Kernel/Tasking/Task.cpp

1344 lines
49 KiB
C++

#include <task.hpp>
#include <dumper.hpp>
#include <convert.h>
#include <lock.hpp>
#include <printf.h>
#include <smp.hpp>
#include <io.h>
#include "../kernel.h"
#if defined(__amd64__)
#include "../Architecture/amd64/cpu/apic.hpp"
#include "../Architecture/amd64/cpu/gdt.hpp"
#elif defined(__i386__)
#include "../Architecture/i686/cpu/apic.hpp"
#elif defined(__aarch64__)
#endif
// #define DEBUG_SCHEDULER 1
// #define ON_SCREEN_SCHEDULER_TASK_MANAGER 1
#ifdef DEBUG_SCHEDULER
#define schedbg(m, ...) \
debug(m, ##__VA_ARGS__); \
__sync_synchronize()
#else
#define schedbg(m, ...)
#endif
NewLock(TaskingLock);
NewLock(SchedulerLock);
namespace Tasking
{
extern "C" SafeFunction __no_instrument_function void OneShot(int TimeSlice)
{
if (TimeSlice == 0)
TimeSlice = 10;
#if defined(__amd64__)
((APIC::Timer *)Interrupts::apicTimer[GetCurrentCPU()->ID])->OneShot(CPU::x64::IRQ16, TimeSlice);
#elif defined(__i386__)
#elif defined(__aarch64__)
#endif
}
void Task::Schedule()
{
if (!StopScheduler)
OneShot(100);
// APIC::InterruptCommandRegisterLow icr;
// icr.Vector = CPU::x64::IRQ16;
// icr.Level = APIC::APICLevel::Assert;
// ((APIC::APIC *)Interrupts::apic[0])->IPI(GetCurrentCPU()->ID, icr);
}
__naked __used __no_stack_protector __no_instrument_function void IdleProcessLoop()
{
#if defined(__amd64__) || defined(__i386__)
asmv("IdleLoop:\n"
"hlt\n"
"jmp IdleLoop\n");
#elif defined(__aarch64__)
asmv("IdleLoop:\n"
"wfe\n"
"b IdleLoop\n");
#endif
}
SafeFunction __no_instrument_function bool Task::InvalidPCB(PCB *pcb)
{
if (!pcb)
return true;
if (pcb >= (PCB *)(UINTPTR_MAX - 0x1000))
return true;
if (!Memory::Virtual().Check((void *)pcb))
return true;
return false;
}
SafeFunction __no_instrument_function bool Task::InvalidTCB(TCB *tcb)
{
if (!tcb)
return true;
if (tcb >= (TCB *)(UINTPTR_MAX - 0x1000))
return true;
if (!Memory::Virtual().Check((void *)tcb))
return true;
return false;
}
SafeFunction __no_instrument_function void Task::RemoveThread(TCB *Thread)
{
for (size_t i = 0; i < Thread->Parent->Threads.size(); i++)
if (Thread->Parent->Threads[i] == Thread)
{
trace("Thread \"%s\"(%d) removed from process \"%s\"(%d)",
Thread->Name, Thread->ID, Thread->Parent->Name, Thread->Parent->ID);
// Free memory
delete Thread->Stack;
delete Thread->Memory;
SecurityManager.DestroyToken(Thread->Security.UniqueToken);
delete Thread->Parent->Threads[i];
// Remove from the list
Thread->Parent->Threads.remove(i);
break;
}
}
SafeFunction __no_instrument_function void Task::RemoveProcess(PCB *Process)
{
if (Process == nullptr)
return;
if (Process->Status == Terminated)
{
foreach (TCB *thread in Process->Threads)
RemoveThread(thread);
foreach (PCB *process in Process->Children)
RemoveProcess(process);
for (size_t i = 0; i < ListProcess.size(); i++)
{
if (ListProcess[i] == Process)
{
trace("Process \"%s\"(%d) removed from the list", Process->Name, Process->ID);
// Free memory
delete ListProcess[i]->IPCHandles;
delete ListProcess[i]->ELFSymbolTable;
SecurityManager.DestroyToken(ListProcess[i]->Security.UniqueToken);
if (ListProcess[i]->Security.TrustLevel == TaskTrustLevel::User)
KernelAllocator.FreePages((void *)ListProcess[i]->PageTable, TO_PAGES(PAGE_SIZE));
delete ListProcess[i];
// Remove from the list
ListProcess.remove(i);
break;
}
}
}
else
{
foreach (TCB *thread in Process->Threads)
if (thread->Status == Terminated)
RemoveThread(thread);
}
}
SafeFunction __no_instrument_function void Task::UpdateUserTime(TaskInfo *Info)
{
// TODO
Info->UserTime++;
}
SafeFunction __no_instrument_function void Task::UpdateKernelTime(TaskInfo *Info)
{
// TODO
Info->KernelTime++;
}
SafeFunction __no_instrument_function void Task::UpdateUsage(TaskInfo *Info, int Core)
{
if (Info->Affinity[Core] == true)
{
// TODO: Not working(?)
uint64_t CounterNow = CPU::Counter();
Info->OldUserTime = Info->CurrentUserTime;
Info->OldKernelTime = Info->CurrentKernelTime;
Info->CurrentUserTime = Info->UserTime;
Info->CurrentKernelTime = Info->KernelTime;
Info->Usage[Core] = (Info->CurrentUserTime - Info->OldUserTime) + (Info->CurrentKernelTime - Info->OldKernelTime);
Info->Usage[Core] = (Info->Usage[Core] * 100) / (CounterNow - Info->SpawnTime);
Info->OldUserTime = Info->CurrentUserTime;
Info->OldKernelTime = Info->CurrentKernelTime;
Info->CurrentUserTime = Info->UserTime;
Info->CurrentKernelTime = Info->KernelTime;
}
}
#if defined(__amd64__)
SafeFunction __no_instrument_function bool Task::FindNewProcess(void *CPUDataPointer)
{
CPUData *CurrentCPU = (CPUData *)CPUDataPointer;
schedbg("%d processes", ListProcess.size());
#ifdef DEBUG_SCHEDULER
foreach (auto var in ListProcess)
{
schedbg("Process %d %s", var->ID, var->Name);
}
#endif
// Find a new process to execute.
foreach (PCB *pcb in ListProcess)
{
if (unlikely(InvalidPCB(pcb)))
continue;
// Check process status.
switch (pcb->Status)
{
case TaskStatus::Ready:
schedbg("Ready process (%s)%d", pcb->Name, pcb->ID);
break;
default:
schedbg("Process \"%s\"(%d) status %d", pcb->Name, pcb->ID, pcb->Status);
RemoveProcess(pcb);
continue;
}
// Get first available thread from the list.
foreach (TCB *tcb in pcb->Threads)
{
if (unlikely(InvalidTCB(tcb)))
continue;
if (tcb->Status != TaskStatus::Ready)
continue;
// Set process and thread as the current one's.
