mirror of
https://github.com/Fennix-Project/Kernel.git
synced 2025-05-25 22:14:37 +00:00
2947 lines
115 KiB
C
2947 lines
115 KiB
C
/* stb_image_resize - v0.97 - public domain image resizing
|
|
by Jorge L Rodriguez (@VinoBS) - 2014
|
|
http://github.com/nothings/stb
|
|
|
|
Written with emphasis on usability, portability, and efficiency. (No
|
|
SIMD or threads, so it be easily outperformed by libs that use those.)
|
|
Only scaling and translation is supported, no rotations or shears.
|
|
Easy API downsamples w/Mitchell filter, upsamples w/cubic interpolation.
|
|
|
|
COMPILING & LINKING
|
|
In one C/C++ file that #includes this file, do this:
|
|
#define STB_IMAGE_RESIZE_IMPLEMENTATION
|
|
before the #include. That will create the implementation in that file.
|
|
|
|
QUICKSTART
|
|
stbir_resize_uint8( input_pixels , in_w , in_h , 0,
|
|
output_pixels, out_w, out_h, 0, num_channels)
|
|
stbir_resize_float(...)
|
|
stbir_resize_uint8_srgb( input_pixels , in_w , in_h , 0,
|
|
output_pixels, out_w, out_h, 0,
|
|
num_channels , alpha_chan , 0)
|
|
stbir_resize_uint8_srgb_edgemode(
|
|
input_pixels , in_w , in_h , 0,
|
|
output_pixels, out_w, out_h, 0,
|
|
num_channels , alpha_chan , 0, STBIR_EDGE_CLAMP)
|
|
// WRAP/REFLECT/ZERO
|
|
|
|
FULL API
|
|
See the "header file" section of the source for API documentation.
|
|
|
|
ADDITIONAL DOCUMENTATION
|
|
|
|
SRGB & FLOATING POINT REPRESENTATION
|
|
The sRGB functions presume IEEE floating point. If you do not have
|
|
IEEE floating point, define STBIR_NON_IEEE_FLOAT. This will use
|
|
a slower implementation.
|
|
|
|
MEMORY ALLOCATION
|
|
The resize functions here perform a single memory allocation using
|
|
malloc. To control the memory allocation, before the #include that
|
|
triggers the implementation, do:
|
|
|
|
#define STBIR_MALLOC(size,context) ...
|
|
#define STBIR_FREE(ptr,context) ...
|
|
|
|
Each resize function makes exactly one call to malloc/free, so to use
|
|
temp memory, store the temp memory in the context and return that.
|
|
|
|
ASSERT
|
|
Define STBIR_ASSERT(boolval) to override assert() and not use assert.h
|
|
|
|
OPTIMIZATION
|
|
Define STBIR_SATURATE_INT to compute clamp values in-range using
|
|
integer operations instead of float operations. This may be faster
|
|
on some platforms.
|
|
|
|
DEFAULT FILTERS
|
|
For functions which don't provide explicit control over what filters
|
|
to use, you can change the compile-time defaults with
|
|
|
|
#define STBIR_DEFAULT_FILTER_UPSAMPLE STBIR_FILTER_something
|
|
#define STBIR_DEFAULT_FILTER_DOWNSAMPLE STBIR_FILTER_something
|
|
|
|
See stbir_filter in the header-file section for the list of filters.
|
|
|
|
NEW FILTERS
|
|
A number of 1D filter kernels are used. For a list of
|
|
supported filters see the stbir_filter enum. To add a new filter,
|
|
write a filter function and add it to stbir__filter_info_table.
|
|
|
|
PROGRESS
|
|
For interactive use with slow resize operations, you can install
|
|
a progress-report callback:
|
|
|
|
#define STBIR_PROGRESS_REPORT(val) some_func(val)
|
|
|
|
The parameter val is a float which goes from 0 to 1 as progress is made.
|
|
|
|
For example:
|
|
|
|
static void my_progress_report(float progress);
|
|
#define STBIR_PROGRESS_REPORT(val) my_progress_report(val)
|
|
|
|
#define STB_IMAGE_RESIZE_IMPLEMENTATION
|
|
#include "stb_image_resize.h"
|
|
|
|
static void my_progress_report(float progress)
|
|
{
|
|
printf("Progress: %f%%\n", progress*100);
|
|
}
|
|
|
|
MAX CHANNELS
|
|
If your image has more than 64 channels, define STBIR_MAX_CHANNELS
|
|
to the max you'll have.
|
|
|
|
ALPHA CHANNEL
|
|
Most of the resizing functions provide the ability to control how
|
|
the alpha channel of an image is processed. The important things
|
|
to know about this:
|
|
|
|
1. The best mathematically-behaved version of alpha to use is
|
|
called "premultiplied alpha", in which the other color channels
|
|
have had the alpha value multiplied in. If you use premultiplied
|
|
alpha, linear filtering (such as image resampling done by this
|
|
library, or performed in texture units on GPUs) does the "right
|
|
thing". While premultiplied alpha is standard in the movie CGI
|
|
industry, it is still uncommon in the videogame/real-time world.
|
|
|
|
If you linearly filter non-premultiplied alpha, strange effects
|
|
occur. (For example, the 50/50 average of 99% transparent bright green
|
|
and 1% transparent black produces 50% transparent dark green when
|
|
non-premultiplied, whereas premultiplied it produces 50%
|
|
transparent near-black. The former introduces green energy
|
|
that doesn't exist in the source image.)
|
|
|
|
2. Artists should not edit premultiplied-alpha images; artists
|
|
want non-premultiplied alpha images. Thus, art tools generally output
|
|
non-premultiplied alpha images.
|
|
|
|
3. You will get best results in most cases by converting images
|
|
to premultiplied alpha before processing them mathematically.
|
|
|
|
4. If you pass the flag STBIR_FLAG_ALPHA_PREMULTIPLIED, the
|
|
resizer does not do anything special for the alpha channel;
|
|
it is resampled identically to other channels. This produces
|
|
the correct results for premultiplied-alpha images, but produces
|
|
less-than-ideal results for non-premultiplied-alpha images.
|
|
|
|
5. If you do not pass the flag STBIR_FLAG_ALPHA_PREMULTIPLIED,
|
|
then the resizer weights the contribution of input pixels
|
|
based on their alpha values, or, equivalently, it multiplies
|
|
the alpha value into the color channels, resamples, then divides
|
|
by the resultant alpha value. Input pixels which have alpha=0 do
|
|
not contribute at all to output pixels unless _all_ of the input
|
|
pixels affecting that output pixel have alpha=0, in which case
|
|
the result for that pixel is the same as it would be without
|
|
STBIR_FLAG_ALPHA_PREMULTIPLIED. However, this is only true for
|
|
input images in integer formats. For input images in float format,
|
|
input pixels with alpha=0 have no effect, and output pixels
|
|
which have alpha=0 will be 0 in all channels. (For float images,
|
|
you can manually achieve the same result by adding a tiny epsilon
|
|
value to the alpha channel of every image, and then subtracting
|
|
or clamping it at the end.)
|
|
|
|
6. You can suppress the behavior described in #5 and make
|
|
all-0-alpha pixels have 0 in all channels by #defining
|
|
STBIR_NO_ALPHA_EPSILON.
|
|
|
|
7. You can separately control whether the alpha channel is
|
|
interpreted as linear or affected by the colorspace. By default
|
|
it is linear; you almost never want to apply the colorspace.
|
|
(For example, graphics hardware does not apply sRGB conversion
|
|
to the alpha channel.)
|
|
|
|
CONTRIBUTORS
|
|
Jorge L Rodriguez: Implementation
|
|
Sean Barrett: API design, optimizations
|
|
Aras Pranckevicius: bugfix
|
|
Nathan Reed: warning fixes
|
|
|
|
REVISIONS
|
|
0.97 (2020-02-02) fixed warning
|
|
0.96 (2019-03-04) fixed warnings
|
|
0.95 (2017-07-23) fixed warnings
|
|
0.94 (2017-03-18) fixed warnings
|
|
0.93 (2017-03-03) fixed bug with certain combinations of heights
|
|
0.92 (2017-01-02) fix integer overflow on large (>2GB) images
|
|
0.91 (2016-04-02) fix warnings; fix handling of subpixel regions
|
|
0.90 (2014-09-17) first released version
|
|
|
|
LICENSE
|
|
See end of file for license information.
|
|
|
|
TODO
|
|
Don't decode all of the image data when only processing a partial tile
|
|
Don't use full-width decode buffers when only processing a partial tile
|
|
When processing wide images, break processing into tiles so data fits in L1 cache
|
|
Installable filters?
|
|
Resize that respects alpha test coverage
|
|
(Reference code: FloatImage::alphaTestCoverage and FloatImage::scaleAlphaToCoverage:
|
|
https://code.google.com/p/nvidia-texture-tools/source/browse/trunk/src/nvimage/FloatImage.cpp )
|
|
*/
|
|
|
|
#ifndef STBIR_INCLUDE_STB_IMAGE_RESIZE_H
|
|
#define STBIR_INCLUDE_STB_IMAGE_RESIZE_H
|
|
|
|
#ifdef _MSC_VER
|
|
typedef unsigned char stbir_uint8;
|
|
typedef unsigned short stbir_uint16;
|
|
typedef unsigned int stbir_uint32;
|
|
#else
|
|
#include <stdint.h>
|
|
typedef uint8_t stbir_uint8;
|
|
typedef uint16_t stbir_uint16;
|
|
typedef uint32_t stbir_uint32;
|
|
#endif
|
|
|
|
#ifndef STBIRDEF
|
|
#ifdef STB_IMAGE_RESIZE_STATIC
|
|
#define STBIRDEF static
|
|
#else
|
|
#ifdef __cplusplus
|
|
#define STBIRDEF extern "C"
|
|
#else
|
|
#define STBIRDEF extern
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Easy-to-use API:
|
|
//
|
|
// * "input pixels" points to an array of image data with 'num_channels' channels (e.g. RGB=3, RGBA=4)
|
|
// * input_w is input image width (x-axis), input_h is input image height (y-axis)
|
|
// * stride is the offset between successive rows of image data in memory, in bytes. you can
|
|
// specify 0 to mean packed continuously in memory
|
|
// * alpha channel is treated identically to other channels.
|
|
// * colorspace is linear or sRGB as specified by function name
|
|
// * returned result is 1 for success or 0 in case of an error.
|
|
// #define STBIR_ASSERT() to trigger an assert on parameter validation errors.
|
|
// * Memory required grows approximately linearly with input and output size, but with
|
|
// discontinuities at input_w == output_w and input_h == output_h.
|
|
// * These functions use a "default" resampling filter defined at compile time. To change the filter,
|
|
// you can change the compile-time defaults by #defining STBIR_DEFAULT_FILTER_UPSAMPLE
|
|
// and STBIR_DEFAULT_FILTER_DOWNSAMPLE, or you can use the medium-complexity API.
|
|
|
|
STBIRDEF int stbir_resize_uint8(const unsigned char *input_pixels, int input_w, int input_h, int input_stride_in_bytes,
|
|
unsigned char *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
int num_channels);
|
|
|
|
STBIRDEF int stbir_resize_float(const float *input_pixels, int input_w, int input_h, int input_stride_in_bytes,
|
|
float *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
int num_channels);
|
|
|
|
// The following functions interpret image data as gamma-corrected sRGB.
|
|
// Specify STBIR_ALPHA_CHANNEL_NONE if you have no alpha channel,
|
|
// or otherwise provide the index of the alpha channel. Flags value
|
|
// of 0 will probably do the right thing if you're not sure what
|
|
// the flags mean.
|
|
|
|
#define STBIR_ALPHA_CHANNEL_NONE -1
|
|
|
|
// Set this flag if your texture has premultiplied alpha. Otherwise, stbir will
|
|
// use alpha-weighted resampling (effectively premultiplying, resampling,
|
|
// then unpremultiplying).
|
|
#define STBIR_FLAG_ALPHA_PREMULTIPLIED (1 << 0)
|
|
// The specified alpha channel should be handled as gamma-corrected value even
|
|
// when doing sRGB operations.
|
|
#define STBIR_FLAG_ALPHA_USES_COLORSPACE (1 << 1)
|
|
|
|
STBIRDEF int stbir_resize_uint8_srgb(const unsigned char *input_pixels, int input_w, int input_h, int input_stride_in_bytes,
|
|
unsigned char *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
int num_channels, int alpha_channel, int flags);
|
|
|
|
typedef enum
|
|
{
|
|
STBIR_EDGE_CLAMP = 1,
|
|
STBIR_EDGE_REFLECT = 2,
|
|
STBIR_EDGE_WRAP = 3,
|
|
STBIR_EDGE_ZERO = 4,
|
|
} stbir_edge;
|
|
|
|
// This function adds the ability to specify how requests to sample off the edge of the image are handled.
|
|
STBIRDEF int stbir_resize_uint8_srgb_edgemode(const unsigned char *input_pixels, int input_w, int input_h, int input_stride_in_bytes,
|
|
unsigned char *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
int num_channels, int alpha_channel, int flags,
|
|
stbir_edge edge_wrap_mode);
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Medium-complexity API
|
|
//
|
|
// This extends the easy-to-use API as follows:
|
|
//
|
|
// * Alpha-channel can be processed separately
|
|
// * If alpha_channel is not STBIR_ALPHA_CHANNEL_NONE
|
|
// * Alpha channel will not be gamma corrected (unless flags&STBIR_FLAG_GAMMA_CORRECT)
|
|
// * Filters will be weighted by alpha channel (unless flags&STBIR_FLAG_ALPHA_PREMULTIPLIED)
|
|
// * Filter can be selected explicitly
|
|
// * uint16 image type
|
|
// * sRGB colorspace available for all types
|
|
// * context parameter for passing to STBIR_MALLOC
|
|
|
|
typedef enum
|
|
{
|
|
STBIR_FILTER_DEFAULT = 0, // use same filter type that easy-to-use API chooses
|
|
STBIR_FILTER_BOX = 1, // A trapezoid w/1-pixel wide ramps, same result as box for integer scale ratios
|
|
STBIR_FILTER_TRIANGLE = 2, // On upsampling, produces same results as bilinear texture filtering
|
|
STBIR_FILTER_CUBICBSPLINE = 3, // The cubic b-spline (aka Mitchell-Netrevalli with B=1,C=0), gaussian-esque
|
|
STBIR_FILTER_CATMULLROM = 4, // An interpolating cubic spline
|
|
STBIR_FILTER_MITCHELL = 5, // Mitchell-Netrevalli filter with B=1/3, C=1/3
|
|
} stbir_filter;
|
|
|
|
typedef enum
|
|
{
|
|
STBIR_COLORSPACE_LINEAR,
|
|
STBIR_COLORSPACE_SRGB,
|
|
|
|
STBIR_MAX_COLORSPACES,
|
|
} stbir_colorspace;
|
|
|
|
// The following functions are all identical except for the type of the image data
|
|
|
|
STBIRDEF int stbir_resize_uint8_generic(const unsigned char *input_pixels, int input_w, int input_h, int input_stride_in_bytes,
|
|
unsigned char *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
int num_channels, int alpha_channel, int flags,
|
|
stbir_edge edge_wrap_mode, stbir_filter filter, stbir_colorspace space,
|
|
void *alloc_context);
|
|
|
|
STBIRDEF int stbir_resize_uint16_generic(const stbir_uint16 *input_pixels, int input_w, int input_h, int input_stride_in_bytes,
|
|
stbir_uint16 *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
int num_channels, int alpha_channel, int flags,
|
|
stbir_edge edge_wrap_mode, stbir_filter filter, stbir_colorspace space,
|
|
void *alloc_context);
|
|
|
|
STBIRDEF int stbir_resize_float_generic(const float *input_pixels, int input_w, int input_h, int input_stride_in_bytes,
|
|
float *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
int num_channels, int alpha_channel, int flags,
|
|
stbir_edge edge_wrap_mode, stbir_filter filter, stbir_colorspace space,
|
|
void *alloc_context);
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Full-complexity API
|
|
//
|
|
// This extends the medium API as follows:
|
|
//
|
|
// * uint32 image type
|
|
// * not typesafe
|
|
// * separate filter types for each axis
|
|
// * separate edge modes for each axis
|
|
// * can specify scale explicitly for subpixel correctness
|
|
// * can specify image source tile using texture coordinates
|
|
|
|
typedef enum
|
|
{
|
|
STBIR_TYPE_UINT8,
|
|
STBIR_TYPE_UINT16,
|
|
STBIR_TYPE_UINT32,
|
|
STBIR_TYPE_FLOAT,
|
|
|
|
STBIR_MAX_TYPES
|
|
} stbir_datatype;
|
|
|
|
STBIRDEF int stbir_resize(const void *input_pixels, int input_w, int input_h, int input_stride_in_bytes,
|
|
void *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
stbir_datatype datatype,
|
|
int num_channels, int alpha_channel, int flags,
|
|
stbir_edge edge_mode_horizontal, stbir_edge edge_mode_vertical,
|
|
stbir_filter filter_horizontal, stbir_filter filter_vertical,
|
|
stbir_colorspace space, void *alloc_context);
|
|
|
|
STBIRDEF int stbir_resize_subpixel(const void *input_pixels, int input_w, int input_h, int input_stride_in_bytes,
|
|
void *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
stbir_datatype datatype,
|
|
int num_channels, int alpha_channel, int flags,
|
|
stbir_edge edge_mode_horizontal, stbir_edge edge_mode_vertical,
|
|
stbir_filter filter_horizontal, stbir_filter filter_vertical,
|
|
stbir_colorspace space, void *alloc_context,
|
|
float x_scale, float y_scale,
|
|
float x_offset, float y_offset);
|
|
|
|
STBIRDEF int stbir_resize_region(const void *input_pixels, int input_w, int input_h, int input_stride_in_bytes,
|
|
void *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
stbir_datatype datatype,
|
|
int num_channels, int alpha_channel, int flags,
|
|
stbir_edge edge_mode_horizontal, stbir_edge edge_mode_vertical,
|
|
stbir_filter filter_horizontal, stbir_filter filter_vertical,
|
|
stbir_colorspace space, void *alloc_context,
|
|
float s0, float t0, float s1, float t1);
|
|
// (s0, t0) & (s1, t1) are the top-left and bottom right corner (uv addressing style: [0, 1]x[0, 1]) of a region of the input image to use.
