Kernel/arch/i386/cpu/apic.cpp
2024-02-25 18:43:11 +02:00

410 lines
11 KiB
C++

/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "apic.hpp"
#include <memory.hpp>
#include <uart.hpp>
#include <lock.hpp>
#include <acpi.hpp>
#include <cpu.hpp>
#include <smp.hpp>
#include <io.h>
#include "../../../kernel.h"
NewLock(APICLock);
using namespace CPU::x32;
using namespace CPU::x86;
/*
In constructor 'APIC::APIC::APIC(int)':
warning: left shift count >= width of type
| APICBaseAddress = BaseStruct.ApicBaseLo << 12u | BaseStruct.ApicBaseHi << 32u;
| ~~~~~~~~~~~~~~~~~~~~~~^~~~~~
*/
#pragma GCC diagnostic ignored "-Wshift-count-overflow"
namespace APIC
{
// headache
// https://www.amd.com/system/files/TechDocs/24593.pdf
// https://www.naic.edu/~phil/software/intel/318148.pdf
uint32_t APIC::Read(uint32_t Register)
{
#ifdef DEBUG
if (Register != APIC_ICRLO &&
Register != APIC_ICRHI &&
Register != APIC_ID)
debug("APIC::Read(%#lx) [x2=%d]", Register, x2APICSupported ? 1 : 0);
#endif
if (x2APICSupported)
{
if (Register != APIC_ICRHI)
return s_cst(uint32_t, rdmsr((Register >> 4) + 0x800));
else
return s_cst(uint32_t, rdmsr(0x30 + 0x800));
}
else
{
CPU::MemBar::Barrier();
uint32_t ret = *((volatile uint32_t *)((uintptr_t)APICBaseAddress + Register));
CPU::MemBar::Barrier();
return ret;
}
}
void APIC::Write(uint32_t Register, uint32_t Value)
{
#ifdef DEBUG
if (Register != APIC_EOI &&
Register != APIC_TDCR &&
Register != APIC_TIMER &&
Register != APIC_TICR &&
Register != APIC_ICRLO &&
Register != APIC_ICRHI)
debug("APIC::Write(%#lx, %#lx) [x2=%d]", Register, Value, x2APICSupported ? 1 : 0);
#endif
if (x2APICSupported)
{
if (Register != APIC_ICRHI)
wrmsr((Register >> 4) + 0x800, Value);
else
wrmsr(MSR_X2APIC_ICR, Value);
}
else
{
CPU::MemBar::Barrier();
*((volatile uint32_t *)(((uintptr_t)APICBaseAddress) + Register)) = Value;
CPU::MemBar::Barrier();
}
}
void APIC::IOWrite(uint64_t Base, uint32_t Register, uint32_t Value)
{
debug("APIC::IOWrite(%#lx, %#lx, %#lx)", Base, Register, Value);
CPU::MemBar::Barrier();
*((volatile uint32_t *)(((uintptr_t)Base))) = Register;
CPU::MemBar::Barrier();
*((volatile uint32_t *)(((uintptr_t)Base + 16))) = Value;
CPU::MemBar::Barrier();
}
uint32_t APIC::IORead(uint64_t Base, uint32_t Register)
{
debug("APIC::IORead(%#lx, %#lx)", Base, Register);
CPU::MemBar::Barrier();
*((volatile uint32_t *)(((uintptr_t)Base))) = Register;
CPU::MemBar::Barrier();
uint32_t ret = *((volatile uint32_t *)(((uintptr_t)Base + 16)));
CPU::MemBar::Barrier();
return ret;
}
void APIC::EOI() { this->Write(APIC_EOI, 0); }
void APIC::WaitForIPI()
{
InterruptCommandRegisterLow icr = {.raw = 0};
do
{
icr.raw = this->Read(APIC_ICRLO);
CPU::Pause();
} while (icr.DeliveryStatus != Idle);
}
void APIC::IPI(uint8_t CPU, InterruptCommandRegisterLow icr)
{
SmartCriticalSection(APICLock);
if (x2APICSupported)
{
wrmsr(MSR_X2APIC_ICR, s_cst(uint32_t, icr.raw));
this->WaitForIPI();
}
else
{
this->Write(APIC_ICRHI, (CPU << 24));
this->Write(APIC_ICRLO, s_cst(uint32_t, icr.raw));
this->WaitForIPI();
}
}
void APIC::SendInitIPI(uint8_t CPU)
{
SmartCriticalSection(APICLock);
if (x2APICSupported)
{
InterruptCommandRegisterLow icr = {.raw = 0};
icr.DeliveryMode = INIT;
icr.Level = Assert;
wrmsr(MSR_X2APIC_ICR, s_cst(uint32_t, icr.raw));
this->WaitForIPI();
}
else
{
InterruptCommandRegisterLow icr = {.raw = 0};
icr.DeliveryMode = INIT;
icr.Level = Assert;
this->Write(APIC_ICRHI, (CPU << 24));
