Kernel/ExecutionLayer/Elf/ElfLoader.cpp
2023-08-06 04:53:14 +03:00

792 lines
23 KiB
C++

/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include <exec.hpp>
#include <memory.hpp>
#include <lock.hpp>
#include <msexec.h>
#include <cwalk.h>
#include <elf.h>
#include <abi.h>
#include "../../kernel.h"
#include "../../Fex.hpp"
using namespace Tasking;
using namespace VirtualFileSystem;
namespace Execute
{
void ELFObject::LoadExec_x86_32(int fd, PCB *TargetProcess)
{
stub;
UNUSED(fd);
UNUSED(TargetProcess);
}
void ELFObject::LoadExec_x86_64(int fd, PCB *TargetProcess)
{
std::string InterpreterPath;
std::vector<Elf64_Phdr> PhdrINTERP = ELFGetSymbolType_x86_64(fd, PT_INTERP);
foreach (auto Interp in PhdrINTERP)
{
Memory::SmartHeap sh = Memory::SmartHeap(256);
lseek(fd, Interp.p_offset, SEEK_SET);
fread(fd, sh, 256);
InterpreterPath = sh;
int ifd = fopen(InterpreterPath.c_str(), "r");
if (ifd < 0)
{
warn("Failed to open interpreter file: %s",
InterpreterPath.c_str());
continue;
}
else
{
if (GetBinaryType(InterpreterPath.c_str()) != BinTypeELF)
{
warn("Interpreter %s is not an ELF file",
InterpreterPath.c_str());
fclose(ifd);
continue;
}
if (LoadInterpreter(ifd, TargetProcess))
{
/* ba deci de aici trb sa fac
sa se incarce interperter-ul
argv[1] ar trb sa fie locatia pt intrep */
// modific argv-ul
// TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME
// TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME
// TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME
// TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME
// TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME
// TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME
// TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME
debug("Interpreter loaded successfully");
fclose(ifd);
return;
}
}
}
Elf64_Ehdr ELFHeader;
fread(fd, (uint8_t *)&ELFHeader, sizeof(Elf64_Ehdr));
uintptr_t EntryPoint = ELFHeader.e_entry;
debug("Entry point is %#lx", EntryPoint);
debug("Solving symbols");
std::vector<Elf64_Shdr> DynamicString = ELFGetSections_x86_64(fd, ".dynstr");
std::vector<Elf64_Shdr> StringTable = ELFGetSections_x86_64(fd, ".strtab");
if (DynamicString.size() < 1) /* TODO: check if this is required */
DynamicString = StringTable;
Memory::Virtual vmm = Memory::Virtual(TargetProcess->PageTable);
Memory::MemMgr *mm = TargetProcess->Memory;
uint64_t BaseAddress = 0;
/* Copy segments into memory */
{
Elf64_Phdr ProgramHeader;
for (Elf64_Half i = 0; i < ELFHeader.e_phnum; i++)
{
lseek(fd, ELFHeader.e_phoff + (i * sizeof(Elf64_Phdr)), SEEK_SET);
fread(fd, (uint8_t *)&ProgramHeader, sizeof(Elf64_Phdr));
switch (ProgramHeader.p_type)
{
case PT_LOAD:
{
if (ProgramHeader.p_memsz == 0)
continue;
void *pAddr = mm->RequestPages(TO_PAGES(ProgramHeader.p_memsz), true);
void *SegmentDestination = (void *)ProgramHeader.p_vaddr;
vmm.Map(SegmentDestination, pAddr,
ProgramHeader.p_memsz,
Memory::P | Memory::RW | Memory::US);