|
|
|
|
//
|
|
//
|
|
//// end header file /////////////////////////////////////////////////////
|
|
#endif // STBIR_INCLUDE_STB_IMAGE_RESIZE_H
|
|
|
|
#ifdef STB_IMAGE_RESIZE_IMPLEMENTATION
|
|
|
|
#ifndef STBIR_ASSERT
|
|
#include <assert.h>
|
|
#define STBIR_ASSERT(x) assert(x)
|
|
#endif
|
|
|
|
// For memset
|
|
#include <string.h>
|
|
|
|
#include <math.h>
|
|
|
|
#ifndef STBIR_MALLOC
|
|
#include <stdlib.h>
|
|
// use comma operator to evaluate c, to avoid "unused parameter" warnings
|
|
#define STBIR_MALLOC(size, c) ((void)(c), malloc(size))
|
|
#define STBIR_FREE(ptr, c) ((void)(c), free(ptr))
|
|
#endif
|
|
|
|
#ifndef _MSC_VER
|
|
#ifdef __cplusplus
|
|
#define stbir__inline inline
|
|
#else
|
|
#define stbir__inline
|
|
#endif
|
|
#else
|
|
#define stbir__inline __forceinline
|
|
#endif
|
|
|
|
// should produce compiler error if size is wrong
|
|
typedef unsigned char stbir__validate_uint32[sizeof(stbir_uint32) == 4 ? 1 : -1];
|
|
|
|
#ifdef _MSC_VER
|
|
#define STBIR__NOTUSED(v) (void)(v)
|
|
#else
|
|
#define STBIR__NOTUSED(v) (void)sizeof(v)
|
|
#endif
|
|
|
|
#define STBIR__ARRAY_SIZE(a) (sizeof((a)) / sizeof((a)[0]))
|
|
|
|
#ifndef STBIR_DEFAULT_FILTER_UPSAMPLE
|
|
#define STBIR_DEFAULT_FILTER_UPSAMPLE STBIR_FILTER_CATMULLROM
|
|
#endif
|
|
|
|
#ifndef STBIR_DEFAULT_FILTER_DOWNSAMPLE
|
|
#define STBIR_DEFAULT_FILTER_DOWNSAMPLE STBIR_FILTER_MITCHELL
|
|
#endif
|
|
|
|
#ifndef STBIR_PROGRESS_REPORT
|
|
#define STBIR_PROGRESS_REPORT(float_0_to_1)
|
|
#endif
|
|
|
|
#ifndef STBIR_MAX_CHANNELS
|
|
#define STBIR_MAX_CHANNELS 64
|
|
#endif
|
|
|
|
#if STBIR_MAX_CHANNELS > 65536
|
|
#error "Too many channels; STBIR_MAX_CHANNELS must be no more than 65536."
|
|
// because we store the indices in 16-bit variables
|
|
#endif
|
|
|
|
// This value is added to alpha just before premultiplication to avoid
|
|
// zeroing out color values. It is equivalent to 2^-80. If you don't want
|
|
// that behavior (it may interfere if you have floating point images with
|
|
// very small alpha values) then you can define STBIR_NO_ALPHA_EPSILON to
|
|
// disable it.
|
|
#ifndef STBIR_ALPHA_EPSILON
|
|
#define STBIR_ALPHA_EPSILON ((float)1 / (1 << 20) / (1 << 20) / (1 << 20) / (1 << 20))
|
|
#endif
|
|
|
|
#ifdef _MSC_VER
|
|
#define STBIR__UNUSED_PARAM(v) (void)(v)
|
|
#else
|
|
#define STBIR__UNUSED_PARAM(v) (void)sizeof(v)
|
|
#endif
|
|
|
|
// must match stbir_datatype
|
|
static unsigned char stbir__type_size[] = {
|
|
1, // STBIR_TYPE_UINT8
|
|
2, // STBIR_TYPE_UINT16
|
|
4, // STBIR_TYPE_UINT32
|
|
4, // STBIR_TYPE_FLOAT
|
|
};
|
|
|
|
// Kernel function centered at 0
|
|
typedef float(stbir__kernel_fn)(float x, float scale);
|
|
typedef float(stbir__support_fn)(float scale);
|
|
|
|
typedef struct
|
|
{
|
|
stbir__kernel_fn *kernel;
|
|
stbir__support_fn *support;
|
|
} stbir__filter_info;
|
|
|
|
// When upsampling, the contributors are which source pixels contribute.
|
|
// When downsampling, the contributors are which destination pixels are contributed to.
|
|
typedef struct
|
|
{
|
|
int n0; // First contributing pixel
|
|
int n1; // Last contributing pixel
|
|
} stbir__contributors;
|
|
|
|
typedef struct
|
|
{
|
|
const void *input_data;
|
|
int input_w;
|
|
int input_h;
|
|
int input_stride_bytes;
|
|
|
|
void *output_data;
|
|
int output_w;
|
|
int output_h;
|
|
int output_stride_bytes;
|
|
|
|
float s0, t0, s1, t1;
|
|
|
|
float horizontal_shift; // Units: output pixels
|
|
float vertical_shift; // Units: output pixels
|
|
float horizontal_scale;
|
|
float vertical_scale;
|
|
|
|
int channels;
|
|
int alpha_channel;
|
|
stbir_uint32 flags;
|
|
stbir_datatype type;
|
|
stbir_filter horizontal_filter;
|
|
stbir_filter vertical_filter;
|
|
stbir_edge edge_horizontal;
|
|
stbir_edge edge_vertical;
|
|
stbir_colorspace colorspace;
|
|
|
|
stbir__contributors *horizontal_contributors;
|
|
float *horizontal_coefficients;
|
|
|
|
stbir__contributors *vertical_contributors;
|
|
float *vertical_coefficients;
|
|
|
|
int decode_buffer_pixels;
|
|
float *decode_buffer;
|
|
|
|
float *horizontal_buffer;
|
|
|
|
// cache these because ceil/floor are inexplicably showing up in profile
|
|
int horizontal_coefficient_width;
|
|
int vertical_coefficient_width;
|
|
int horizontal_filter_pixel_width;
|
|
int vertical_filter_pixel_width;
|
|
int horizontal_filter_pixel_margin;
|
|
int vertical_filter_pixel_margin;
|
|
int horizontal_num_contributors;
|
|
int vertical_num_contributors;
|
|
|
|
int ring_buffer_length_bytes; // The length of an individual entry in the ring buffer. The total number of ring buffers is stbir__get_filter_pixel_width(filter)
|
|
int ring_buffer_num_entries; // Total number of entries in the ring buffer.
|
|
int ring_buffer_first_scanline;
|
|
int ring_buffer_last_scanline;
|
|
int ring_buffer_begin_index; // first_scanline is at this index in the ring buffer
|
|
float *ring_buffer;
|
|
|
|
float *encode_buffer; // A temporary buffer to store floats so we don't lose precision while we do multiply-adds.
|
|
|
|
int horizontal_contributors_size;
|
|
int horizontal_coefficients_size;
|
|
int vertical_contributors_size;
|
|
int vertical_coefficients_size;
|
|
int decode_buffer_size;
|
|
int horizontal_buffer_size;
|
|
int ring_buffer_size;
|
|
int encode_buffer_size;
|
|
} stbir__info;
|
|
|
|
static const float stbir__max_uint8_as_float = 255.0f;
|
|
static const float stbir__max_uint16_as_float = 65535.0f;
|
|
static const double stbir__max_uint32_as_float = 4294967295.0;
|
|
|
|
static stbir__inline int stbir__min(int a, int b)
|
|
{
|
|
return a < b ? a : b;
|
|
}
|
|
|
|
static stbir__inline float stbir__saturate(float x)
|
|
{
|
|
if (x < 0)
|
|
return 0;
|
|
|
|
if (x > 1)
|
|
return 1;
|
|
|
|
return x;
|
|
}
|
|
|
|
#ifdef STBIR_SATURATE_INT
|
|
static stbir__inline stbir_uint8 stbir__saturate8(int x)
|
|
{
|
|
if ((unsigned int)x <= 255)
|
|
return x;
|
|
|
|
if (x < 0)
|
|
return 0;
|
|
|
|
return 255;
|
|
}
|
|
|
|
static stbir__inline stbir_uint16 stbir__saturate16(int x)
|
|
{
|
|
if ((unsigned int)x <= 65535)
|
|
return x;
|
|
|
|
if (x < 0)
|
|
return 0;
|
|
|
|
return 65535;
|
|
}
|
|
#endif
|
|
|
|
static float stbir__srgb_uchar_to_linear_float[256] = {
|
|
0.000000f, 0.000304f, 0.000607f, 0.000911f, 0.001214f, 0.001518f, 0.001821f, 0.002125f, 0.002428f, 0.002732f, 0.003035f,
|
|
0.003347f, 0.003677f, 0.004025f, 0.004391f, 0.004777f, 0.005182f, 0.005605f, 0.006049f, 0.006512f, 0.006995f, 0.007499f,
|
|
0.008023f, 0.008568f, 0.009134f, 0.009721f, 0.010330f, 0.010960f, 0.011612f, 0.012286f, 0.012983f, 0.013702f, 0.014444f,
|
|
0.015209f, 0.015996f, 0.016807f, 0.017642f, 0.018500f, 0.019382f, 0.020289f, 0.021219f, 0.022174f, 0.023153f, 0.024158f,
|
|
0.025187f, 0.026241f, 0.027321f, 0.028426f, 0.029557f, 0.030713f, 0.031896f, 0.033105f, 0.034340f, 0.035601f, 0.036889f,
|
|
0.038204f, 0.039546f, 0.040915f, 0.042311f, 0.043735f, 0.045186f, 0.046665f, 0.048172f, 0.049707f, 0.051269f, 0.052861f,
|
|
0.054480f, 0.056128f, 0.057805f, 0.059511f, 0.061246f, 0.063010f, 0.064803f, 0.066626f, 0.068478f, 0.070360f, 0.072272f,
|
|
0.074214f, 0.076185f, 0.078187f, 0.080220f, 0.082283f, 0.084376f, 0.086500f, 0.088656f, 0.090842f, 0.093059f, 0.095307f,
|
|
0.097587f, 0.099899f, 0.102242f, 0.104616f, 0.107023f, 0.109462f, 0.111932f, 0.114435f, 0.116971f, 0.119538f, 0.122139f,
|
|
0.124772f, 0.127438f, 0.130136f, 0.132868f, 0.135633f, 0.138432f, 0.141263f, 0.144128f, 0.147027f, 0.149960f, 0.152926f,
|
|
0.155926f, 0.158961f, 0.162029f, 0.165132f, 0.168269f, 0.171441f, 0.174647f, 0.177888f, 0.181164f, 0.184475f, 0.187821f,
|
|
0.191202f, 0.194618f, 0.198069f, 0.201556f, 0.205079f, 0.208637f, 0.212231f, 0.215861f, 0.219526f, 0.223228f, 0.226966f,
|
|
0.230740f, 0.234551f, 0.238398f, 0.242281f, 0.246201f, 0.250158f, 0.254152f, 0.258183f, 0.262251f, 0.266356f, 0.270498f,
|
|
0.274677f, 0.278894f, 0.283149f, 0.287441f, 0.291771f, 0.296138f, 0.300544f, 0.304987f, 0.309469f, 0.313989f, 0.318547f,
|
|
0.323143f, 0.327778f, 0.332452f, 0.337164f, 0.341914f, 0.346704f, 0.351533f, 0.356400f, 0.361307f, 0.366253f, 0.371238f,
|
|
0.376262f, 0.381326f, 0.386430f, 0.391573f, 0.396755f, 0.401978f, 0.407240f, 0.412543f, 0.417885f, 0.423268f, 0.428691f,
|
|
0.434154f, 0.439657f, 0.445201f, 0.450786f, 0.456411f, 0.462077f, 0.467784f, 0.473532f, 0.479320f, 0.485150f, 0.491021f,
|
|
0.496933f, 0.502887f, 0.508881f, 0.514918f, 0.520996f, 0.527115f, 0.533276f, 0.539480f, 0.545725f, 0.552011f, 0.558340f,
|
|
0.564712f, 0.571125f, 0.577581f, 0.584078f, 0.590619f, 0.597202f, 0.603827f, 0.610496f, 0.617207f, 0.623960f, 0.630757f,
|
|
0.637597f, 0.644480f, 0.651406f, 0.658375f, 0.665387f, 0.672443f, 0.679543f, 0.686685f, 0.693872f, 0.701102f, 0.708376f,
|
|
0.715694f, 0.723055f, 0.730461f, 0.737911f, 0.745404f, 0.752942f, 0.760525f, 0.768151f, 0.775822f, 0.783538f, 0.791298f,
|
|
0.799103f, 0.806952f, 0.814847f, 0.822786f, 0.830770f, 0.838799f, 0.846873f, 0.854993f, 0.863157f, 0.871367f, 0.879622f,
|
|
0.887923f, 0.896269f, 0.904661f, 0.913099f, 0.921582f, 0.930111f, 0.938686f, 0.947307f, 0.955974f, 0.964686f, 0.973445f,
|
|
0.982251f, 0.991102f, 1.0f};
|
|
|
|
static float stbir__srgb_to_linear(float f)
|
|
{
|
|
if (f <= 0.04045f)
|
|
return f / 12.92f;
|
|
else
|
|
return (float)pow((f + 0.055f) / 1.055f, 2.4f);
|
|
}
|
|
|
|
static float stbir__linear_to_srgb(float f)
|
|
{
|
|
if (f <= 0.0031308f)
|
|
return f * 12.92f;
|
|
else
|
|
return 1.055f * (float)pow(f, 1 / 2.4f) - 0.055f;
|
|
}
|
|
|
|
#ifndef STBIR_NON_IEEE_FLOAT
|
|
// From https://gist.github.com/rygorous/2203834
|
|
|
|
typedef union
|
|
{
|
|
stbir_uint32 u;
|
|
float f;
|
|
} stbir__FP32;
|
|
|
|
static const stbir_uint32 fp32_to_srgb8_tab4[104] = {
|
|
0x0073000d,
|
|
0x007a000d,
|
|
0x0080000d,
|
|
0x0087000d,
|
|
0x008d000d,
|
|
0x0094000d,
|
|
0x009a000d,
|
|
0x00a1000d,
|
|
0x00a7001a,
|
|
0x00b4001a,
|
|
0x00c1001a,
|
|
0x00ce001a,
|
|
0x00da001a,
|
|
0x00e7001a,
|
|
0x00f4001a,
|
|
0x0101001a,
|
|
0x010e0033,
|
|
0x01280033,
|
|
0x01410033,
|
|
0x015b0033,
|
|
0x01750033,
|
|
0x018f0033,
|
|
0x01a80033,
|
|
0x01c20033,
|
|
0x01dc0067,
|
|
0x020f0067,
|
|
0x02430067,
|
|
0x02760067,
|
|
0x02aa0067,
|
|
0x02dd0067,
|
|
0x03110067,
|
|
0x03440067,
|
|
0x037800ce,
|
|
0x03df00ce,
|
|
0x044600ce,
|
|
0x04ad00ce,
|
|
0x051400ce,
|
|
0x057b00c5,
|
|
0x05dd00bc,
|
|
0x063b00b5,
|
|
0x06970158,
|
|
0x07420142,
|
|
0x07e30130,
|
|
0x087b0120,
|
|
0x090b0112,
|
|
0x09940106,
|
|
0x0a1700fc,
|
|
0x0a9500f2,
|
|
0x0b0f01cb,
|
|
0x0bf401ae,
|
|
0x0ccb0195,
|
|
0x0d950180,
|
|
0x0e56016e,
|
|
0x0f0d015e,
|
|
0x0fbc0150,
|
|
0x10630143,
|
|
0x11070264,
|
|
0x1238023e,
|
|
0x1357021d,
|
|
0x14660201,
|
|
0x156601e9,
|
|
0x165a01d3,
|
|
0x174401c0,
|
|
0x182401af,
|
|
0x18fe0331,
|
|
0x1a9602fe,
|
|
0x1c1502d2,
|
|
0x1d7e02ad,
|
|
0x1ed4028d,
|
|
0x201a0270,
|
|
0x21520256,
|
|
0x227d0240,
|
|
0x239f0443,
|
|
0x25c003fe,
|
|
0x27bf03c4,
|
|
0x29a10392,
|
|
0x2b6a0367,
|
|
0x2d1d0341,
|
|
0x2ebe031f,
|
|
0x304d0300,
|
|
0x31d105b0,
|
|
0x34a80555,
|
|
0x37520507,
|
|
0x39d504c5,
|
|
0x3c37048b,
|
|
0x3e7c0458,
|
|
0x40a8042a,
|
|
0x42bd0401,
|
|
0x44c20798,
|
|
0x488e071e,
|
|
0x4c1c06b6,
|
|
0x4f76065d,
|
|
0x52a50610,
|
|
0x55ac05cc,
|
|
0x5892058f,
|
|
0x5b590559,
|
|
0x5e0c0a23,
|
|
0x631c0980,
|
|
0x67db08f6,
|
|
0x6c55087f,
|
|
0x70940818,
|
|
0x74a007bd,
|
|
0x787d076c,
|
|
0x7c330723,
|
|
};
|
|
|
|
static stbir_uint8 stbir__linear_to_srgb_uchar(float in_)
|
|
{
|
|
static const stbir__FP32 almostone = {0x3f7fffff}; // 1-eps
|
|
static const stbir__FP32 minval = {(127 - 13) << 23};
|
|
stbir_uint32 tab, bias, scale, t;
|
|
stbir__FP32 f;
|
|
|
|
// Clamp to [2^(-13), 1-eps]; these two values map to 0 and 1, respectively.
