Kernel/Core/CPU.cpp
2023-03-14 06:23:57 +02:00

490 lines
12 KiB
C++

#include <cpu.hpp>
#include <memory.hpp>
#include <convert.h>
#include <debug.h>
#include <smp.hpp>
#include "../kernel.h"
namespace CPU
{
static bool SSEEnabled = false;
char *Vendor()
{
static char Vendor[13];
#if defined(a64)
uint32_t eax, ebx, ecx, edx;
x64::cpuid(0x0, &eax, &ebx, &ecx, &edx);
memcpy_unsafe(Vendor + 0, &ebx, 4);
memcpy_unsafe(Vendor + 4, &edx, 4);
memcpy_unsafe(Vendor + 8, &ecx, 4);
#elif defined(a32)
uint32_t eax, ebx, ecx, edx;
x32::cpuid(0x0, &eax, &ebx, &ecx, &edx);
memcpy_unsafe(Vendor + 0, &ebx, 4);
memcpy_unsafe(Vendor + 4, &edx, 4);
memcpy_unsafe(Vendor + 8, &ecx, 4);
#elif defined(aa64)
asmv("mrs %0, MIDR_EL1"
: "=r"(Vendor[0]));
#endif
return Vendor;
}
char *Name()
{
static char Name[49];
#if defined(a64)
uint32_t eax, ebx, ecx, edx;
x64::cpuid(0x80000002, &eax, &ebx, &ecx, &edx);
memcpy_unsafe(Name + 0, &eax, 4);
memcpy_unsafe(Name + 4, &ebx, 4);
memcpy_unsafe(Name + 8, &ecx, 4);
memcpy_unsafe(Name + 12, &edx, 4);
x64::cpuid(0x80000003, &eax, &ebx, &ecx, &edx);
memcpy_unsafe(Name + 16, &eax, 4);
memcpy_unsafe(Name + 20, &ebx, 4);
memcpy_unsafe(Name + 24, &ecx, 4);
memcpy_unsafe(Name + 28, &edx, 4);
x64::cpuid(0x80000004, &eax, &ebx, &ecx, &edx);
memcpy_unsafe(Name + 32, &eax, 4);
memcpy_unsafe(Name + 36, &ebx, 4);
memcpy_unsafe(Name + 40, &ecx, 4);
memcpy_unsafe(Name + 44, &edx, 4);
#elif defined(a32)
uint32_t eax, ebx, ecx, edx;
x32::cpuid(0x80000002, &eax, &ebx, &ecx, &edx);
memcpy_unsafe(Name + 0, &eax, 4);
memcpy_unsafe(Name + 4, &ebx, 4);
memcpy_unsafe(Name + 8, &ecx, 4);
memcpy_unsafe(Name + 12, &edx, 4);
x32::cpuid(0x80000003, &eax, &ebx, &ecx, &edx);
memcpy_unsafe(Name + 16, &eax, 4);
memcpy_unsafe(Name + 20, &ebx, 4);
memcpy_unsafe(Name + 24, &ecx, 4);
memcpy_unsafe(Name + 28, &edx, 4);
x32::cpuid(0x80000004, &eax, &ebx, &ecx, &edx);
memcpy_unsafe(Name + 32, &eax, 4);
memcpy_unsafe(Name + 36, &ebx, 4);
memcpy_unsafe(Name + 40, &ecx, 4);
memcpy_unsafe(Name + 44, &edx, 4);
#elif defined(aa64)
asmv("mrs %0, MIDR_EL1"
: "=r"(Name[0]));
#endif
return Name;
}
char *Hypervisor()
{
static char Hypervisor[13];
#if defined(a64)
uint32_t eax, ebx, ecx, edx;
x64::cpuid(0x40000000, &eax, &ebx, &ecx, &edx);
memcpy_unsafe(Hypervisor + 0, &ebx, 4);
memcpy_unsafe(Hypervisor + 4, &ecx, 4);
memcpy_unsafe(Hypervisor + 8, &edx, 4);
#elif defined(a32)
uint32_t eax, ebx, ecx, edx;
x64::cpuid(0x40000000, &eax, &ebx, &ecx, &edx);
memcpy_unsafe(Hypervisor + 0, &ebx, 4);
memcpy_unsafe(Hypervisor + 4, &ecx, 4);
memcpy_unsafe(Hypervisor + 8, &edx, 4);
#elif defined(aa64)
asmv("mrs %0, MIDR_EL1"
: "=r"(Hypervisor[0]));
#endif
return Hypervisor;
}
bool Interrupts(InterruptsType Type)
{
switch (Type)
{
case Check:
{
uintptr_t Flags;
#if defined(a64)
asmv("pushfq");
asmv("popq %0"
: "=r"(Flags));
return Flags & (1 << 9);
#elif defined(a32)
asmv("pushfl");
asmv("popl %0"
: "=r"(Flags));
return Flags & (1 << 9);
#elif defined(aa64)
asmv("mrs %0, daif"