debug("Mapped %#lx to %#lx", SegmentDestination, pAddr);
if (BaseAddress == 0)
BaseAddress = (uintptr_t)SegmentDestination;
debug("Copying segment to p: %#lx-%#lx; v: %#lx-%#lx (%ld file bytes, %ld mem bytes)",
pAddr, uintptr_t(pAddr) + ProgramHeader.p_memsz,
SegmentDestination, uintptr_t(SegmentDestination) + ProgramHeader.p_memsz,
ProgramHeader.p_filesz, ProgramHeader.p_memsz);
if (ProgramHeader.p_filesz > 0)
{
lseek(fd, ProgramHeader.p_offset, SEEK_SET);
fread(fd, (uint8_t *)pAddr, ProgramHeader.p_filesz);
}
if (ProgramHeader.p_memsz - ProgramHeader.p_filesz > 0)
{
void *zAddr = (void *)(uintptr_t(pAddr) + ProgramHeader.p_filesz);
memset(zAddr, 0, ProgramHeader.p_memsz - ProgramHeader.p_filesz);
}
break;
}
default:
{
fixme("Unhandled program header type: %#lx",
ProgramHeader.p_type);
break;
}
}
}
}
struct stat statbuf;
fstat(fd, &statbuf);
Memory::SmartHeap sh = Memory::SmartHeap(statbuf.st_size);
lseek(fd, 0, SEEK_SET);
fread(fd, sh, statbuf.st_size);
TargetProcess->ELFSymbolTable->AppendSymbols(uintptr_t(sh.GetObject()));
debug("Entry Point: %#lx", EntryPoint);
char *aux_platform = (char *)mm->RequestPages(1, true); /* TODO: 4KiB is too much for this */
strcpy(aux_platform, "x86_64");
std::string execfn = thisProcess->FileDescriptors->GetAbsolutePath(fd);
void *execfn_str = mm->RequestPages(TO_PAGES(execfn.size() + 1), true);
strcpy((char *)execfn_str, execfn.c_str());
// prep. for AT_PHDR
void *phdr_array = mm->RequestPages(TO_PAGES(ELFHeader.e_phnum * sizeof(Elf64_Phdr)), true);
lseek(fd, ELFHeader.e_phoff, SEEK_SET);
fread(fd, (uint8_t *)phdr_array, ELFHeader.e_phnum * sizeof(Elf64_Phdr));
Elfauxv.push_back({.archaux = {.a_type = AT_NULL, .a_un = {.a_val = 0}}});
Elfauxv.push_back({.archaux = {.a_type = AT_PLATFORM, .a_un = {.a_val = (uint64_t)aux_platform}}});
Elfauxv.push_back({.archaux = {.a_type = AT_EXECFN, .a_un = {.a_val = (uint64_t)execfn_str}}});
// AT_HWCAP2 26
// AT_RANDOM 25
// AT_SECURE 23
Elfauxv.push_back({.archaux = {.a_type = AT_EGID, .a_un = {.a_val = (uint64_t)0}}}); /* FIXME */
Elfauxv.push_back({.archaux = {.a_type = AT_GID, .a_un = {.a_val = (uint64_t)0}}}); /* FIXME */
Elfauxv.push_back({.archaux = {.a_type = AT_EUID, .a_un = {.a_val = (uint64_t)0}}}); /* FIXME */
Elfauxv.push_back({.archaux = {.a_type = AT_UID, .a_un = {.a_val = (uint64_t)0}}}); /* FIXME */
Elfauxv.push_back({.archaux = {.a_type = AT_ENTRY, .a_un = {.a_val = (uint64_t)EntryPoint}}});
// AT_FLAGS 8
Elfauxv.push_back({.archaux = {.a_type = AT_BASE, .a_un = {.a_val = (uint64_t)BaseAddress}}});
Elfauxv.push_back({.archaux = {.a_type = AT_PHNUM, .a_un = {.a_val = (uint64_t)ELFHeader.e_phnum}}});
Elfauxv.push_back({.archaux = {.a_type = AT_PHENT, .a_un = {.a_val = (uint64_t)ELFHeader.e_phentsize}}});
Elfauxv.push_back({.archaux = {.a_type = AT_PHDR, .a_un = {.a_val = (uint64_t)phdr_array}}});
// AT_CLKTCK 17
Elfauxv.push_back({.archaux = {.a_type = AT_PAGESZ, .a_un = {.a_val = (uint64_t)PAGE_SIZE}}});
