Kernel/Tasking/Task.cpp
2022-12-05 00:48:41 +02:00

1139 lines
42 KiB
C++

#include <task.hpp>
#include <dumper.hpp>
#include <convert.h>
#include <lock.hpp>
#include <printf.h>
#include <smp.hpp>
#include "../kernel.h"
#if defined(__amd64__)
#include "../Architecture/amd64/cpu/apic.hpp"
#include "../Architecture/amd64/cpu/gdt.hpp"
#elif defined(__i386__)
#include "../Architecture/i686/cpu/apic.hpp"
#elif defined(__aarch64__)
#endif
// #define DEBUG_SCHEDULER 1
#ifdef DEBUG_SCHEDULER
#define schedbg(m, ...) debug(m, ##__VA_ARGS__)
#else
#define schedbg(m, ...)
#endif
NewLock(TaskingLock);
NewLock(SchedulerLock);
namespace Tasking
{
extern "C" SafeFunction __no_instrument_function void OneShot(int TimeSlice)
{
if (TimeSlice == 0)
TimeSlice = 10;
#if defined(__amd64__)
((APIC::Timer *)Interrupts::apicTimer[GetCurrentCPU()->ID])->OneShot(CPU::x64::IRQ16, TimeSlice);
#elif defined(__i386__)
#elif defined(__aarch64__)
#endif
}
void Task::Schedule()
{
if (!StopScheduler)
OneShot(100);
// APIC::InterruptCommandRegisterLow icr;
// icr.Vector = CPU::x64::IRQ16;
// icr.Level = APIC::APICLevel::Assert;
// ((APIC::APIC *)Interrupts::apic[0])->IPI(GetCurrentCPU()->ID, icr);
}
__naked __used __no_stack_protector __no_instrument_function void IdleProcessLoop()
{
#if defined(__amd64__) || defined(__i386__)
asmv("IdleLoop:\n"
"hlt\n"
"jmp IdleLoop\n");
#elif defined(__aarch64__)
asmv("IdleLoop:\n"
"wfe\n"
"b IdleLoop\n");
#endif
}
SafeFunction __no_instrument_function bool Task::InvalidPCB(PCB *pcb)
{
if (!pcb)
return true;
if (pcb >= (PCB *)0xfffffffffffff000)
return true;
if (!Memory::Virtual().Check((void *)pcb))
return true;
return false;
}
SafeFunction __no_instrument_function bool Task::InvalidTCB(TCB *tcb)
{
if (!tcb)
return true;
if (tcb >= (TCB *)0xfffffffffffff000)
return true;
if (!Memory::Virtual().Check((void *)tcb))
return true;
return false;
}
SafeFunction __no_instrument_function void Task::RemoveThread(TCB *Thread)
{
for (uint64_t i = 0; i < Thread->Parent->Threads.size(); i++)
if (Thread->Parent->Threads[i] == Thread)
{
trace("Thread \"%s\"(%d) removed from process \"%s\"(%d)",
Thread->Name, Thread->ID, Thread->Parent->Name, Thread->Parent->ID);
// Free memory
delete Thread->Stack;
SecurityManager.DestroyToken(Thread->Security.UniqueToken);
delete Thread->Parent->Threads[i];
// Remove from the list
Thread->Parent->Threads.remove(i);
break;
}
}
SafeFunction __no_instrument_function void Task::RemoveProcess(PCB *Process)
{
if (Process == nullptr)
return;
if (Process->Status == Terminated)
{
foreach (TCB *thread in Process->Threads)
RemoveThread(thread);
foreach (PCB *process in Process->Children)
RemoveProcess(process);
for (uint64_t i = 0; i < ListProcess.size(); i++)
{
if (ListProcess[i] == Process)
{
trace("Process \"%s\"(%d) removed from the list", Process->Name, Process->ID);
// Free memory
delete ListProcess[i]->IPCHandles;
SecurityManager.DestroyToken(ListProcess[i]->Security.UniqueToken);
if (ListProcess[i]->Security.TrustLevel == TaskTrustLevel::User)
KernelAllocator.FreePages((void *)ListProcess[i]->PageTable, TO_PAGES(PAGE_SIZE));
delete ListProcess[i];
// Remove from the list
ListProcess.remove(i);
break;
}
}
}
else
{
foreach (TCB *thread in Process->Threads)
if (thread->Status == Terminated)
RemoveThread(thread);
}
}
SafeFunction __no_instrument_function void Task::UpdateUserTime(TaskInfo *Info)
{
// TODO
Info->UserTime++;
}
SafeFunction __no_instrument_function void Task::UpdateKernelTime(TaskInfo *Info)
{
// TODO
Info->KernelTime++;
}
SafeFunction __no_instrument_function void Task::UpdateUsage(TaskInfo *Info, int Core)
{
if (Info->Affinity[Core] == true)
{
// TODO: Not working(?)