CurrentCPU->CurrentProcess = pcb;
CurrentCPU->CurrentThread = tcb;
// Success!
return true;
}
}
schedbg("No process to run.");
// No process found. Idling...
return false;
}
SafeFunction __no_instrument_function bool Task::GetNextAvailableThread(void *CPUDataPointer)
{
CPUData *CurrentCPU = (CPUData *)CPUDataPointer;
for (size_t i = 0; i < CurrentCPU->CurrentProcess->Threads.size(); i++)
{
// Loop until we find the current thread from the process thread list.
if (CurrentCPU->CurrentProcess->Threads[i] == CurrentCPU->CurrentThread)
{
// Check if the next thread is valid. If not, we search until we find, but if we reach the end of the list, we go to the next process.
size_t TempIndex = i;
RetryAnotherThread:
TCB *thread = CurrentCPU->CurrentProcess->Threads[TempIndex + 1];
if (unlikely(InvalidTCB(thread)))
{
if (TempIndex > CurrentCPU->CurrentProcess->Threads.size())
break;
TempIndex++;
goto RetryAnotherThread;
}
schedbg("\"%s\"(%d) and next thread is \"%s\"(%d)", CurrentCPU->CurrentProcess->Threads[i]->Name, CurrentCPU->CurrentProcess->Threads[i]->ID, thread->Name, thread->ID);
// Check if the thread is ready to be executed.
if (thread->Status != TaskStatus::Ready)
{
schedbg("Thread %d is not ready", thread->ID);
goto RetryAnotherThread;
}
// Everything is fine, we can set the new thread as the current one.
CurrentCPU->CurrentThread = thread;
schedbg("[thd 0 -> end] Scheduling thread %d parent of %s->%d Procs %d", thread->ID, thread->Parent->Name, CurrentCPU->CurrentProcess->Threads.size(), ListProcess.size());
// Yay! We found a new thread to execute.
return true;
}
}
return false;
}
SafeFunction __no_instrument_function bool Task::GetNextAvailableProcess(void *CPUDataPointer)
{
CPUData *CurrentCPU = (CPUData *)CPUDataPointer;
for (size_t i = 0; i < ListProcess.size(); i++)
{
// Loop until we find the current process from the process list.
if (ListProcess[i] == CurrentCPU->CurrentProcess)
{
// Check if the next process is valid. If not, we search until we find.
size_t TempIndex = i;
RetryAnotherProcess:
PCB *pcb = ListProcess[TempIndex + 1];
if (unlikely(InvalidPCB(pcb)))
{
if (TempIndex > ListProcess.size())
{
schedbg("Exceeded the process list.");
break;
}
TempIndex++;
schedbg("Invalid process %#lx", pcb);
goto RetryAnotherProcess;
}
else
{
schedbg("Found process %d", pcb->ID);
}
if (pcb->Status != TaskStatus::Ready)
{
schedbg("Process %d is not ready", pcb->ID);
TempIndex++;
goto RetryAnotherProcess;
}
// Everything good, now search for a thread.
for (size_t j = 0; j < pcb->Threads.size(); j++)
{
TCB *tcb = pcb->Threads[j];
if (unlikely(InvalidTCB(tcb)))
{
schedbg("Invalid thread %#lx", tcb);
continue;
}
if (tcb->Status != TaskStatus::Ready)
{
schedbg("Thread %d is not ready", tcb->ID);
continue;
}
// Success! We set as the current one and restore the stuff.
CurrentCPU->CurrentProcess = pcb;
CurrentCPU->CurrentThread = tcb;
schedbg("[cur proc+1 -> first thd] Scheduling thread %d %s->%d (Total Procs %d)", tcb->ID, tcb->Name, pcb->Threads.size(), ListProcess.size());
return true;
}
}
}
schedbg("No process to run.");
return false;
}
SafeFunction __no_instrument_function void Task::SchedulerCleanupProcesses()
{
foreach (PCB *pcb in ListProcess)
{
if (unlikely(InvalidPCB(pcb)))
continue;
RemoveProcess(pcb);
}
}
SafeFunction __no_instrument_function bool Task::SchedulerSearchProcessThread(void *CPUDataPointer)
{
CPUData *CurrentCPU = (CPUData *)CPUDataPointer;
foreach (PCB *pcb in ListProcess)
{
if (unlikely(InvalidPCB(pcb)))
continue;
if (pcb->Status != TaskStatus::Ready)
continue;
// Now do the thread search!
foreach (TCB *tcb in pcb->Threads)
{
if (unlikely(InvalidTCB(tcb)))
continue;
if (tcb->Status != TaskStatus::Ready)
continue;
// \o/ We found a new thread to execute.
CurrentCPU->CurrentProcess = pcb;
CurrentCPU->CurrentThread = tcb;
schedbg("[proc 0 -> end -> first thd] Scheduling thread %d parent of %s->%d (Procs %d)", tcb->ID, tcb->Parent->Name, pcb->Threads.size(), ListProcess.size());
return true;
}
}
return false;
}
SafeFunction __no_instrument_function void Task::WakeUpThreads(void *CPUDataPointer)
{
CPUData *CurrentCPU = (CPUData *)CPUDataPointer;
// Loop through all the processes.
foreach (PCB *pcb in ListProcess)
{
if (unlikely(InvalidPCB(pcb)))
continue;
// Check process status.
if (pcb->Status == TaskStatus::Terminated)
continue;
// Loop through all the threads.
foreach (TCB *tcb in pcb->Threads)
{
if (unlikely(InvalidTCB(tcb)))
continue;
// Check if the thread is sleeping.
