Kernel/arch/amd64/cpu/apic.cpp
2024-02-25 18:43:11 +02:00

488 lines
12 KiB
C++

/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "apic.hpp"
#include <memory.hpp>
#include <acpi.hpp>
#include <uart.hpp>
#include <lock.hpp>
#include <cpu.hpp>
#include <smp.hpp>
#include <io.h>
#include "../../../kernel.h"
NewLock(APICLock);
using namespace CPU::x64;
using namespace CPU::x86;
/*
In constructor 'APIC::APIC::APIC(int)':
warning: left shift count >= width of type
| APICBaseAddress = BaseStruct.ApicBaseLo << 12u | BaseStruct.ApicBaseHi << 32u;
| ~~~~~~~~~~~~~~~~~~~~~~^~~~~~
*/
#pragma GCC diagnostic ignored "-Wshift-count-overflow"
namespace APIC
{
// headache
// https://www.amd.com/system/files/TechDocs/24593.pdf
// https://www.naic.edu/~phil/software/intel/318148.pdf
uint32_t APIC::Read(uint32_t Register)
{
#ifdef DEBUG
if (Register != APIC_ICRLO &&
Register != APIC_ICRHI &&
Register != APIC_ID)
debug("APIC::Read(%#lx) [x2=%d]",
Register, x2APICSupported ? 1 : 0);
#endif
if (unlikely(x2APICSupported))
assert(!"x2APIC is not supported");
CPU::MemBar::Barrier();
uint32_t ret = *((volatile uint32_t *)((uintptr_t)APICBaseAddress + Register));
CPU::MemBar::Barrier();
return ret;
}
void APIC::Write(uint32_t Register, uint32_t Value)
{
#ifdef DEBUG
if (Register != APIC_EOI &&
Register != APIC_TDCR &&
Register != APIC_TIMER &&
Register != APIC_TICR &&
Register != APIC_ICRLO &&
Register != APIC_ICRHI)
debug("APIC::Write(%#lx, %#lx) [x2=%d]",
Register, Value, x2APICSupported ? 1 : 0);
#endif
if (unlikely(x2APICSupported))
assert(!"x2APIC is not supported");
CPU::MemBar::Barrier();
*((volatile uint32_t *)(((uintptr_t)APICBaseAddress) + Register)) = Value;
CPU::MemBar::Barrier();
}
void APIC::IOWrite(uint64_t Base, uint32_t Register, uint32_t Value)
{
debug("APIC::IOWrite(%#lx, %#lx, %#lx)", Base, Register, Value);
CPU::MemBar::Barrier();
*((volatile uint32_t *)(((uintptr_t)Base))) = Register;
CPU::MemBar::Barrier();
*((volatile uint32_t *)(((uintptr_t)Base + 16))) = Value;
CPU::MemBar::Barrier();
}
uint32_t APIC::IORead(uint64_t Base, uint32_t Register)
{
debug("APIC::IORead(%#lx, %#lx)", Base, Register);
CPU::MemBar::Barrier();
*((volatile uint32_t *)(((uintptr_t)Base))) = Register;
CPU::MemBar::Barrier();
uint32_t ret = *((volatile uint32_t *)(((uintptr_t)Base + 16)));
CPU::MemBar::Barrier();
return ret;
}
void APIC::EOI()
{
Memory::SwapPT swap =
Memory::SwapPT(KernelPageTable, thisPageTable);
if (this->x2APICSupported)
wrmsr(MSR_X2APIC_EOI, 0);
else
this->Write(APIC_EOI, 0);
}
void APIC::WaitForIPI()
{
if (this->x2APICSupported)