uint64_t CounterNow = CPU::Counter();
Info->OldUserTime = Info->CurrentUserTime;
Info->OldKernelTime = Info->CurrentKernelTime;
Info->CurrentUserTime = Info->UserTime;
Info->CurrentKernelTime = Info->KernelTime;
Info->Usage[Core] = (Info->CurrentUserTime - Info->OldUserTime) + (Info->CurrentKernelTime - Info->OldKernelTime);
Info->Usage[Core] = (Info->Usage[Core] * 100) / (CounterNow - Info->SpawnTime);
Info->OldUserTime = Info->CurrentUserTime;
Info->OldKernelTime = Info->CurrentKernelTime;
Info->CurrentUserTime = Info->UserTime;
Info->CurrentKernelTime = Info->KernelTime;
}
}
#if defined(__amd64__)
SafeFunction __no_instrument_function bool Task::FindNewProcess(void *CPUDataPointer)
{
CPUData *CurrentCPU = (CPUData *)CPUDataPointer;
schedbg("%d processes", ListProcess.size());
#ifdef DEBUG_SCHEDULER
foreach (auto var in ListProcess)
{
schedbg("Process %d %s", var->ID, var->Name);
}
#endif
// Find a new process to execute.
foreach (PCB *pcb in ListProcess)
{
if (InvalidPCB(pcb))
continue;
// Check process status.
switch (pcb->Status)
{
case TaskStatus::Ready:
schedbg("Ready process (%s)%d", pcb->Name, pcb->ID);
break;
default:
schedbg("Process \"%s\"(%d) status %d", pcb->Name, pcb->ID, pcb->Status);
RemoveProcess(pcb);
continue;
}
// Get first available thread from the list.
foreach (TCB *tcb in pcb->Threads)
{
if (InvalidTCB(tcb))
continue;
if (tcb->Status != TaskStatus::Ready)
continue;
// Set process and thread as the current one's.
CurrentCPU->CurrentProcess = pcb;
CurrentCPU->CurrentThread = tcb;
// Success!
return true;
}
}
schedbg("No process to run.");
// No process found. Idling...
return false;
}
SafeFunction __no_instrument_function bool Task::GetNextAvailableThread(void *CPUDataPointer)
{
CPUData *CurrentCPU = (CPUData *)CPUDataPointer;
for (uint64_t i = 0; i < CurrentCPU->CurrentProcess->Threads.size(); i++)
{
// Loop until we find the current thread from the process thread list.
if (CurrentCPU->CurrentProcess->Threads[i] == CurrentCPU->CurrentThread)
{
// Check if the next thread is valid. If not, we search until we find, but if we reach the end of the list, we go to the next process.
uint64_t tmpidx = i;
RetryAnotherThread:
TCB *thread = CurrentCPU->CurrentProcess->Threads[tmpidx + 1];
if (InvalidTCB(thread))
{
if (tmpidx > CurrentCPU->CurrentProcess->Threads.size())
break;
tmpidx++;
goto RetryAnotherThread;
}
schedbg("\"%s\"(%d) and next thread is \"%s\"(%d)", CurrentCPU->CurrentProcess->Threads[i]->Name, CurrentCPU->CurrentProcess->Threads[i]->ID, thread->Name, thread->ID);
// Check if the thread is ready to be executed.
if (thread->Status != TaskStatus::Ready)
{
schedbg("Thread %d is not ready", thread->ID);
goto RetryAnotherThread;
}
// Everything is fine, we can set the new thread as the current one.
CurrentCPU->CurrentThread = thread;
schedbg("[thd 0 -> end] Scheduling thread %d parent of %s->%d Procs %d", thread->ID, thread->Parent->Name, CurrentCPU->CurrentProcess->Threads.size(), ListProcess.size());
// Yay! We found a new thread to execute.
return true;
}
}
return false;
}
SafeFunction __no_instrument_function bool Task::GetNextAvailableProcess(void *CPUDataPointer)
{
CPUData *CurrentCPU = (CPUData *)CPUDataPointer;
for (uint64_t i = 0; i < ListProcess.size(); i++)
{
// Loop until we find the current process from the process list.
if (ListProcess[i] == CurrentCPU->CurrentProcess)
{
// Check if the next process is valid. If not, we search until we find.
uint64_t tmpidx = i;
RetryAnotherProcess:
PCB *pcb = ListProcess[tmpidx + 1];
if (InvalidPCB(pcb))
{
if (tmpidx > ListProcess.size())
break;
tmpidx++;
goto RetryAnotherProcess;
}
if (pcb->Status != TaskStatus::Ready)
goto RetryAnotherProcess;
// Everything good, now search for a thread.
for (uint64_t j = 0; j < pcb->Threads.size(); j++)
{
TCB *tcb = pcb->Threads[j];
if (InvalidTCB(tcb))
continue;
if (tcb->Status != TaskStatus::Ready)
continue;
// Success! We set as the current one and restore the stuff.
CurrentCPU->CurrentProcess = pcb;
CurrentCPU->CurrentThread = tcb;
schedbg("[cur proc+1 -> first thd] Scheduling thread %d %s->%d (Total Procs %d)", tcb->ID, tcb->Name, pcb->Threads.size(), ListProcess.size());
return true;
}
}
}
return false;
}
SafeFunction __no_instrument_function void Task::SchedulerCleanupProcesses()
{
foreach (PCB *pcb in ListProcess)
{
if (InvalidPCB(pcb))
continue;
RemoveProcess(pcb);
}
}
SafeFunction __no_instrument_function bool Task::SchedulerSearchProcessThread(void *CPUDataPointer)
{
CPUData *CurrentCPU = (CPUData *)CPUDataPointer;
foreach (PCB *pcb in ListProcess)
{
if (InvalidPCB(pcb))
continue;
if (pcb->Status != TaskStatus::Ready)
continue;
// Now do the thread search!
foreach (TCB *tcb in pcb->Threads)
{
if (InvalidTCB(tcb))
continue;
if (tcb->Status != TaskStatus::Ready)
continue;
// \o/ We found a new thread to execute.