if (tcb->Status != TaskStatus::Sleeping || pcb->Status == TaskStatus::Terminated)
continue;
// Check if the thread is ready to wake up.
if (tcb->Info.SleepUntil < TimeManager->GetCounter())
{
tcb->Status = TaskStatus::Ready;
if (tcb->Parent->Threads.size() == 1 && tcb->Parent->Status == TaskStatus::Sleeping)
tcb->Parent->Status = TaskStatus::Ready;
tcb->Info.SleepUntil = 0;
schedbg("Thread \"%s\"(%d) woke up.", tcb->Name, tcb->ID);
}
else
{
schedbg("Thread \"%s\"(%d) is not ready to wake up. (SleepUntil: %d, Counter: %d)", tcb->Name, tcb->ID, tcb->Info.SleepUntil, TimeManager->GetCounter());
}
}
}
}
SafeFunction __no_instrument_function void Task::Schedule(CPU::x64::TrapFrame *Frame)
{
SmartCriticalSection(SchedulerLock);
if (StopScheduler)
{
warn("Scheduler stopped.");
return;
}
CPU::x64::writecr3({.raw = (uint64_t)KernelPageTable}); // Restore kernel page table for safety reasons.
CPUData *CurrentCPU = GetCurrentCPU();
schedbg("Scheduler called on CPU %d.", CurrentCPU->ID);
schedbg("%d: %ld%%", CurrentCPU->ID, GetUsage(CurrentCPU->ID));
#ifdef ON_SCREEN_SCHEDULER_TASK_MANAGER
int SuccessSource = 0;
#endif
#ifdef DEBUG_SCHEDULER
{
schedbg("================================================================");
schedbg("Status: 0-ukn | 1-rdy | 2-run | 3-wait | 4-term");
schedbg("Technical Informations on regs %#lx", Frame->InterruptNumber);
size_t ds;
asmv("mov %%ds, %0"
: "=r"(ds));
schedbg("FS=%#lx GS=%#lx SS=%#lx CS=%#lx DS=%#lx",
CPU::x64::rdmsr(CPU::x64::MSR_FS_BASE), CPU::x64::rdmsr(CPU::x64::MSR_GS_BASE),
Frame->ss, Frame->cs, ds);
schedbg("R8=%#lx R9=%#lx R10=%#lx R11=%#lx",
Frame->r8, Frame->r9, Frame->r10, Frame->r11);
schedbg("R12=%#lx R13=%#lx R14=%#lx R15=%#lx",
Frame->r12, Frame->r13, Frame->r14, Frame->r15);
schedbg("RAX=%#lx RBX=%#lx RCX=%#lx RDX=%#lx",
Frame->rax, Frame->rbx, Frame->rcx, Frame->rdx);
schedbg("RSI=%#lx RDI=%#lx RBP=%#lx RSP=%#lx",
Frame->rsi, Frame->rdi, Frame->rbp, Frame->rsp);
schedbg("RIP=%#lx RFL=%#lx INT=%#lx ERR=%#lx",
Frame->rip, Frame->rflags, Frame->InterruptNumber, Frame->ErrorCode);
schedbg("================================================================");
}
#endif
// Null or invalid process/thread? Let's find a new one to execute.
if (unlikely(InvalidPCB(CurrentCPU->CurrentProcess) || InvalidTCB(CurrentCPU->CurrentThread)))
{
schedbg("Invalid process or thread. Finding a new one.");
if (this->FindNewProcess(CurrentCPU))
goto Success;
else
goto Idle;
}
else
{
// Save current process and thread registries, gs, fs, fpu, etc...
CurrentCPU->CurrentThread->Registers = *Frame;
CPU::x64::fxsave(CurrentCPU->CurrentThread->FPU);
CurrentCPU->CurrentThread->GSBase = CPU::x64::rdmsr(CPU::x64::MSR_GS_BASE);
CurrentCPU->CurrentThread->FSBase = CPU::x64::rdmsr(CPU::x64::MSR_FS_BASE);
// Set the process & thread as ready if they are running.
if (CurrentCPU->CurrentProcess->Status == TaskStatus::Running)
CurrentCPU->CurrentProcess->Status = TaskStatus::Ready;
if (CurrentCPU->CurrentThread->Status == TaskStatus::Running)
CurrentCPU->CurrentThread->Status = TaskStatus::Ready;
// Loop through all threads and find which one is ready.
this->WakeUpThreads(CurrentCPU);
schedbg("Passed WakeUpThreads");
// Get next available thread from the list.
if (this->GetNextAvailableThread(CurrentCPU))
{
#ifdef ON_SCREEN_SCHEDULER_TASK_MANAGER
SuccessSource = 1;
#endif
goto Success;
}
schedbg("Passed GetNextAvailableThread");
// If we didn't find a thread to execute, we search for a new process.
if (this->GetNextAvailableProcess(CurrentCPU))
{
#ifdef ON_SCREEN_SCHEDULER_TASK_MANAGER
SuccessSource = 2;
#endif
goto Success;
}
schedbg("Passed GetNextAvailableProcess");
// Before checking from the beginning, we remove everything that is terminated.
this->SchedulerCleanupProcesses();
schedbg("Passed SchedulerCleanupProcesses");
// If we didn't find anything, we check from the start of the list. This is the last chance to find something or we go idle.
if (SchedulerSearchProcessThread(CurrentCPU))
{
#ifdef ON_SCREEN_SCHEDULER_TASK_MANAGER
SuccessSource = 3;
#endif
schedbg("Passed SchedulerSearchProcessThread");
goto Success;
}
else
{
schedbg("SchedulerSearchProcessThread failed. Going idle.");
goto Idle;
}
}
goto UnwantedReach; // This should never happen.