: "=r"(Flags));
return !(Flags & (1 << 2));
#endif
}
case Enable:
{
#if defined(a64) || defined(a32)
asmv("sti");
#elif defined(aa64)
asmv("msr daifclr, #2");
#endif
return true;
}
case Disable:
{
#if defined(a64) || defined(a32)
asmv("cli");
#elif defined(aa64)
asmv("msr daifset, #2");
#endif
return true;
}
}
return false;
}
void *PageTable(void *PT)
{
#if defined(a64)
if (PT)
asmv("movq %0, %%cr3"
:
: "r"(PT));
else
asmv("movq %%cr3, %0"
: "=r"(PT));
#elif defined(a32)
if (PT)
asmv("movl %0, %%cr3"
:
: "r"(PT));
else
asmv("movl %%cr3, %0"
: "=r"(PT));
#elif defined(aa64)
if (PT)
asmv("msr ttbr0_el1, %0"
:
: "r"(PT));
else
asmv("mrs %0, ttbr0_el1"
: "=r"(PT));
#endif
return PT;
}
void InitializeFeatures(long Core)
{
bool PGESupport = false;
bool SSESupport = false;
#if defined(a64)
static int BSP = 0;
x64::CR0 cr0 = x64::readcr0();
x64::CR4 cr4 = x64::readcr4();
if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_AMD) == 0)
{
#if defined(a64)
CPU::x64::AMD::CPUID0x1 cpuid1amd;
#elif defined(a32)
CPU::x32::AMD::CPUID0x1 cpuid1amd;
#endif
#if defined(a64) || defined(a32)
asmv("cpuid"
: "=a"(cpuid1amd.EAX.raw), "=b"(cpuid1amd.EBX.raw), "=c"(cpuid1amd.ECX.raw), "=d"(cpuid1amd.EDX.raw)
: "a"(0x1));
#endif
if (cpuid1amd.EDX.PGE)
PGESupport = true;
if (cpuid1amd.EDX.SSE)
SSESupport = true;
}
else if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_INTEL) == 0)
{
#if defined(a64)
CPU::x64::Intel::CPUID0x1 cpuid1intel;
#elif defined(a32)
CPU::x32::Intel::CPUID0x1 cpuid1intel;
#endif
#if defined(a64) || defined(a32)
asmv("cpuid"
: "=a"(cpuid1intel.EAX.raw), "=b"(cpuid1intel.EBX.raw), "=c"(cpuid1intel.ECX.raw), "=d"(cpuid1intel.EDX.raw)
: "a"(0x1));
#endif
if (cpuid1intel.EDX.PGE)
PGESupport = true;
if (cpuid1intel.EDX.SSE)
SSESupport = true;
}
if (Config.SIMD == false)
{
debug("Disabling SSE support...");
SSESupport = false;
}
if (PGESupport)
{
debug("Enabling global pages support...");
if (!BSP)
KPrint("Global Pages is supported.");
cr4.PGE = 1;
}
bool SSEEnableAfter = false;
/* Not sure if my code is not working properly or something else is the issue. */
if ((strcmp(Hypervisor(), x86_CPUID_VENDOR_TCG) != 0 &&
strcmp(Hypervisor(), x86_CPUID_VENDOR_VIRTUALBOX) != 0) &&
SSESupport)
{
debug("Enabling SSE support...");
if (!BSP)
KPrint("SSE is supported.");
cr0.EM = 0;
cr0.MP = 1;
cr4.OSFXSR = 1;
cr4.OSXMMEXCPT = 1;
CPUData *CoreData = GetCPU(Core);
CoreData->Data.FPU = (CPU::x64::FXState *)KernelAllocator.RequestPages(TO_PAGES(sizeof(CPU::x64::FXState)));
memset(CoreData->Data.FPU, 0, FROM_PAGES(TO_PAGES(sizeof(CPU::x64::FXState))));
CoreData->Data.FPU->mxcsr = 0b0001111110000000;
CoreData->Data.FPU->mxcsrmask = 0b1111111110111111;
CoreData->Data.FPU->fcw = 0b0000001100111111;
CPU::x64::fxrstor(CoreData->Data.FPU);
SSEEnableAfter = true;
}
if (!BSP)
KPrint("Enabling CPU cache.");
cr0.NW = 0;
cr0.CD = 0;
cr0.WP = 1;
x64::writecr0(cr0);
// FIXME: I don't think this is reporting correctly. This has to be fixed asap.