CurrentCPU->CurrentProcess = pcb;
CurrentCPU->CurrentThread = tcb;
schedbg("[proc 0 -> end -> first thd] Scheduling thread %d parent of %s->%d (Procs %d)", tcb->ID, tcb->Parent->Name, pcb->Threads.size(), ListProcess.size());
return true;
}
}
return false;
}
SafeFunction __no_instrument_function void Task::Schedule(CPU::x64::TrapFrame *Frame)
{
SmartCriticalSection(SchedulerLock);
if (StopScheduler)
{
warn("Scheduler stopped.");
return;
}
CPU::x64::writecr3({.raw = (uint64_t)KernelPageTable}); // Restore kernel page table for safety reasons.
CPUData *CurrentCPU = GetCurrentCPU();
// if (CurrentCPU->ID != 0)
// debug("Scheduler called from CPU %d", CurrentCPU->ID);
schedbg("Scheduler called on CPU %d.", CurrentCPU->ID);
schedbg("%d: %ld%%", CurrentCPU->ID, GetUsage(CurrentCPU->ID));
{
schedbg("================================================================");
schedbg("Status: 0-ukn | 1-rdy | 2-run | 3-wait | 4-term");
schedbg("Technical Informations on regs %#lx", Frame->InterruptNumber);
uint64_t ds;
asmv("mov %%ds, %0"
: "=r"(ds));
schedbg("FS=%#lx GS=%#lx SS=%#lx CS=%#lx DS=%#lx",
CPU::x64::rdmsr(CPU::x64::MSR_FS_BASE), CPU::x64::rdmsr(CPU::x64::MSR_GS_BASE),
Frame->ss, Frame->cs, ds);
schedbg("R8=%#lx R9=%#lx R10=%#lx R11=%#lx",
Frame->r8, Frame->r9, Frame->r10, Frame->r11);
schedbg("R12=%#lx R13=%#lx R14=%#lx R15=%#lx",
Frame->r12, Frame->r13, Frame->r14, Frame->r15);
schedbg("RAX=%#lx RBX=%#lx RCX=%#lx RDX=%#lx",
Frame->rax, Frame->rbx, Frame->rcx, Frame->rdx);
schedbg("RSI=%#lx RDI=%#lx RBP=%#lx RSP=%#lx",
Frame->rsi, Frame->rdi, Frame->rbp, Frame->rsp);
schedbg("RIP=%#lx RFL=%#lx INT=%#lx ERR=%#lx",
Frame->rip, Frame->rflags, Frame->InterruptNumber, Frame->ErrorCode);
schedbg("================================================================");
}
// Null or invalid process/thread? Let's find a new one to execute.
if (InvalidPCB(CurrentCPU->CurrentProcess) || InvalidTCB(CurrentCPU->CurrentThread))
{
if (this->FindNewProcess(CurrentCPU))
goto Success;
else
goto Idle;
}
else
{
// Save current process and thread registries, gs, fs, fpu, etc...
CurrentCPU->CurrentThread->Registers = *Frame;
CPU::x64::fxsave(CurrentCPU->CurrentThread->FXRegion);
CurrentCPU->CurrentThread->GSBase = CPU::x64::rdmsr(CPU::x64::MSR_GS_BASE);
CurrentCPU->CurrentThread->FSBase = CPU::x64::rdmsr(CPU::x64::MSR_FS_BASE);
// Set the process & thread as ready if it's running.
if (CurrentCPU->CurrentProcess->Status == TaskStatus::Running)
CurrentCPU->CurrentProcess->Status = TaskStatus::Ready;
if (CurrentCPU->CurrentThread->Status == TaskStatus::Running)
CurrentCPU->CurrentThread->Status = TaskStatus::Ready;
// Get next available thread from the list.
if (this->GetNextAvailableThread(CurrentCPU))
goto Success;
// If the last process didn't find a thread to execute, we search for a new process.
if (this->GetNextAvailableProcess(CurrentCPU))
goto Success;
// Before checking from the beginning, we remove everything that is terminated.
this->SchedulerCleanupProcesses();
// If we didn't find anything, we check from the start of the list. This is the last chance to find something or we go to idle.
if (SchedulerSearchProcessThread(CurrentCPU))
goto Success;
else
goto Idle;
}
goto UnwantedReach; // This should never happen.
