCPU->ID);
if (unlikely(!CurrentCPU->CurrentProcess.load() ||
!CurrentCPU->CurrentThread.load()))
{
schedbg("Invalid process or thread. Finding a new one.");
ProcessNotChanged = true;
if (this->FindNewProcess(CurrentCPU))
goto Success;
else
goto Idle;
}
else
{
CurrentCPU->CurrentThread->Registers = *Frame;
CPU::x64::fxsave(&CurrentCPU->CurrentThread->FPU);
#ifdef a64
CurrentCPU->CurrentThread->ShadowGSBase = CPU::x64::rdmsr(CPU::x64::MSR_SHADOW_GS_BASE);
CurrentCPU->CurrentThread->GSBase = CPU::x64::rdmsr(CPU::x64::MSR_GS_BASE);
CurrentCPU->CurrentThread->FSBase = CPU::x64::rdmsr(CPU::x64::MSR_FS_BASE);
#else
CurrentCPU->CurrentThread->ShadowGSBase = uintptr_t(CPU::x32::rdmsr(CPU::x32::MSR_SHADOW_GS_BASE));
CurrentCPU->CurrentThread->GSBase = uintptr_t(CPU::x32::rdmsr(CPU::x32::MSR_GS_BASE));
CurrentCPU->CurrentThread->FSBase = uintptr_t(CPU::x32::rdmsr(CPU::x32::MSR_FS_BASE));
#endif
if (CurrentCPU->CurrentProcess->State.load() == TaskState::Running)
CurrentCPU->CurrentProcess->State.store(TaskState::Ready);
if (CurrentCPU->CurrentThread->State.load() == TaskState::Running)
CurrentCPU->CurrentThread->State.store(TaskState::Ready);
this->CleanupTerminated();
schedbg("Passed CleanupTerminated");
this->UpdateProcessState();
schedbg("Passed UpdateProcessState");
this->WakeUpThreads();
schedbg("Passed WakeUpThreads");
if (this->SchedulerUpdateTrapFrame)
{
debug("Updating trap frame");
this->SchedulerUpdateTrapFrame = false;
CurrentCPU->CurrentProcess->State.store(TaskState::Running);
CurrentCPU->CurrentThread->State.store(TaskState::Running);
*Frame = CurrentCPU->CurrentThread->Registers;
this->SchedulerTicks.store(size_t(TimeManager->GetCounter() - SchedTmpTicks));
return;
}
if (this->GetNextAvailableThread(CurrentCPU))
{
ProcessNotChanged = true;
goto Success;
}
schedbg("Passed GetNextAvailableThread");
if (this->GetNextAvailableProcess(CurrentCPU))
{
goto Success;
}
schedbg("Passed GetNextAvailableProcess");
if (SchedulerSearchProcessThread(CurrentCPU))
{
schedbg("Passed SchedulerSearchProcessThread");
goto Success;
}
else
{
schedbg("SchedulerSearchProcessThread failed. Going idle.");
goto Idle;
}
}
assert(!"Unwanted code execution");
Idle:
ProcessNotChanged = true;
CurrentCPU->CurrentProcess = IdleProcess;
CurrentCPU->CurrentThread = IdleThread;
Success:
schedbg("Process \"%s\"(%d) Thread \"%s\"(%d) is now running on CPU %d",
CurrentCPU->CurrentProcess->Name, CurrentCPU->CurrentProcess->ID,
CurrentCPU->CurrentThread->Name, CurrentCPU->CurrentThread->ID, CurrentCPU->ID);
if (!ProcessNotChanged)
UpdateUsage(&CurrentCPU->CurrentProcess->Info,
CurrentCPU->CurrentProcess->Security.ExecutionMode,
CurrentCPU->ID);
UpdateUsage(&CurrentCPU->CurrentThread->Info,
CurrentCPU->CurrentThread->Security.ExecutionMode,
CurrentCPU->ID);
CurrentCPU->CurrentProcess->State.store(TaskState::Running);
CurrentCPU->CurrentThread->State.store(TaskState::Running);
if (CurrentCPU->CurrentThread->Registers.cs != GDT_KERNEL_CODE)
CurrentCPU->CurrentThread->Registers.ppt = (uint64_t)(void *)CurrentCPU->CurrentProcess->PageTable;
else
CurrentCPU->CurrentThread->Registers.ppt = (uint64_t)(void *)KernelPageTable;
// if (!SchedulerUpdateTrapFrame) {} // TODO
*Frame = CurrentCPU->CurrentThread->Registers;
#ifdef a64
GlobalDescriptorTable::SetKernelStack((void *)((uintptr_t)CurrentCPU->CurrentThread->Stack->GetStackTop()));
