2024-05-18 07:42:01 +03:00

1029 lines
18 KiB
Plaintext

/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#pragma once
#include <initializer_list>
#include <algorithm>
#include <assert.h>
#include <lock.hpp>
#include <iterator>
#include <utility>
#include <memory>
namespace std
{
template <class T, class Allocator = std::allocator<T>>
class list
{
public:
using value_type = T;
using allocator_type = Allocator;
using size_type = std::size_t;
using difference_type = std::ptrdiff_t;
using reference = value_type &;
using const_reference = const value_type &;
using pointer = typename std::allocator_traits<Allocator>::pointer;
using const_pointer = typename std::allocator_traits<Allocator>::const_pointer;
// using iterator = typename list<T, Allocator>::iterator;
// using const_iterator = typename list<T, Allocator>::const_iterator;
// using reverse_iterator = typename list<T, Allocator>::reverse_iterator;
// using const_reverse_iterator = typename list<T, Allocator>::const_reverse_iterator;
private:
spin_lock lock;
Allocator alloc;
struct node
{
value_type value;
node *prev;
node *next;
node(const_reference v, node *p = nullptr, node *n = nullptr)
: value(v), prev(p), next(n) {}
};
node *head = nullptr;
node *tail = nullptr;
std::atomic_size_t lSize = 0;
public:
class iterator
{
private:
node *_node;
friend class list;
public:
using difference_type = std::ptrdiff_t;
using value_type = T;
using pointer = typename std::allocator_traits<Allocator>::pointer;
using reference = value_type &;
using iterator_category = std::bidirectional_iterator_tag;
iterator(node *p = nullptr) : _node(p) {}
T &operator*() const { return _node->value; }
T *operator->() const { return &_node->value; }
iterator &operator++()
{
if (_node)
_node = _node->next;
return *this;
}
iterator &operator--()
{
if (_node)
_node = _node->prev;
return *this;
}
iterator operator++(int)
{
iterator tmp = *this;
++*this;
return tmp;
}
iterator operator--(int)
{
iterator tmp = *this;
--*this;
return tmp;
}
bool operator==(const iterator &rhs) const { return _node == rhs._node; }
bool operator!=(const iterator &rhs) const { return _node != rhs._node; }
};
class const_iterator
{
private:
node *_node;
friend class list;
public:
using difference_type = std::ptrdiff_t;
using value_type = T;
using pointer = typename std::allocator_traits<Allocator>::const_pointer;
using reference = const value_type &;
using iterator_category = std::bidirectional_iterator_tag;
const_iterator(iterator it) : _node(it._node) {}
const_iterator(node *p = nullptr) : _node(p) {}
const T &operator*() const { return _node->value; }
const T *operator->() const { return &_node->value; }
const_iterator &operator++()
{
if (_node)
_node = _node->next;
return *this;
}
const_iterator &operator--()
{
if (_node)
_node = _node->prev;
return *this;
}
const_iterator operator++(int)
{
const_iterator it = *this;
++*this;
return it;
}
const_iterator operator--(int)
{
const_iterator it = *this;
--*this;
return it;
}
bool operator==(const const_iterator &rhs) const { return _node == rhs._node; }
bool operator!=(const const_iterator &rhs) const { return _node != rhs._node; }
};
#pragma region Member Functions
list()
{
}
explicit list(const Allocator &alloc)
: alloc(alloc)
{
}
list(size_type count, const T &value,
const Allocator &alloc = Allocator())
{
for (size_t i = 0; i < count; ++i)
push_back(value);
}
explicit list(size_type count, const Allocator &alloc = Allocator())
{
for (size_t i = 0; i < count; ++i)
push_back(T());
}
template <class InputIt>
list(InputIt first, InputIt last, const Allocator &alloc = Allocator())
{
for (InputIt it = first; it != last; ++it)
push_back(*it);
}
list(const list &other)
{
*this = other;
}
list(const list &other, const Allocator &alloc)
{
*this = other;
}
list(list &&other)
{
*this = std::move(other);
}
list(list &&other, const Allocator &alloc)
{
*this = std::move(other);