Idle:
{
CurrentCPU->CurrentProcess = IdleProcess;
CurrentCPU->CurrentThread = IdleThread;
goto Success;
}
Success:
{
schedbg("Process \"%s\"(%d) Thread \"%s\"(%d) is now running on CPU %d",
CurrentCPU->CurrentProcess->Name, CurrentCPU->CurrentProcess->ID,
CurrentCPU->CurrentThread->Name, CurrentCPU->CurrentThread->ID, CurrentCPU->ID);
CurrentCPU->CurrentProcess->Status = TaskStatus::Running;
CurrentCPU->CurrentThread->Status = TaskStatus::Running;
*Frame = CurrentCPU->CurrentThread->Registers;
// FIXME: Untested
for (int i = 0; i < 128; i++)
{
if (CurrentCPU->CurrentThread->IPHistory[i] == 0)
{
CurrentCPU->CurrentThread->IPHistory[i] = Frame->rip;
break;
}
if (i == 127)
{
for (int j = 0; j < 127; j++)
CurrentCPU->CurrentThread->IPHistory[j] = CurrentCPU->CurrentThread->IPHistory[j + 1];
CurrentCPU->CurrentThread->IPHistory[127] = Frame->rip;
}
}
GlobalDescriptorTable::SetKernelStack((void *)((uintptr_t)CurrentCPU->CurrentThread->Stack->GetStackTop()));
CPU::x64::writecr3({.raw = (uint64_t)CurrentCPU->CurrentProcess->PageTable});
// Not sure if this is needed, but it's better to be safe than sorry.
asmv("movq %cr3, %rax");
asmv("movq %rax, %cr3");
CPU::x64::fxrstor(CurrentCPU->CurrentThread->FPU);
CPU::x64::wrmsr(CPU::x64::MSR_GS_BASE, CurrentCPU->CurrentThread->GSBase);
CPU::x64::wrmsr(CPU::x64::MSR_FS_BASE, CurrentCPU->CurrentThread->FSBase);
#ifdef ON_SCREEN_SCHEDULER_TASK_MANAGER
static int sanity;
const char *Statuses[] = {
"FF0000", // Unknown
"AAFF00", // Ready
"00AA00", // Running
"FFAA00", // Sleeping
"FFAA00", // Waiting
"FF0088", // Stopped
"FF0000", // Terminated
};
const char *StatusesSign[] = {
"U", // Unknown
"R", // Ready
"r", // Running
"S", // Sleeping
"W", // Waiting
"s", // Stopped
"T", // Terminated
};
const char *SuccessSourceStrings[] = {
"Unknown",
"GetNextAvailableThread",
"GetNextAvailableProcess",
"SchedulerSearchProcessThread",
};
for (int i = 0; i < 340; i++)
for (int j = 0; j < 200; j++)
Display->SetPixel(i, j, 0x222222, 0);
uint32_t tmpX, tmpY;
Display->GetBufferCursor(0, &tmpX, &tmpY);
Display->SetBufferCursor(0, 0, 0);
foreach (auto var in ListProcess)
{
int Status = var->Status;
printf("\e%s-> \eAABBCC%s\eCCCCCC[%d] \e00AAAA%s\n",
Statuses[Status], var->Name, Status, StatusesSign[Status]);
foreach (auto var2 in var->Threads)
{
Status = var2->Status;
printf(" \e%s-> \eAABBCC%s\eCCCCCC[%d] \e00AAAA%s\n\eAABBCC",
Statuses[Status], var2->Name, Status, StatusesSign[Status]);
}
}
printf("%d - SOURCE: %s", sanity++, SuccessSourceStrings[SuccessSource]);
if (sanity > 1000)
sanity = 0;
Display->SetBufferCursor(0, tmpX, tmpY);
Display->SetBuffer(0);
for (int i = 0; i < 50000; i++)
inb(0x80);
#endif
switch (CurrentCPU->CurrentProcess->Security.TrustLevel)
{
case TaskTrustLevel::System:
case TaskTrustLevel::Idle:
case TaskTrustLevel::Kernel:
// wrmsr(MSR_SHADOW_GS_BASE, (uint64_t)CurrentCPU->CurrentThread);
break;
case TaskTrustLevel::User:
// wrmsr(MSR_SHADOW_GS_BASE, CurrentCPU->CurrentThread->gs);
break;
default:
error("Unknown trust level %d.", CurrentCPU->CurrentProcess->Security.TrustLevel);
break;
}
goto End;
}
UnwantedReach:
{
warn("Unwanted reach!");
OneShot(100);
goto RealEnd;
}
End:
{
// TODO: This is not accurate.
if (CurrentCPU->CurrentProcess->Security.TrustLevel == TaskTrustLevel::User)
UpdateUserTime(&CurrentCPU->CurrentProcess->Info);
else
UpdateKernelTime(&CurrentCPU->CurrentProcess->Info);
if (CurrentCPU->CurrentThread->Security.TrustLevel == TaskTrustLevel::User)
UpdateUserTime(&CurrentCPU->CurrentThread->Info);
else
UpdateKernelTime(&CurrentCPU->CurrentThread->Info);
UpdateUsage(&CurrentCPU->CurrentProcess->Info, CurrentCPU->ID);
UpdateUsage(&CurrentCPU->CurrentThread->Info, CurrentCPU->ID);
OneShot(CurrentCPU->CurrentThread->Info.Priority);
}
{
if (CurrentCPU->CurrentThread->Security.IsDebugEnabled && CurrentCPU->CurrentThread->Security.IsKernelDebugEnabled)
trace("%s[%ld]: RIP=%#lx RBP=%#lx RSP=%#lx",
CurrentCPU->CurrentThread->Name, CurrentCPU->CurrentThread->ID,
CurrentCPU->CurrentThread->Registers.rip,
CurrentCPU->CurrentThread->Registers.rbp,
CurrentCPU->CurrentThread->Registers.rsp);
}
{
schedbg("================================================================");
schedbg("Technical Informations on Thread %s[%ld]:", CurrentCPU->CurrentThread->Name, CurrentCPU->CurrentThread->ID);
uint64_t ds;
asmv("mov %%ds, %0"
: "=r"(ds));
schedbg("FS=%#lx GS=%#lx SS=%#lx CS=%#lx DS=%#lx",
CPU::x64::rdmsr(CPU::x64::MSR_FS_BASE), CPU::x64::rdmsr(CPU::x64::MSR_GS_BASE),
Frame->ss, Frame->cs, ds);
schedbg("R8=%#lx R9=%#lx R10=%#lx R11=%#lx",
Frame->r8, Frame->r9, Frame->r10, Frame->r11);
schedbg("R12=%#lx R13=%#lx R14=%#lx R15=%#lx",
Frame->r12, Frame->r13, Frame->r14, Frame->r15);
schedbg("RAX=%#lx RBX=%#lx RCX=%#lx RDX=%#lx",
Frame->rax, Frame->rbx, Frame->rcx, Frame->rdx);
schedbg("RSI=%#lx RDI=%#lx RBP=%#lx RSP=%#lx",
Frame->rsi, Frame->rdi, Frame->rbp, Frame->rsp);
schedbg("RIP=%#lx RFL=%#lx INT=%#lx ERR=%#lx",
Frame->rip, Frame->rflags, Frame->InterruptNumber, Frame->ErrorCode);
schedbg("================================================================");
}
RealEnd:
{
__sync_synchronize(); // TODO: Is this really needed?
}
}
SafeFunction __no_instrument_function void Task::OnInterruptReceived(CPU::x64::TrapFrame *Frame) { this->Schedule(Frame); }
#elif defined(__i386__)
SafeFunction bool Task::FindNewProcess(void *CPUDataPointer)
{
fixme("unimplemented");
}
SafeFunction bool Task::GetNextAvailableThread(void *CPUDataPointer)
{
fixme("unimplemented");
}
SafeFunction bool Task::GetNextAvailableProcess(void *CPUDataPointer)
{
fixme("unimplemented");
}
SafeFunction void Task::SchedulerCleanupProcesses()
{
fixme("unimplemented");
}
SafeFunction bool Task::SchedulerSearchProcessThread(void *CPUDataPointer)
{
fixme("unimplemented");
}
SafeFunction void Task::Schedule(void *Frame)
{
fixme("unimplemented");
}
SafeFunction void Task::OnInterruptReceived(void *Frame) { this->Schedule(Frame); }
#elif defined(__aarch64__)
SafeFunction bool Task::FindNewProcess(void *CPUDataPointer)
{
fixme("unimplemented");
}
SafeFunction bool Task::GetNextAvailableThread(void *CPUDataPointer)
{
fixme("unimplemented");
}
SafeFunction bool Task::GetNextAvailableProcess(void *CPUDataPointer)
{
fixme("unimplemented");
}
SafeFunction void Task::SchedulerCleanupProcesses()
{
fixme("unimplemented");
}
SafeFunction bool Task::SchedulerSearchProcessThread(void *CPUDataPointer)
{
fixme("unimplemented");
}
SafeFunction void Task::Schedule(void *Frame)
{
fixme("unimplemented");
}
SafeFunction void Task::OnInterruptReceived(void *Frame) { this->Schedule(Frame); }
#endif
void ThreadDoExit()
{
// TODO: How I can lock the scheduler without causing a deadlock?
CPUData *CPUData = GetCurrentCPU();
CPUData->CurrentThread->Status = TaskStatus::Terminated;
debug("\"%s\"(%d) exited with code: %#lx", CPUData->CurrentThread->Name, CPUData->CurrentThread->ID, CPUData->CurrentThread->ExitCode);
CPU::Halt(true);
}
PCB *Task::GetCurrentProcess() { return GetCurrentCPU()->CurrentProcess; }
TCB *Task::GetCurrentThread() { return GetCurrentCPU()->CurrentThread; }
void Task::WaitForProcess(PCB *pcb)
{
if (!pcb)
return;
if (pcb->Status == TaskStatus::UnknownStatus)
return;
debug("Waiting for process \"%s\"(%d)", pcb->Name, pcb->ID);
while (pcb->Status != TaskStatus::Terminated)
CPU::Halt();
}
void Task::WaitForThread(TCB *tcb)
{
if (!tcb)
return;
if (tcb->Status == TaskStatus::UnknownStatus)
return;
debug("Waiting for thread \"%s\"(%d)", tcb->Name, tcb->ID);
while (tcb->Status != TaskStatus::Terminated)
CPU::Halt();
}
void Task::Sleep(uint64_t Milliseconds)
{
SmartCriticalSection(TaskingLock);
TCB *thread = this->GetCurrentThread();
thread->Status = TaskStatus::Sleeping;
if (thread->Parent->Threads.size() == 1)
thread->Parent->Status = TaskStatus::Sleeping;
thread->Info.SleepUntil = TimeManager->CalculateTarget(Milliseconds);
schedbg("Thread \"%s\"(%d) is going to sleep until %llu", thread->Name, thread->ID, thread->Info.SleepUntil);
// OneShot(1);
// IRQ16
TaskingLock.Unlock();
asmv("int $0x30");
}
void Task::SignalShutdown()
{
fixme("SignalShutdown()");
// TODO: Implement this
// This should hang until all processes are terminated
}
TCB *Task::CreateThread(PCB *Parent,
IP EntryPoint,
const char **argv,
const char **envp,
Vector<AuxiliaryVector> &auxv,
IPOffset Offset,
TaskArchitecture Architecture,
TaskCompatibility Compatibility)
{
SmartCriticalSection(TaskingLock);
TCB *Thread = new TCB;
if (Parent == nullptr)
{
Thread->Parent = this->GetCurrentProcess();
if (Thread->Parent == nullptr)
{
error("Failed to get current process. Thread cannot be created.");
delete Thread;
return nullptr;
}
}
else
Thread->Parent = Parent;
if (!Parent)
{
error("Parent is null");
delete Thread;
return nullptr;
}
Thread->ID = this->NextTID++;
strcpy(Thread->Name, Parent->Name);
Thread->EntryPoint = EntryPoint;
Thread->Offset = Offset;
Thread->ExitCode = 0xdead;
Thread->Status = TaskStatus::Ready;
Thread->Memory = new Memory::MemMgr(Parent->PageTable);
Thread->FPU = (CPU::x64::FXState *)Thread->Memory->RequestPages(TO_PAGES(sizeof(CPU::x64::FXState)));
memset(Thread->FPU, 0, FROM_PAGES(TO_PAGES(sizeof(CPU::x64::FXState))));
// TODO: Is really a good idea to use the FPU in kernel mode?