Idle:
{
CurrentCPU->CurrentProcess = IdleProcess;
CurrentCPU->CurrentThread = IdleThread;
goto Success;
}
Success:
{
#ifdef DEBUG_SCHEDULER
static int sanity;
const char *Statuses[] = {
"FF0000", // Unknown
"AAFF00", // Ready
"00AA00", // Running
"FFAA00", // Sleeping
"FFAA00", // Waiting
"FF0088", // Stopped
"FF0000", // Terminated
};
const char *StatusesSign[] = {
"U", // Unknown
"R", // Ready
"r", // Running
"S", // Sleeping
"W", // Waiting
"s", // Stopped
"T", // Terminated
};
for (int i = 0; i < 200; i++)
for (int j = 0; j < 200; j++)
Display->SetPixel(i, j, 0x222222, 0);
uint32_t tmpX, tmpY;
Display->GetBufferCursor(0, &tmpX, &tmpY);
Display->SetBufferCursor(0, 0, 0);
foreach (auto var in ListProcess)
{
int statuu = var->Status;
printf_("\e%s-> \eAABBCC%s\eCCCCCC[%d] \e00AAAA%s\n",
Statuses[statuu], var->Name, statuu, StatusesSign[statuu]);
foreach (auto var2 in var->Threads)
{
int statui = var2->Status;
printf_(" \e%s-> \eAABBCC%s\eCCCCCC[%d] \e00AAAA%s\n\eAABBCC",
Statuses[statui], var2->Name, statui, StatusesSign[statui]);
}
}
printf_("%d", sanity++);
if (sanity > 1000)
sanity = 0;
Display->SetBufferCursor(0, tmpX, tmpY);
Display->SetBuffer(0);
#endif
schedbg("Process \"%s\"(%d) Thread \"%s\"(%d) is now running on CPU %d",
CurrentCPU->CurrentProcess->Name, CurrentCPU->CurrentProcess->ID,
CurrentCPU->CurrentThread->Name, CurrentCPU->CurrentThread->ID, CurrentCPU->ID);
CurrentCPU->CurrentProcess->Status = TaskStatus::Running;
CurrentCPU->CurrentThread->Status = TaskStatus::Running;
// This should never happen, but if it does, we can fix it.
if (CurrentCPU->CurrentThread->Security.TrustLevel == TaskTrustLevel::User)
{
if (CurrentCPU->CurrentThread->Registers.cs != GDT_USER_CODE ||
CurrentCPU->CurrentThread->Registers.ss != GDT_USER_DATA)
{
warn("Wrong CS or SS for user thread %s(%ld)! (Code:%#lx, Data:%#lx != Code:%#lx, Data:%#lx)",
CurrentCPU->CurrentThread->Registers.cs, CurrentCPU->CurrentThread->Registers.ss,
GDT_USER_CODE, GDT_USER_DATA,
CurrentCPU->CurrentThread->Name, CurrentCPU->CurrentThread->ID);
CurrentCPU->CurrentThread->Registers.cs = GDT_USER_CODE;
CurrentCPU->CurrentThread->Registers.ss = GDT_USER_DATA;
}
}
else
{
if (CurrentCPU->CurrentThread->Registers.cs != GDT_KERNEL_CODE ||
CurrentCPU->CurrentThread->Registers.ss != GDT_KERNEL_DATA)
{
warn("Wrong CS or SS for kernel thread %s(%ld)! (Code:%#lx, Data:%#lx != Code:%#lx, Data:%#lx",
CurrentCPU->CurrentThread->Registers.cs, CurrentCPU->CurrentThread->Registers.ss,
GDT_KERNEL_CODE, GDT_KERNEL_DATA,
CurrentCPU->CurrentThread->Name, CurrentCPU->CurrentThread->ID);
CurrentCPU->CurrentThread->Registers.cs = GDT_KERNEL_CODE;
CurrentCPU->CurrentThread->Registers.ss = GDT_KERNEL_DATA;
}
}
*Frame = CurrentCPU->CurrentThread->Registers;
GlobalDescriptorTable::SetKernelStack((void *)((uint64_t)CurrentCPU->CurrentThread->Stack->GetStackTop()));
CPU::x64::writecr3({.raw = (uint64_t)CurrentCPU->CurrentProcess->PageTable});
// Not sure if this is needed, but it's better to be safe than sorry.
asmv("movq %cr3, %rax");
asmv("movq %rax, %cr3");
CPU::x64::fxrstor(CurrentCPU->CurrentThread->FXRegion);
CPU::x64::wrmsr(CPU::x64::MSR_GS_BASE, CurrentCPU->CurrentThread->GSBase);
CPU::x64::wrmsr(CPU::x64::MSR_FS_BASE, CurrentCPU->CurrentThread->FSBase);
switch (CurrentCPU->CurrentProcess->Security.TrustLevel)
{
case TaskTrustLevel::System:
case TaskTrustLevel::Idle:
case TaskTrustLevel::Kernel:
// wrmsr(MSR_SHADOW_GS_BASE, (uint64_t)CurrentCPU->CurrentThread);
break;
case TaskTrustLevel::User:
// wrmsr(MSR_SHADOW_GS_BASE, CurrentCPU->CurrentThread->gs);
break;
default:
error("Unknown trust level %d.", CurrentCPU->CurrentProcess->Security.TrustLevel);
break;
}
goto End;
}
UnwantedReach:
{
warn("Unwanted reach!");
OneShot(100);
goto RealEnd;
}
End:
{
// TODO: This is not accurate.