this->Write(APIC_ICRLO, s_cst(uint32_t, icr.raw));
this->WaitForIPI();
}
}
void APIC::SendStartupIPI(uint8_t CPU, uint64_t StartupAddress)
{
SmartCriticalSection(APICLock);
if (x2APICSupported)
{
InterruptCommandRegisterLow icr = {.raw = 0};
icr.Vector = s_cst(uint8_t, StartupAddress >> 12);
icr.DeliveryMode = Startup;
icr.Level = Assert;
wrmsr(MSR_X2APIC_ICR, s_cst(uint32_t, icr.raw));
this->WaitForIPI();
}
else
{
InterruptCommandRegisterLow icr = {.raw = 0};
icr.Vector = s_cst(uint8_t, StartupAddress >> 12);
icr.DeliveryMode = Startup;
icr.Level = Assert;
this->Write(APIC_ICRHI, (CPU << 24));
this->Write(APIC_ICRLO, s_cst(uint32_t, icr.raw));
this->WaitForIPI();
}
}
uint32_t APIC::IOGetMaxRedirect(uint32_t APICID)
{
uint32_t TableAddress = (this->IORead((((ACPI::MADT *)PowerManager->GetMADT())->ioapic[APICID]->Address), GetIOAPICVersion));
return ((IOAPICVersion *)&TableAddress)->MaximumRedirectionEntry;
}
void APIC::RawRedirectIRQ(uint16_t Vector, uint32_t GSI, uint16_t Flags, int CPU, int Status)
{
uint64_t Value = Vector;
int64_t IOAPICTarget = -1;
for (uint64_t i = 0; ((ACPI::MADT *)PowerManager->GetMADT())->ioapic[std::size_t(i)] != 0; i++)
if (((ACPI::MADT *)PowerManager->GetMADT())->ioapic[std::size_t(i)]->GSIBase <= GSI)
if (((ACPI::MADT *)PowerManager->GetMADT())->ioapic[std::size_t(i)]->GSIBase + IOGetMaxRedirect(s_cst(uint32_t, i)) > GSI)
{
IOAPICTarget = i;
break;
}
if (IOAPICTarget == -1)
{
error("No ISO table found for I/O APIC");
return;
}
// TODO: IOAPICRedirectEntry Entry = {.raw = 0};
if (Flags & ActiveHighLow)
Value |= (1 << 13);
if (Flags & EdgeLevel)
Value |= (1 << 15);
if (!Status)
Value |= (1 << 16);
Value |= (((uintptr_t)CPU) << 56);
uint32_t IORegister = (GSI - ((ACPI::MADT *)PowerManager->GetMADT())->ioapic[std::size_t(IOAPICTarget)]->GSIBase) * 2 + 16;
this->IOWrite(((ACPI::MADT *)PowerManager->GetMADT())->ioapic[std::size_t(IOAPICTarget)]->Address,
IORegister, (uint32_t)Value);
this->IOWrite(((ACPI::MADT *)PowerManager->GetMADT())->ioapic[std::size_t(IOAPICTarget)]->Address,
IORegister + 1, (uint32_t)(Value >> 32));
}
void APIC::RedirectIRQ(int CPU, uint16_t IRQ, int Status)
{
for (uint64_t i = 0; i < ((ACPI::MADT *)PowerManager->GetMADT())->iso.size(); i++)
if (((ACPI::MADT *)PowerManager->GetMADT())->iso[std::size_t(i)]->IRQSource == IRQ)
{
debug("[ISO %d] Mapping to source IRQ%#d GSI:%#lx on CPU %d",
i, ((ACPI::MADT *)PowerManager->GetMADT())->iso[std::size_t(i)]->IRQSource,
((ACPI::MADT *)PowerManager->GetMADT())->iso[std::size_t(i)]->GSI,
CPU);
this->RawRedirectIRQ(((ACPI::MADT *)PowerManager->GetMADT())->iso[std::size_t(i)]->IRQSource + 0x20,
((ACPI::MADT *)PowerManager->GetMADT())->iso[std::size_t(i)]->GSI,
((ACPI::MADT *)PowerManager->GetMADT())->iso[std::size_t(i)]->Flags,
CPU, Status);
return;
}
debug("Mapping IRQ%d on CPU %d", IRQ, CPU);
this->RawRedirectIRQ(IRQ + 0x20, IRQ, 0, CPU, Status);
}
void APIC::RedirectIRQs(int CPU)
{
SmartCriticalSection(APICLock);
debug("Redirecting IRQs...");
for (uint8_t i = 0; i < 16; i++)
this->RedirectIRQ(CPU, i, 1);
debug("Redirecting IRQs completed.");
}
APIC::APIC(int Core)
{
SmartCriticalSection(APICLock);
APIC_BASE BaseStruct = {.raw = rdmsr(MSR_APIC_BASE)};
uint64_t BaseLow = BaseStruct.ApicBaseLo;
uint64_t BaseHigh = BaseStruct.ApicBaseHi;
this->APICBaseAddress = BaseLow << 12u | BaseHigh << 32u;
trace("APIC Address: %#lx", this->APICBaseAddress);