|
|
// The tests are carefully written so that NaNs map to 0, same as in the reference
|
|
// implementation.
|
|
if (!(in_ > minval.f)) // written this way to catch NaNs
|
|
in_ = minval.f;
|
|
if (in_ > almostone.f)
|
|
in_ = almostone.f;
|
|
|
|
// Do the table lookup and unpack bias, scale
|
|
f.f = in_;
|
|
tab = fp32_to_srgb8_tab4[(f.u - minval.u) >> 20];
|
|
bias = (tab >> 16) << 9;
|
|
scale = tab & 0xffff;
|
|
|
|
// Grab next-highest mantissa bits and perform linear interpolation
|
|
t = (f.u >> 12) & 0xff;
|
|
return (unsigned char)((bias + scale * t) >> 16);
|
|
}
|
|
|
|
#else
|
|
// sRGB transition values, scaled by 1<<28
|
|
static int stbir__srgb_offset_to_linear_scaled[256] =
|
|
{
|
|
0,
|
|
40738,
|
|
122216,
|
|
203693,
|
|
285170,
|
|
366648,
|
|
448125,
|
|
529603,
|
|
611080,
|
|
692557,
|
|
774035,
|
|
855852,
|
|
942009,
|
|
1033024,
|
|
1128971,
|
|
1229926,
|
|
1335959,
|
|
1447142,
|
|
1563542,
|
|
1685229,
|
|
1812268,
|
|
1944725,
|
|
2082664,
|
|
2226148,
|
|
2375238,
|
|
2529996,
|
|
2690481,
|
|
2856753,
|
|
3028870,
|
|
3206888,
|
|
3390865,
|
|
3580856,
|
|
3776916,
|
|
3979100,
|
|
4187460,
|
|
4402049,
|
|
4622919,
|
|
4850123,
|
|
5083710,
|
|
5323731,
|
|
5570236,
|
|
5823273,
|
|
6082892,
|
|
6349140,
|
|
6622065,
|
|
6901714,
|
|
7188133,
|
|
7481369,
|
|
7781466,
|
|
8088471,
|
|
8402427,
|
|
8723380,
|
|
9051372,
|
|
9386448,
|
|
9728650,
|
|
10078021,
|
|
10434603,
|
|
10798439,
|
|
11169569,
|
|
11548036,
|
|
11933879,
|
|
12327139,
|
|
12727857,
|
|
13136073,
|
|
13551826,
|
|
13975156,
|
|
14406100,
|
|
14844697,
|
|
15290987,
|
|
15745007,
|
|
16206795,
|
|
16676389,
|
|
17153826,
|
|
17639142,
|
|
18132374,
|
|
18633560,
|
|
19142734,
|
|
19659934,
|
|
20185196,
|
|
20718552,
|
|
21260042,
|
|
21809696,
|
|
22367554,
|
|
22933648,
|
|
23508010,
|
|
24090680,
|
|
24681686,
|
|
25281066,
|
|
25888850,
|
|
26505076,
|
|
27129772,
|
|
27762974,
|
|
28404716,
|
|
29055026,
|
|
29713942,
|
|
30381490,
|
|
31057708,
|
|
31742624,
|
|
32436272,
|
|
33138682,
|
|
33849884,
|
|
34569912,
|
|
35298800,
|
|
36036568,
|
|
36783260,
|
|
37538896,
|
|
38303512,
|
|
39077136,
|
|
39859796,
|
|
40651528,
|
|
41452360,
|
|
42262316,
|
|
43081432,
|
|
43909732,
|
|
44747252,
|
|
45594016,
|
|
46450052,
|
|
47315392,
|
|
48190064,
|
|
49074096,
|
|
49967516,
|
|
50870356,
|
|
51782636,
|
|
52704392,
|
|
53635648,
|
|
54576432,
|
|
55526772,
|
|
56486700,
|
|
57456236,
|
|
58435408,
|
|
59424248,
|
|
60422780,
|
|
61431036,
|
|
62449032,
|
|
63476804,
|
|
64514376,
|
|
65561776,
|
|
66619028,
|
|
67686160,
|
|
68763192,
|
|
69850160,
|
|
70947088,
|
|
72053992,
|
|
73170912,
|
|
74297864,
|
|
75434880,
|
|
76581976,
|
|
77739184,
|
|
78906536,
|
|
80084040,
|
|
81271736,
|
|
82469648,
|
|
83677792,
|
|
84896192,
|
|
86124888,
|
|
87363888,
|
|
88613232,
|
|
89872928,
|
|
91143016,
|
|
92423512,
|
|
93714432,
|
|
95015816,
|
|
96327688,
|
|
97650056,
|
|
98982952,
|
|
100326408,
|
|
101680440,
|
|
103045072,
|
|
104420320,
|
|
105806224,
|
|
107202800,
|
|
108610064,
|
|
110028048,
|
|
111456776,
|
|
112896264,
|
|
114346544,
|
|
115807632,
|
|
117279552,
|
|
118762328,
|
|
120255976,
|
|
121760536,
|
|
123276016,
|
|
124802440,
|
|
126339832,
|
|
127888216,
|
|
129447616,
|
|
131018048,
|
|
132599544,
|
|
134192112,
|
|
135795792,
|
|
137410592,
|
|
139036528,
|
|
140673648,
|
|
142321952,
|
|
143981456,
|
|
145652208,
|
|
147334208,
|
|
149027488,
|
|
150732064,
|
|
152447968,
|
|
154175200,
|
|
155913792,
|
|
157663776,
|
|
159425168,
|
|
161197984,
|
|
162982240,
|
|
164777968,
|
|
166585184,
|
|
168403904,
|
|
170234160,
|
|
172075968,
|
|
173929344,
|
|
175794320,
|
|
177670896,
|
|
179559120,
|
|
181458992,
|
|
183370528,
|
|
185293776,
|
|
187228736,
|
|
189175424,
|
|
191133888,
|
|
193104112,
|
|
195086128,
|
|
197079968,
|
|
199085648,
|
|
201103184,
|
|
203132592,
|
|
205173888,
|
|
207227120,
|
|
209292272,
|
|
211369392,
|
|
213458480,
|
|
215559568,
|
|
217672656,
|
|
219797792,
|
|
221934976,
|
|
224084240,
|
|
226245600,
|
|
228419056,
|
|
230604656,
|
|
232802400,
|
|
235012320,
|
|
237234432,
|
|
239468736,
|
|
241715280,
|
|
243974080,
|
|
246245120,
|
|
248528464,
|
|
250824112,
|
|
253132064,
|
|
255452368,
|
|
257785040,
|
|
260130080,
|
|
262487520,
|
|
264857376,
|
|
267239664,
|
|
};
|
|
|
|
static stbir_uint8 stbir__linear_to_srgb_uchar(float f)
|
|
{
|
|
int x = (int)(f * (1 << 28)); // has headroom so you don't need to clamp
|
|
int v = 0;
|
|
int i;
|
|
|
|
// Refine the guess with a short binary search.
|
|
i = v + 128;
|
|
if (x >= stbir__srgb_offset_to_linear_scaled[i])
|
|
v = i;
|
|
i = v + 64;
|
|
if (x >= stbir__srgb_offset_to_linear_scaled[i])
|
|
v = i;
|
|
i = v + 32;
|
|
if (x >= stbir__srgb_offset_to_linear_scaled[i])
|
|
v = i;
|
|
i = v + 16;
|
|
if (x >= stbir__srgb_offset_to_linear_scaled[i])
|
|
v = i;
|
|
i = v + 8;
|
|
if (x >= stbir__srgb_offset_to_linear_scaled[i])
|
|
v = i;
|
|
i = v + 4;
|
|
if (x >= stbir__srgb_offset_to_linear_scaled[i])
|
|
v = i;
|
|
i = v + 2;
|
|
if (x >= stbir__srgb_offset_to_linear_scaled[i])
|
|
v = i;
|
|
i = v + 1;
|
|
if (x >= stbir__srgb_offset_to_linear_scaled[i])
|
|
v = i;
|
|
|
|
return (stbir_uint8)v;
|
|
}
|
|
#endif
|
|
|
|
static float stbir__filter_trapezoid(float x, float scale)
|
|
{
|
|
float halfscale = scale / 2;
|
|
float t = 0.5f + halfscale;
|
|
STBIR_ASSERT(scale <= 1);
|
|
|
|
x = (float)fabs(x);
|
|
|
|
if (x >= t)
|
|
return 0;
|
|
else
|
|
{
|
|
float r = 0.5f - halfscale;
|
|
if (x <= r)
|
|
return 1;
|
|
else
|
|
return (t - x) / scale;
|
|
}
|
|
}
|
|
|
|
static float stbir__support_trapezoid(float scale)
|
|
{
|
|
STBIR_ASSERT(scale <= 1);
|
|
return 0.5f + scale / 2;
|
|
}
|
|
|
|
static float stbir__filter_triangle(float x, float s)
|
|
{
|
|
STBIR__UNUSED_PARAM(s);
|
|
|
|
x = (float)fabs(x);
|
|
|
|
if (x <= 1.0f)
|
|
return 1 - x;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static float stbir__filter_cubic(float x, float s)
|
|
{
|
|
STBIR__UNUSED_PARAM(s);
|
|
|
|
x = (float)fabs(x);
|
|
|
|
if (x < 1.0f)
|
|
return (4 + x * x * (3 * x - 6)) / 6;
|
|
else if (x < 2.0f)
|
|
return (8 + x * (-12 + x * (6 - x))) / 6;
|
|
|
|
return (0.0f);
|
|
}
|
|
|
|
static float stbir__filter_catmullrom(float x, float s)
|
|
{
|
|
STBIR__UNUSED_PARAM(s);
|
|
|
|
x = (float)fabs(x);
|
|
|
|
if (x < 1.0f)
|
|
return 1 - x * x * (2.5f - 1.5f * x);
|
|
else if (x < 2.0f)
|
|
return 2 - x * (4 + x * (0.5f * x - 2.5f));
|
|
|
|
return (0.0f);
|
|
}
|
|
|
|
static float stbir__filter_mitchell(float x, float s)
|
|
{
|
|
STBIR__UNUSED_PARAM(s);
|
|
|
|
x = (float)fabs(x);
|
|
|
|
if (x < 1.0f)
|
|
return (16 + x * x * (21 * x - 36)) / 18;
|
|
else if (x < 2.0f)
|
|
return (32 + x * (-60 + x * (36 - 7 * x))) / 18;
|
|
|
|
return (0.0f);
|
|
}
|
|
|
|
static float stbir__support_zero(float s)
|
|
{
|
|
STBIR__UNUSED_PARAM(s);
|
|
return 0;
|
|
}
|
|
|
|
static float stbir__support_one(float s)
|
|
{
|
|
STBIR__UNUSED_PARAM(s);
|
|
return 1;
|
|
}
|
|
|
|
static float stbir__support_two(float s)
|
|
{
|
|
STBIR__UNUSED_PARAM(s);
|
|
return 2;
|
|
}
|
|
|
|
static stbir__filter_info stbir__filter_info_table[] = {
|
|
{NULL, stbir__support_zero},
|
|
{stbir__filter_trapezoid, stbir__support_trapezoid},
|
|
{stbir__filter_triangle, stbir__support_one},
|
|
{stbir__filter_cubic, stbir__support_two},
|
|
{stbir__filter_catmullrom, stbir__support_two},
|
|
{stbir__filter_mitchell, stbir__support_two},
|
|
};
|
|
|
|
stbir__inline static int stbir__use_upsampling(float ratio)
|
|
{
|
|
return ratio > 1;
|
|
}
|
|
|
|
stbir__inline static int stbir__use_width_upsampling(stbir__info *stbir_info)
|
|
{
|
|
return stbir__use_upsampling(stbir_info->horizontal_scale);
|
|
}
|
|
|
|
stbir__inline static int stbir__use_height_upsampling(stbir__info *stbir_info)
|
|
{
|
|
return stbir__use_upsampling(stbir_info->vertical_scale);
|
|
}
|
|
|
|
// This is the maximum number of input samples that can affect an output sample
|
|
// with the given filter
|
|
static int stbir__get_filter_pixel_width(stbir_filter filter, float scale)
|
|
{
|
|
STBIR_ASSERT(filter != 0);
|
|
STBIR_ASSERT(filter < STBIR__ARRAY_SIZE(stbir__filter_info_table));
|
|
|
|
if (stbir__use_upsampling(scale))
|
|
return (int)ceil(stbir__filter_info_table[filter].support(1 / scale) * 2);
|
|
else
|
|
return (int)ceil(stbir__filter_info_table[filter].support(scale) * 2 / scale);
|
|
}
|
|
|
|
// This is how much to expand buffers to account for filters seeking outside
|
|
// the image boundaries.