}
list(std::initializer_list<T> init, const Allocator &alloc = Allocator())
{
foreach (const_reference value in init)
push_back(value);
}
~list() { clear(); }
list &operator=(const list &other)
{
if (this == &other)
return *this;
for (const_reference value : other)
push_back(value);
return *this;
}
list &operator=(list &&other)
{
if (this == &other)
return *this;
clear();
head = other.head;
tail = other.tail;
lSize.store(other.lSize.load());
other.head = other.tail = nullptr;
other.lSize.store(0);
return *this;
}
list &operator=(std::initializer_list<T> ilist)
{
clear();
foreach (const_reference value in ilist)
push_back(value);
return *this;
}
void assign(size_type count, const T &value)
{
clear();
for (size_t i = 0; i < count; ++i)
push_back(value);
}
template <class InputIt>
void assign(InputIt first, InputIt last)
{
clear();
for (InputIt it = first; it != last; ++it)
push_back(*it);
}
void assign(std::initializer_list<T> ilist)
{
clear();
foreach (const_reference value in ilist)
push_back(value);
}
allocator_type get_allocator() const
{
return alloc;
}
#pragma endregion Member Functions
#pragma region Element Access
reference front()
{
sl_guard(this->lock);
return head->value;
}
const_reference front() const
{
sl_guard(this->lock);
return head->value;
}
reference back()
{
sl_guard(this->lock);
return tail->value;
}
const_reference back() const
{
sl_guard(this->lock);
return tail->value;
}
#pragma endregion Element Access
#pragma region Iterators
iterator begin()
{
return iterator(head);
}
const_iterator begin() const
{
return const_iterator(head);
}
const_iterator cbegin() const
{
return const_iterator(head);
}
iterator end()
{
return iterator(nullptr);
}
const_iterator end() const
{
return const_iterator(nullptr);
}
const_iterator cend() const
{
return const_iterator(nullptr);
}
/* FIXME: rbegin, rend, crbegin, crend */
#pragma endregion Iterators
#pragma region Capacity
[[nodiscard]] bool empty() const
{
return lSize.load() == 0; /* or begin() == end() ? */
}
size_type size() const
{
return lSize.load();
}
size_type max_size() const
{
return std::numeric_limits<difference_type>::max();
}
#pragma endregion Capacity
#pragma region Modifiers
void clear()
{
while (!empty())
pop_back();
}
iterator insert(const_iterator pos, const T &value)
{
if (pos == end())
{
push_back(value);
return iterator(tail);
}
else if (pos == begin())
{
push_front(value);
return iterator(head);
}
else
{
sl_guard(this->lock);
node *p = pos._node;
node *nNode = new node(value, p->prev, p);
p->prev->next = nNode;
p->prev = nNode;
lSize.fetch_add(1);
return iterator(nNode);
}
}
iterator insert(const_iterator pos, T &&value)
{
if (pos == end())
{
push_back(value);
return iterator(tail);
}
else if (pos == begin())
{
push_front(value);
return iterator(head);
}
else
{
sl_guard(this->lock);
node *p = pos._node;
node *nNode = new node(std::move(value), p->prev, p);
p->prev->next = nNode;
p->prev = nNode;
lSize.fetch_add(1);
return iterator(nNode);
}
}
iterator insert(const_iterator pos, size_type count, const T &value)
{
iterator ret;
for (size_t i = 0; i < count; ++i)
ret = insert(pos, value);
return ret;
}
template <class InputIt>
iterator insert(const_iterator pos, InputIt first, InputIt last)
{
iterator ret;
for (InputIt it = first; it != last; ++it)
ret = insert(pos, *it);
return ret;
}
iterator insert(const_iterator pos, std::initializer_list<T> ilist)
{
iterator ret;
foreach (const_reference value in ilist)
ret = insert(pos, value);
return ret;
}
template <class... Args>
iterator emplace(const_iterator pos, Args &&...args)
{
return insert(pos, T(std::forward<Args>(args)...));
}
iterator erase(const_iterator pos)
{
if (pos == cend())
return end();
else if (pos == cbegin())
{
pop_front();
return begin();
}
else
{
sl_guard(this->lock);
node *p = pos._node;
if (p->prev)
p->prev->next = p->next;
if (p->next)
p->next->prev = p->prev;