{
ErrorStatusRegister esr{};
esr.raw = uint32_t(rdmsr(MSR_X2APIC_ESR));
UNUSED(esr);
/* FIXME: Not sure if this is required or
how to implement it. */
}
else
{
InterruptCommandRegister icr{};
do
{
icr.split.Low = this->Read(APIC_ICRLO);
CPU::Pause();
} while (icr.DS != Idle);
}
}
void APIC::ICR(InterruptCommandRegister icr)
{
SmartCriticalSection(APICLock);
if (x2APICSupported)
{
assert(icr.MT != LowestPriority);
assert(icr.MT != DeliveryMode);
assert(icr.MT != ExtINT);
wrmsr(MSR_X2APIC_ICR, icr.raw);
this->WaitForIPI();
}
else
{
this->Write(APIC_ICRHI, icr.split.High);
this->Write(APIC_ICRLO, icr.split.Low);
this->WaitForIPI();
}
}
void APIC::SendInitIPI(int CPU)
{
SmartCriticalSection(APICLock);
InterruptCommandRegister icr{};
if (x2APICSupported)
{
icr.x2.MT = INIT;
icr.x2.L = Assert;
icr.x2.DES = uint8_t(CPU);
wrmsr(MSR_X2APIC_ICR, icr.raw);
this->WaitForIPI();
}
else
{
icr.MT = INIT;
icr.L = Assert;
icr.DES = uint8_t(CPU);
this->Write(APIC_ICRHI, icr.split.High);
this->Write(APIC_ICRLO, icr.split.Low);
this->WaitForIPI();
}
}
void APIC::SendStartupIPI(int CPU, uint64_t StartupAddress)
{
SmartCriticalSection(APICLock);
InterruptCommandRegister icr{};
if (x2APICSupported)
{
icr.x2.VEC = s_cst(uint8_t, StartupAddress >> 12);
icr.x2.MT = Startup;
icr.x2.L = Assert;
icr.x2.DES = uint8_t(CPU);
wrmsr(MSR_X2APIC_ICR, icr.raw);
this->WaitForIPI();
}
else
{
icr.VEC = s_cst(uint8_t, StartupAddress >> 12);
icr.MT = Startup;
icr.L = Assert;
icr.DES = uint8_t(CPU);
this->Write(APIC_ICRHI, icr.split.High);
this->Write(APIC_ICRLO, icr.split.Low);
this->WaitForIPI();
}
}
uint32_t APIC::IOGetMaxRedirect(uint32_t APICID)
{
ACPI::MADT::MADTIOApic *ioapic = ((ACPI::MADT *)PowerManager->GetMADT())->ioapic[APICID];
uint32_t TableAddress = (this->IORead(ioapic->Address, GetIOAPICVersion));
IOAPICVersion ver = {.raw = TableAddress};
return ver.MLE + 1;
}
void APIC::RawRedirectIRQ(uint8_t Vector, uint32_t GSI, uint16_t Flags, uint8_t CPU, int Status)
{
int64_t IOAPICTarget = -1;
ACPI::MADT *madt = (ACPI::MADT *)PowerManager->GetMADT();
for (size_t i = 0; i < madt->ioapic.size(); i++)
{
if (madt->ioapic[i]->GSIBase <= GSI)
{
if (madt->ioapic[i]->GSIBase + IOGetMaxRedirect(uint32_t(i)) > GSI)
{
IOAPICTarget = i;
break;
}
}
}
if (IOAPICTarget == -1)
{
error("No ISO table found for I/O APIC");
return;
}
IOAPICRedirectEntry Entry{};
Entry.VEC = Vector;
Entry.DES = CPU;
if (Flags & ActiveHighLow)
Entry.IPP = 1;
if (Flags & EdgeLevel)
Entry.TGM = 1;
if (!Status)
Entry.M = 1;
uint32_t IORegister = (GSI - madt->ioapic[IOAPICTarget]->GSIBase) * 2 + 16;