Thread->FPU->mxcsr = 0b0001111110000000;
Thread->FPU->mxcsrmask = 0b1111111110111111;
Thread->FPU->fcw = 0b0000001100111111;
CPU::x64::fxrstor(Thread->FPU);
// uint16_t FCW = 0b1100111111;
// asmv("fldcw %0"
// :
// : "m"(FCW)
// : "memory");
// uint32_t MXCSR = 0b1111110000000;
// asmv("ldmxcsr %0"
// :
// : "m"(MXCSR)
// : "memory");
// CPU::x64::fxsave(Thread->FPU);
#if defined(__amd64__)
memset(&Thread->Registers, 0, sizeof(CPU::x64::TrapFrame)); // Just in case
Thread->Registers.rip = (EntryPoint + Offset);
#elif defined(__i386__)
#elif defined(__aarch64__)
#endif
switch (Parent->Security.TrustLevel)
{
case TaskTrustLevel::System:
warn("Trust level not supported.");
[[fallthrough]];
case TaskTrustLevel::Idle:
case TaskTrustLevel::Kernel:
{
Thread->Stack = new Memory::StackGuard(false, Parent->PageTable);
#if defined(__amd64__)
SecurityManager.TrustToken(Thread->Security.UniqueToken, TokenTrustLevel::TrustedByKernel);
Thread->GSBase = CPU::x64::rdmsr(CPU::x64::MSRID::MSR_GS_BASE);
Thread->FSBase = CPU::x64::rdmsr(CPU::x64::MSRID::MSR_FS_BASE);
Thread->Registers.cs = GDT_KERNEL_CODE;
Thread->Registers.ss = GDT_KERNEL_DATA;
Thread->Registers.rflags.AlwaysOne = 1;
Thread->Registers.rflags.IF = 1;
Thread->Registers.rflags.ID = 1;
Thread->Registers.rsp = ((uintptr_t)Thread->Stack->GetStackTop());
POKE(uintptr_t, Thread->Registers.rsp) = (uintptr_t)ThreadDoExit;
#elif defined(__i386__)
#elif defined(__aarch64__)
#endif
break;
}
case TaskTrustLevel::User:
{
Thread->Stack = new Memory::StackGuard(true, Parent->PageTable);
#if defined(__amd64__)
SecurityManager.TrustToken(Thread->Security.UniqueToken, TokenTrustLevel::Untrusted);
Thread->GSBase = 0;
Thread->FSBase = 0;
Thread->Registers.cs = GDT_USER_CODE;
Thread->Registers.ss = GDT_USER_DATA;
Thread->Registers.rflags.AlwaysOne = 1;
// Thread->Registers.rflags.PF = 1;
// Thread->Registers.rflags.SF = 1;
// Thread->Registers.rflags.IOPL = 3;
Thread->Registers.rflags.IF = 1;
Thread->Registers.rflags.ID = 1;
Thread->Registers.rsp = ((uintptr_t)Thread->Stack->GetStackTop());
#pragma region
size_t ArgvSize = 0;
if (argv)
while (argv[ArgvSize] != nullptr)
ArgvSize++;
size_t EnvpSize = 0;
if (envp)
while (envp[EnvpSize] != nullptr)
EnvpSize++;
debug("ArgvSize: %d", ArgvSize);
debug("EnvpSize: %d", EnvpSize);
/* https://articles.manugarg.com/aboutelfauxiliaryvectors.html */
/* https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.pdf#figure.3.9 */
// rsp is the top of the stack
char *Stack = (char *)Thread->Stack->GetStackPhysicalTop();
// Temporary stack pointer for strings
char *StackStrings = (char *)Stack;
char *StackStringsVirtual = (char *)Thread->Stack->GetStackTop();
// Store string pointers for later
uintptr_t ArgvStrings[ArgvSize];
uintptr_t EnvpStrings[EnvpSize];
for (size_t i = 0; i < ArgvSize; i++)
{
// Subtract the length of the string and the null terminator
StackStrings -= strlen(argv[i]) + 1;
StackStringsVirtual -= strlen(argv[i]) + 1;
// Store the pointer to the string
ArgvStrings[i] = (uintptr_t)StackStringsVirtual;
// Copy the string to the stack
strcpy(StackStrings, argv[i]);
}
for (size_t i = 0; i < EnvpSize; i++)
{
// Subtract the length of the string and the null terminator
StackStrings -= strlen(envp[i]) + 1;
StackStringsVirtual -= strlen(envp[i]) + 1;
// Store the pointer to the string
EnvpStrings[i] = (uintptr_t)StackStringsVirtual;
// Copy the string to the stack
strcpy(StackStrings, envp[i]);
}
// Align the stack to 16 bytes
StackStrings -= (uintptr_t)StackStrings & 0xF;
// Set "Stack" to the new stack pointer
Stack = (char *)StackStrings;
// If argv and envp sizes are odd then we need to align the stack
Stack -= (ArgvSize + EnvpSize) % 2;
// We need 8 bit pointers for the stack from here
uintptr_t *Stack64 = (uintptr_t *)Stack;
// Store the null terminator
Stack64--;
*Stack64 = AT_NULL;
// Store auxillary vector
foreach (AuxiliaryVector var in auxv)
{
// Subtract the size of the auxillary vector
Stack64 -= sizeof(Elf64_auxv_t) / sizeof(uintptr_t);
// Store the auxillary vector
POKE(Elf64_auxv_t, Stack64) = var.archaux;
// TODO: Store strings to the stack
}
// Store the null terminator
Stack64--;
*Stack64 = AT_NULL;
// Store EnvpStrings[] to the stack
Stack64 -= EnvpSize; // (1 Stack64 = 8 bits; Stack64 = 8 * EnvpSize)
for (size_t i = 0; i < EnvpSize; i++)
{
*(Stack64 + i) = (uintptr_t)EnvpStrings[i];
debug("EnvpStrings[%d]: %#lx", i, EnvpStrings[i]);
}
// Store the null terminator
Stack64--;
*Stack64 = AT_NULL;
// Store ArgvStrings[] to the stack
Stack64 -= ArgvSize; // (1 Stack64 = 8 bits; Stack64 = 8 * ArgvSize)
for (size_t i = 0; i < ArgvSize; i++)
{
*(Stack64 + i) = (uintptr_t)ArgvStrings[i];
debug("ArgvStrings[%d]: %#lx", i, ArgvStrings[i]);
}
// Store the argc
Stack64--;
*Stack64 = ArgvSize;
// Set "Stack" to the new stack pointer
Stack = (char *)Stack64;
/* We need the virtual address but because we are in the kernel we can't use the process page table.