CPU::x64::fxrstor(&CurrentCPU->CurrentThread->FPU);
CPU::x64::wrmsr(CPU::x64::MSR_SHADOW_GS_BASE, CurrentCPU->CurrentThread->ShadowGSBase);
CPU::x64::wrmsr(CPU::x64::MSR_GS_BASE, CurrentCPU->CurrentThread->GSBase);
CPU::x64::wrmsr(CPU::x64::MSR_FS_BASE, CurrentCPU->CurrentThread->FSBase);
#else
GlobalDescriptorTable::SetKernelStack((void *)((uintptr_t)CurrentCPU->CurrentThread->Stack->GetStackTop()));
CPU::x32::fxrstor(&CurrentCPU->CurrentThread->FPU);
CPU::x32::wrmsr(CPU::x32::MSR_SHADOW_GS_BASE, CurrentCPU->CurrentThread->ShadowGSBase);
CPU::x32::wrmsr(CPU::x32::MSR_GS_BASE, CurrentCPU->CurrentThread->GSBase);
CPU::x32::wrmsr(CPU::x32::MSR_FS_BASE, CurrentCPU->CurrentThread->FSBase);
#endif
CurrentCPU->CurrentProcess->Signals.HandleSignal(Frame, CurrentCPU->CurrentThread.load());
if (!ProcessNotChanged)
(&CurrentCPU->CurrentProcess->Info)->LastUpdateTime = TimeManager->GetCounter();
(&CurrentCPU->CurrentThread->Info)->LastUpdateTime = TimeManager->GetCounter();
this->OneShot(CurrentCPU->CurrentThread->Info.Priority);
if (CurrentCPU->CurrentThread->Security.IsDebugEnabled &&
CurrentCPU->CurrentThread->Security.IsKernelDebugEnabled)
{
#ifdef a64
trace("%s[%ld]: RIP=%#lx RBP=%#lx RSP=%#lx",
CurrentCPU->CurrentThread->Name, CurrentCPU->CurrentThread->ID,
CurrentCPU->CurrentThread->Registers.rip,
CurrentCPU->CurrentThread->Registers.rbp,
CurrentCPU->CurrentThread->Registers.rsp);
#else
trace("%s[%ld]: EIP=%#lx EBP=%#lx ESP=%#lx",
CurrentCPU->CurrentThread->Name, CurrentCPU->CurrentThread->ID,
CurrentCPU->CurrentThread->Registers.eip,
CurrentCPU->CurrentThread->Registers.ebp,
CurrentCPU->CurrentThread->Registers.esp);
#endif
}
this->SchedulerTicks.store(size_t(TimeManager->GetCounter() - SchedTmpTicks));
}
nsa NIF void Custom::OnInterruptReceived(CPU::SchedulerFrame *Frame)
{
SmartCriticalSection(SchedulerLock);
this->Schedule(Frame);
}
Custom::Custom(Task *ctx) : Base(ctx), Interrupts::Handler(16) /* IRQ16 */
{
#if defined(a86)
// Map the IRQ16 to the first CPU.
((APIC::APIC *)Interrupts::apic[0])->RedirectIRQ(0, CPU::x86::IRQ16 - CPU::x86::IRQ0, 1);
#endif
}
Custom::~Custom()
{
foreach (PCB *Process in ProcessList)
{
foreach (TCB *Thread in Process->Threads)
{
if (Thread == GetCurrentCPU()->CurrentThread.load())
continue;
ctx->KillThread(Thread, KILL_SCHEDULER_DESTRUCTION);
}
if (Process == GetCurrentCPU()->CurrentProcess.load())
continue;
ctx->KillProcess(Process, KILL_SCHEDULER_DESTRUCTION);
}
debug("Waiting for processes to terminate");
uint64_t timeout = TimeManager->CalculateTarget(20, Time::Units::Seconds);
while (this->GetProcessList().size() > 0)
{
trace("Waiting for %d processes to terminate", this->GetProcessList().size());
int NotTerminated = 0;
foreach (PCB *Process in this->GetProcessList())
{
trace("Process %s(%d) is still running (or waiting to be removed state %#lx)",
Process->Name, Process->ID, Process->State);
if (Process->State == TaskState::Terminated)
{
debug("Process %s(%d) terminated", Process->Name, Process->ID);
continue;
}
NotTerminated++;
}
if (NotTerminated == 1)
break;
ctx->Sleep(1000);
debug("Current working process is %s(%d)",
ctx->GetCurrentProcess()->Name,
ctx->GetCurrentProcess()->ID);
if (TimeManager->GetCounter() > timeout)
{
error("Timeout waiting for processes to terminate");
break;
}
this->OneShot(100);
}
}
}