this->IOWrite(madt->ioapic[IOAPICTarget]->Address,
IORegister, Entry.split.Low);
this->IOWrite(madt->ioapic[IOAPICTarget]->Address,
IORegister + 1, Entry.split.High);
}
void APIC::RedirectIRQ(uint8_t CPU, uint8_t IRQ, int Status)
{
ACPI::MADT *madt = (ACPI::MADT *)PowerManager->GetMADT();
for (uint64_t i = 0; i < madt->iso.size(); i++)
if (madt->iso[i]->IRQSource == IRQ)
{
debug("[ISO %d] Mapping to source IRQ%#d GSI:%#lx on CPU %d",
i, madt->iso[i]->IRQSource, madt->iso[i]->GSI, CPU);
this->RawRedirectIRQ(madt->iso[i]->IRQSource + 0x20,
madt->iso[i]->GSI,
madt->iso[i]->Flags,
CPU, Status);
return;
}
debug("Mapping IRQ%d on CPU %d", IRQ, CPU);
this->RawRedirectIRQ(IRQ + 0x20, IRQ, 0, CPU, Status);
}
void APIC::RedirectIRQs(uint8_t CPU)
{
SmartCriticalSection(APICLock);
debug("Redirecting IRQs...");
for (uint8_t i = 0; i < 16; i++)
this->RedirectIRQ(CPU, i, 1);
debug("Redirecting IRQs completed.");
}
APIC::APIC(int Core)
{
SmartCriticalSection(APICLock);
APIC_BASE BaseStruct = {.raw = rdmsr(MSR_APIC_BASE)};
uint64_t BaseLow = BaseStruct.ABALow;
uint64_t BaseHigh = BaseStruct.ABAHigh;
this->APICBaseAddress = BaseLow << 12u | BaseHigh << 32u;
trace("APIC Address: %#lx", this->APICBaseAddress);
Memory::Virtual().Map((void *)this->APICBaseAddress,
(void *)this->APICBaseAddress,
Memory::RW | Memory::PCD);
if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_AMD) == 0)
{
CPU::x86::AMD::CPUID0x00000001 cpuid;
if (cpuid.ECX.x2APIC)
{
this->x2APICSupported = cpuid.ECX.x2APIC;
debug("x2APIC is supported");
}
}
else if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_INTEL) == 0)
{
CPU::x86::Intel::CPUID0x00000001 cpuid;
if (cpuid.ECX.x2APIC)
{
this->x2APICSupported = cpuid.ECX.x2APIC;
debug("x2APIC is supported");
}
}
BaseStruct.AE = 1;
wrmsr(MSR_APIC_BASE, BaseStruct.raw);
if (this->x2APICSupported)
{
BaseStruct.EXTD = 1;
wrmsr(MSR_APIC_BASE, BaseStruct.raw);
}
if (!this->x2APICSupported)
{
this->Write(APIC_TPR, 0x0);
this->Write(APIC_DFR, 0xF0000000);
this->Write(APIC_LDR, this->Read(APIC_ID));
}
else
{
wrmsr(MSR_X2APIC_TPR, 0x0);
}
ACPI::MADT *madt = (ACPI::MADT *)PowerManager->GetMADT();
for (size_t i = 0; i < madt->nmi.size(); i++)
{
if (madt->nmi[i]->processor != 0xFF &&
Core != madt->nmi[i]->processor)
break;
uint32_t nmi = 0x402;
if (madt->nmi[i]->flags & 2)
nmi |= 1 << 13;
if (madt->nmi[i]->flags & 8)
nmi |= 1 << 15;
if (madt->nmi[i]->lint == 0)
{
if (this->x2APICSupported)
wrmsr(MSR_X2APIC_LVT_LINT0, nmi);
else
this->Write(APIC_LINT0, nmi);
}
else if (madt->nmi[i]->lint == 1)
{
if (this->x2APICSupported)
