Kernel/Architecture/i686/Multiboot2.cpp

344 lines
12 KiB
C++

#include <types.h>
#include <boot/protocols/multiboot2.h>
#include <io.h>
#include "../../kernel.h"
enum VideoType
{
VIDEO_TYPE_NONE = 0x00,
VIDEO_TYPE_COLOUR = 0x20,
VIDEO_TYPE_MONOCHROME = 0x30,
};
uint16_t GetBiosAreaHardware()
{
const uint16_t *BIOSDataAreaDetectedHardware = (const uint16_t *)0x410;
return *BIOSDataAreaDetectedHardware;
}
enum VideoType GetVideoType() { return (enum VideoType)(GetBiosAreaHardware() & 0x30); }
void GetSMBIOS()
{
unsigned char *SMBIOSAddress = (unsigned char *)0xF0000;
while ((unsigned int)(unsigned long)SMBIOSAddress < 0x100000)
{
if (SMBIOSAddress[0] == '_' &&
SMBIOSAddress[1] == 'S' &&
SMBIOSAddress[2] == 'M' &&
SMBIOSAddress[3] == '_')
{
unsigned char Checksum = 0;
int Length = SMBIOSAddress[5];
for (int i = 0; i < Length; i++)
Checksum += SMBIOSAddress[i];
if (Checksum == 0)
break;
}
SMBIOSAddress += 16;
}
if ((unsigned int)(unsigned long)SMBIOSAddress == 0x100000)
{
// No SMBIOS found
}
}
struct multiboot_info
{
multiboot_uint32_t Size;
multiboot_uint32_t Reserved;
struct multiboot_tag *Tag;
};
EXTERNC void x32Multiboot2Entry(multiboot_info *Info, unsigned int Magic)
{
if (Info == NULL || Magic == NULL)
{
if (Magic == NULL)
error("Multiboot magic is NULL");
if (Info == NULL)
error("Multiboot info is NULL");
CPU::Stop();
}
else if (Magic != MULTIBOOT2_BOOTLOADER_MAGIC)
{
error("Multiboot magic is invalid (%#x != %#x)", Magic, MULTIBOOT2_BOOTLOADER_MAGIC);
trace("Hello, World!");
CPU::Stop();
}
uint64_t div = 1193180 / 1000;
outb(0x43, 0xB6);
outb(0x42, (uint8_t)div);
outb(0x42, (uint8_t)(div >> 8));
uint8_t tmp = inb(0x61);
if (tmp != (tmp | 3))
outb(0x61, tmp | 3);
BootInfo binfo;
uint32_t Itr = 0;
for (uint32_t i = 8; i < Info->Size; i += Itr)
{
multiboot_tag *Tag = (multiboot_tag *)((uint8_t *)Info + i);
if (Tag->type == MULTIBOOT_TAG_TYPE_END)
break;
switch (Tag->type)
{
case MULTIBOOT_TAG_TYPE_CMDLINE:
{
strncpy(binfo.Kernel.CommandLine,
((multiboot_tag_string *)Tag)->string,
strlen(((multiboot_tag_string *)Tag)->string));
break;
}
case MULTIBOOT_TAG_TYPE_BOOT_LOADER_NAME:
{
strncpy(binfo.Bootloader.Name,
((multiboot_tag_string *)Tag)->string,
strlen(((multiboot_tag_string *)Tag)->string));
break;
}
case MULTIBOOT_TAG_TYPE_MODULE:
{
multiboot_tag_module *module = (multiboot_tag_module *)Tag;
static int module_count = 0;
binfo.Modules[module_count++].Address = (void *)module->mod_start;
binfo.Modules[module_count++].Size = module->size;
strncpy(binfo.Modules[module_count++].Path, "(null)", 6);
strncpy(binfo.Modules[module_count++].CommandLine, module->cmdline,
strlen(module->cmdline));
break;
}
case MULTIBOOT_TAG_TYPE_BASIC_MEMINFO:
{
multiboot_tag_basic_meminfo *meminfo = (multiboot_tag_basic_meminfo *)Tag;
fixme("basic_meminfo->[mem_lower: %#x, mem_upper: %#x]",
meminfo->mem_lower, meminfo->mem_upper);
break;
}
case MULTIBOOT_TAG_TYPE_BOOTDEV:
{
multiboot_tag_bootdev *bootdev = (multiboot_tag_bootdev *)Tag;
fixme("bootdev->[biosdev: %#x, slice: %#x, part: %#x]",
bootdev->biosdev, bootdev->slice, bootdev->part);
break;
}
case MULTIBOOT_TAG_TYPE_MMAP:
{
multiboot_tag_mmap *mmap = (multiboot_tag_mmap *)Tag;