// AT_HWCAP 16
// AT_MINSIGSTKSZ 51
// AT_SYSINFO_EHDR 33
this->ip = EntryPoint;
this->IsElfValid = true;
}
void ELFObject::LoadDyn_x86_32(int fd, PCB *TargetProcess)
{
stub;
UNUSED(fd);
UNUSED(TargetProcess);
}
void ELFObject::LoadDyn_x86_64(int fd, PCB *TargetProcess)
{
std::string InterpreterPath;
std::vector<Elf64_Phdr> PhdrINTERP = ELFGetSymbolType_x86_64(fd, PT_INTERP);
foreach (auto Interp in PhdrINTERP)
{
Memory::SmartHeap sh = Memory::SmartHeap(256);
lseek(fd, Interp.p_offset, SEEK_SET);
fread(fd, sh, 256);
InterpreterPath = sh;
int ifd = fopen(InterpreterPath.c_str(), "r");
if (ifd < 0)
{
warn("Failed to open interpreter file: %s",
InterpreterPath.c_str());
continue;
}
else
{
if (GetBinaryType(InterpreterPath.c_str()) != BinTypeELF)
{
warn("Interpreter %s is not an ELF file",
InterpreterPath.c_str());
fclose(ifd);
continue;
}
if (LoadInterpreter(ifd, TargetProcess))
{
/* ba deci de aici trb sa fac
sa se incarce interperter-ul
argv[1] ar trb sa fie locatia pt intrep */
// modific argv-ul
// TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME
// TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME
// TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME
// TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME
// TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME
// TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME
// TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME TODO FIXME
debug("Interpreter loaded successfully");
fclose(ifd);
return;
}
}
}
Elf64_Ehdr ELFHeader;
fread(fd, (uint8_t *)&ELFHeader, sizeof(Elf64_Ehdr));
uintptr_t EntryPoint = ELFHeader.e_entry;
debug("Entry point is %#lx", EntryPoint);
debug("Solving symbols");
std::vector<Elf64_Shdr> DynamicString = ELFGetSections_x86_64(fd, ".dynstr");
std::vector<Elf64_Shdr> StringTable = ELFGetSections_x86_64(fd, ".strtab");
if (DynamicString.size() < 1) /* TODO: check if this is required */
DynamicString = StringTable;
Memory::Virtual vmm = Memory::Virtual(TargetProcess->PageTable);
Memory::MemMgr *mm = TargetProcess->Memory;
uintptr_t BaseAddress = 0;
/* Copy segments into memory */
{
Elf64_Phdr ProgramHeader;
std::size_t SegmentsSize = 0;
for (Elf64_Half i = 0; i < ELFHeader.e_phnum; i++)
{
lseek(fd, ELFHeader.e_phoff + (i * sizeof(Elf64_Phdr)), SEEK_SET);
fread(fd, (uint8_t *)&ProgramHeader, sizeof(Elf64_Phdr));
if (ProgramHeader.p_type == PT_LOAD ||
ProgramHeader.p_type == PT_DYNAMIC)
SegmentsSize += ProgramHeader.p_memsz;
}
/* TODO: Check if this is correct and/or it needs more
complex calculations & allocations */
void *SegmentsAddress = mm->RequestPages(TO_PAGES(SegmentsSize) + 1, true);
BaseAddress = (uintptr_t)SegmentsAddress;
debug("BaseAddress: %#lx, End: %#lx", BaseAddress,
BaseAddress + FROM_PAGES(TO_PAGES(SegmentsSize)));
for (Elf64_Half i = 0; i < ELFHeader.e_phnum; i++)
{
lseek(fd, ELFHeader.e_phoff + (i * sizeof(Elf64_Phdr)), SEEK_SET);