|
|
static int stbir__get_filter_pixel_margin(stbir_filter filter, float scale)
|
|
{
|
|
return stbir__get_filter_pixel_width(filter, scale) / 2;
|
|
}
|
|
|
|
static int stbir__get_coefficient_width(stbir_filter filter, float scale)
|
|
{
|
|
if (stbir__use_upsampling(scale))
|
|
return (int)ceil(stbir__filter_info_table[filter].support(1 / scale) * 2);
|
|
else
|
|
return (int)ceil(stbir__filter_info_table[filter].support(scale) * 2);
|
|
}
|
|
|
|
static int stbir__get_contributors(float scale, stbir_filter filter, int input_size, int output_size)
|
|
{
|
|
if (stbir__use_upsampling(scale))
|
|
return output_size;
|
|
else
|
|
return (input_size + stbir__get_filter_pixel_margin(filter, scale) * 2);
|
|
}
|
|
|
|
static int stbir__get_total_horizontal_coefficients(stbir__info *info)
|
|
{
|
|
return info->horizontal_num_contributors * stbir__get_coefficient_width(info->horizontal_filter, info->horizontal_scale);
|
|
}
|
|
|
|
static int stbir__get_total_vertical_coefficients(stbir__info *info)
|
|
{
|
|
return info->vertical_num_contributors * stbir__get_coefficient_width(info->vertical_filter, info->vertical_scale);
|
|
}
|
|
|
|
static stbir__contributors *stbir__get_contributor(stbir__contributors *contributors, int n)
|
|
{
|
|
return &contributors[n];
|
|
}
|
|
|
|
// For perf reasons this code is duplicated in stbir__resample_horizontal_upsample/downsample,
|
|
// if you change it here change it there too.
|
|
static float *stbir__get_coefficient(float *coefficients, stbir_filter filter, float scale, int n, int c)
|
|
{
|
|
int width = stbir__get_coefficient_width(filter, scale);
|
|
return &coefficients[width * n + c];
|
|
}
|
|
|
|
static int stbir__edge_wrap_slow(stbir_edge edge, int n, int max)
|
|
{
|
|
switch (edge)
|
|
{
|
|
case STBIR_EDGE_ZERO:
|
|
return 0; // we'll decode the wrong pixel here, and then overwrite with 0s later
|
|
|
|
case STBIR_EDGE_CLAMP:
|
|
if (n < 0)
|
|
return 0;
|
|
|
|
if (n >= max)
|
|
return max - 1;
|
|
|
|
return n; // NOTREACHED
|
|
|
|
case STBIR_EDGE_REFLECT:
|
|
{
|
|
if (n < 0)
|
|
{
|
|
if (n < max)
|
|
return -n;
|
|
else
|
|
return max - 1;
|
|
}
|
|
|
|
if (n >= max)
|
|
{
|
|
int max2 = max * 2;
|
|
if (n >= max2)
|
|
return 0;
|
|
else
|
|
return max2 - n - 1;
|
|
}
|
|
|
|
return n; // NOTREACHED
|
|
}
|
|
|
|
case STBIR_EDGE_WRAP:
|
|
if (n >= 0)
|
|
return (n % max);
|
|
else
|
|
{
|
|
int m = (-n) % max;
|
|
|
|
if (m != 0)
|
|
m = max - m;
|
|
|
|
return (m);
|
|
}
|
|
// NOTREACHED
|
|
|
|
default:
|
|
STBIR_ASSERT(!"Unimplemented edge type");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
stbir__inline static int stbir__edge_wrap(stbir_edge edge, int n, int max)
|
|
{
|
|
// avoid per-pixel switch
|
|
if (n >= 0 && n < max)
|
|
return n;
|
|
return stbir__edge_wrap_slow(edge, n, max);
|
|
}
|
|
|
|
// What input pixels contribute to this output pixel?
|
|
static void stbir__calculate_sample_range_upsample(int n, float out_filter_radius, float scale_ratio, float out_shift, int *in_first_pixel, int *in_last_pixel, float *in_center_of_out)
|
|
{
|
|
float out_pixel_center = (float)n + 0.5f;
|
|
float out_pixel_influence_lowerbound = out_pixel_center - out_filter_radius;
|
|
float out_pixel_influence_upperbound = out_pixel_center + out_filter_radius;
|
|
|
|
float in_pixel_influence_lowerbound = (out_pixel_influence_lowerbound + out_shift) / scale_ratio;
|
|
float in_pixel_influence_upperbound = (out_pixel_influence_upperbound + out_shift) / scale_ratio;
|
|
|
|
*in_center_of_out = (out_pixel_center + out_shift) / scale_ratio;
|
|
*in_first_pixel = (int)(floor(in_pixel_influence_lowerbound + 0.5));
|
|
*in_last_pixel = (int)(floor(in_pixel_influence_upperbound - 0.5));
|
|
}
|
|
|
|
// What output pixels does this input pixel contribute to?
|
|
static void stbir__calculate_sample_range_downsample(int n, float in_pixels_radius, float scale_ratio, float out_shift, int *out_first_pixel, int *out_last_pixel, float *out_center_of_in)
|
|
{
|
|
float in_pixel_center = (float)n + 0.5f;
|
|
float in_pixel_influence_lowerbound = in_pixel_center - in_pixels_radius;
|
|
float in_pixel_influence_upperbound = in_pixel_center + in_pixels_radius;
|
|
|
|
float out_pixel_influence_lowerbound = in_pixel_influence_lowerbound * scale_ratio - out_shift;
|
|
float out_pixel_influence_upperbound = in_pixel_influence_upperbound * scale_ratio - out_shift;
|
|
|
|
*out_center_of_in = in_pixel_center * scale_ratio - out_shift;
|
|
*out_first_pixel = (int)(floor(out_pixel_influence_lowerbound + 0.5));
|
|
*out_last_pixel = (int)(floor(out_pixel_influence_upperbound - 0.5));
|
|
}
|
|
|
|
static void stbir__calculate_coefficients_upsample(stbir_filter filter, float scale, int in_first_pixel, int in_last_pixel, float in_center_of_out, stbir__contributors *contributor, float *coefficient_group)
|
|
{
|
|
int i;
|
|
float total_filter = 0;
|
|
float filter_scale;
|
|
|
|
STBIR_ASSERT(in_last_pixel - in_first_pixel <= (int)ceil(stbir__filter_info_table[filter].support(1 / scale) * 2)); // Taken directly from stbir__get_coefficient_width() which we can't call because we don't know if we're horizontal or vertical.
|
|
|
|
contributor->n0 = in_first_pixel;
|
|
contributor->n1 = in_last_pixel;
|
|
|
|
STBIR_ASSERT(contributor->n1 >= contributor->n0);
|
|
|
|
for (i = 0; i <= in_last_pixel - in_first_pixel; i++)
|
|
{
|
|
float in_pixel_center = (float)(i + in_first_pixel) + 0.5f;
|
|
coefficient_group[i] = stbir__filter_info_table[filter].kernel(in_center_of_out - in_pixel_center, 1 / scale);
|
|
|
|
// If the coefficient is zero, skip it. (Don't do the <0 check here, we want the influence of those outside pixels.)
|
|
if (i == 0 && !coefficient_group[i])
|
|
{
|
|
contributor->n0 = ++in_first_pixel;
|
|
i--;
|
|
continue;
|
|
}
|
|
|
|
total_filter += coefficient_group[i];
|
|
}
|
|
|
|
// NOTE(fg): Not actually true in general, nor is there any reason to expect it should be.
|
|
// It would be true in exact math but is at best approximately true in floating-point math,
|
|
// and it would not make sense to try and put actual bounds on this here because it depends
|
|
// on the image aspect ratio which can get pretty extreme.
|
|
// STBIR_ASSERT(stbir__filter_info_table[filter].kernel((float)(in_last_pixel + 1) + 0.5f - in_center_of_out, 1/scale) == 0);
|
|
|
|
STBIR_ASSERT(total_filter > 0.9);
|
|
STBIR_ASSERT(total_filter < 1.1f); // Make sure it's not way off.
|
|
|
|
// Make sure the sum of all coefficients is 1.
|
|
filter_scale = 1 / total_filter;
|
|
|
|
for (i = 0; i <= in_last_pixel - in_first_pixel; i++)
|
|
coefficient_group[i] *= filter_scale;
|
|
|
|
for (i = in_last_pixel - in_first_pixel; i >= 0; i--)
|
|
{
|
|
if (coefficient_group[i])
|
|
break;
|
|
|
|
// This line has no weight. We can skip it.
|
|
contributor->n1 = contributor->n0 + i - 1;
|
|
}
|
|
}
|
|
|
|
static void stbir__calculate_coefficients_downsample(stbir_filter filter, float scale_ratio, int out_first_pixel, int out_last_pixel, float out_center_of_in, stbir__contributors *contributor, float *coefficient_group)
|
|
{
|
|
int i;
|
|
|
|
STBIR_ASSERT(out_last_pixel - out_first_pixel <= (int)ceil(stbir__filter_info_table[filter].support(scale_ratio) * 2)); // Taken directly from stbir__get_coefficient_width() which we can't call because we don't know if we're horizontal or vertical.
|
|
|
|
contributor->n0 = out_first_pixel;
|
|
contributor->n1 = out_last_pixel;
|
|
|
|
STBIR_ASSERT(contributor->n1 >= contributor->n0);
|
|
|
|
for (i = 0; i <= out_last_pixel - out_first_pixel; i++)
|
|
{
|
|
float out_pixel_center = (float)(i + out_first_pixel) + 0.5f;
|
|
float x = out_pixel_center - out_center_of_in;
|
|
coefficient_group[i] = stbir__filter_info_table[filter].kernel(x, scale_ratio) * scale_ratio;
|
|
}
|
|
|
|
// NOTE(fg): Not actually true in general, nor is there any reason to expect it should be.
|
|
// It would be true in exact math but is at best approximately true in floating-point math,
|
|
// and it would not make sense to try and put actual bounds on this here because it depends
|
|
// on the image aspect ratio which can get pretty extreme.
|
|
// STBIR_ASSERT(stbir__filter_info_table[filter].kernel((float)(out_last_pixel + 1) + 0.5f - out_center_of_in, scale_ratio) == 0);
|
|
|
|
for (i = out_last_pixel - out_first_pixel; i >= 0; i--)
|
|
{
|
|
if (coefficient_group[i])
|
|
break;
|
|
|
|
// This line has no weight. We can skip it.
|
|
contributor->n1 = contributor->n0 + i - 1;
|
|
}
|
|
}
|
|
|
|
static void stbir__normalize_downsample_coefficients(stbir__contributors *contributors, float *coefficients, stbir_filter filter, float scale_ratio, int input_size, int output_size)
|
|
{
|
|
int num_contributors = stbir__get_contributors(scale_ratio, filter, input_size, output_size);
|
|
int num_coefficients = stbir__get_coefficient_width(filter, scale_ratio);
|
|
int i, j;
|
|
int skip;
|
|
|
|
for (i = 0; i < output_size; i++)
|
|
{
|
|
float scale;
|
|
float total = 0;
|
|
|
|
for (j = 0; j < num_contributors; j++)
|
|
{
|
|
if (i >= contributors[j].n0 && i <= contributors[j].n1)
|
|
{
|
|
float coefficient = *stbir__get_coefficient(coefficients, filter, scale_ratio, j, i - contributors[j].n0);
|
|
total += coefficient;
|
|
}
|
|
else if (i < contributors[j].n0)
|
|
break;
|
|
}
|
|
|
|
STBIR_ASSERT(total > 0.9f);
|
|
STBIR_ASSERT(total < 1.1f);
|
|
|
|
scale = 1 / total;
|
|
|
|
for (j = 0; j < num_contributors; j++)
|
|
{
|
|
if (i >= contributors[j].n0 && i <= contributors[j].n1)
|
|
*stbir__get_coefficient(coefficients, filter, scale_ratio, j, i - contributors[j].n0) *= scale;
|
|
else if (i < contributors[j].n0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Optimize: Skip zero coefficients and contributions outside of image bounds.
|
|
// Do this after normalizing because normalization depends on the n0/n1 values.
|
|
for (j = 0; j < num_contributors; j++)
|
|
{
|
|
int range, max, width;
|
|
|
|
skip = 0;
|
|
while (*stbir__get_coefficient(coefficients, filter, scale_ratio, j, skip) == 0)
|
|
skip++;
|
|
|
|
contributors[j].n0 += skip;
|
|
|
|
while (contributors[j].n0 < 0)
|
|
{
|
|
contributors[j].n0++;
|
|
skip++;
|
|
}
|
|
|
|
range = contributors[j].n1 - contributors[j].n0 + 1;
|
|
max = stbir__min(num_coefficients, range);
|
|
|
|
width = stbir__get_coefficient_width(filter, scale_ratio);
|
|
for (i = 0; i < max; i++)
|
|
{
|
|
if (i + skip >= width)
|
|
break;
|
|
|
|
*stbir__get_coefficient(coefficients, filter, scale_ratio, j, i) = *stbir__get_coefficient(coefficients, filter, scale_ratio, j, i + skip);
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
// Using min to avoid writing into invalid pixels.
|
|
for (i = 0; i < num_contributors; i++)
|
|
contributors[i].n1 = stbir__min(contributors[i].n1, output_size - 1);
|
|
}
|
|
|
|
// Each scan line uses the same kernel values so we should calculate the kernel
|
|
// values once and then we can use them for every scan line.
|
|
static void stbir__calculate_filters(stbir__contributors *contributors, float *coefficients, stbir_filter filter, float scale_ratio, float shift, int input_size, int output_size)
|
|
{
|
|
int n;
|
|
int total_contributors = stbir__get_contributors(scale_ratio, filter, input_size, output_size);
|
|
|
|
if (stbir__use_upsampling(scale_ratio))
|
|
{
|
|
float out_pixels_radius = stbir__filter_info_table[filter].support(1 / scale_ratio) * scale_ratio;
|
|
|
|
// Looping through out pixels
|
|
for (n = 0; n < total_contributors; n++)
|
|
{
|
|
float in_center_of_out; // Center of the current out pixel in the in pixel space
|
|
int in_first_pixel, in_last_pixel;
|
|
|
|
stbir__calculate_sample_range_upsample(n, out_pixels_radius, scale_ratio, shift, &in_first_pixel, &in_last_pixel, &in_center_of_out);
|
|
|
|
stbir__calculate_coefficients_upsample(filter, scale_ratio, in_first_pixel, in_last_pixel, in_center_of_out, stbir__get_contributor(contributors, n), stbir__get_coefficient(coefficients, filter, scale_ratio, n, 0));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
float in_pixels_radius = stbir__filter_info_table[filter].support(scale_ratio) / scale_ratio;
|
|
|
|
// Looping through in pixels
|
|
for (n = 0; n < total_contributors; n++)
|
|
{
|
|
float out_center_of_in; // Center of the current out pixel in the in pixel space
|
|
int out_first_pixel, out_last_pixel;
|
|
int n_adjusted = n - stbir__get_filter_pixel_margin(filter, scale_ratio);
|
|
|
|
stbir__calculate_sample_range_downsample(n_adjusted, in_pixels_radius, scale_ratio, shift, &out_first_pixel, &out_last_pixel, &out_center_of_in);
|
|
|
|
stbir__calculate_coefficients_downsample(filter, scale_ratio, out_first_pixel, out_last_pixel, out_center_of_in, stbir__get_contributor(contributors, n), stbir__get_coefficient(coefficients, filter, scale_ratio, n, 0));
|
|
}
|
|
|
|
stbir__normalize_downsample_coefficients(contributors, coefficients, filter, scale_ratio, input_size, output_size);
|
|
}
|
|
}
|
|
|
|
static float *stbir__get_decode_buffer(stbir__info *stbir_info)
|
|
{
|
|
// The 0 index of the decode buffer starts after the margin. This makes
|
|
// it okay to use negative indexes on the decode buffer.