So we modify the physical address and store how much we need to subtract to get the virtual address for RSP. */
uintptr_t SubtractStack = (uintptr_t)Thread->Stack->GetStackPhysicalTop() - (uintptr_t)Stack;
debug("SubtractStack: %#lx", SubtractStack);
// Set the stack pointer to the new stack
Thread->Registers.rsp = ((uintptr_t)Thread->Stack->GetStackTop() - SubtractStack);
#ifdef DEBUG
DumpData("Stack Data", (void *)((uintptr_t)Thread->Stack->GetStackPhysicalTop() - (uintptr_t)SubtractStack), SubtractStack);
#endif
Thread->Registers.rdi = (uintptr_t)ArgvSize; // argc
Thread->Registers.rsi = (uintptr_t)(Thread->Registers.rsp + 8); // argv
Thread->Registers.rcx = (uintptr_t)EnvpSize; // envc
Thread->Registers.rdx = (uintptr_t)(Thread->Registers.rsp + 8 + (8 * ArgvSize) + 8); // envp
#pragma endregion
/* We need to leave the libc's crt to make a syscall when the Thread is exited or we are going to get GPF or PF exception. */
Memory::Virtual uva = Memory::Virtual(Parent->PageTable);
if (!uva.Check((void *)Offset, Memory::PTFlag::US))
{
error("Offset is not user accessible");
uva.Map((void *)Offset, (void *)Offset, Memory::PTFlag::RW | Memory::PTFlag::US); // We try one more time.
}
#elif defined(__i386__)
#elif defined(__aarch64__)
#endif
#ifdef DEBUG_SCHEDULER
DumpData(Thread->Name, Thread->Stack, STACK_SIZE);
#endif
break;
}
default:
{
error("Unknown elevation.");
delete Thread->Stack;
this->NextTID--;
delete Thread;
return nullptr;
}
}
Thread->Security.TrustLevel = Parent->Security.TrustLevel;
// Thread->Security.UniqueToken = SecurityManager.CreateToken();
Thread->Info = {};
Thread->Info.SpawnTime = CPU::Counter();
Thread->Info.Year = 0;
Thread->Info.Month = 0;
Thread->Info.Day = 0;
Thread->Info.Hour = 0;
Thread->Info.Minute = 0;
Thread->Info.Second = 0;
for (int i = 0; i < MAX_CPU; i++)
{
Thread->Info.Usage[i] = 0;
Thread->Info.Affinity[i] = true;
}
Thread->Info.Priority = 10;
Thread->Info.Architecture = Architecture;
Thread->Info.Compatibility = Compatibility;
#ifdef DEBUG
#ifdef __amd64__
debug("Thread offset is %#lx (EntryPoint: %#lx) => RIP: %#lx", Thread->Offset, Thread->EntryPoint, Thread->Registers.rip);
if (Parent->Security.TrustLevel == TaskTrustLevel::User)
debug("Thread stack region is %#lx-%#lx (U) and rsp is %#lx", Thread->Stack->GetStackBottom(), Thread->Stack->GetStackTop(), Thread->Registers.rsp);
else
debug("Thread stack region is %#lx-%#lx (K) and rsp is %#lx", Thread->Stack->GetStackBottom(), Thread->Stack->GetStackTop(), Thread->Registers.rsp);
#elif defined(__i386__)
debug("Thread offset is %#lx (EntryPoint: %#lx) => RIP: %#lx", Thread->Offset, Thread->EntryPoint, Thread->Registers.eip);
if (Parent->Security.TrustLevel == TaskTrustLevel::User)
debug("Thread stack region is %#lx-%#lx (U) and rsp is %#lx", Thread->Stack->GetStackBottom(), Thread->Stack->GetStackTop(), Thread->Registers.esp);
else
debug("Thread stack region is %#lx-%#lx (K) and rsp is %#lx", Thread->Stack->GetStackBottom(), Thread->Stack->GetStackTop(), Thread->Registers.esp);
#elif defined(__aarch64__)
#endif
debug("Created thread \"%s\"(%d) in process \"%s\"(%d)",
Thread->Name, Thread->ID,
Thread->Parent->Name, Thread->Parent->ID);
#endif
Parent->Threads.push_back(Thread);
return Thread;
}
PCB *Task::CreateProcess(PCB *Parent,
const char *Name,
TaskTrustLevel TrustLevel, void *Image,
bool DoNotCreatePageTable)
{
SmartCriticalSection(TaskingLock);
PCB *Process = new PCB;
Process->ID = this->NextPID++;
strcpy(Process->Name, Name);
if (Parent == nullptr)
Process->Parent = this->GetCurrentProcess();
else
Process->Parent = Parent;
Process->ExitCode = 0xdead;
Process->Status = TaskStatus::Ready;
Process->Security.TrustLevel = TrustLevel;
// Process->Security.UniqueToken = SecurityManager.CreateToken();
Process->IPCHandles = new HashMap<InterProcessCommunication::IPCPort, uintptr_t>;
switch (TrustLevel)
{
case TaskTrustLevel::System:
warn("Trust level not supported.");
[[fallthrough]];
case TaskTrustLevel::Idle:
case TaskTrustLevel::Kernel:
{
SecurityManager.TrustToken(Process->Security.UniqueToken, TokenTrustLevel::TrustedByKernel);
#if defined(__amd64__)
if (!DoNotCreatePageTable)
Process->PageTable = (Memory::PageTable4 *)CPU::x64::readcr3().raw;
#elif defined(__i386__)
#elif defined(__aarch64__)
#endif
break;
}
case TaskTrustLevel::User:
{
SecurityManager.TrustToken(Process->Security.UniqueToken, TokenTrustLevel::Untrusted);
#if defined(__amd64__)
if (!DoNotCreatePageTable)
{
Process->PageTable = (Memory::PageTable4 *)KernelAllocator.RequestPages(TO_PAGES(PAGE_SIZE));
memcpy(Process->PageTable, (void *)UserspaceKernelOnlyPageTable, PAGE_SIZE);
for (size_t i = 0; i < TO_PAGES(PAGE_SIZE); i++)
Memory::Virtual(Process->PageTable).Map((void *)Process->PageTable, (void *)Process->PageTable, Memory::PTFlag::RW); // Make sure the page table is mapped.