fread(fd, (uint8_t *)&ProgramHeader, sizeof(Elf64_Phdr));
switch (ProgramHeader.p_type)
{
case PT_LOAD:
{
/* Because this is ET_DYN, we can load the segments
anywhere we want. */
uintptr_t SegmentDestination = BaseAddress + ProgramHeader.p_vaddr;
if (ProgramHeader.p_memsz == 0)
continue;
debug("PIC: %#lx + %#lx",
BaseAddress,
ProgramHeader.p_vaddr);
debug("Copying segment to %#lx-%#lx (%ld file bytes, %ld mem bytes)",
SegmentDestination, SegmentDestination + ProgramHeader.p_memsz,
ProgramHeader.p_filesz, ProgramHeader.p_memsz);
if (ProgramHeader.p_filesz > 0)
{
lseek(fd, ProgramHeader.p_offset, SEEK_SET);
fread(fd, (uint8_t *)SegmentDestination, ProgramHeader.p_filesz);
}
if (ProgramHeader.p_memsz - ProgramHeader.p_filesz > 0)
{
void *zAddr = (void *)(SegmentDestination + ProgramHeader.p_filesz);
memset(zAddr, 0, ProgramHeader.p_memsz - ProgramHeader.p_filesz);
}
break;
}
case PT_DYNAMIC:
{
/* PT_DYNAMIC contains the dynamic linking information for the
executable or shared library. */
uintptr_t DynamicSegmentDestination = BaseAddress + ProgramHeader.p_vaddr;
if (ProgramHeader.p_memsz == 0)
continue;
debug("Copying PT_DYNAMIC segment to %#lx-%#lx (%ld file bytes, %ld mem bytes)",
DynamicSegmentDestination, DynamicSegmentDestination + ProgramHeader.p_memsz,
ProgramHeader.p_filesz, ProgramHeader.p_memsz);
if (ProgramHeader.p_filesz > 0)
{
lseek(fd, ProgramHeader.p_offset, SEEK_SET);
fread(fd, (uint8_t *)DynamicSegmentDestination, ProgramHeader.p_filesz);
}
if (ProgramHeader.p_memsz - ProgramHeader.p_filesz > 0)
{
void *zAddr = (void *)(DynamicSegmentDestination + ProgramHeader.p_filesz);
memset(zAddr, 0, ProgramHeader.p_memsz - ProgramHeader.p_filesz);
}
break;
}
default:
{
fixme("Unhandled program header type: %#lx",
ProgramHeader.p_type);
break;
}
}
}
}
EntryPoint += BaseAddress;
debug("The new ep is %#lx", EntryPoint);
std::vector<Elf64_Dyn> JmpRel = ELFGetDynamicTag_x86_64(fd, DT_JMPREL);
std::vector<Elf64_Dyn> SymTab = ELFGetDynamicTag_x86_64(fd, DT_SYMTAB);
std::vector<Elf64_Dyn> StrTab = ELFGetDynamicTag_x86_64(fd, DT_STRTAB);
std::vector<Elf64_Dyn> RelaDyn = ELFGetDynamicTag_x86_64(fd, DT_RELA);
std::vector<Elf64_Dyn> RelaDynSize = ELFGetDynamicTag_x86_64(fd, DT_RELASZ);
std::vector<Elf64_Dyn> PltGot = ELFGetDynamicTag_x86_64(fd, DT_PLTGOT);
std::size_t JmpRelSize = JmpRel.size();
std::size_t SymTabSize = SymTab.size();
std::size_t StrTabSize = StrTab.size();
std::size_t RelaDynSize_v = RelaDyn.size();
std::size_t PltGotSize = PltGot.size();
if (JmpRelSize < 1)
debug("No DT_JMPREL");
if (SymTabSize < 1)
debug("No DT_SYMTAB");
if (StrTabSize < 1)
debug("No DT_STRTAB");
if (RelaDynSize_v < 1)
debug("No DT_RELA");
if (RelaDynSize[0].d_un.d_val < 1)
debug("DT_RELASZ is < 1");
if (PltGotSize < 1)
debug("No DT_PLTGOT");
if (JmpRelSize > 0 && SymTabSize > 0 && StrTabSize > 0)
{
debug("JmpRel: %#lx, SymTab: %#lx, StrTab: %#lx",
JmpRel[0].d_un.d_ptr, SymTab[0].d_un.d_ptr, StrTab[0].d_un.d_ptr);