uint32_t EntryCount = mmap->size / sizeof(multiboot_mmap_entry);
binfo.Memory.Entries = EntryCount;
for (uint32_t i = 0; i < EntryCount; i++)
{
if (EntryCount > MAX_MEMORY_ENTRIES)
{
warn("Too many memory entries, skipping the rest...");
break;
}
multiboot_mmap_entry entry = mmap->entries[i];
binfo.Memory.Size += entry.len;
switch (entry.type)
{
case MULTIBOOT_MEMORY_AVAILABLE:
binfo.Memory.Entry[i].BaseAddress = (void *)entry.addr;
binfo.Memory.Entry[i].Length = entry.len;
binfo.Memory.Entry[i].Type = Usable;
break;
case MULTIBOOT_MEMORY_RESERVED:
binfo.Memory.Entry[i].BaseAddress = (void *)entry.addr;
binfo.Memory.Entry[i].Length = entry.len;
binfo.Memory.Entry[i].Type = Reserved;
break;
case MULTIBOOT_MEMORY_ACPI_RECLAIMABLE:
binfo.Memory.Entry[i].BaseAddress = (void *)entry.addr;
binfo.Memory.Entry[i].Length = entry.len;
binfo.Memory.Entry[i].Type = ACPIReclaimable;
break;
case MULTIBOOT_MEMORY_NVS:
binfo.Memory.Entry[i].BaseAddress = (void *)entry.addr;
binfo.Memory.Entry[i].Length = entry.len;
binfo.Memory.Entry[i].Type = ACPINVS;
break;
case MULTIBOOT_MEMORY_BADRAM:
binfo.Memory.Entry[i].BaseAddress = (void *)entry.addr;
binfo.Memory.Entry[i].Length = entry.len;
binfo.Memory.Entry[i].Type = BadMemory;
break;
default:
binfo.Memory.Entry[i].BaseAddress = (void *)entry.addr;
binfo.Memory.Entry[i].Length = entry.len;
binfo.Memory.Entry[i].Type = Unknown;
break;
}
}
break;
}
case MULTIBOOT_TAG_TYPE_VBE:
{
multiboot_tag_vbe *vbe = (multiboot_tag_vbe *)Tag;
fixme("vbe->[vbe_mode: %#x, vbe_interface_seg: %#x, vbe_interface_off: %#x, vbe_interface_len: %#x]",
vbe->vbe_mode, vbe->vbe_interface_seg, vbe->vbe_interface_off, vbe->vbe_interface_len);
break;
}
case MULTIBOOT_TAG_TYPE_FRAMEBUFFER:
{
multiboot_tag_framebuffer *fb = (multiboot_tag_framebuffer *)Tag;
static int fb_count = 0;
binfo.Framebuffer[fb_count].BaseAddress = (void *)fb->common.framebuffer_addr;
binfo.Framebuffer[fb_count].Width = fb->common.framebuffer_width;
binfo.Framebuffer[fb_count].Height = fb->common.framebuffer_height;
binfo.Framebuffer[fb_count].Pitch = fb->common.framebuffer_pitch;
binfo.Framebuffer[fb_count].BitsPerPixel = fb->common.framebuffer_bpp;
binfo.Framebuffer[fb_count].MemoryModel = fb->common.framebuffer_type;
switch (fb->common.framebuffer_type)
{
case MULTIBOOT_FRAMEBUFFER_TYPE_INDEXED:
{
fixme("indexed");
break;
}
case MULTIBOOT_FRAMEBUFFER_TYPE_RGB:
{
binfo.Framebuffer[fb_count].RedMaskSize = fb->framebuffer_red_mask_size;
binfo.Framebuffer[fb_count].RedMaskShift = fb->framebuffer_red_field_position;
binfo.Framebuffer[fb_count].GreenMaskSize = fb->framebuffer_green_mask_size;
binfo.Framebuffer[fb_count].GreenMaskShift = fb->framebuffer_green_field_position;
binfo.Framebuffer[fb_count].BlueMaskSize = fb->framebuffer_blue_mask_size;
binfo.Framebuffer[fb_count].BlueMaskShift = fb->framebuffer_blue_field_position;
break;
}
case MULTIBOOT_FRAMEBUFFER_TYPE_EGA_TEXT:
{
fixme("ega_text");
break;
}
}
debug("Framebuffer %d: %dx%d %d bpp", i, fb->common.framebuffer_width, fb->common.framebuffer_height, fb->common.framebuffer_bpp);
debug("More info:\nAddress: %p\nPitch: %lld\nMemoryModel: %d\nRedMaskSize: %d\nRedMaskShift: %d\nGreenMaskSize: %d\nGreenMaskShift: %d\nBlueMaskSize: %d\nBlueMaskShift: %d",