if (CurrentCPU->CurrentProcess->Security.TrustLevel == TaskTrustLevel::User)
UpdateUserTime(&CurrentCPU->CurrentProcess->Info);
else
UpdateKernelTime(&CurrentCPU->CurrentProcess->Info);
if (CurrentCPU->CurrentThread->Security.TrustLevel == TaskTrustLevel::User)
UpdateUserTime(&CurrentCPU->CurrentThread->Info);
else
UpdateKernelTime(&CurrentCPU->CurrentThread->Info);
UpdateUsage(&CurrentCPU->CurrentProcess->Info, CurrentCPU->ID);
UpdateUsage(&CurrentCPU->CurrentThread->Info, CurrentCPU->ID);
OneShot(CurrentCPU->CurrentThread->Info.Priority);
}
{
schedbg("================================================================");
schedbg("Technical Informations on Thread %s[%ld]:", CurrentCPU->CurrentThread->Name, CurrentCPU->CurrentThread->ID);
uint64_t ds;
asmv("mov %%ds, %0"
: "=r"(ds));
schedbg("FS=%#lx GS=%#lx SS=%#lx CS=%#lx DS=%#lx",
CPU::x64::rdmsr(CPU::x64::MSR_FS_BASE), CPU::x64::rdmsr(CPU::x64::MSR_GS_BASE),
Frame->ss, Frame->cs, ds);
schedbg("R8=%#lx R9=%#lx R10=%#lx R11=%#lx",
Frame->r8, Frame->r9, Frame->r10, Frame->r11);
schedbg("R12=%#lx R13=%#lx R14=%#lx R15=%#lx",
Frame->r12, Frame->r13, Frame->r14, Frame->r15);
schedbg("RAX=%#lx RBX=%#lx RCX=%#lx RDX=%#lx",
Frame->rax, Frame->rbx, Frame->rcx, Frame->rdx);
schedbg("RSI=%#lx RDI=%#lx RBP=%#lx RSP=%#lx",
Frame->rsi, Frame->rdi, Frame->rbp, Frame->rsp);
schedbg("RIP=%#lx RFL=%#lx INT=%#lx ERR=%#lx",
Frame->rip, Frame->rflags, Frame->InterruptNumber, Frame->ErrorCode);
schedbg("================================================================");
}
RealEnd:
{
__sync_synchronize(); // TODO: Is this really needed?
}
}
SafeFunction __no_instrument_function void Task::OnInterruptReceived(CPU::x64::TrapFrame *Frame) { this->Schedule(Frame); }
#elif defined(__i386__)
SafeFunction bool Task::FindNewProcess(void *CPUDataPointer)
{
fixme("unimplemented");
}
SafeFunction bool Task::GetNextAvailableThread(void *CPUDataPointer)
{
fixme("unimplemented");
}
SafeFunction bool Task::GetNextAvailableProcess(void *CPUDataPointer)
{
fixme("unimplemented");
}
SafeFunction void Task::SchedulerCleanupProcesses()
{
fixme("unimplemented");
}
SafeFunction bool Task::SchedulerSearchProcessThread(void *CPUDataPointer)
{
fixme("unimplemented");
}
SafeFunction void Task::Schedule(void *Frame)
{
fixme("unimplemented");
}
SafeFunction void Task::OnInterruptReceived(void *Frame) { this->Schedule(Frame); }
#elif defined(__aarch64__)
SafeFunction bool Task::FindNewProcess(void *CPUDataPointer)
{
fixme("unimplemented");
}
SafeFunction bool Task::GetNextAvailableThread(void *CPUDataPointer)
{
fixme("unimplemented");
}
SafeFunction bool Task::GetNextAvailableProcess(void *CPUDataPointer)
{
fixme("unimplemented");
}
SafeFunction void Task::SchedulerCleanupProcesses()
{
fixme("unimplemented");
}
SafeFunction bool Task::SchedulerSearchProcessThread(void *CPUDataPointer)
{
fixme("unimplemented");
}
SafeFunction void Task::Schedule(void *Frame)
{
fixme("unimplemented");
}
SafeFunction void Task::OnInterruptReceived(void *Frame) { this->Schedule(Frame); }
#endif
void ThreadDoExit()
{
// TODO: How I can lock the scheduler without causing a deadlock?
CPUData *CPUData = GetCurrentCPU();
CPUData->CurrentThread->Status = TaskStatus::Terminated;
debug("\"%s\"(%d) exited with code: %#lx", CPUData->CurrentThread->Name, CPUData->CurrentThread->ID, CPUData->CurrentThread->ExitCode);
CPU::Halt(true);
}
PCB *Task::GetCurrentProcess() { return GetCurrentCPU()->CurrentProcess; }
TCB *Task::GetCurrentThread() { return GetCurrentCPU()->CurrentThread; }
void Task::WaitForProcess(PCB *pcb)
{
if (!pcb)
return;
if (pcb->Status == TaskStatus::UnknownStatus)
return;
debug("Waiting for process \"%s\"(%d)", pcb->Name, pcb->ID);
while (pcb->Status != TaskStatus::Terminated)
CPU::Halt();
}
void Task::WaitForThread(TCB *tcb)
{
if (!tcb)
return;
if (tcb->Status == TaskStatus::UnknownStatus)
return;
debug("Waiting for thread \"%s\"(%d)", tcb->Name, tcb->ID);
while (tcb->Status != TaskStatus::Terminated)
CPU::Halt();
}
TCB *Task::CreateThread(PCB *Parent,
IP EntryPoint,
const char **argv,
const char **envp,
Vector<AuxiliaryVector> &auxv,
IPOffset Offset,
TaskArchitecture Architecture,
TaskCompatibility Compatibility)
{
SmartCriticalSection(TaskingLock);
TCB *Thread = new TCB;
if (Parent == nullptr)
{
Thread->Parent = this->GetCurrentProcess();
if (Thread->Parent == nullptr)
{
error("Failed to get current process. Thread cannot be created.");