Elf64_Rela *_JmpRel = (Elf64_Rela *)((uintptr_t)BaseAddress + JmpRel[0].d_un.d_ptr);
Elf64_Sym *_SymTab = (Elf64_Sym *)((uintptr_t)BaseAddress + SymTab[0].d_un.d_ptr);
char *_DynStr = (char *)((uintptr_t)BaseAddress + StrTab[0].d_un.d_ptr);
Elf64_Rela *_RelaDyn = (Elf64_Rela *)((uintptr_t)BaseAddress + RelaDyn[0].d_un.d_ptr);
Elf64_Shdr *gotSection = nullptr;
Elf64_Shdr shdr;
for (Elf64_Half i = 0; i < ELFHeader.e_shnum; i++)
{
lseek(fd, ELFHeader.e_shoff + i * sizeof(Elf64_Shdr), SEEK_SET);
fread(fd, (uint8_t *)&shdr, sizeof(Elf64_Shdr));
if (shdr.sh_type == SHT_PROGBITS &&
(shdr.sh_flags & SHF_WRITE) &&
(shdr.sh_flags & SHF_ALLOC))
{
gotSection = new Elf64_Shdr;
*gotSection = shdr;
debug("Found GOT section");
break;
}
}
if (gotSection)
{
// .rela.plt
// R_X86_64_JUMP_SLOT
Elf64_Xword numEntries = gotSection->sh_size / sizeof(Elf64_Addr);
for (Elf64_Xword i = 0; i < numEntries; i++)
{
Elf64_Addr *GOTEntry = (Elf64_Addr *)(gotSection->sh_addr + BaseAddress + i * sizeof(Elf64_Addr));
Elf64_Addr GOTEntryValue = *GOTEntry;
if (GOTEntryValue == 0)
continue;
Elf64_Rela *Rel = _JmpRel + i;
Elf64_Xword RelType = ELF64_R_TYPE(Rel->r_info);
switch (RelType)
{
case R_X86_64_JUMP_SLOT:
{
Elf64_Xword SymIndex = ELF64_R_SYM(Rel->r_info);
Elf64_Sym *Sym = _SymTab + SymIndex;
if (Sym->st_name)
{
char *SymName = _DynStr + Sym->st_name;
debug("SymName: %s", SymName);
Elf64_Sym LibSym = ELFLookupSymbol(fd, SymName);
if (LibSym.st_value)
{
*GOTEntry = (Elf64_Addr)(BaseAddress + LibSym.st_value);
debug("GOT[%ld](%#lx): %#lx",
i, uintptr_t(GOTEntry) - BaseAddress,
*GOTEntry);
}
}
continue;
}
default:
{
fixme("Unhandled relocation type: %#lx", RelType);
break;
}
}
}
// .rela.dyn
// R_X86_64_RELATIVE
// R_X86_64_GLOB_DAT
if (RelaDynSize_v > 0 && RelaDynSize[0].d_un.d_val > 0)
{
Elf64_Xword numRelaDynEntries = RelaDynSize[0].d_un.d_val / sizeof(Elf64_Rela);
for (Elf64_Xword i = 0; i < numRelaDynEntries; i++)
{
Elf64_Rela *Rel = _RelaDyn + i;
Elf64_Addr *GOTEntry = (Elf64_Addr *)(Rel->r_offset + BaseAddress);
Elf64_Xword RelType = ELF64_R_TYPE(Rel->r_info);
switch (RelType)
{
case R_X86_64_RELATIVE:
{
*GOTEntry = (Elf64_Addr)(BaseAddress + Rel->r_addend);
debug("GOT[%ld](%#lx): %#lx (R_X86_64_RELATIVE)",
i, uintptr_t(GOTEntry) - BaseAddress,
*GOTEntry);
break;
}
case R_X86_64_GLOB_DAT:
{
Elf64_Xword SymIndex = ELF64_R_SYM(Rel->r_info);
Elf64_Sym *Sym = _SymTab + SymIndex;
if (Sym->st_name)
{
char *SymName = _DynStr + Sym->st_name;
debug("SymName: %s", SymName);
Elf64_Sym LibSym = ELFLookupSymbol(fd, SymName);
if (LibSym.st_value)
{
*GOTEntry = (Elf64_Addr)(BaseAddress + LibSym.st_value);
debug("GOT[%ld](%#lx): %#lx (R_X86_64_GLOB_DAT)",
i, uintptr_t(GOTEntry) - BaseAddress,
*GOTEntry);
}
}
break;
}
default:
{
fixme("Unhandled relocation type: %#lx", RelType);
break;
}
}
}
}
// _GLOBAL_OFFSET_TABLE_
if (PltGotSize > 0)
{
Elf64_Dyn got = PltGot[0];
Elf64_Addr *GOTEntry = (Elf64_Addr *)(got.d_un.d_ptr + BaseAddress);