debug("Enabling UMIP, SMEP & SMAP support...");
uint32_t eax, ebx, ecx, edx;
x64::cpuid(0x1, &eax, &ebx, &ecx, &edx);
if (edx & (1 << 2)) // https://en.wikipedia.org/wiki/Control_register
{
if (!BSP)
KPrint("UMIP is supported.");
debug("UMIP is supported.");
// cr4.UMIP = 1;
}
if (edx & (1 << 7)) // https://en.wikipedia.org/wiki/Control_register#SMEP
// https://web.archive.org/web/20160312223150/http://ncsi.com/nsatc11/presentations/wednesday/emerging_technologies/fischer.pdf
{
if (!BSP)
KPrint("SMEP is supported.");
debug("SMEP is supported.");
// cr4.SMEP = 1;
}
if (edx & (1 << 20)) // https://en.wikipedia.org/wiki/Supervisor_Mode_Access_Prevention
{
if (!BSP)
KPrint("SMAP is supported.");
debug("SMAP is supported.");
// cr4.SMAP = 1;
}
if (strcmp(Hypervisor(), x86_CPUID_VENDOR_VIRTUALBOX) != 0 &&
strcmp(Hypervisor(), x86_CPUID_VENDOR_TCG) != 0)
{
debug("Writing CR4...");
x64::writecr4(cr4);
debug("Wrote CR4.");
}
else
{
if (!BSP)
{
if (strcmp(Hypervisor(), x86_CPUID_VENDOR_VIRTUALBOX) == 0)
KPrint("VirtualBox detected. Not using UMIP, SMEP & SMAP");
else if (strcmp(Hypervisor(), x86_CPUID_VENDOR_TCG) == 0)
KPrint("QEMU (TCG) detected. Not using UMIP, SMEP & SMAP");
}
}
debug("Enabling PAT support...");
x64::wrmsr(x64::MSR_CR_PAT, 0x6 | (0x0 << 8) | (0x1 << 16));
if (!BSP++)
trace("Features for BSP initialized.");
if (SSEEnableAfter)
SSEEnabled = true;
#elif defined(a32)
#elif defined(aa64)
#endif
}
uintptr_t Counter()
{
// TODO: Get the counter from the x2APIC or any other timer that is available. (TSC is not available on all CPUs)
uintptr_t Counter;
#if defined(a64)
asmv("rdtsc"
: "=A"(Counter));
#elif defined(a32)
asmv("rdtsc"
: "=A"(Counter));
#elif defined(aa64)
asmv("mrs %0, cntvct_el0"
: "=r"(Counter));
#endif
return Counter;
}
x86SIMDType CheckSIMD()
{
#if defined(a32)
return SIMD_NONE; /* TODO: Support x86 SIMD on x32 */
#endif
if (unlikely(!SSEEnabled))
return SIMD_NONE;
static x86SIMDType SIMDType = SIMD_NONE;
if (likely(SIMDType != SIMD_NONE))
return SIMDType;
if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_AMD) == 0)
{
#if defined(a64)
CPU::x64::AMD::CPUID0x1 cpuid1amd;
#elif defined(a32)
CPU::x32::AMD::CPUID0x1 cpuid1amd;
#endif
#if defined(a64) || defined(a32)
asmv("cpuid"
: "=a"(cpuid1amd.EAX.raw), "=b"(cpuid1amd.EBX.raw), "=c"(cpuid1amd.ECX.raw), "=d"(cpuid1amd.EDX.raw)
: "a"(0x1));
#endif
if (cpuid1amd.ECX.SSE4_2)
SIMDType = SIMD_SSE42;
else if (cpuid1amd.ECX.SSE4_1)
SIMDType = SIMD_SSE41;
else if (cpuid1amd.ECX.SSE3)
SIMDType = SIMD_SSE3;
else if (cpuid1amd.EDX.SSE2)
SIMDType = SIMD_SSE2;
else if (cpuid1amd.EDX.SSE)
SIMDType = SIMD_SSE;
#ifdef DEBUG