|
|
return &stbir_info->decode_buffer[stbir_info->horizontal_filter_pixel_margin * stbir_info->channels];
|
|
}
|
|
|
|
#define STBIR__DECODE(type, colorspace) ((int)(type) * (STBIR_MAX_COLORSPACES) + (int)(colorspace))
|
|
|
|
static void stbir__decode_scanline(stbir__info *stbir_info, int n)
|
|
{
|
|
int c;
|
|
int channels = stbir_info->channels;
|
|
int alpha_channel = stbir_info->alpha_channel;
|
|
int type = stbir_info->type;
|
|
int colorspace = stbir_info->colorspace;
|
|
int input_w = stbir_info->input_w;
|
|
size_t input_stride_bytes = stbir_info->input_stride_bytes;
|
|
float *decode_buffer = stbir__get_decode_buffer(stbir_info);
|
|
stbir_edge edge_horizontal = stbir_info->edge_horizontal;
|
|
stbir_edge edge_vertical = stbir_info->edge_vertical;
|
|
size_t in_buffer_row_offset = stbir__edge_wrap(edge_vertical, n, stbir_info->input_h) * input_stride_bytes;
|
|
const void *input_data = (char *)stbir_info->input_data + in_buffer_row_offset;
|
|
int max_x = input_w + stbir_info->horizontal_filter_pixel_margin;
|
|
int decode = STBIR__DECODE(type, colorspace);
|
|
|
|
int x = -stbir_info->horizontal_filter_pixel_margin;
|
|
|
|
// special handling for STBIR_EDGE_ZERO because it needs to return an item that doesn't appear in the input,
|
|
// and we want to avoid paying overhead on every pixel if not STBIR_EDGE_ZERO
|
|
if (edge_vertical == STBIR_EDGE_ZERO && (n < 0 || n >= stbir_info->input_h))
|
|
{
|
|
for (; x < max_x; x++)
|
|
for (c = 0; c < channels; c++)
|
|
decode_buffer[x * channels + c] = 0;
|
|
return;
|
|
}
|
|
|
|
switch (decode)
|
|
{
|
|
case STBIR__DECODE(STBIR_TYPE_UINT8, STBIR_COLORSPACE_LINEAR):
|
|
for (; x < max_x; x++)
|
|
{
|
|
int decode_pixel_index = x * channels;
|
|
int input_pixel_index = stbir__edge_wrap(edge_horizontal, x, input_w) * channels;
|
|
for (c = 0; c < channels; c++)
|
|
decode_buffer[decode_pixel_index + c] = ((float)((const unsigned char *)input_data)[input_pixel_index + c]) / stbir__max_uint8_as_float;
|
|
}
|
|
break;
|
|
|
|
case STBIR__DECODE(STBIR_TYPE_UINT8, STBIR_COLORSPACE_SRGB):
|
|
for (; x < max_x; x++)
|
|
{
|
|
int decode_pixel_index = x * channels;
|
|
int input_pixel_index = stbir__edge_wrap(edge_horizontal, x, input_w) * channels;
|
|
for (c = 0; c < channels; c++)
|
|
decode_buffer[decode_pixel_index + c] = stbir__srgb_uchar_to_linear_float[((const unsigned char *)input_data)[input_pixel_index + c]];
|
|
|
|
if (!(stbir_info->flags & STBIR_FLAG_ALPHA_USES_COLORSPACE))
|
|
decode_buffer[decode_pixel_index + alpha_channel] = ((float)((const unsigned char *)input_data)[input_pixel_index + alpha_channel]) / stbir__max_uint8_as_float;
|
|
}
|
|
break;
|
|
|
|
case STBIR__DECODE(STBIR_TYPE_UINT16, STBIR_COLORSPACE_LINEAR):
|
|
for (; x < max_x; x++)
|
|
{
|
|
int decode_pixel_index = x * channels;
|
|
int input_pixel_index = stbir__edge_wrap(edge_horizontal, x, input_w) * channels;
|
|
for (c = 0; c < channels; c++)
|
|
decode_buffer[decode_pixel_index + c] = ((float)((const unsigned short *)input_data)[input_pixel_index + c]) / stbir__max_uint16_as_float;
|
|
}
|
|
break;
|
|
|
|
case STBIR__DECODE(STBIR_TYPE_UINT16, STBIR_COLORSPACE_SRGB):
|
|
for (; x < max_x; x++)
|
|
{
|
|
int decode_pixel_index = x * channels;
|
|
int input_pixel_index = stbir__edge_wrap(edge_horizontal, x, input_w) * channels;
|
|
for (c = 0; c < channels; c++)
|
|
decode_buffer[decode_pixel_index + c] = stbir__srgb_to_linear(((float)((const unsigned short *)input_data)[input_pixel_index + c]) / stbir__max_uint16_as_float);
|
|
|
|
if (!(stbir_info->flags & STBIR_FLAG_ALPHA_USES_COLORSPACE))
|
|
decode_buffer[decode_pixel_index + alpha_channel] = ((float)((const unsigned short *)input_data)[input_pixel_index + alpha_channel]) / stbir__max_uint16_as_float;
|
|
}
|
|
break;
|
|
|
|
case STBIR__DECODE(STBIR_TYPE_UINT32, STBIR_COLORSPACE_LINEAR):
|
|
for (; x < max_x; x++)
|
|
{
|
|
int decode_pixel_index = x * channels;
|
|
int input_pixel_index = stbir__edge_wrap(edge_horizontal, x, input_w) * channels;
|
|
for (c = 0; c < channels; c++)
|
|
decode_buffer[decode_pixel_index + c] = (float)(((double)((const unsigned int *)input_data)[input_pixel_index + c]) / stbir__max_uint32_as_float);
|
|
}
|
|
break;
|
|
|
|
case STBIR__DECODE(STBIR_TYPE_UINT32, STBIR_COLORSPACE_SRGB):
|
|
for (; x < max_x; x++)
|
|
{
|
|
int decode_pixel_index = x * channels;
|
|
int input_pixel_index = stbir__edge_wrap(edge_horizontal, x, input_w) * channels;
|
|
for (c = 0; c < channels; c++)
|
|
decode_buffer[decode_pixel_index + c] = stbir__srgb_to_linear((float)(((double)((const unsigned int *)input_data)[input_pixel_index + c]) / stbir__max_uint32_as_float));
|
|
|
|
if (!(stbir_info->flags & STBIR_FLAG_ALPHA_USES_COLORSPACE))
|
|
decode_buffer[decode_pixel_index + alpha_channel] = (float)(((double)((const unsigned int *)input_data)[input_pixel_index + alpha_channel]) / stbir__max_uint32_as_float);
|
|
}
|
|
break;
|
|
|
|
case STBIR__DECODE(STBIR_TYPE_FLOAT, STBIR_COLORSPACE_LINEAR):
|
|
for (; x < max_x; x++)
|
|
{
|
|
int decode_pixel_index = x * channels;
|
|
int input_pixel_index = stbir__edge_wrap(edge_horizontal, x, input_w) * channels;
|
|
for (c = 0; c < channels; c++)
|
|
decode_buffer[decode_pixel_index + c] = ((const float *)input_data)[input_pixel_index + c];
|
|
}
|
|
break;
|
|
|
|
case STBIR__DECODE(STBIR_TYPE_FLOAT, STBIR_COLORSPACE_SRGB):
|
|
for (; x < max_x; x++)
|
|
{
|
|
int decode_pixel_index = x * channels;
|
|
int input_pixel_index = stbir__edge_wrap(edge_horizontal, x, input_w) * channels;
|
|
for (c = 0; c < channels; c++)
|
|
decode_buffer[decode_pixel_index + c] = stbir__srgb_to_linear(((const float *)input_data)[input_pixel_index + c]);
|
|
|
|
if (!(stbir_info->flags & STBIR_FLAG_ALPHA_USES_COLORSPACE))
|
|
decode_buffer[decode_pixel_index + alpha_channel] = ((const float *)input_data)[input_pixel_index + alpha_channel];
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
STBIR_ASSERT(!"Unknown type/colorspace/channels combination.");
|
|
break;
|
|
}
|
|
|
|
if (!(stbir_info->flags & STBIR_FLAG_ALPHA_PREMULTIPLIED))
|
|
{
|
|
for (x = -stbir_info->horizontal_filter_pixel_margin; x < max_x; x++)
|
|
{
|
|
int decode_pixel_index = x * channels;
|
|
|
|
// If the alpha value is 0 it will clobber the color values. Make sure it's not.
|
|
float alpha = decode_buffer[decode_pixel_index + alpha_channel];
|
|
#ifndef STBIR_NO_ALPHA_EPSILON
|
|
if (stbir_info->type != STBIR_TYPE_FLOAT)
|
|
{
|
|
alpha += STBIR_ALPHA_EPSILON;
|
|
decode_buffer[decode_pixel_index + alpha_channel] = alpha;
|
|
}
|
|
#endif
|
|
for (c = 0; c < channels; c++)
|
|
{
|
|
if (c == alpha_channel)
|
|
continue;
|
|
|
|
decode_buffer[decode_pixel_index + c] *= alpha;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (edge_horizontal == STBIR_EDGE_ZERO)
|
|
{
|
|
for (x = -stbir_info->horizontal_filter_pixel_margin; x < 0; x++)
|
|
{
|
|
for (c = 0; c < channels; c++)
|
|
decode_buffer[x * channels + c] = 0;
|
|
}
|
|
for (x = input_w; x < max_x; x++)
|
|
{
|
|
for (c = 0; c < channels; c++)
|
|
decode_buffer[x * channels + c] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static float *stbir__get_ring_buffer_entry(float *ring_buffer, int index, int ring_buffer_length)
|
|
{
|
|
return &ring_buffer[index * ring_buffer_length];
|
|
}
|
|
|
|
static float *stbir__add_empty_ring_buffer_entry(stbir__info *stbir_info, int n)
|
|
{
|
|
int ring_buffer_index;
|
|
float *ring_buffer;
|
|
|
|
stbir_info->ring_buffer_last_scanline = n;
|
|
|
|
if (stbir_info->ring_buffer_begin_index < 0)
|
|
{
|
|
ring_buffer_index = stbir_info->ring_buffer_begin_index = 0;
|
|
stbir_info->ring_buffer_first_scanline = n;
|
|
}
|
|
else
|
|
{
|
|
ring_buffer_index = (stbir_info->ring_buffer_begin_index + (stbir_info->ring_buffer_last_scanline - stbir_info->ring_buffer_first_scanline)) % stbir_info->ring_buffer_num_entries;
|
|
STBIR_ASSERT(ring_buffer_index != stbir_info->ring_buffer_begin_index);
|
|
}
|
|
|
|
ring_buffer = stbir__get_ring_buffer_entry(stbir_info->ring_buffer, ring_buffer_index, stbir_info->ring_buffer_length_bytes / sizeof(float));
|
|
memset(ring_buffer, 0, stbir_info->ring_buffer_length_bytes);
|
|
|
|
return ring_buffer;
|
|
}
|
|
|
|
static void stbir__resample_horizontal_upsample(stbir__info *stbir_info, float *output_buffer)
|
|
{
|
|
int x, k;
|
|
int output_w = stbir_info->output_w;
|
|
int channels = stbir_info->channels;
|
|
float *decode_buffer = stbir__get_decode_buffer(stbir_info);
|
|
stbir__contributors *horizontal_contributors = stbir_info->horizontal_contributors;
|
|
float *horizontal_coefficients = stbir_info->horizontal_coefficients;
|
|
int coefficient_width = stbir_info->horizontal_coefficient_width;
|
|
|
|
for (x = 0; x < output_w; x++)
|
|
{
|
|
int n0 = horizontal_contributors[x].n0;
|
|
int n1 = horizontal_contributors[x].n1;
|
|
|
|
int out_pixel_index = x * channels;
|
|
int coefficient_group = coefficient_width * x;
|
|
int coefficient_counter = 0;
|
|
|
|
STBIR_ASSERT(n1 >= n0);
|
|
STBIR_ASSERT(n0 >= -stbir_info->horizontal_filter_pixel_margin);
|
|
STBIR_ASSERT(n1 >= -stbir_info->horizontal_filter_pixel_margin);
|
|
STBIR_ASSERT(n0 < stbir_info->input_w + stbir_info->horizontal_filter_pixel_margin);
|
|
STBIR_ASSERT(n1 < stbir_info->input_w + stbir_info->horizontal_filter_pixel_margin);
|
|
|
|
switch (channels)
|
|
{
|
|
case 1:
|
|
for (k = n0; k <= n1; k++)
|
|
{
|
|
int in_pixel_index = k * 1;
|
|
float coefficient = horizontal_coefficients[coefficient_group + coefficient_counter++];
|
|
STBIR_ASSERT(coefficient != 0);
|
|
output_buffer[out_pixel_index + 0] += decode_buffer[in_pixel_index + 0] * coefficient;
|
|
}
|
|
break;
|
|
case 2:
|
|
for (k = n0; k <= n1; k++)
|
|
{
|
|
int in_pixel_index = k * 2;
|
|
float coefficient = horizontal_coefficients[coefficient_group + coefficient_counter++];
|
|
STBIR_ASSERT(coefficient != 0);
|
|
output_buffer[out_pixel_index + 0] += decode_buffer[in_pixel_index + 0] * coefficient;
|
|
output_buffer[out_pixel_index + 1] += decode_buffer[in_pixel_index + 1] * coefficient;
|
|
}
|
|
break;
|
|
case 3:
|
|
for (k = n0; k <= n1; k++)
|
|
{
|
|
int in_pixel_index = k * 3;
|
|
float coefficient = horizontal_coefficients[coefficient_group + coefficient_counter++];
|
|
STBIR_ASSERT(coefficient != 0);
|
|
output_buffer[out_pixel_index + 0] += decode_buffer[in_pixel_index + 0] * coefficient;
|
|
output_buffer[out_pixel_index + 1] += decode_buffer[in_pixel_index + 1] * coefficient;
|
|
output_buffer[out_pixel_index + 2] += decode_buffer[in_pixel_index + 2] * coefficient;
|
|
}
|
|
break;
|
|
case 4:
|
|
for (k = n0; k <= n1; k++)
|
|
{
|
|
int in_pixel_index = k * 4;
|
|
float coefficient = horizontal_coefficients[coefficient_group + coefficient_counter++];
|
|
STBIR_ASSERT(coefficient != 0);
|
|
output_buffer[out_pixel_index + 0] += decode_buffer[in_pixel_index + 0] * coefficient;
|
|
output_buffer[out_pixel_index + 1] += decode_buffer[in_pixel_index + 1] * coefficient;
|
|
output_buffer[out_pixel_index + 2] += decode_buffer[in_pixel_index + 2] * coefficient;
|
|
output_buffer[out_pixel_index + 3] += decode_buffer[in_pixel_index + 3] * coefficient;
|
|
}
|
|
break;
|
|
default:
|
|
for (k = n0; k <= n1; k++)
|
|
{
|
|
int in_pixel_index = k * channels;
|
|
float coefficient = horizontal_coefficients[coefficient_group + coefficient_counter++];
|
|
int c;
|
|
STBIR_ASSERT(coefficient != 0);
|
|
for (c = 0; c < channels; c++)
|
|
output_buffer[out_pixel_index + c] += decode_buffer[in_pixel_index + c] * coefficient;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void stbir__resample_horizontal_downsample(stbir__info *stbir_info, float *output_buffer)
|
|
{
|
|
int x, k;
|
|
int input_w = stbir_info->input_w;
|
|
int channels = stbir_info->channels;
|
|
float *decode_buffer = stbir__get_decode_buffer(stbir_info);
|
|
stbir__contributors *horizontal_contributors = stbir_info->horizontal_contributors;
|
|
float *horizontal_coefficients = stbir_info->horizontal_coefficients;
|
|
int coefficient_width = stbir_info->horizontal_coefficient_width;
|
|
int filter_pixel_margin = stbir_info->horizontal_filter_pixel_margin;
|
|
int max_x = input_w + filter_pixel_margin * 2;
|
|
|
|
STBIR_ASSERT(!stbir__use_width_upsampling(stbir_info));
|
|
|
|
switch (channels)
|
|
{
|
|
case 1:
|
|
for (x = 0; x < max_x; x++)
|
|
{
|
|
int n0 = horizontal_contributors[x].n0;
|
|
int n1 = horizontal_contributors[x].n1;
|
|
|
|
int in_x = x - filter_pixel_margin;
|
|
int in_pixel_index = in_x * 1;
|
|
int max_n = n1;
|
|
int coefficient_group = coefficient_width * x;
|
|
|
|
for (k = n0; k <= max_n; k++)
|
|
{
|
|
int out_pixel_index = k * 1;
|
|
float coefficient = horizontal_coefficients[coefficient_group + k - n0];
|
|
output_buffer[out_pixel_index + 0] += decode_buffer[in_pixel_index + 0] * coefficient;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 2:
|
|
for (x = 0; x < max_x; x++)
|
|
{
|
|
int n0 = horizontal_contributors[x].n0;
|
|
int n1 = horizontal_contributors[x].n1;
|
|
|
|
int in_x = x - filter_pixel_margin;
|
|
int in_pixel_index = in_x * 2;
|
|
int max_n = n1;
|
|
int coefficient_group = coefficient_width * x;
|
|
|
|
for (k = n0; k <= max_n; k++)
|
|
{
|
|
int out_pixel_index = k * 2;
|
|
float coefficient = horizontal_coefficients[coefficient_group + k - n0];
|
|
output_buffer[out_pixel_index + 0] += decode_buffer[in_pixel_index + 0] * coefficient;
|
|
output_buffer[out_pixel_index + 1] += decode_buffer[in_pixel_index + 1] * coefficient;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 3:
|
|
for (x = 0; x < max_x; x++)
|
|
{
|
|
int n0 = horizontal_contributors[x].n0;
|
|
int n1 = horizontal_contributors[x].n1;
|
|
|
|
int in_x = x - filter_pixel_margin;
|
|
int in_pixel_index = in_x * 3;
|
|
int max_n = n1;
|
|
int coefficient_group = coefficient_width * x;
|
|
|
|
for (k = n0; k <= max_n; k++)
|
|
{
|
|
int out_pixel_index = k * 3;
|
|
float coefficient = horizontal_coefficients[coefficient_group + k - n0];
|
|
output_buffer[out_pixel_index + 0] += decode_buffer[in_pixel_index + 0] * coefficient;
|
|
output_buffer[out_pixel_index + 1] += decode_buffer[in_pixel_index + 1] * coefficient;
|
|
output_buffer[out_pixel_index + 2] += decode_buffer[in_pixel_index + 2] * coefficient;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 4:
|
|
for (x = 0; x < max_x; x++)
|
|
{
|
|
int n0 = horizontal_contributors[x].n0;
|
|
int n1 = horizontal_contributors[x].n1;
|
|
|
|
int in_x = x - filter_pixel_margin;
|
|
int in_pixel_index = in_x * 4;
|
|
int max_n = n1;
|
|
int coefficient_group = coefficient_width * x;
|
|
|
|
for (k = n0; k <= max_n; k++)
|
|
{
|
|
int out_pixel_index = k * 4;
|
|
float coefficient = horizontal_coefficients[coefficient_group + k - n0];
|
|
output_buffer[out_pixel_index + 0] += decode_buffer[in_pixel_index + 0] * coefficient;
|
|
output_buffer[out_pixel_index + 1] += decode_buffer[in_pixel_index + 1] * coefficient;
|
|
output_buffer[out_pixel_index + 2] += decode_buffer[in_pixel_index + 2] * coefficient;
|
|
output_buffer[out_pixel_index + 3] += decode_buffer[in_pixel_index + 3] * coefficient;
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
for (x = 0; x < max_x; x++)
|
|
{
|
|
int n0 = horizontal_contributors[x].n0;
|
|
int n1 = horizontal_contributors[x].n1;
|
|
|
|
int in_x = x - filter_pixel_margin;
|
|
int in_pixel_index = in_x * channels;
|
|
int max_n = n1;
|
|
int coefficient_group = coefficient_width * x;
|
|
|
|
for (k = n0; k <= max_n; k++)
|
|
{
|
|
int c;
|
|
int out_pixel_index = k * channels;
|
|
float coefficient = horizontal_coefficients[coefficient_group + k - n0];
|
|
for (c = 0; c < channels; c++)
|
|
output_buffer[out_pixel_index + c] += decode_buffer[in_pixel_index + c] * coefficient;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void stbir__decode_and_resample_upsample(stbir__info *stbir_info, int n)
|
|
{
|
|
// Decode the nth scanline from the source image into the decode buffer.