Memory::Virtual().Map((void *)this->APICBaseAddress, (void *)this->APICBaseAddress, Memory::PTFlag::RW | Memory::PTFlag::PCD);
bool x2APICSupported = false;
if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_AMD) == 0)
{
CPU::x86::AMD::CPUID0x00000001 cpuid;
if (cpuid.ECX.x2APIC)
{
// x2APICSupported = cpuid.ECX.x2APIC;
fixme("x2APIC is supported");
}
}
else if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_INTEL) == 0)
{
CPU::x86::Intel::CPUID0x00000001 cpuid;
if (cpuid.ECX.x2APIC)
{
// x2APICSupported = cpuid.ECX.x2APIC;
fixme("x2APIC is supported");
}
}
if (x2APICSupported)
{
this->x2APICSupported = true;
wrmsr(MSR_APIC_BASE, (rdmsr(MSR_APIC_BASE) | (1 << 11)) & ~(1 << 10));
BaseStruct.EN = 1;
wrmsr(MSR_APIC_BASE, BaseStruct.raw);
}
else
{
BaseStruct.EN = 1;
wrmsr(MSR_APIC_BASE, BaseStruct.raw);
}
this->Write(APIC_TPR, 0x0);
// this->Write(APIC_SVR, this->Read(APIC_SVR) | 0x100); // 0x1FF or 0x100 ? on https://wiki.osdev.org/APIC is 0x100
if (!this->x2APICSupported)
{
this->Write(APIC_DFR, 0xF0000000);
this->Write(APIC_LDR, this->Read(APIC_ID));
}
ACPI::MADT *madt = (ACPI::MADT *)PowerManager->GetMADT();
for (size_t i = 0; i < madt->nmi.size(); i++)
{
if (madt->nmi[std::size_t(i)]->processor != 0xFF && Core != madt->nmi[std::size_t(i)]->processor)
return;
uint32_t nmi = 0x402;
if (madt->nmi[std::size_t(i)]->flags & 2)
nmi |= 1 << 13;
if (madt->nmi[std::size_t(i)]->flags & 8)
nmi |= 1 << 15;
if (madt->nmi[std::size_t(i)]->lint == 0)
this->Write(APIC_LINT0, nmi);
else if (madt->nmi[std::size_t(i)]->lint == 1)
this->Write(APIC_LINT1, nmi);
}
// Setup the spurrious interrupt vector
Spurious Spurious = {.raw = this->Read(APIC_SVR)};
Spurious.Vector = IRQ223; // TODO: Should I map the IRQ to something?
Spurious.Software = 1;
this->Write(APIC_SVR, s_cst(uint32_t, Spurious.raw));
static int once = 0;
if (!once++)
{
// Disable PIT
outb(0x43, 0x28);
outb(0x40, 0x0);
// Disable PIC
outb(0x21, 0xFF);
outb(0xA1, 0xFF);
}
}
APIC::~APIC() {}
void Timer::OnInterruptReceived(CPU::TrapFrame *Frame) { UNUSED(Frame); }
void Timer::OneShot(uint32_t Vector, uint64_t Miliseconds)
{
SmartCriticalSection(APICLock);
LVTTimer timer = {.raw = 0};
timer.Vector = s_cst(uint8_t, Vector);
timer.TimerMode = 0;
if (strcmp(CPU::Hypervisor(), x86_CPUID_VENDOR_TCG) != 0)
this->lapic->Write(APIC_TDCR, DivideBy128);
else
this->lapic->Write(APIC_TDCR, DivideBy16);
this->lapic->Write(APIC_TICR, s_cst(uint32_t, Ticks * Miliseconds));
this->lapic->Write(APIC_TIMER, s_cst(uint32_t, timer.raw));
}
Timer::Timer(APIC *apic) : Interrupts::Handler(0) /* IRQ0 */
{
SmartCriticalSection(APICLock);
this->lapic = apic;
LVTTimerDivide Divider = DivideBy16;
trace("Initializing APIC timer on CPU %d", GetCurrentCPU()->ID);
this->lapic->Write(APIC_TDCR, Divider);
this->lapic->Write(APIC_TICR, 0xFFFFFFFF);
TimeManager->Sleep(1, Time::Units::Milliseconds);
// Mask the timer
this->lapic->Write(APIC_TIMER, 0x10000 /* LVTTimer.Mask flag */);
Ticks = 0xFFFFFFFF - this->lapic->Read(APIC_TCCR);
// Config for IRQ0 timer
LVTTimer timer = {.raw = 0};
timer.Vector = IRQ0;
timer.Mask = Unmasked;
timer.TimerMode = LVTTimerMode::OneShot;
// Initialize APIC timer
this->lapic->Write(APIC_TDCR, Divider);
this->lapic->Write(APIC_TICR, s_cst(uint32_t, Ticks));
this->lapic->Write(APIC_TIMER, s_cst(uint32_t, timer.raw));
trace("%d APIC Timer %d ticks in.", GetCurrentCPU()->ID, Ticks);
KPrint("APIC Timer: \e8888FF%ld\eCCCCCC ticks.", Ticks);
}
Timer::~Timer()
{
}
}