delete Thread;
return nullptr;
}
}
else
Thread->Parent = Parent;
if (!Parent)
{
error("Parent is null");
delete Thread;
return nullptr;
}
Thread->ID = this->NextTID++;
strcpy(Thread->Name, Parent->Name);
Thread->EntryPoint = EntryPoint;
Thread->Offset = Offset;
Thread->ExitCode = 0xdead;
Thread->Status = TaskStatus::Ready;
#if defined(__amd64__)
memset(&Thread->Registers, 0, sizeof(CPU::x64::TrapFrame)); // Just in case
Thread->Registers.rip = (EntryPoint + Offset);
#elif defined(__i386__)
#elif defined(__aarch64__)
#endif
switch (Parent->Security.TrustLevel)
{
case TaskTrustLevel::System:
warn("Trust level not supported.");
[[fallthrough]];
case TaskTrustLevel::Idle:
case TaskTrustLevel::Kernel:
{
Thread->Stack = new Memory::StackGuard(false, Parent->PageTable);
#if defined(__amd64__)
SecurityManager.TrustToken(Thread->Security.UniqueToken, TokenTrustLevel::TrustedByKernel);
Thread->GSBase = CPU::x64::rdmsr(CPU::x64::MSRID::MSR_GS_BASE);
Thread->FSBase = CPU::x64::rdmsr(CPU::x64::MSRID::MSR_FS_BASE);
Thread->Registers.cs = GDT_KERNEL_CODE;
Thread->Registers.ss = GDT_KERNEL_DATA;
Thread->Registers.rflags.AlwaysOne = 1;
Thread->Registers.rflags.IF = 1;
Thread->Registers.rflags.ID = 1;
Thread->Registers.rsp = ((uint64_t)Thread->Stack->GetStackTop());
POKE(uint64_t, Thread->Registers.rsp) = (uint64_t)ThreadDoExit;
#elif defined(__i386__)
#elif defined(__aarch64__)
#endif
break;
}
case TaskTrustLevel::User:
{
Thread->Stack = new Memory::StackGuard(true, Parent->PageTable);
#if defined(__amd64__)
SecurityManager.TrustToken(Thread->Security.UniqueToken, TokenTrustLevel::Untrusted);
Thread->GSBase = 0;
Thread->FSBase = 0;
Thread->Registers.cs = GDT_USER_CODE;
Thread->Registers.ss = GDT_USER_DATA;
Thread->Registers.rflags.AlwaysOne = 1;
// Thread->Registers.rflags.PF = 1;
// Thread->Registers.rflags.SF = 1;
// Thread->Registers.rflags.IOPL = 3;
Thread->Registers.rflags.IF = 1;
Thread->Registers.rflags.ID = 1;
Thread->Registers.rsp = ((uint64_t)Thread->Stack->GetStackTop());
if (Compatibility == TaskCompatibility::Linux)
{
// https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.pdf#figure.3.9
// What is a "eightbyte"? unsigned long? 1 eightbyte = 8 bytes? 2 eightbyte each = 16 bytes?
uint64_t TmpStack = Thread->Registers.rsp;
uint64_t TmpStack2 = TmpStack;
uint64_t *TmpStackPtr = (uint64_t *)TmpStack;
// TODO: argc, argv, envp, auxv not tested and probably not working
// foreach (auto var in envp)
// {
// TmpStack -= strlen(var) + 1;
// strcpy((char *)TmpStack, var);
// }
// foreach (auto var in argv)
// {
// TmpStack -= strlen(var) + 1;
// strcpy((char *)TmpStack, var);
// }
/* align by 16 */
TmpStack = (uint64_t)((uint64_t)TmpStack - ((uint64_t)TmpStack & 0x0F));
/* TODO: more alignment here? */
/* auxv null */
TmpStack -= sizeof(uint64_t);
POKE(uint64_t, TmpStack) = (uint64_t)0;
/* This should be included too? */
TmpStack -= sizeof(uint64_t);
POKE(uint64_t, TmpStack) = (uint64_t)0;
/* auxv */
foreach (auto var in auxv)
{
if (var.archaux.a_type == AT_ENTRY)
Thread->Registers.rdi = var.archaux.a_un.a_val;
TmpStack -= sizeof(uint64_t) * 2;
POKE(uint64_t, TmpStack) = (uint64_t)var.archaux.a_type;
TmpStack -= sizeof(uint64_t) * 2;
POKE(uint64_t, TmpStack) = (uint64_t)var.archaux.a_un.a_val;
}
/* empty */
TmpStack -= sizeof(uint64_t);
POKE(uint64_t, TmpStack) = 0;
/* envp pointers */
// for (uint64_t i = 0; i < envp.size(); i++)
// {
// /* Not sure if this works */
// TmpStack2 -= strlen(envp[i]) + 1;
// TmpStackPtr[i] = TmpStack2;
// }
/* empty */
TmpStack -= sizeof(uint64_t);
POKE(uint64_t, TmpStack) = 0;
/* argv pointers */
// for (uint64_t i = 0; i < argv.size(); i++)
// {
// /* Not sure if this works */
// TmpStack2 -= strlen(argv[i]) + 1;
// TmpStackPtr[i] = TmpStack2;
// }
/* argc */
TmpStack -= sizeof(uint64_t);
// POKE(uint64_t, TmpStack) = argv.size() - 1;
Thread->Registers.rsp -= (uint64_t)Thread->Stack->GetStackTop() - TmpStack;
}
else // Native
{
uint64_t ArgvSize = 0;
uint64_t ArgvStrSize = 0;
if (argv)
{
while (argv[ArgvSize] != nullptr)
{
debug("> ArgvSize: %d, ArgvStrSize: %d", ArgvSize, ArgvStrSize);
ArgvSize++;
ArgvStrSize += strlen(argv[ArgvSize]) + 1;
debug("< ArgvSize: %d, ArgvStrSize: %d", ArgvSize, ArgvStrSize);
}
}
uint64_t EnvpSize = 0;
uint64_t EnvpStrSize = 0;
if (envp)
{
while (envp[EnvpSize] != nullptr)
{
debug("> EnvpSize: %d, EnvpStrSize: %d", EnvpSize, EnvpStrSize);
EnvpSize++;
EnvpStrSize += strlen(envp[EnvpSize]) + 1;