// *GOTEntry = (Elf64_Addr)(BaseAddress + PltGot[0].d_un.d_val);
std::vector<Elf64_Phdr> DYNAMICPhdrs = ELFGetSymbolType_x86_64(fd, PT_DYNAMIC);
if (DYNAMICPhdrs.size() > 0)
*GOTEntry = (Elf64_Addr)(BaseAddress + DYNAMICPhdrs[0].p_vaddr);
}
delete gotSection;
}
else
{
debug("GOT section not found");
}
}
/* ------------------------------------------------------------------------ */
struct stat statbuf;
fstat(fd, &statbuf);
Memory::SmartHeap sh = Memory::SmartHeap(statbuf.st_size);
lseek(fd, 0, SEEK_SET);
fread(fd, sh, statbuf.st_size);
TargetProcess->ELFSymbolTable->AppendSymbols(uintptr_t(sh.GetObject()), BaseAddress);
debug("Entry Point: %#lx", EntryPoint);
char *aux_platform = (char *)mm->RequestPages(1, true); /* TODO: 4KiB is too much for this */
strcpy(aux_platform, "x86_64");
std::string execfn = thisProcess->FileDescriptors->GetAbsolutePath(fd);
void *execfn_str = mm->RequestPages(TO_PAGES(execfn.size() + 1), true);
strcpy((char *)execfn_str, execfn.c_str());
// prep. for AT_PHDR
void *phdr_array = mm->RequestPages(TO_PAGES(ELFHeader.e_phnum * sizeof(Elf64_Phdr)), true);
lseek(fd, ELFHeader.e_phoff, SEEK_SET);
fread(fd, (uint8_t *)phdr_array, ELFHeader.e_phnum * sizeof(Elf64_Phdr));
Elfauxv.push_back({.archaux = {.a_type = AT_NULL, .a_un = {.a_val = 0}}});
Elfauxv.push_back({.archaux = {.a_type = AT_PLATFORM, .a_un = {.a_val = (uint64_t)aux_platform}}});
Elfauxv.push_back({.archaux = {.a_type = AT_EXECFN, .a_un = {.a_val = (uint64_t)execfn_str}}});
// AT_HWCAP2 26
// AT_RANDOM 25
// AT_SECURE 23
Elfauxv.push_back({.archaux = {.a_type = AT_EGID, .a_un = {.a_val = (uint64_t)0}}}); /* FIXME */
Elfauxv.push_back({.archaux = {.a_type = AT_GID, .a_un = {.a_val = (uint64_t)0}}}); /* FIXME */
Elfauxv.push_back({.archaux = {.a_type = AT_EUID, .a_un = {.a_val = (uint64_t)0}}}); /* FIXME */
Elfauxv.push_back({.archaux = {.a_type = AT_UID, .a_un = {.a_val = (uint64_t)0}}}); /* FIXME */
Elfauxv.push_back({.archaux = {.a_type = AT_ENTRY, .a_un = {.a_val = (uint64_t)EntryPoint}}});
// AT_FLAGS 8
Elfauxv.push_back({.archaux = {.a_type = AT_BASE, .a_un = {.a_val = (uint64_t)BaseAddress}}});
Elfauxv.push_back({.archaux = {.a_type = AT_PHNUM, .a_un = {.a_val = (uint64_t)ELFHeader.e_phnum}}});
Elfauxv.push_back({.archaux = {.a_type = AT_PHENT, .a_un = {.a_val = (uint64_t)ELFHeader.e_phentsize}}});
Elfauxv.push_back({.archaux = {.a_type = AT_PHDR, .a_un = {.a_val = (uint64_t)phdr_array}}});
// AT_CLKTCK 17
Elfauxv.push_back({.archaux = {.a_type = AT_PAGESZ, .a_un = {.a_val = (uint64_t)PAGE_SIZE}}});
// AT_HWCAP 16
// AT_MINSIGSTKSZ 51
// AT_SYSINFO_EHDR 33
this->ip = EntryPoint;
this->IsElfValid = true;
}
bool ELFObject::LoadInterpreter(int fd, PCB *TargetProcess)
{
Elf32_Ehdr ELFHeader;
fread(fd, &ELFHeader, sizeof(Elf32_Ehdr));
switch (ELFHeader.e_type)
{
case ET_REL:
{
fixme("ET_REL not implemented");
break;
}
case ET_EXEC:
{
switch (ELFHeader.e_machine)
{