|
|
stbir__decode_scanline(stbir_info, n);
|
|
|
|
// Now resample it into the ring buffer.
|
|
if (stbir__use_width_upsampling(stbir_info))
|
|
stbir__resample_horizontal_upsample(stbir_info, stbir__add_empty_ring_buffer_entry(stbir_info, n));
|
|
else
|
|
stbir__resample_horizontal_downsample(stbir_info, stbir__add_empty_ring_buffer_entry(stbir_info, n));
|
|
|
|
// Now it's sitting in the ring buffer ready to be used as source for the vertical sampling.
|
|
}
|
|
|
|
static void stbir__decode_and_resample_downsample(stbir__info *stbir_info, int n)
|
|
{
|
|
// Decode the nth scanline from the source image into the decode buffer.
|
|
stbir__decode_scanline(stbir_info, n);
|
|
|
|
memset(stbir_info->horizontal_buffer, 0, stbir_info->output_w * stbir_info->channels * sizeof(float));
|
|
|
|
// Now resample it into the horizontal buffer.
|
|
if (stbir__use_width_upsampling(stbir_info))
|
|
stbir__resample_horizontal_upsample(stbir_info, stbir_info->horizontal_buffer);
|
|
else
|
|
stbir__resample_horizontal_downsample(stbir_info, stbir_info->horizontal_buffer);
|
|
|
|
// Now it's sitting in the horizontal buffer ready to be distributed into the ring buffers.
|
|
}
|
|
|
|
// Get the specified scan line from the ring buffer.
|
|
static float *stbir__get_ring_buffer_scanline(int get_scanline, float *ring_buffer, int begin_index, int first_scanline, int ring_buffer_num_entries, int ring_buffer_length)
|
|
{
|
|
int ring_buffer_index = (begin_index + (get_scanline - first_scanline)) % ring_buffer_num_entries;
|
|
return stbir__get_ring_buffer_entry(ring_buffer, ring_buffer_index, ring_buffer_length);
|
|
}
|
|
|
|
static void stbir__encode_scanline(stbir__info *stbir_info, int num_pixels, void *output_buffer, float *encode_buffer, int channels, int alpha_channel, int decode)
|
|
{
|
|
int x;
|
|
int n;
|
|
int num_nonalpha;
|
|
stbir_uint16 nonalpha[STBIR_MAX_CHANNELS];
|
|
|
|
if (!(stbir_info->flags & STBIR_FLAG_ALPHA_PREMULTIPLIED))
|
|
{
|
|
for (x = 0; x < num_pixels; ++x)
|
|
{
|
|
int pixel_index = x * channels;
|
|
|
|
float alpha = encode_buffer[pixel_index + alpha_channel];
|
|
float reciprocal_alpha = alpha ? 1.0f / alpha : 0;
|
|
|
|
// unrolling this produced a 1% slowdown upscaling a large RGBA linear-space image on my machine - stb
|
|
for (n = 0; n < channels; n++)
|
|
if (n != alpha_channel)
|
|
encode_buffer[pixel_index + n] *= reciprocal_alpha;
|
|
|
|
// We added in a small epsilon to prevent the color channel from being deleted with zero alpha.
|
|
// Because we only add it for integer types, it will automatically be discarded on integer
|
|
// conversion, so we don't need to subtract it back out (which would be problematic for
|
|
// numeric precision reasons).
|
|
}
|
|
}
|
|
|
|
// build a table of all channels that need colorspace correction, so
|
|
// we don't perform colorspace correction on channels that don't need it.
|
|
for (x = 0, num_nonalpha = 0; x < channels; ++x)
|
|
{
|
|
if (x != alpha_channel || (stbir_info->flags & STBIR_FLAG_ALPHA_USES_COLORSPACE))
|
|
{
|
|
nonalpha[num_nonalpha++] = (stbir_uint16)x;
|
|
}
|
|
}
|
|
|
|
#define STBIR__ROUND_INT(f) ((int)((f) + 0.5))
|
|
#define STBIR__ROUND_UINT(f) ((stbir_uint32)((f) + 0.5))
|
|
|
|
#ifdef STBIR__SATURATE_INT
|
|
#define STBIR__ENCODE_LINEAR8(f) stbir__saturate8(STBIR__ROUND_INT((f)*stbir__max_uint8_as_float))
|
|
#define STBIR__ENCODE_LINEAR16(f) stbir__saturate16(STBIR__ROUND_INT((f)*stbir__max_uint16_as_float))
|
|
#else
|
|
#define STBIR__ENCODE_LINEAR8(f) (unsigned char)STBIR__ROUND_INT(stbir__saturate(f) * stbir__max_uint8_as_float)
|
|
#define STBIR__ENCODE_LINEAR16(f) (unsigned short)STBIR__ROUND_INT(stbir__saturate(f) * stbir__max_uint16_as_float)
|
|
#endif
|
|
|
|
switch (decode)
|
|
{
|
|
case STBIR__DECODE(STBIR_TYPE_UINT8, STBIR_COLORSPACE_LINEAR):
|
|
for (x = 0; x < num_pixels; ++x)
|
|
{
|
|
int pixel_index = x * channels;
|
|
|
|
for (n = 0; n < channels; n++)
|
|
{
|
|
int index = pixel_index + n;
|
|
((unsigned char *)output_buffer)[index] = STBIR__ENCODE_LINEAR8(encode_buffer[index]);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case STBIR__DECODE(STBIR_TYPE_UINT8, STBIR_COLORSPACE_SRGB):
|
|
for (x = 0; x < num_pixels; ++x)
|
|
{
|
|
int pixel_index = x * channels;
|
|
|
|
for (n = 0; n < num_nonalpha; n++)
|
|
{
|
|
int index = pixel_index + nonalpha[n];
|
|
((unsigned char *)output_buffer)[index] = stbir__linear_to_srgb_uchar(encode_buffer[index]);
|
|
}
|
|
|
|
if (!(stbir_info->flags & STBIR_FLAG_ALPHA_USES_COLORSPACE))
|
|
((unsigned char *)output_buffer)[pixel_index + alpha_channel] = STBIR__ENCODE_LINEAR8(encode_buffer[pixel_index + alpha_channel]);
|
|
}
|
|
break;
|
|
|
|
case STBIR__DECODE(STBIR_TYPE_UINT16, STBIR_COLORSPACE_LINEAR):
|
|
for (x = 0; x < num_pixels; ++x)
|
|
{
|
|
int pixel_index = x * channels;
|
|
|
|
for (n = 0; n < channels; n++)
|
|
{
|
|
int index = pixel_index + n;
|
|
((unsigned short *)output_buffer)[index] = STBIR__ENCODE_LINEAR16(encode_buffer[index]);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case STBIR__DECODE(STBIR_TYPE_UINT16, STBIR_COLORSPACE_SRGB):
|
|
for (x = 0; x < num_pixels; ++x)
|
|
{
|
|
int pixel_index = x * channels;
|
|
|
|
for (n = 0; n < num_nonalpha; n++)
|
|
{
|
|
int index = pixel_index + nonalpha[n];
|
|
((unsigned short *)output_buffer)[index] = (unsigned short)STBIR__ROUND_INT(stbir__linear_to_srgb(stbir__saturate(encode_buffer[index])) * stbir__max_uint16_as_float);
|
|
}
|
|
|
|
if (!(stbir_info->flags & STBIR_FLAG_ALPHA_USES_COLORSPACE))
|
|
((unsigned short *)output_buffer)[pixel_index + alpha_channel] = STBIR__ENCODE_LINEAR16(encode_buffer[pixel_index + alpha_channel]);
|
|
}
|
|
|
|
break;
|
|
|
|
case STBIR__DECODE(STBIR_TYPE_UINT32, STBIR_COLORSPACE_LINEAR):
|
|
for (x = 0; x < num_pixels; ++x)
|
|
{
|
|
int pixel_index = x * channels;
|
|
|
|
for (n = 0; n < channels; n++)
|
|
{
|
|
int index = pixel_index + n;
|
|
((unsigned int *)output_buffer)[index] = (unsigned int)STBIR__ROUND_UINT(((double)stbir__saturate(encode_buffer[index])) * stbir__max_uint32_as_float);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case STBIR__DECODE(STBIR_TYPE_UINT32, STBIR_COLORSPACE_SRGB):
|
|
for (x = 0; x < num_pixels; ++x)
|
|
{
|
|
int pixel_index = x * channels;
|
|
|
|
for (n = 0; n < num_nonalpha; n++)
|
|
{
|
|
int index = pixel_index + nonalpha[n];
|
|
((unsigned int *)output_buffer)[index] = (unsigned int)STBIR__ROUND_UINT(((double)stbir__linear_to_srgb(stbir__saturate(encode_buffer[index]))) * stbir__max_uint32_as_float);
|
|
}
|
|
|
|
if (!(stbir_info->flags & STBIR_FLAG_ALPHA_USES_COLORSPACE))
|
|
((unsigned int *)output_buffer)[pixel_index + alpha_channel] = (unsigned int)STBIR__ROUND_INT(((double)stbir__saturate(encode_buffer[pixel_index + alpha_channel])) * stbir__max_uint32_as_float);
|
|
}
|
|
break;
|
|
|
|
case STBIR__DECODE(STBIR_TYPE_FLOAT, STBIR_COLORSPACE_LINEAR):
|
|
for (x = 0; x < num_pixels; ++x)
|
|
{
|
|
int pixel_index = x * channels;
|
|
|
|
for (n = 0; n < channels; n++)
|
|
{
|
|
int index = pixel_index + n;
|
|
((float *)output_buffer)[index] = encode_buffer[index];
|
|
}
|
|
}
|
|
break;
|
|
|
|
case STBIR__DECODE(STBIR_TYPE_FLOAT, STBIR_COLORSPACE_SRGB):
|
|
for (x = 0; x < num_pixels; ++x)
|
|
{
|
|
int pixel_index = x * channels;
|
|
|
|
for (n = 0; n < num_nonalpha; n++)
|
|
{
|
|
int index = pixel_index + nonalpha[n];
|
|
((float *)output_buffer)[index] = stbir__linear_to_srgb(encode_buffer[index]);
|
|
}
|
|
|
|
if (!(stbir_info->flags & STBIR_FLAG_ALPHA_USES_COLORSPACE))
|
|
((float *)output_buffer)[pixel_index + alpha_channel] = encode_buffer[pixel_index + alpha_channel];
|
|
}
|
|
break;
|
|
|
|
default:
|
|
STBIR_ASSERT(!"Unknown type/colorspace/channels combination.");
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void stbir__resample_vertical_upsample(stbir__info *stbir_info, int n)
|
|
{
|
|
int x, k;
|
|
int output_w = stbir_info->output_w;
|
|
stbir__contributors *vertical_contributors = stbir_info->vertical_contributors;
|
|
float *vertical_coefficients = stbir_info->vertical_coefficients;
|
|
int channels = stbir_info->channels;
|
|
int alpha_channel = stbir_info->alpha_channel;
|
|
int type = stbir_info->type;
|
|
int colorspace = stbir_info->colorspace;
|
|
int ring_buffer_entries = stbir_info->ring_buffer_num_entries;
|
|
void *output_data = stbir_info->output_data;
|
|
float *encode_buffer = stbir_info->encode_buffer;
|
|
int decode = STBIR__DECODE(type, colorspace);
|
|
int coefficient_width = stbir_info->vertical_coefficient_width;
|
|
int coefficient_counter;
|
|
int contributor = n;
|
|
|
|
float *ring_buffer = stbir_info->ring_buffer;
|
|
int ring_buffer_begin_index = stbir_info->ring_buffer_begin_index;
|
|
int ring_buffer_first_scanline = stbir_info->ring_buffer_first_scanline;
|
|
int ring_buffer_length = stbir_info->ring_buffer_length_bytes / sizeof(float);
|
|
|
|
int n0, n1, output_row_start;
|
|
int coefficient_group = coefficient_width * contributor;
|
|
|
|
n0 = vertical_contributors[contributor].n0;
|
|
n1 = vertical_contributors[contributor].n1;
|
|
|
|
output_row_start = n * stbir_info->output_stride_bytes;
|
|
|
|
STBIR_ASSERT(stbir__use_height_upsampling(stbir_info));
|
|
|
|
memset(encode_buffer, 0, output_w * sizeof(float) * channels);
|
|
|
|
// I tried reblocking this for better cache usage of encode_buffer
|
|
// (using x_outer, k, x_inner), but it lost speed. -- stb
|
|
|
|
coefficient_counter = 0;
|
|
switch (channels)
|
|
{
|
|
case 1:
|
|
for (k = n0; k <= n1; k++)
|
|
{
|
|
int coefficient_index = coefficient_counter++;
|
|
float *ring_buffer_entry = stbir__get_ring_buffer_scanline(k, ring_buffer, ring_buffer_begin_index, ring_buffer_first_scanline, ring_buffer_entries, ring_buffer_length);
|
|
float coefficient = vertical_coefficients[coefficient_group + coefficient_index];
|
|
for (x = 0; x < output_w; ++x)
|
|
{
|
|
int in_pixel_index = x * 1;
|
|
encode_buffer[in_pixel_index + 0] += ring_buffer_entry[in_pixel_index + 0] * coefficient;
|
|
}
|
|
}
|
|
break;
|
|
case 2:
|
|
for (k = n0; k <= n1; k++)
|
|
{
|
|
int coefficient_index = coefficient_counter++;
|
|
float *ring_buffer_entry = stbir__get_ring_buffer_scanline(k, ring_buffer, ring_buffer_begin_index, ring_buffer_first_scanline, ring_buffer_entries, ring_buffer_length);
|
|
float coefficient = vertical_coefficients[coefficient_group + coefficient_index];
|
|
for (x = 0; x < output_w; ++x)
|
|
{
|
|
int in_pixel_index = x * 2;
|
|
encode_buffer[in_pixel_index + 0] += ring_buffer_entry[in_pixel_index + 0] * coefficient;
|
|
encode_buffer[in_pixel_index + 1] += ring_buffer_entry[in_pixel_index + 1] * coefficient;
|
|
}
|
|
}
|
|
break;
|
|
case 3:
|
|
for (k = n0; k <= n1; k++)
|
|
{
|
|
int coefficient_index = coefficient_counter++;
|
|
float *ring_buffer_entry = stbir__get_ring_buffer_scanline(k, ring_buffer, ring_buffer_begin_index, ring_buffer_first_scanline, ring_buffer_entries, ring_buffer_length);