debug("< EnvpSize: %d, EnvpStrSize: %d", EnvpSize, EnvpStrSize);
}
}
uint8_t *_argv = 0;
uint8_t *_envp = 0;
for (uint64_t i = 0; i < ArgvSize; i++)
{
void *Tmp = KernelAllocator.RequestPages(TO_PAGES(strlen(argv[i]) + 1));
debug("argv[%d] ptr %#lx", i, (uint64_t)Tmp);
Memory::Virtual().Map(Tmp, Tmp, Memory::PTFlag::RW | Memory::PTFlag::US);
_argv = (uint8_t *)Tmp;
strcpy((char *)_argv, argv[i]);
argv[i] = (char *)_argv;
}
debug("argv done");
for (uint64_t i = 0; i < EnvpSize; i++)
{
void *Tmp = KernelAllocator.RequestPages(TO_PAGES(strlen(envp[i]) + 1));
debug("envp[%d] ptr %#lx", i, (uint64_t)Tmp);
Memory::Virtual().Map(Tmp, Tmp, Memory::PTFlag::RW | Memory::PTFlag::US);
_envp = (uint8_t *)Tmp;
strcpy((char *)_envp, envp[i]);
envp[i] = (char *)_envp;
}
debug("envp done");
Thread->Registers.rdi = ArgvSize;
Thread->Registers.rsi = (uint64_t)_argv;
Thread->Registers.rdx = (uint64_t)_envp;
for (uint64_t i = 0; i < ArgvSize; i++)
debug("argv[%d]: %s", i, _argv[i]);
for (uint64_t i = 0; i < EnvpSize; i++)
debug("envp[%d]: %s", i, _envp[i]);
}
/* We need to leave the libc's crt to make a syscall when the Thread is exited or we are going to get GPF or PF exception. */
Memory::Virtual uva = Memory::Virtual(Parent->PageTable);
if (!uva.Check((void *)Offset, Memory::PTFlag::US))
{
error("Offset is not user accessible");
uva.Map((void *)Offset, (void *)Offset, Memory::PTFlag::RW | Memory::PTFlag::US); // We try one more time.
}
#elif defined(__i386__)
#elif defined(__aarch64__)
#endif
#ifdef DEBUG_SCHEDULER
DumpData(Thread->Name, Thread->Stack, STACK_SIZE);
#endif
break;
}
default:
{
error("Unknown elevation.");
delete Thread->Stack;
this->NextTID--;
delete Thread;
return nullptr;
}
}
Thread->Security.TrustLevel = Parent->Security.TrustLevel;
// Thread->Security.UniqueToken = SecurityManager.CreateToken();
Thread->Info = {};
Thread->Info.SpawnTime = CPU::Counter();
Thread->Info.Year = 0;
Thread->Info.Month = 0;
Thread->Info.Day = 0;
Thread->Info.Hour = 0;
Thread->Info.Minute = 0;
Thread->Info.Second = 0;
for (int i = 0; i < MAX_CPU; i++)
{
Thread->Info.Usage[i] = 0;
Thread->Info.Affinity[i] = true;
}
Thread->Info.Priority = 10;
Thread->Info.Architecture = Architecture;
Thread->Info.Compatibility = Compatibility;
debug("Thread offset is %#lx (EntryPoint: %#lx) => RIP: %#lx", Thread->Offset, Thread->EntryPoint, Thread->Registers.rip);
if (Parent->Security.TrustLevel == TaskTrustLevel::User)
debug("Thread stack region is %#lx-%#lx (U) and rsp is %#lx", Thread->Stack->GetStackBottom(), Thread->Stack->GetStackTop(), Thread->Registers.rsp);
else
debug("Thread stack region is %#lx-%#lx (K) and rsp is %#lx", Thread->Stack->GetStackBottom(), Thread->Stack->GetStackTop(), Thread->Registers.rsp);
debug("Created thread \"%s\"(%d) in process \"%s\"(%d)",
Thread->Name, Thread->ID,
Thread->Parent->Name, Thread->Parent->ID);
Parent->Threads.push_back(Thread);
return Thread;
}
PCB *Task::CreateProcess(PCB *Parent,
const char *Name,
TaskTrustLevel TrustLevel)
{
SmartCriticalSection(TaskingLock);
PCB *Process = new PCB;
Process->ID = this->NextPID++;
strcpy(Process->Name, Name);
if (Parent == nullptr)
Process->Parent = this->GetCurrentProcess();
else
Process->Parent = Parent;
Process->ExitCode = 0xdead;
Process->Status = TaskStatus::Ready;
Process->Security.TrustLevel = TrustLevel;
// Process->Security.UniqueToken = SecurityManager.CreateToken();
Process->IPCHandles = new HashMap<InterProcessCommunication::IPCPort, uint64_t>;
switch (TrustLevel)
{
case TaskTrustLevel::System:
warn("Trust level not supported.");
[[fallthrough]];
case TaskTrustLevel::Idle:
case TaskTrustLevel::Kernel:
{
SecurityManager.TrustToken(Process->Security.UniqueToken, TokenTrustLevel::TrustedByKernel);
#if defined(__amd64__)
Process->PageTable = (Memory::PageTable *)CPU::x64::readcr3().raw;
#elif defined(__i386__)
#elif defined(__aarch64__)
#endif
break;
}
case TaskTrustLevel::User:
{
SecurityManager.TrustToken(Process->Security.UniqueToken, TokenTrustLevel::Untrusted);
#if defined(__amd64__)
Process->PageTable = (Memory::PageTable *)KernelAllocator.RequestPages(TO_PAGES(PAGE_SIZE));
memcpy(Process->PageTable, (void *)UserspaceKernelOnlyPageTable, PAGE_SIZE);
for (uint64_t i = 0; i < TO_PAGES(PAGE_SIZE); i++)
Memory::Virtual(Process->PageTable).Map((void *)Process->PageTable, (void *)Process->PageTable, Memory::PTFlag::RW); // Make sure the page table is mapped.