wrmsr(MSR_X2APIC_LVT_LINT1, nmi);
else
this->Write(APIC_LINT1, nmi);
}
}
/* Setup the spurious interrupt vector */
Spurious svr{};
if (this->x2APICSupported)
svr.raw = uint32_t(rdmsr(MSR_X2APIC_SIVR));
else
svr.raw = this->Read(APIC_SVR);
svr.VEC = IRQ223;
svr.ASE = 1;
if (this->x2APICSupported)
wrmsr(MSR_X2APIC_SIVR, svr.raw);
else
this->Write(APIC_SVR, svr.raw);
static int once = 0;
if (!once++)
{
// Disable PIT
outb(0x43, 0x28);
outb(0x40, 0x0);
// Disable PIC
outb(0x21, 0xFF);
outb(0xA1, 0xFF);
}
}
APIC::~APIC() {}
void Timer::OnInterruptReceived(CPU::TrapFrame *) {}
void Timer::OneShot(uint32_t Vector, uint64_t Miliseconds)
{
/* FIXME: Sometimes APIC stops firing when debugging, why? */
LVTTimer timer{};
timer.VEC = uint8_t(Vector);
timer.TMM = LVTTimerMode::OneShot;
LVTTimerDivide Divider = DivideBy8;
SmartCriticalSection(APICLock);
if (this->lapic->x2APIC)
{
// wrmsr(MSR_X2APIC_DIV_CONF, Divider); <- gpf on real hardware
wrmsr(MSR_X2APIC_INIT_COUNT, uint32_t(Ticks * Miliseconds));
wrmsr(MSR_X2APIC_LVT_TIMER, uint32_t(timer.raw));
}
else
{
this->lapic->Write(APIC_TDCR, Divider);
this->lapic->Write(APIC_TICR, uint32_t(Ticks * Miliseconds));
this->lapic->Write(APIC_TIMER, uint32_t(timer.raw));
}
}
Timer::Timer(APIC *apic) : Interrupts::Handler(0) /* IRQ0 */
{
SmartCriticalSection(APICLock);
this->lapic = apic;
LVTTimerDivide Divider = DivideBy8;
trace("Initializing APIC timer on CPU %d",
GetCurrentCPU()->ID);
if (this->lapic->x2APIC)
{
wrmsr(MSR_X2APIC_DIV_CONF, Divider);
wrmsr(MSR_X2APIC_INIT_COUNT, 0xFFFFFFFF);
}
else
{
this->lapic->Write(APIC_TDCR, Divider);
this->lapic->Write(APIC_TICR, 0xFFFFFFFF);
}
TimeManager->Sleep(1, Time::Units::Milliseconds);
// Mask the timer
if (this->lapic->x2APIC)
{
wrmsr(MSR_X2APIC_LVT_TIMER, 0x10000 /* LVTTimer.Mask flag */);
Ticks = 0xFFFFFFFF - rdmsr(MSR_X2APIC_CUR_COUNT);
}
else
{
this->lapic->Write(APIC_TIMER, 0x10000 /* LVTTimer.Mask flag */);
Ticks = 0xFFFFFFFF - this->lapic->Read(APIC_TCCR);
}
// Config for IRQ0 timer
LVTTimer timer{};
timer.VEC = IRQ0;
timer.M = Unmasked;
timer.TMM = LVTTimerMode::OneShot;
// Initialize APIC timer
if (this->lapic->x2APIC)
{
wrmsr(MSR_X2APIC_DIV_CONF, Divider);
wrmsr(MSR_X2APIC_INIT_COUNT, Ticks);
wrmsr(MSR_X2APIC_LVT_TIMER, timer.raw);
}
else
{
this->lapic->Write(APIC_TDCR, Divider);
this->lapic->Write(APIC_TICR, uint32_t(Ticks));
this->lapic->Write(APIC_TIMER, uint32_t(timer.raw));
}
trace("%d APIC Timer %d ticks in.",
GetCurrentCPU()->ID, Ticks);
KPrint("APIC Timer: \e8888FF%ld\eCCCCCC ticks.", Ticks);
}
Timer::~Timer()
{
}
}