fb->common.framebuffer_addr, fb->common.framebuffer_pitch, fb->common.framebuffer_type,
fb->framebuffer_red_mask_size, fb->framebuffer_red_field_position, fb->framebuffer_green_mask_size,
fb->framebuffer_green_field_position, fb->framebuffer_blue_mask_size, fb->framebuffer_blue_field_position);
fb_count++;
break;
}
case MULTIBOOT_TAG_TYPE_ELF_SECTIONS:
{
multiboot_tag_elf_sections *elf = (multiboot_tag_elf_sections *)Tag;
fixme("elf_sections->[num=%d, size=%d, entsize=%d, shndx=%d]",
elf->num, elf->size, elf->entsize, elf->shndx);
break;
}
case MULTIBOOT_TAG_TYPE_APM:
{
multiboot_tag_apm *apm = (multiboot_tag_apm *)Tag;
fixme("apm->[version: %d, cseg: %d, offset: %d, cseg_16: %d, dseg: %d, flags: %d, cseg_len: %d, cseg_16_len: %d, dseg_len: %d]",
apm->version, apm->cseg, apm->offset, apm->cseg_16, apm->dseg, apm->flags, apm->cseg_len, apm->cseg_16_len, apm->dseg_len);
break;
}
case MULTIBOOT_TAG_TYPE_EFI32:
{
multiboot_tag_efi32 *efi32 = (multiboot_tag_efi32 *)Tag;
fixme("efi32->[pointer: %p, size: %d]", efi32->pointer, efi32->size);
break;
}
case MULTIBOOT_TAG_TYPE_EFI64:
{
multiboot_tag_efi64 *efi64 = (multiboot_tag_efi64 *)Tag;
fixme("efi64->[pointer: %p, size: %d]", efi64->pointer, efi64->size);
break;
}
case MULTIBOOT_TAG_TYPE_SMBIOS:
{
multiboot_tag_smbios *smbios = (multiboot_tag_smbios *)Tag;
fixme("smbios->[major: %d, minor: %d]", smbios->major, smbios->minor);
break;
}
case MULTIBOOT_TAG_TYPE_ACPI_OLD:
{
binfo.RSDP = (BootInfo::RSDPInfo *)((multiboot_tag_old_acpi *)Tag)->rsdp;
break;
}
case MULTIBOOT_TAG_TYPE_ACPI_NEW:
{
binfo.RSDP = (BootInfo::RSDPInfo *)((multiboot_tag_new_acpi *)Tag)->rsdp;
break;
}
case MULTIBOOT_TAG_TYPE_NETWORK:
{
multiboot_tag_network *net = (multiboot_tag_network *)Tag;
fixme("network->[dhcpack: %p]", net->dhcpack);
break;
}
case MULTIBOOT_TAG_TYPE_EFI_MMAP:
{
multiboot_tag_efi_mmap *efi_mmap = (multiboot_tag_efi_mmap *)Tag;
fixme("efi_mmap->[descr_size: %d, descr_vers: %d, efi_mmap: %p]",
efi_mmap->descr_size, efi_mmap->descr_vers, efi_mmap->efi_mmap);
break;
}
case MULTIBOOT_TAG_TYPE_EFI_BS:
{
fixme("efi_bs->[%p] (unknown structure)", Tag);
break;
}
case MULTIBOOT_TAG_TYPE_EFI32_IH:
{
multiboot_tag_efi32_ih *efi32_ih = (multiboot_tag_efi32_ih *)Tag;
fixme("efi32_ih->[pointer: %p]", efi32_ih->pointer);
break;
}
case MULTIBOOT_TAG_TYPE_EFI64_IH:
{
multiboot_tag_efi64_ih *efi64_ih = (multiboot_tag_efi64_ih *)Tag;
fixme("efi64_ih->[pointer: %p]", efi64_ih->pointer);
break;
}
case MULTIBOOT_TAG_TYPE_LOAD_BASE_ADDR:
{
multiboot_tag_load_base_addr *load_base_addr = (multiboot_tag_load_base_addr *)Tag;
binfo.Kernel.PhysicalBase = (void *)load_base_addr->load_base_addr;
binfo.Kernel.VirtualBase = (void *)(load_base_addr->load_base_addr + 0xC0000000);
break;
}
}
Itr = Tag->size;
if ((Itr % 8) != 0)
Itr += (8 - Itr % 8);
}
tmp = inb(0x61) & 0xFC;
outb(0x61, tmp);
int *vm = (int *)0xb8000;
// "Not supported yet"
vm[0] = 0x054E;
vm[1] = 0x056F;
vm[2] = 0x0574;
vm[3] = 0x0520;
vm[4] = 0x0573;
vm[5] = 0x0575;
vm[6] = 0x0570;
vm[7] = 0x0570;
vm[8] = 0x0572;
vm[9] = 0x056F;
vm[10] = 0x0574;
vm[11] = 0x0520;
vm[12] = 0x0579;
vm[13] = 0x0565;
vm[14] = 0x0574;
CPU::Stop();
// Entry(&binfo);
}