case EM_386:
this->LoadExec_x86_32(fd, TargetProcess);
return true;
case EM_X86_64:
this->LoadExec_x86_64(fd, TargetProcess);
return true;
case EM_ARM:
error("ARM is not supported yet!");
break;
case EM_AARCH64:
error("ARM64 is not supported yet!");
break;
default:
error("Unknown architecture: %d", ELFHeader.e_machine);
break;
}
break;
}
case ET_DYN:
{
switch (ELFHeader.e_machine)
{
case EM_386:
this->LoadDyn_x86_32(fd, TargetProcess);
return true;
case EM_X86_64:
this->LoadDyn_x86_64(fd, TargetProcess);
return true;
case EM_ARM:
error("ARM is not supported yet!");
break;
case EM_AARCH64:
error("ARM64 is not supported yet!");
break;
default:
error("Unknown architecture: %d", ELFHeader.e_machine);
break;
}
break;
}
case ET_CORE:
{
fixme("ET_CORE not implemented");
break;
}
case ET_NONE:
default:
{
error("Unknown ELF Type: %d", ELFHeader.e_type);
break;
}
}
return false;
}
ELFObject::ELFObject(char *AbsolutePath,
PCB *TargetProcess,
const char **argv,
const char **envp)
{
if (GetBinaryType(AbsolutePath) != BinaryType::BinTypeELF)
{
error("%s is not an ELF file or is invalid.", AbsolutePath);
return;
}
int fd = fopen(AbsolutePath, "r");
if (fd < 0)
{
error("Failed to open %s, errno: %d", AbsolutePath, fd);
return;
}
int argc = 0;
int envc = 0;
while (argv[argc] != nullptr)
argc++;
while (envp[envc] != nullptr)
envc++;
// ELFargv = new const char *[argc + 2];
std::size_t argv_size = TO_PAGES(argc + 2 * sizeof(char *));
ELFargv = (const char **)TargetProcess->Memory->RequestPages(argv_size);
for (int i = 0; i < argc; i++)
ELFargv[i] = argv[i];
ELFargv[argc] = nullptr;
// ELFenvp = new const char *[envc + 1];
std::size_t envp_size = TO_PAGES(envc + 1 * sizeof(char *));
ELFenvp = (const char **)TargetProcess->Memory->RequestPages(envp_size);
for (int i = 0; i < envc; i++)
ELFenvp[i] = envp[i];
ELFenvp[envc] = nullptr;
Elf32_Ehdr ELFHeader;
fread(fd, &ELFHeader, sizeof(Elf32_Ehdr));
switch (ELFHeader.e_type)
{
case ET_REL:
{
fixme("ET_REL not implemented");
break;
}
case ET_EXEC:
{
switch (ELFHeader.e_machine)
{
case EM_386:
this->LoadExec_x86_32(fd, TargetProcess);
break;
case EM_X86_64:
this->LoadExec_x86_64(fd, TargetProcess);
break;
case EM_ARM:
error("ARM is not supported yet!");
break;
case EM_AARCH64:
error("ARM64 is not supported yet!");
break;
default:
error("Unknown architecture: %d", ELFHeader.e_machine);
break;
}
break;
}
case ET_DYN:
{
switch (ELFHeader.e_machine)
{
case EM_386:
this->LoadDyn_x86_32(fd, TargetProcess);
break;
case EM_X86_64:
this->LoadDyn_x86_64(fd, TargetProcess);
break;
case EM_ARM:
error("ARM is not supported yet!");
break;
case EM_AARCH64:
error("ARM64 is not supported yet!");
break;
default:
error("Unknown architecture: %d", ELFHeader.e_machine);
break;
}
break;
}
case ET_CORE:
{
fixme("ET_CORE not implemented");
break;
}
case ET_NONE:
default:
{
error("Unknown ELF Type: %d", ELFHeader.e_type);
break;
}
}
fclose(fd);
}
ELFObject::~ELFObject()
{
}
}