if (cpuid1amd.ECX.SSE4_2)
debug("SSE4.2 is supported.");
if (cpuid1amd.ECX.SSE4_1)
debug("SSE4.1 is supported.");
if (cpuid1amd.ECX.SSE3)
debug("SSE3 is supported.");
if (cpuid1amd.EDX.SSE2)
debug("SSE2 is supported.");
if (cpuid1amd.EDX.SSE)
debug("SSE is supported.");
#endif
return SIMDType;
}
else if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_INTEL) == 0)
{
#if defined(a64)
CPU::x64::Intel::CPUID0x1 cpuid1intel;
#elif defined(a32)
CPU::x32::Intel::CPUID0x1 cpuid1intel;
#endif
#if defined(a64) || defined(a32)
asmv("cpuid"
: "=a"(cpuid1intel.EAX.raw), "=b"(cpuid1intel.EBX.raw), "=c"(cpuid1intel.ECX.raw), "=d"(cpuid1intel.EDX.raw)
: "a"(0x1));
#endif
if (cpuid1intel.ECX.SSE4_2)
SIMDType = SIMD_SSE42;
else if (cpuid1intel.ECX.SSE4_1)
SIMDType = SIMD_SSE41;
else if (cpuid1intel.ECX.SSE3)
SIMDType = SIMD_SSE3;
else if (cpuid1intel.EDX.SSE2)
SIMDType = SIMD_SSE2;
else if (cpuid1intel.EDX.SSE)
SIMDType = SIMD_SSE;
#ifdef DEBUG
if (cpuid1intel.ECX.SSE4_2)
debug("SSE4.2 is supported.");
if (cpuid1intel.ECX.SSE4_1)
debug("SSE4.1 is supported.");
if (cpuid1intel.ECX.SSE3)
debug("SSE3 is supported.");
if (cpuid1intel.EDX.SSE2)
debug("SSE2 is supported.");
if (cpuid1intel.EDX.SSE)
debug("SSE is supported.");
#endif
return SIMDType;
}
return SIMD_NONE;
}
bool CheckSIMD(x86SIMDType Type)
{
if (unlikely(!SSEEnabled))
return false;
if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_AMD) == 0)
{
#if defined(a64)
CPU::x64::AMD::CPUID0x1 cpuid1amd;
#elif defined(a32)
CPU::x32::AMD::CPUID0x1 cpuid1amd;
#endif
#if defined(a64) || defined(a32)
asmv("cpuid"
: "=a"(cpuid1amd.EAX.raw), "=b"(cpuid1amd.EBX.raw), "=c"(cpuid1amd.ECX.raw), "=d"(cpuid1amd.EDX.raw)
: "a"(0x1));
#endif
if (Type == SIMD_SSE42)
return cpuid1amd.ECX.SSE4_2;
else if (Type == SIMD_SSE41)
return cpuid1amd.ECX.SSE4_1;
else if (Type == SIMD_SSE3)
return cpuid1amd.ECX.SSE3;
else if (Type == SIMD_SSE2)
return cpuid1amd.EDX.SSE2;
else if (Type == SIMD_SSE)
return cpuid1amd.EDX.SSE;
}
else if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_INTEL) == 0)
{
#if defined(a64)
CPU::x64::Intel::CPUID0x1 cpuid1intel;
#elif defined(a32)
CPU::x32::Intel::CPUID0x1 cpuid1intel;
#endif
#if defined(a64) || defined(a32)
asmv("cpuid"
: "=a"(cpuid1intel.EAX.raw), "=b"(cpuid1intel.EBX.raw), "=c"(cpuid1intel.ECX.raw), "=d"(cpuid1intel.EDX.raw)
: "a"(0x1));
#endif
if (Type == SIMD_SSE42)
return cpuid1intel.ECX.SSE4_2;
else if (Type == SIMD_SSE41)
return cpuid1intel.ECX.SSE4_1;
else if (Type == SIMD_SSE3)
return cpuid1intel.ECX.SSE3;
else if (Type == SIMD_SSE2)
return cpuid1intel.EDX.SSE2;
else if (Type == SIMD_SSE)
return cpuid1intel.EDX.SSE;
}
return false;
}
}