#elif defined(__i386__)
#elif defined(__aarch64__)
#endif
break;
}
default:
{
error("Unknown elevation.");
this->NextPID--;
delete Process;
return nullptr;
}
}
Process->Info = {};
Process->Info.SpawnTime = CPU::Counter();
Process->Info.Year = 0;
Process->Info.Month = 0;
Process->Info.Day = 0;
Process->Info.Hour = 0;
Process->Info.Minute = 0;
Process->Info.Second = 0;
for (int i = 0; i < MAX_CPU; i++)
{
Process->Info.Usage[i] = 0;
Process->Info.Affinity[i] = true;
}
Process->Info.Priority = 10;
debug("Process page table: %#lx", Process->PageTable);
debug("Created process \"%s\"(%d) in process \"%s\"(%d)",
Process->Name, Process->ID,
Parent ? Process->Parent->Name : "None",
Parent ? Process->Parent->ID : 0);
if (Parent)
Parent->Children.push_back(Process);
ListProcess.push_back(Process);
return Process;
}
Task::Task(const IP EntryPoint) : Interrupts::Handler(CPU::x64::IRQ16)
{
SmartCriticalSection(TaskingLock);
#if defined(__amd64__)
for (int i = 0; i < SMP::CPUCores; i++)
((APIC::APIC *)Interrupts::apic[i])->RedirectIRQ(i, CPU::x64::IRQ16 - CPU::x64::IRQ0, 1);
#elif defined(__i386__)
#elif defined(__aarch64__)
#endif
KPrint("Starting Tasking With Instruction Pointer: %p (\e666666%s\eCCCCCC)", EntryPoint, KernelSymbolTable->GetSymbolFromAddress(EntryPoint));
TaskingLock.Unlock();
#if defined(__amd64__)
TaskArchitecture Arch = TaskArchitecture::x64;
#elif defined(__i386__)
TaskArchitecture Arch = TaskArchitecture::x32;
#elif defined(__aarch64__)
TaskArchitecture Arch = TaskArchitecture::ARM64;
#endif
PCB *kproc = CreateProcess(nullptr, "Kernel", TaskTrustLevel::Kernel);
Vector<AuxiliaryVector> auxv;
TCB *kthrd = CreateThread(kproc, EntryPoint, nullptr, nullptr, auxv, 0, Arch);
kthrd->Rename("Main Thread");
debug("Created Kernel Process: %s and Thread: %s", kproc->Name, kthrd->Name);
TaskingLock.Lock(__FUNCTION__);
#if defined(__amd64__)
uint32_t rax, rbx, rcx, rdx;
CPU::x64::cpuid(0x1, &rax, &rbx, &rcx, &rdx);
if (rcx & CPU::x64::CPUID_FEAT_RCX_MONITOR)
{
trace("CPU has MONITOR/MWAIT support.");
}
if (!CPU::Interrupts(CPU::Check))
{
error("Interrupts are not enabled.");
CPU::Interrupts(CPU::Enable);
}
#endif
TaskingLock.Unlock();
IdleProcess = CreateProcess(nullptr, (char *)"Idle", TaskTrustLevel::Idle);
for (int i = 0; i < SMP::CPUCores; i++)
{
Vector<AuxiliaryVector> auxv;
IdleThread = CreateThread(IdleProcess, reinterpret_cast<uint64_t>(IdleProcessLoop), nullptr, nullptr, auxv);
char IdleName[16];
sprintf_(IdleName, "Idle Thread %d", i);
IdleThread->Rename(IdleName);
IdleThread->SetPriority(1);
break;
}
debug("Tasking Started");
#if defined(__amd64__)
((APIC::Timer *)Interrupts::apicTimer[0])->OneShot(CPU::x64::IRQ16, 100);
for (int i = 1; i < SMP::CPUCores; i++)
{
// ((APIC::Timer *)Interrupts::apicTimer[i])->OneShot(CPU::x64::IRQ16, 100);
// TODO: Lock was the fault here. Now crash handler should support SMP.
// APIC::InterruptCommandRegisterLow icr;
// icr.Vector = CPU::x64::IRQ16;
// icr.Level = APIC::APICLevel::Assert;
// ((APIC::APIC *)Interrupts::apic[0])->IPI(i, icr);
}
#elif defined(__i386__)
#elif defined(__aarch64__)
#endif
}
Task::~Task()
{
SmartCriticalSection(TaskingLock);
trace("Stopping tasking");
}
}