}
#elif defined(__i386__)
#elif defined(__aarch64__)
#endif
break;
}
default:
{
error("Unknown elevation.");
this->NextPID--;
delete Process;
return nullptr;
}
}
Process->Info = {};
Process->Info.SpawnTime = CPU::Counter();
Process->Info.Year = 0;
Process->Info.Month = 0;
Process->Info.Day = 0;
Process->Info.Hour = 0;
Process->Info.Minute = 0;
Process->Info.Second = 0;
for (int i = 0; i < MAX_CPU; i++)
{
Process->Info.Usage[i] = 0;
Process->Info.Affinity[i] = true;
}
Process->Info.Priority = 10;
debug("Process page table: %#lx", Process->PageTable);
debug("Created process \"%s\"(%d) in process \"%s\"(%d)",
Process->Name, Process->ID,
Parent ? Process->Parent->Name : "None",
Parent ? Process->Parent->ID : 0);
if (Image)
{
// TODO: Check if it's ELF
Process->ELFSymbolTable = new SymbolResolver::Symbols((uintptr_t)Image);
}
else
debug("No image provided for process \"%s\"(%d)", Process->Name, Process->ID);
if (Parent)
Parent->Children.push_back(Process);
ListProcess.push_back(Process);
return Process;
}
Task::Task(const IP EntryPoint) : Interrupts::Handler(CPU::x64::IRQ16)
{
SmartCriticalSection(TaskingLock);
#if defined(__amd64__)
for (int i = 0; i < SMP::CPUCores; i++)
((APIC::APIC *)Interrupts::apic[i])->RedirectIRQ(i, CPU::x64::IRQ16 - CPU::x64::IRQ0, 1);
#elif defined(__i386__)
#elif defined(__aarch64__)
#endif
KPrint("Starting Tasking With Instruction Pointer: %p (\e666666%s\eCCCCCC)", EntryPoint, KernelSymbolTable->GetSymbolFromAddress(EntryPoint));
TaskingLock.Unlock();
#if defined(__amd64__)
TaskArchitecture Arch = TaskArchitecture::x64;
#elif defined(__i386__)
TaskArchitecture Arch = TaskArchitecture::x32;
#elif defined(__aarch64__)
TaskArchitecture Arch = TaskArchitecture::ARM64;
#endif
PCB *kproc = CreateProcess(nullptr, "Kernel", TaskTrustLevel::Kernel);
Vector<AuxiliaryVector> auxv;
TCB *kthrd = CreateThread(kproc, EntryPoint, nullptr, nullptr, auxv, 0, Arch);
kthrd->Rename("Main Thread");
debug("Created Kernel Process: %s and Thread: %s", kproc->Name, kthrd->Name);
TaskingLock.Lock(__FUNCTION__);
bool MONITORSupported = false;
if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_AMD) == 0)
{
#if defined(__amd64__)
CPU::x64::AMD::CPUID0x1 cpuid1amd;
#elif defined(__i386__)
CPU::x32::AMD::CPUID0x1 cpuid1amd;
#endif
#if defined(__amd64__) || defined(__i386__)
asmv("cpuid"
: "=a"(cpuid1amd.EAX.raw), "=b"(cpuid1amd.EBX.raw), "=c"(cpuid1amd.ECX.raw), "=d"(cpuid1amd.EDX.raw)
: "a"(0x1));
#endif
MONITORSupported = cpuid1amd.ECX.MONITOR;
}
else if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_INTEL) == 0)
{
#if defined(__amd64__)
CPU::x64::Intel::CPUID0x1 cpuid1intel;
#elif defined(__i386__)
CPU::x32::Intel::CPUID0x1 cpuid1intel;
#endif
#if defined(__amd64__) || defined(__i386__)
asmv("cpuid"
: "=a"(cpuid1intel.EAX.raw), "=b"(cpuid1intel.EBX.raw), "=c"(cpuid1intel.ECX.raw), "=d"(cpuid1intel.EDX.raw)
: "a"(0x1));
#endif
MONITORSupported = cpuid1intel.ECX.MONITOR;
}
if (MONITORSupported)
{
trace("CPU has MONITOR/MWAIT support.");
}
if (!CPU::Interrupts(CPU::Check))
{
error("Interrupts are not enabled.");
CPU::Interrupts(CPU::Enable);
}
TaskingLock.Unlock();
IdleProcess = CreateProcess(nullptr, (char *)"Idle", TaskTrustLevel::Idle);
for (int i = 0; i < SMP::CPUCores; i++)
{
Vector<AuxiliaryVector> auxv;
IdleThread = CreateThread(IdleProcess, reinterpret_cast<uintptr_t>(IdleProcessLoop), nullptr, nullptr, auxv);
char IdleName[16];
sprintf(IdleName, "Idle Thread %d", i);
IdleThread->Rename(IdleName);
IdleThread->SetPriority(1);
break;
}
debug("Tasking Started");
#if defined(__amd64__)
((APIC::Timer *)Interrupts::apicTimer[0])->OneShot(CPU::x64::IRQ16, 100);
for (int i = 1; i < SMP::CPUCores; i++)
{
// ((APIC::Timer *)Interrupts::apicTimer[i])->OneShot(CPU::x64::IRQ16, 100);
// TODO: Lock was the fault here. Now crash handler should support SMP.
// APIC::InterruptCommandRegisterLow icr;
// icr.Vector = CPU::x64::IRQ16;
// icr.Level = APIC::APICLevel::Assert;
// ((APIC::APIC *)Interrupts::apic[0])->IPI(i, icr);
}
#elif defined(__i386__)
#elif defined(__aarch64__)
#endif
}
Task::~Task()
{
SmartCriticalSection(TaskingLock);
trace("Stopping tasking");
foreach (auto Process in ListProcess)
{
for (auto &Thread : Process->Threads)
{
Thread->Status = TaskStatus::Terminated;
}
Process->Status = TaskStatus::Terminated;
}
TaskingLock.Unlock();
SchedulerLock.Unlock();
while (ListProcess.size() > 0)
{
trace("Waiting for %d processes to terminate", ListProcess.size());
int NotTerminated = 0;
foreach (auto Process in ListProcess)
{
debug("Process %s(%d) is still running (or waiting to be removed status %#lx)", Process->Name, Process->ID, Process->Status);
if (Process->Status == TaskStatus::Terminated)
continue;
NotTerminated++;
}
if (NotTerminated == 0)
break;
OneShot(100);
}
trace("Tasking stopped");
}
}