if (head == p)
head = p->next;
if (tail == p)
tail = p->prev;
iterator ret(p->next);
delete p;
lSize.fetch_sub(1);
return ret;
}
}
iterator erase(const_iterator first, const_iterator last)
{
iterator ret;
while (first != last)
ret = erase(first++);
return ret;
}
void push_back(const T &value)
{
sl_guard(this->lock);
node *nNode = new node(value, tail);
if (empty())
head = tail = nNode;
else
{
tail->next = nNode;
tail = nNode;
}
lSize.fetch_add(1);
}
void push_back(T &&value)
{
sl_guard(this->lock);
node *nNode = new node(std::move(value), tail);
if (empty())
head = tail = nNode;
else
{
tail->next = nNode;
tail = nNode;
}
lSize.fetch_add(1);
}
template <class... Args>
void emplace_back(Args &&...args)
{
assert(sizeof...(args) > 0);
sl_guard(this->lock);
node *nNode = new node(T(std::forward<Args>(args)...), tail);
if (this->empty())
head = tail = nNode;
else
{
tail->next = nNode;
tail = nNode;
}
lSize.fetch_add(1);
}
template <class... Args>
reference emplace_back(Args &&...args)
{
assert(sizeof...(args) > 0);
sl_guard(this->lock);
node *nNode = new node(T(std::forward<Args>(args)...), tail);
if (this->empty())
head = tail = nNode;
else
{
tail->next = nNode;
tail = nNode;
}
lSize.fetch_add(1);
return tail->value;
}
void pop_back()
{
sl_guard(this->lock);
if (unlikely(empty()))
assert(!"list is empty");
else if (head == tail)
{
delete tail;
head = tail = nullptr;
lSize.fetch_sub(1);
}
else
{
node *oldTail = tail;
tail = tail->prev;
tail->next = nullptr;
delete oldTail;
lSize.fetch_sub(1);
}
}
void push_front(const T &value)
{
sl_guard(this->lock);
node *nNode = new node(value, nullptr, head);
if (empty())
head = tail = nNode;
else
{
head->prev = nNode;
head = nNode;
}
lSize.fetch_add(1);
}
void push_front(T &&value)
{
sl_guard(this->lock);
node *nNode = new node(std::move(value), nullptr, head);
if (empty())
head = tail = nNode;
else
{
head->prev = nNode;
head = nNode;
}
lSize.fetch_add(1);
}
template <class... Args>
void emplace_front(Args &&...args)
{
assert(sizeof...(args) > 0);
sl_guard(this->lock);
node *nNode = new node(T(std::forward<Args>(args)...), nullptr, head);
if (this->empty())
head = tail = nNode;
else
{
head->prev = nNode;
head = nNode;
}
lSize.fetch_add(1);
}
template <class... Args>
reference emplace_front(Args &&...args)
{
assert(sizeof...(args) > 0);
sl_guard(this->lock);
node *nNode = new node(T(std::forward<Args>(args)...), nullptr, head);
if (this->empty())
head = tail = nNode;
else
{
head->prev = nNode;
head = nNode;
}
lSize.fetch_add(1);
return head->value;
}
void pop_front()
{
if (unlikely(empty()))
{
assert(!"list is empty");
}
if (head == tail)
{
sl_guard(this->lock);
delete head;
head = tail = nullptr;
lSize.fetch_sub(1);
}
else
{
sl_guard(this->lock);
node *old_head = head;
head = head->next;
head->prev = nullptr;
delete old_head;
lSize.fetch_sub(1);
}
}
void resize(size_type count)
{
if (count < lSize.load())
{
while (lSize.load() > count)
pop_back();
}
else if (count > lSize.load())
{
while (lSize.load() < count)
push_back(T());
}
}
void resize(size_type count, const value_type &value)
{
if (count < lSize.load())
{
while (lSize.load() > count)
pop_back();
}
else if (count > lSize.load())
{
while (lSize.load() < count)
push_back(value);
}
}
void swap(list &other)
{
sl_guard(this->lock);
other.lock.lock("list::swap");
std::swap(head, other.head);
std::swap(tail, other.tail);
size_t oSize = other.lSize.load();
other.lSize.store(lSize.load());
lSize.store(oSize);
other.lock.unlock();
}
#pragma endregion Modifiers
#pragma region Operations
void merge(list &other)
{
while (other.empty() == false)
{
T &fr = other.front();
push_back(fr);
other.pop_front();
}
}
void merge(list &&other)
{
while (other.empty() == false)
{
T &fr = other.front();
push_back(fr);
other.pop_front();
}
}
template <class Compare>
void merge(list &other, Compare comp)
{
while (other.empty() == false)
{
