Kernel/Core/Memory/Memory.cpp
2022-10-10 23:29:39 +03:00

216 lines
7.2 KiB
C++

#include <memory.hpp>
#include <string.h>
#include <debug.h>
#include "HeapAllocators/Xalloc.hpp"
#include "../Library/liballoc_1_1.h"
using namespace Memory;
Physical KernelAllocator;
PageTable *KernelPageTable = nullptr;
enum MemoryAllocatorType
{
None,
Pages,
XallocV1,
liballoc11
};
static MemoryAllocatorType AllocatorType = MemoryAllocatorType::None;
Xalloc::AllocatorV1 *XallocV1Allocator = nullptr;
#ifdef DEBUG
void tracepagetable(PageTable *pt)
{
for (int i = 0; i < 512; i++)
{
if (pt->Entries[i].Value.Present)
debug("Entry %03d: %x %x %x %x %x %x %x %x %x %x %x %p-%#lx", i,
pt->Entries[i].Value.Present, pt->Entries[i].Value.ReadWrite,
pt->Entries[i].Value.UserSupervisor, pt->Entries[i].Value.WriteThrough,
pt->Entries[i].Value.CacheDisable, pt->Entries[i].Value.Accessed,
pt->Entries[i].Value.Dirty, pt->Entries[i].Value.PageSize,
pt->Entries[i].Value.Global, pt->Entries[i].Value.PageAttributeTable,
pt->Entries[i].Value.ExecuteDisable, pt->Entries[i].GetAddress(),
pt->Entries[i].Value);
}
}
#endif
void InitializeMemoryManagement(BootInfo *Info)
{
trace("Initializing Physical Memory Manager");
KernelAllocator = Physical();
KernelAllocator.Init(Info);
debug("Memory Info: %dMB / %dMB (%dMB reserved)",
TO_MB(KernelAllocator.GetUsedMemory()),
TO_MB(KernelAllocator.GetTotalMemory()),
TO_MB(KernelAllocator.GetReservedMemory()));
AllocatorType = MemoryAllocatorType::Pages;
trace("Initializing Virtual Memory Manager");
KernelPageTable = (PageTable *)KernelAllocator.RequestPage();
memset(KernelPageTable, 0, PAGE_SIZE);
Virtual kva = Virtual(KernelPageTable);
uint64_t KernelStart = (uint64_t)&_kernel_start;
uint64_t KernelTextEnd = (uint64_t)&_kernel_text_end;
uint64_t KernelDataEnd = (uint64_t)&_kernel_data_end;
uint64_t KernelRoDataEnd = (uint64_t)&_kernel_rodata_end;
uint64_t KernelEnd = (uint64_t)&_kernel_end;
uint64_t VirtualOffsetNormalVMA = NORMAL_VMA_OFFSET;
uint64_t BaseKernelMapAddress = (uint64_t)Info->Kernel.PhysicalBase;
for (uint64_t t = 0; t < Info->Memory.Size; t += PAGE_SIZE)
{
kva.Map((void *)t, (void *)t, PTFlag::RW);
kva.Map((void *)VirtualOffsetNormalVMA, (void *)t, PTFlag::RW);
VirtualOffsetNormalVMA += PAGE_SIZE;
}
/* Mapping Framebuffer address */
int itrfb = 0;
while (1)
{
if (!Info->Framebuffer[itrfb].BaseAddress)
break;
for (uint64_t fb_base = (uint64_t)Info->Framebuffer[itrfb].BaseAddress;
fb_base < ((uint64_t)Info->Framebuffer[itrfb].BaseAddress + ((Info->Framebuffer[itrfb].Pitch * Info->Framebuffer[itrfb].Height) + PAGE_SIZE));
fb_base += PAGE_SIZE)
kva.Map((void *)(fb_base + NORMAL_VMA_OFFSET), (void *)fb_base, PTFlag::RW | PTFlag::US);
itrfb++;
}
/* Kernel mapping */
for (uint64_t k = KernelStart; k < KernelTextEnd; k += PAGE_SIZE)
{
kva.Map((void *)k, (void *)BaseKernelMapAddress, PTFlag::RW);
KernelAllocator.LockPage((void *)BaseKernelMapAddress);
BaseKernelMapAddress += PAGE_SIZE;
}
for (uint64_t k = KernelTextEnd; k < KernelDataEnd; k += PAGE_SIZE)
{
kva.Map((void *)k, (void *)BaseKernelMapAddress, PTFlag::RW);
KernelAllocator.LockPage((void *)BaseKernelMapAddress);
BaseKernelMapAddress += PAGE_SIZE;
}
for (uint64_t k = KernelDataEnd; k < KernelRoDataEnd; k += PAGE_SIZE)