|
|
float coefficient = vertical_coefficients[coefficient_group + coefficient_index];
|
|
for (x = 0; x < output_w; ++x)
|
|
{
|
|
int in_pixel_index = x * 3;
|
|
encode_buffer[in_pixel_index + 0] += ring_buffer_entry[in_pixel_index + 0] * coefficient;
|
|
encode_buffer[in_pixel_index + 1] += ring_buffer_entry[in_pixel_index + 1] * coefficient;
|
|
encode_buffer[in_pixel_index + 2] += ring_buffer_entry[in_pixel_index + 2] * coefficient;
|
|
}
|
|
}
|
|
break;
|
|
case 4:
|
|
for (k = n0; k <= n1; k++)
|
|
{
|
|
int coefficient_index = coefficient_counter++;
|
|
float *ring_buffer_entry = stbir__get_ring_buffer_scanline(k, ring_buffer, ring_buffer_begin_index, ring_buffer_first_scanline, ring_buffer_entries, ring_buffer_length);
|
|
float coefficient = vertical_coefficients[coefficient_group + coefficient_index];
|
|
for (x = 0; x < output_w; ++x)
|
|
{
|
|
int in_pixel_index = x * 4;
|
|
encode_buffer[in_pixel_index + 0] += ring_buffer_entry[in_pixel_index + 0] * coefficient;
|
|
encode_buffer[in_pixel_index + 1] += ring_buffer_entry[in_pixel_index + 1] * coefficient;
|
|
encode_buffer[in_pixel_index + 2] += ring_buffer_entry[in_pixel_index + 2] * coefficient;
|
|
encode_buffer[in_pixel_index + 3] += ring_buffer_entry[in_pixel_index + 3] * coefficient;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
for (k = n0; k <= n1; k++)
|
|
{
|
|
int coefficient_index = coefficient_counter++;
|
|
float *ring_buffer_entry = stbir__get_ring_buffer_scanline(k, ring_buffer, ring_buffer_begin_index, ring_buffer_first_scanline, ring_buffer_entries, ring_buffer_length);
|
|
float coefficient = vertical_coefficients[coefficient_group + coefficient_index];
|
|
for (x = 0; x < output_w; ++x)
|
|
{
|
|
int in_pixel_index = x * channels;
|
|
int c;
|
|
for (c = 0; c < channels; c++)
|
|
encode_buffer[in_pixel_index + c] += ring_buffer_entry[in_pixel_index + c] * coefficient;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
stbir__encode_scanline(stbir_info, output_w, (char *)output_data + output_row_start, encode_buffer, channels, alpha_channel, decode);
|
|
}
|
|
|
|
static void stbir__resample_vertical_downsample(stbir__info *stbir_info, int n)
|
|
{
|
|
int x, k;
|
|
int output_w = stbir_info->output_w;
|
|
stbir__contributors *vertical_contributors = stbir_info->vertical_contributors;
|
|
float *vertical_coefficients = stbir_info->vertical_coefficients;
|
|
int channels = stbir_info->channels;
|
|
int ring_buffer_entries = stbir_info->ring_buffer_num_entries;
|
|
float *horizontal_buffer = stbir_info->horizontal_buffer;
|
|
int coefficient_width = stbir_info->vertical_coefficient_width;
|
|
int contributor = n + stbir_info->vertical_filter_pixel_margin;
|
|
|
|
float *ring_buffer = stbir_info->ring_buffer;
|
|
int ring_buffer_begin_index = stbir_info->ring_buffer_begin_index;
|
|
int ring_buffer_first_scanline = stbir_info->ring_buffer_first_scanline;
|
|
int ring_buffer_length = stbir_info->ring_buffer_length_bytes / sizeof(float);
|
|
int n0, n1;
|
|
|
|
n0 = vertical_contributors[contributor].n0;
|
|
n1 = vertical_contributors[contributor].n1;
|
|
|
|
STBIR_ASSERT(!stbir__use_height_upsampling(stbir_info));
|
|
|
|
for (k = n0; k <= n1; k++)
|
|
{
|
|
int coefficient_index = k - n0;
|
|
int coefficient_group = coefficient_width * contributor;
|
|
float coefficient = vertical_coefficients[coefficient_group + coefficient_index];
|
|
|
|
float *ring_buffer_entry = stbir__get_ring_buffer_scanline(k, ring_buffer, ring_buffer_begin_index, ring_buffer_first_scanline, ring_buffer_entries, ring_buffer_length);
|
|
|
|
switch (channels)
|
|
{
|
|
case 1:
|
|
for (x = 0; x < output_w; x++)
|
|
{
|
|
int in_pixel_index = x * 1;
|
|
ring_buffer_entry[in_pixel_index + 0] += horizontal_buffer[in_pixel_index + 0] * coefficient;
|
|
}
|
|
break;
|
|
case 2:
|
|
for (x = 0; x < output_w; x++)
|
|
{
|
|
int in_pixel_index = x * 2;
|
|
ring_buffer_entry[in_pixel_index + 0] += horizontal_buffer[in_pixel_index + 0] * coefficient;
|
|
ring_buffer_entry[in_pixel_index + 1] += horizontal_buffer[in_pixel_index + 1] * coefficient;
|
|
}
|
|
break;
|
|
case 3:
|
|
for (x = 0; x < output_w; x++)
|
|
{
|
|
int in_pixel_index = x * 3;
|
|
ring_buffer_entry[in_pixel_index + 0] += horizontal_buffer[in_pixel_index + 0] * coefficient;
|
|
ring_buffer_entry[in_pixel_index + 1] += horizontal_buffer[in_pixel_index + 1] * coefficient;
|
|
ring_buffer_entry[in_pixel_index + 2] += horizontal_buffer[in_pixel_index + 2] * coefficient;
|
|
}
|
|
break;
|
|
case 4:
|
|
for (x = 0; x < output_w; x++)
|
|
{
|
|
int in_pixel_index = x * 4;
|
|
ring_buffer_entry[in_pixel_index + 0] += horizontal_buffer[in_pixel_index + 0] * coefficient;
|
|
ring_buffer_entry[in_pixel_index + 1] += horizontal_buffer[in_pixel_index + 1] * coefficient;
|
|
ring_buffer_entry[in_pixel_index + 2] += horizontal_buffer[in_pixel_index + 2] * coefficient;
|
|
ring_buffer_entry[in_pixel_index + 3] += horizontal_buffer[in_pixel_index + 3] * coefficient;
|
|
}
|
|
break;
|
|
default:
|
|
for (x = 0; x < output_w; x++)
|
|
{
|
|
int in_pixel_index = x * channels;
|
|
|
|
int c;
|
|
for (c = 0; c < channels; c++)
|
|
ring_buffer_entry[in_pixel_index + c] += horizontal_buffer[in_pixel_index + c] * coefficient;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void stbir__buffer_loop_upsample(stbir__info *stbir_info)
|
|
{
|
|
int y;
|
|
float scale_ratio = stbir_info->vertical_scale;
|
|
float out_scanlines_radius = stbir__filter_info_table[stbir_info->vertical_filter].support(1 / scale_ratio) * scale_ratio;
|
|
|
|
STBIR_ASSERT(stbir__use_height_upsampling(stbir_info));
|
|
|
|
for (y = 0; y < stbir_info->output_h; y++)
|
|
{
|
|
float in_center_of_out = 0; // Center of the current out scanline in the in scanline space
|
|
int in_first_scanline = 0, in_last_scanline = 0;
|
|
|
|
stbir__calculate_sample_range_upsample(y, out_scanlines_radius, scale_ratio, stbir_info->vertical_shift, &in_first_scanline, &in_last_scanline, &in_center_of_out);
|
|
|
|
STBIR_ASSERT(in_last_scanline - in_first_scanline + 1 <= stbir_info->ring_buffer_num_entries);
|
|
|
|
if (stbir_info->ring_buffer_begin_index >= 0)
|
|
{
|
|
// Get rid of whatever we don't need anymore.
|
|
while (in_first_scanline > stbir_info->ring_buffer_first_scanline)
|
|
{
|
|
if (stbir_info->ring_buffer_first_scanline == stbir_info->ring_buffer_last_scanline)
|
|
{
|
|
// We just popped the last scanline off the ring buffer.
|
|
// Reset it to the empty state.
|
|
stbir_info->ring_buffer_begin_index = -1;
|
|
stbir_info->ring_buffer_first_scanline = 0;
|
|
stbir_info->ring_buffer_last_scanline = 0;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
stbir_info->ring_buffer_first_scanline++;
|
|
stbir_info->ring_buffer_begin_index = (stbir_info->ring_buffer_begin_index + 1) % stbir_info->ring_buffer_num_entries;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Load in new ones.
|
|
if (stbir_info->ring_buffer_begin_index < 0)
|
|
stbir__decode_and_resample_upsample(stbir_info, in_first_scanline);
|
|
|
|
while (in_last_scanline > stbir_info->ring_buffer_last_scanline)
|
|
stbir__decode_and_resample_upsample(stbir_info, stbir_info->ring_buffer_last_scanline + 1);
|
|
|
|
// Now all buffers should be ready to write a row of vertical sampling.
|
|
stbir__resample_vertical_upsample(stbir_info, y);
|
|
|
|
STBIR_PROGRESS_REPORT((float)y / stbir_info->output_h);
|
|
}
|
|
}
|
|
|
|
static void stbir__empty_ring_buffer(stbir__info *stbir_info, int first_necessary_scanline)
|
|
{
|
|
int output_stride_bytes = stbir_info->output_stride_bytes;
|
|
int channels = stbir_info->channels;
|
|
int alpha_channel = stbir_info->alpha_channel;
|
|
int type = stbir_info->type;
|
|
int colorspace = stbir_info->colorspace;
|
|
int output_w = stbir_info->output_w;
|
|
void *output_data = stbir_info->output_data;
|
|
int decode = STBIR__DECODE(type, colorspace);
|
|
|
|
float *ring_buffer = stbir_info->ring_buffer;
|
|
int ring_buffer_length = stbir_info->ring_buffer_length_bytes / sizeof(float);
|
|
|
|
if (stbir_info->ring_buffer_begin_index >= 0)
|
|
{
|
|
// Get rid of whatever we don't need anymore.
|
|
while (first_necessary_scanline > stbir_info->ring_buffer_first_scanline)
|
|
{
|
|
if (stbir_info->ring_buffer_first_scanline >= 0 && stbir_info->ring_buffer_first_scanline < stbir_info->output_h)
|
|
{
|
|
int output_row_start = stbir_info->ring_buffer_first_scanline * output_stride_bytes;
|
|
float *ring_buffer_entry = stbir__get_ring_buffer_entry(ring_buffer, stbir_info->ring_buffer_begin_index, ring_buffer_length);
|
|
stbir__encode_scanline(stbir_info, output_w, (char *)output_data + output_row_start, ring_buffer_entry, channels, alpha_channel, decode);
|
|
STBIR_PROGRESS_REPORT((float)stbir_info->ring_buffer_first_scanline / stbir_info->output_h);
|
|
}
|
|
|
|
if (stbir_info->ring_buffer_first_scanline == stbir_info->ring_buffer_last_scanline)
|
|
{
|
|
// We just popped the last scanline off the ring buffer.
|
|
// Reset it to the empty state.
|
|
stbir_info->ring_buffer_begin_index = -1;
|
|
stbir_info->ring_buffer_first_scanline = 0;
|
|
stbir_info->ring_buffer_last_scanline = 0;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
stbir_info->ring_buffer_first_scanline++;
|
|
stbir_info->ring_buffer_begin_index = (stbir_info->ring_buffer_begin_index + 1) % stbir_info->ring_buffer_num_entries;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void stbir__buffer_loop_downsample(stbir__info *stbir_info)
|
|
{
|
|
int y;
|
|
float scale_ratio = stbir_info->vertical_scale;
|
|
int output_h = stbir_info->output_h;
|
|
float in_pixels_radius = stbir__filter_info_table[stbir_info->vertical_filter].support(scale_ratio) / scale_ratio;
|
|
int pixel_margin = stbir_info->vertical_filter_pixel_margin;
|
|
int max_y = stbir_info->input_h + pixel_margin;
|
|
|
|
STBIR_ASSERT(!stbir__use_height_upsampling(stbir_info));
|
|
|
|
for (y = -pixel_margin; y < max_y; y++)
|
|
{
|
|
float out_center_of_in; // Center of the current out scanline in the in scanline space
|
|
int out_first_scanline, out_last_scanline;
|
|
|
|
stbir__calculate_sample_range_downsample(y, in_pixels_radius, scale_ratio, stbir_info->vertical_shift, &out_first_scanline, &out_last_scanline, &out_center_of_in);
|
|
|
|
STBIR_ASSERT(out_last_scanline - out_first_scanline + 1 <= stbir_info->ring_buffer_num_entries);
|
|
|
|
if (out_last_scanline < 0 || out_first_scanline >= output_h)
|
|
continue;
|
|
|
|
stbir__empty_ring_buffer(stbir_info, out_first_scanline);
|
|
|
|
stbir__decode_and_resample_downsample(stbir_info, y);
|
|
|
|
// Load in new ones.
|
|
if (stbir_info->ring_buffer_begin_index < 0)
|
|
stbir__add_empty_ring_buffer_entry(stbir_info, out_first_scanline);
|
|
|
|
while (out_last_scanline > stbir_info->ring_buffer_last_scanline)
|
|
stbir__add_empty_ring_buffer_entry(stbir_info, stbir_info->ring_buffer_last_scanline + 1);
|
|
|
|
// Now the horizontal buffer is ready to write to all ring buffer rows.