T &fr = other.front();
if (comp(tail->value, fr))
push_back(fr);
else
push_front(fr);
other.pop_front();
}
}
template <class Compare>
void merge(list &&other, Compare comp)
{
while (other.empty() == false)
{
T &fr = other.front();
if (comp(tail->value, fr))
push_back(fr);
else
push_front(fr);
other.pop_front();
}
}
void splice(const_iterator pos, list &other)
{
while (other.empty() == false)
{
T &fr = other.front();
insert(pos, fr);
other.pop_front();
}
}
void splice(const_iterator pos, list &&other)
{
while (other.empty() == false)
{
T &fr = other.front();
insert(pos, fr);
other.pop_front();
}
}
void splice(const_iterator pos, list &other, const_iterator it)
{
insert(pos, *it);
other.erase(it);
}
void splice(const_iterator pos, list &&other, const_iterator it)
{
insert(pos, *it);
other.erase(it);
}
void splice(const_iterator pos, list &other, const_iterator first, const_iterator last)
{
while (first != last)
{
insert(pos, *first);
other.erase(first++);
}
}
void splice(const_iterator pos, list &&other, const_iterator first, const_iterator last)
{
while (first != last)
{
insert(pos, *first);
other.erase(first++);
}
}
size_type remove(const T &value)
{
sl_guard(this->lock);
node *p = head;
size_type count = 0;
while (p != nullptr)
{
if (p->value == value)
{
if (p->prev)
p->prev->next = p->next;
if (p->next)
p->next->prev = p->prev;
if (p == head)
head = p->next;
if (p == tail)
tail = p->prev;
delete p;
lSize.fetch_sub(1);
++count;
}
p = p->next;
}
return count;
}
template <class UnaryPredicate>
size_type remove_if(UnaryPredicate p)
{
sl_guard(this->lock);
node *n = head;
size_type count = 0;
while (n != nullptr)
{
if (p(n->value))
{
if (n->prev)
n->prev->next = n->next;
if (n->next)
n->next->prev = n->prev;
if (n == head)
head = n->next;
if (n == tail)
tail = n->prev;
delete n;
lSize.fetch_sub(1);
++count;
}
n = n->next;
}
return count;
}
void reverse()
{
if (empty())
return;
sl_guard(this->lock);
node *p = head;
while (p != nullptr)
{
node *tmp = p->next;
p->next = p->prev;
p->prev = tmp;
p = tmp;
}
node *tmp = head;
head = tail;
tail = tmp;
}
size_type unique()
{
sl_guard(this->lock);
node *p = head;
size_type count = 0;
while (p != nullptr)
{
node *n = p->next;
while (n != nullptr)
{
if (p->value == n->value)
{
if (n->prev)
n->prev->next = n->next;
if (n->next)
n->next->prev = n->prev;
if (n == head)
head = n->next;
if (n == tail)
tail = n->prev;
delete n;
lSize.fetch_sub(1);
++count;
}
n = n->next;
}
p = p->next;
}
return count;
}
template <class BinaryPredicate>
size_type unique(BinaryPredicate p)
{
sl_guard(this->lock);
node *n = head;
size_type count = 0;
while (n != nullptr)
{
node *m = n->next;
while (m != nullptr)
{
if (p(n->value, m->value))
{
if (m->prev)
m->prev->next = m->next;
if (m->next)
m->next->prev = m->prev;
if (m == head)
head = m->next;
if (m == tail)
tail = m->prev;
delete m;
lSize.fetch_sub(1);
++count;
}
m = m->next;
}
n = n->next;
}
return count;
}
void sort()
{
if (empty())
return;
sl_guard(this->lock);
bool swapped = true;
while (swapped)
{
swapped = false;
node *p = head;
while (p->next != nullptr)
{
if (p->value > p->next->value)
{
T tmp = p->value;
p->value = p->next->value;
p->next->value = tmp;
swapped = true;
}
p = p->next;
}
}
}
template <class Compare>
void sort(Compare comp)
{
if (empty())
return;
sl_guard(this->lock);
bool swapped = true;
while (swapped)
{
swapped = false;
node *p = head;
while (p->next != nullptr)
{
if (comp(p->value, p->next->value))
{
T tmp = p->value;
p->value = p->next->value;
p->next->value = tmp;
swapped = true;
}
p = p->next;
}
}
}
#pragma endregion Operations
};
template <class T, class Alloc>
bool operator==(const std::list<T, Alloc> &lhs, const std::list<T, Alloc> &rhs)
{
if (lhs.size() != rhs.size())
return false;
auto it1 = lhs.begin();
auto it2 = rhs.begin();
while (it1 != lhs.end())
{
if (*it1 != *it2)
return false;
++it1;
++it2;
}
return true;
}
}