{
kva.Map((void *)k, (void *)BaseKernelMapAddress, PTFlag::P);
KernelAllocator.LockPage((void *)BaseKernelMapAddress);
BaseKernelMapAddress += PAGE_SIZE;
}
for (uint64_t k = KernelRoDataEnd; k < KernelEnd; k += PAGE_SIZE)
{
kva.Map((void *)k, (void *)BaseKernelMapAddress, PTFlag::RW);
KernelAllocator.LockPage((void *)BaseKernelMapAddress);
BaseKernelMapAddress += PAGE_SIZE;
}
debug("\nStart: %#llx - Text End: %#llx - RoEnd: %#llx - End: %#llx\nStart Physical: %#llx - End Physical: %#llx",
KernelStart, KernelTextEnd, KernelRoDataEnd, KernelEnd, Info->Kernel.PhysicalBase, BaseKernelMapAddress - PAGE_SIZE);
/* KernelStart KernelTextEnd KernelRoDataEnd KernelEnd
Kernel Start & Text Start ------ Text End ------ Kernel Rodata End ------ Kernel Data End & Kernel End
*/
trace("Applying new page table from address %p", KernelPageTable);
#ifdef DEBUG
tracepagetable(KernelPageTable);
#endif
#if defined(__amd64__) || defined(__i386__)
asmv("mov %0, %%cr3" ::"r"(KernelPageTable));
#elif defined(__aarch64__)
asmv("msr ttbr0_el1, %0" ::"r"(KernelPageTable));
#endif
if (strstr(Info->Kernel.CommandLine, "xallocv1"))
{
XallocV1Allocator = new Xalloc::AllocatorV1((void *)KERNEL_HEAP_BASE, false, false);
AllocatorType = MemoryAllocatorType::XallocV1;
trace("XallocV1 Allocator initialized (%p)", XallocV1Allocator);
}
else if (strstr(Info->Kernel.CommandLine, "liballoc11"))
{
AllocatorType = MemoryAllocatorType::liballoc11;
}
}
void *HeapMalloc(uint64_t Size)
{
switch (AllocatorType)
{
case MemoryAllocatorType::Pages:
return KernelAllocator.RequestPages(TO_PAGES(Size));
case MemoryAllocatorType::XallocV1:
return XallocV1Allocator->Malloc(Size);
case MemoryAllocatorType::liballoc11:
return PREFIX(malloc)(Size);
default:
throw;
}
}
void *HeapCalloc(uint64_t n, uint64_t Size)
{
switch (AllocatorType)
{
case MemoryAllocatorType::Pages:
return KernelAllocator.RequestPages(TO_PAGES(n * Size));
case MemoryAllocatorType::XallocV1:
return XallocV1Allocator->Calloc(n, Size);
case MemoryAllocatorType::liballoc11:
return PREFIX(calloc)(n, Size);
default:
throw;
}
}
void *HeapRealloc(void *Address, uint64_t Size)
{
switch (AllocatorType)
{
case MemoryAllocatorType::Pages:
return KernelAllocator.RequestPages(TO_PAGES(Size)); // WARNING: Potential memory leak
case MemoryAllocatorType::XallocV1:
return XallocV1Allocator->Realloc(Address, Size);
case MemoryAllocatorType::liballoc11:
return PREFIX(realloc)(Address, Size);
default:
throw;
}
}
void HeapFree(void *Address)
{
switch (AllocatorType)
{
case MemoryAllocatorType::Pages:
KernelAllocator.FreePage(Address); // WARNING: Potential memory leak
break;
case MemoryAllocatorType::XallocV1:
XallocV1Allocator->Free(Address);
break;
case MemoryAllocatorType::liballoc11:
PREFIX(free)
(Address);
break;
default:
throw;
}
}
void *operator new(uint64_t Size) { return HeapMalloc(Size); }
void *operator new[](uint64_t Size) { return HeapMalloc(Size); }
void operator delete(void *Pointer) { HeapFree(Pointer); }
void operator delete[](void *Pointer) { HeapFree(Pointer); }
void operator delete(void *Pointer, long unsigned int Size) { HeapFree(Pointer); }
void operator delete[](void *Pointer, long unsigned int Size) { HeapFree(Pointer); }