|
|
stbir__resample_vertical_downsample(stbir_info, y);
|
|
}
|
|
|
|
stbir__empty_ring_buffer(stbir_info, stbir_info->output_h);
|
|
}
|
|
|
|
static void stbir__setup(stbir__info *info, int input_w, int input_h, int output_w, int output_h, int channels)
|
|
{
|
|
info->input_w = input_w;
|
|
info->input_h = input_h;
|
|
info->output_w = output_w;
|
|
info->output_h = output_h;
|
|
info->channels = channels;
|
|
}
|
|
|
|
static void stbir__calculate_transform(stbir__info *info, float s0, float t0, float s1, float t1, float *transform)
|
|
{
|
|
info->s0 = s0;
|
|
info->t0 = t0;
|
|
info->s1 = s1;
|
|
info->t1 = t1;
|
|
|
|
if (transform)
|
|
{
|
|
info->horizontal_scale = transform[0];
|
|
info->vertical_scale = transform[1];
|
|
info->horizontal_shift = transform[2];
|
|
info->vertical_shift = transform[3];
|
|
}
|
|
else
|
|
{
|
|
info->horizontal_scale = ((float)info->output_w / info->input_w) / (s1 - s0);
|
|
info->vertical_scale = ((float)info->output_h / info->input_h) / (t1 - t0);
|
|
|
|
info->horizontal_shift = s0 * info->output_w / (s1 - s0);
|
|
info->vertical_shift = t0 * info->output_h / (t1 - t0);
|
|
}
|
|
}
|
|
|
|
static void stbir__choose_filter(stbir__info *info, stbir_filter h_filter, stbir_filter v_filter)
|
|
{
|
|
if (h_filter == 0)
|
|
h_filter = stbir__use_upsampling(info->horizontal_scale) ? STBIR_DEFAULT_FILTER_UPSAMPLE : STBIR_DEFAULT_FILTER_DOWNSAMPLE;
|
|
if (v_filter == 0)
|
|
v_filter = stbir__use_upsampling(info->vertical_scale) ? STBIR_DEFAULT_FILTER_UPSAMPLE : STBIR_DEFAULT_FILTER_DOWNSAMPLE;
|
|
info->horizontal_filter = h_filter;
|
|
info->vertical_filter = v_filter;
|
|
}
|
|
|
|
static stbir_uint32 stbir__calculate_memory(stbir__info *info)
|
|
{
|
|
int pixel_margin = stbir__get_filter_pixel_margin(info->horizontal_filter, info->horizontal_scale);
|
|
int filter_height = stbir__get_filter_pixel_width(info->vertical_filter, info->vertical_scale);
|
|
|
|
info->horizontal_num_contributors = stbir__get_contributors(info->horizontal_scale, info->horizontal_filter, info->input_w, info->output_w);
|
|
info->vertical_num_contributors = stbir__get_contributors(info->vertical_scale, info->vertical_filter, info->input_h, info->output_h);
|
|
|
|
// One extra entry because floating point precision problems sometimes cause an extra to be necessary.
|
|
info->ring_buffer_num_entries = filter_height + 1;
|
|
|
|
info->horizontal_contributors_size = info->horizontal_num_contributors * sizeof(stbir__contributors);
|
|
info->horizontal_coefficients_size = stbir__get_total_horizontal_coefficients(info) * sizeof(float);
|
|
info->vertical_contributors_size = info->vertical_num_contributors * sizeof(stbir__contributors);
|
|
info->vertical_coefficients_size = stbir__get_total_vertical_coefficients(info) * sizeof(float);
|
|
info->decode_buffer_size = (info->input_w + pixel_margin * 2) * info->channels * sizeof(float);
|
|
info->horizontal_buffer_size = info->output_w * info->channels * sizeof(float);
|
|
info->ring_buffer_size = info->output_w * info->channels * info->ring_buffer_num_entries * sizeof(float);
|
|
info->encode_buffer_size = info->output_w * info->channels * sizeof(float);
|
|
|
|
STBIR_ASSERT(info->horizontal_filter != 0);
|
|
STBIR_ASSERT(info->horizontal_filter < STBIR__ARRAY_SIZE(stbir__filter_info_table)); // this now happens too late
|
|
STBIR_ASSERT(info->vertical_filter != 0);
|
|
STBIR_ASSERT(info->vertical_filter < STBIR__ARRAY_SIZE(stbir__filter_info_table)); // this now happens too late
|
|
|
|
if (stbir__use_height_upsampling(info))
|
|
// The horizontal buffer is for when we're downsampling the height and we
|
|
// can't output the result of sampling the decode buffer directly into the
|
|
// ring buffers.
|
|
info->horizontal_buffer_size = 0;
|
|
else
|
|
// The encode buffer is to retain precision in the height upsampling method
|
|
// and isn't used when height downsampling.
|
|
info->encode_buffer_size = 0;
|
|
|
|
return info->horizontal_contributors_size + info->horizontal_coefficients_size + info->vertical_contributors_size + info->vertical_coefficients_size + info->decode_buffer_size + info->horizontal_buffer_size + info->ring_buffer_size + info->encode_buffer_size;
|
|
}
|
|
|
|
static int stbir__resize_allocated(stbir__info *info,
|
|
const void *input_data, int input_stride_in_bytes,
|
|
void *output_data, int output_stride_in_bytes,
|
|
int alpha_channel, stbir_uint32 flags, stbir_datatype type,
|
|
stbir_edge edge_horizontal, stbir_edge edge_vertical, stbir_colorspace colorspace,
|
|
void *tempmem, size_t tempmem_size_in_bytes)
|
|
{
|
|
size_t memory_required = stbir__calculate_memory(info);
|
|
|
|
int width_stride_input = input_stride_in_bytes ? input_stride_in_bytes : info->channels * info->input_w * stbir__type_size[type];
|
|
int width_stride_output = output_stride_in_bytes ? output_stride_in_bytes : info->channels * info->output_w * stbir__type_size[type];
|
|
|
|
#ifdef STBIR_DEBUG_OVERWRITE_TEST
|
|
#define OVERWRITE_ARRAY_SIZE 8
|
|
unsigned char overwrite_output_before_pre[OVERWRITE_ARRAY_SIZE];
|
|
unsigned char overwrite_tempmem_before_pre[OVERWRITE_ARRAY_SIZE];
|
|
unsigned char overwrite_output_after_pre[OVERWRITE_ARRAY_SIZE];
|
|
unsigned char overwrite_tempmem_after_pre[OVERWRITE_ARRAY_SIZE];
|
|
|
|
size_t begin_forbidden = width_stride_output * (info->output_h - 1) + info->output_w * info->channels * stbir__type_size[type];
|
|
memcpy(overwrite_output_before_pre, &((unsigned char *)output_data)[-OVERWRITE_ARRAY_SIZE], OVERWRITE_ARRAY_SIZE);
|
|
memcpy(overwrite_output_after_pre, &((unsigned char *)output_data)[begin_forbidden], OVERWRITE_ARRAY_SIZE);
|
|
memcpy(overwrite_tempmem_before_pre, &((unsigned char *)tempmem)[-OVERWRITE_ARRAY_SIZE], OVERWRITE_ARRAY_SIZE);
|
|
memcpy(overwrite_tempmem_after_pre, &((unsigned char *)tempmem)[tempmem_size_in_bytes], OVERWRITE_ARRAY_SIZE);
|
|
#endif
|
|
|
|
STBIR_ASSERT(info->channels >= 0);
|
|
STBIR_ASSERT(info->channels <= STBIR_MAX_CHANNELS);
|
|
|
|
if (info->channels < 0 || info->channels > STBIR_MAX_CHANNELS)
|
|
return 0;
|
|
|
|
STBIR_ASSERT(info->horizontal_filter < STBIR__ARRAY_SIZE(stbir__filter_info_table));
|
|
STBIR_ASSERT(info->vertical_filter < STBIR__ARRAY_SIZE(stbir__filter_info_table));
|
|
|
|
if (info->horizontal_filter >= STBIR__ARRAY_SIZE(stbir__filter_info_table))
|
|
return 0;
|
|
if (info->vertical_filter >= STBIR__ARRAY_SIZE(stbir__filter_info_table))
|
|
return 0;
|
|
|
|
if (alpha_channel < 0)
|
|
flags |= STBIR_FLAG_ALPHA_USES_COLORSPACE | STBIR_FLAG_ALPHA_PREMULTIPLIED;
|
|
|
|
if (!(flags & STBIR_FLAG_ALPHA_USES_COLORSPACE) || !(flags & STBIR_FLAG_ALPHA_PREMULTIPLIED))
|
|
{
|
|
STBIR_ASSERT(alpha_channel >= 0 && alpha_channel < info->channels);
|
|
}
|
|
|
|
if (alpha_channel >= info->channels)
|
|
return 0;
|
|
|
|
STBIR_ASSERT(tempmem);
|
|
|
|
if (!tempmem)
|
|
return 0;
|
|
|
|
STBIR_ASSERT(tempmem_size_in_bytes >= memory_required);
|
|
|
|
if (tempmem_size_in_bytes < memory_required)
|
|
return 0;
|
|
|
|
memset(tempmem, 0, tempmem_size_in_bytes);
|
|
|
|
info->input_data = input_data;
|
|
info->input_stride_bytes = width_stride_input;
|
|
|
|
info->output_data = output_data;
|
|
info->output_stride_bytes = width_stride_output;
|
|
|
|
info->alpha_channel = alpha_channel;
|
|
info->flags = flags;
|
|
info->type = type;
|
|
info->edge_horizontal = edge_horizontal;
|
|
info->edge_vertical = edge_vertical;
|
|
info->colorspace = colorspace;
|
|
|
|
info->horizontal_coefficient_width = stbir__get_coefficient_width(info->horizontal_filter, info->horizontal_scale);
|
|
info->vertical_coefficient_width = stbir__get_coefficient_width(info->vertical_filter, info->vertical_scale);
|
|
info->horizontal_filter_pixel_width = stbir__get_filter_pixel_width(info->horizontal_filter, info->horizontal_scale);
|
|
info->vertical_filter_pixel_width = stbir__get_filter_pixel_width(info->vertical_filter, info->vertical_scale);
|
|
info->horizontal_filter_pixel_margin = stbir__get_filter_pixel_margin(info->horizontal_filter, info->horizontal_scale);
|
|
info->vertical_filter_pixel_margin = stbir__get_filter_pixel_margin(info->vertical_filter, info->vertical_scale);
|
|
|
|
info->ring_buffer_length_bytes = info->output_w * info->channels * sizeof(float);
|
|
info->decode_buffer_pixels = info->input_w + info->horizontal_filter_pixel_margin * 2;
|
|
|
|
#define STBIR__NEXT_MEMPTR(current, newtype) (newtype *)(((unsigned char *)current) + current##_size)
|
|
|
|
info->horizontal_contributors = (stbir__contributors *)tempmem;
|
|
info->horizontal_coefficients = STBIR__NEXT_MEMPTR(info->horizontal_contributors, float);
|
|
info->vertical_contributors = STBIR__NEXT_MEMPTR(info->horizontal_coefficients, stbir__contributors);
|
|
info->vertical_coefficients = STBIR__NEXT_MEMPTR(info->vertical_contributors, float);
|
|
info->decode_buffer = STBIR__NEXT_MEMPTR(info->vertical_coefficients, float);
|
|
|
|
if (stbir__use_height_upsampling(info))
|
|
{
|
|
info->horizontal_buffer = NULL;
|
|
info->ring_buffer = STBIR__NEXT_MEMPTR(info->decode_buffer, float);
|
|
info->encode_buffer = STBIR__NEXT_MEMPTR(info->ring_buffer, float);
|
|
|
|
STBIR_ASSERT((size_t)STBIR__NEXT_MEMPTR(info->encode_buffer, unsigned char) == (size_t)tempmem + tempmem_size_in_bytes);
|
|
}
|
|
else
|
|
{
|
|
info->horizontal_buffer = STBIR__NEXT_MEMPTR(info->decode_buffer, float);
|
|
info->ring_buffer = STBIR__NEXT_MEMPTR(info->horizontal_buffer, float);
|
|
info->encode_buffer = NULL;
|
|
|
|
STBIR_ASSERT((size_t)STBIR__NEXT_MEMPTR(info->ring_buffer, unsigned char) == (size_t)tempmem + tempmem_size_in_bytes);
|
|
}
|
|
|
|
#undef STBIR__NEXT_MEMPTR
|
|
|
|
// This signals that the ring buffer is empty
|
|
info->ring_buffer_begin_index = -1;
|
|
|
|
stbir__calculate_filters(info->horizontal_contributors, info->horizontal_coefficients, info->horizontal_filter, info->horizontal_scale, info->horizontal_shift, info->input_w, info->output_w);
|
|
stbir__calculate_filters(info->vertical_contributors, info->vertical_coefficients, info->vertical_filter, info->vertical_scale, info->vertical_shift, info->input_h, info->output_h);
|
|
|
|
STBIR_PROGRESS_REPORT(0);
|
|
|
|
if (stbir__use_height_upsampling(info))
|
|
stbir__buffer_loop_upsample(info);
|
|
else
|
|
stbir__buffer_loop_downsample(info);
|
|
|
|
STBIR_PROGRESS_REPORT(1);
|
|
|
|
#ifdef STBIR_DEBUG_OVERWRITE_TEST
|
|
STBIR_ASSERT(memcmp(overwrite_output_before_pre, &((unsigned char *)output_data)[-OVERWRITE_ARRAY_SIZE], OVERWRITE_ARRAY_SIZE) == 0);
|
|
STBIR_ASSERT(memcmp(overwrite_output_after_pre, &((unsigned char *)output_data)[begin_forbidden], OVERWRITE_ARRAY_SIZE) == 0);
|
|
STBIR_ASSERT(memcmp(overwrite_tempmem_before_pre, &((unsigned char *)tempmem)[-OVERWRITE_ARRAY_SIZE], OVERWRITE_ARRAY_SIZE) == 0);
|
|
STBIR_ASSERT(memcmp(overwrite_tempmem_after_pre, &((unsigned char *)tempmem)[tempmem_size_in_bytes], OVERWRITE_ARRAY_SIZE) == 0);
|
|
#endif
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int stbir__resize_arbitrary(
|
|
void *alloc_context,
|
|
const void *input_data, int input_w, int input_h, int input_stride_in_bytes,
|
|
void *output_data, int output_w, int output_h, int output_stride_in_bytes,
|
|
float s0, float t0, float s1, float t1, float *transform,
|
|
int channels, int alpha_channel, stbir_uint32 flags, stbir_datatype type,
|
|
stbir_filter h_filter, stbir_filter v_filter,
|
|
stbir_edge edge_horizontal, stbir_edge edge_vertical, stbir_colorspace colorspace)
|
|
{
|
|
stbir__info info;
|
|
int result;
|
|
size_t memory_required;
|
|
void *extra_memory;
|
|
|
|
stbir__setup(&info, input_w, input_h, output_w, output_h, channels);
|
|
stbir__calculate_transform(&info, s0, t0, s1, t1, transform);
|
|
stbir__choose_filter(&info, h_filter, v_filter);
|
|
memory_required = stbir__calculate_memory(&info);
|
|
extra_memory = STBIR_MALLOC(memory_required, alloc_context);
|
|
|
|
if (!extra_memory)
|
|
return 0;
|
|
|
|
result = stbir__resize_allocated(&info, input_data, input_stride_in_bytes,
|
|
output_data, output_stride_in_bytes,
|
|
alpha_channel, flags, type,
|
|
edge_horizontal, edge_vertical,
|
|
colorspace, extra_memory, memory_required);
|
|
|
|
STBIR_FREE(extra_memory, alloc_context);
|
|
|
|
return result;
|
|
}
|
|
|
|
STBIRDEF int stbir_resize_uint8(const unsigned char *input_pixels, int input_w, int input_h, int input_stride_in_bytes,
|
|
unsigned char *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
int num_channels)
|
|
{
|
|
return stbir__resize_arbitrary(NULL, input_pixels, input_w, input_h, input_stride_in_bytes,
|
|
output_pixels, output_w, output_h, output_stride_in_bytes,
|
|
0, 0, 1, 1, NULL, num_channels, -1, 0, STBIR_TYPE_UINT8, STBIR_FILTER_DEFAULT, STBIR_FILTER_DEFAULT,
|
|
STBIR_EDGE_CLAMP, STBIR_EDGE_CLAMP, STBIR_COLORSPACE_LINEAR);
|
|
}
|
|
|
|
STBIRDEF int stbir_resize_float(const float *input_pixels, int input_w, int input_h, int input_stride_in_bytes,
|
|
float *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
int num_channels)
|
|
{
|
|
return stbir__resize_arbitrary(NULL, input_pixels, input_w, input_h, input_stride_in_bytes,
|
|
output_pixels, output_w, output_h, output_stride_in_bytes,
|
|
0, 0, 1, 1, NULL, num_channels, -1, 0, STBIR_TYPE_FLOAT, STBIR_FILTER_DEFAULT, STBIR_FILTER_DEFAULT,
|
|
STBIR_EDGE_CLAMP, STBIR_EDGE_CLAMP, STBIR_COLORSPACE_LINEAR);
|
|
}
|
|
|
|
STBIRDEF int stbir_resize_uint8_srgb(const unsigned char *input_pixels, int input_w, int input_h, int input_stride_in_bytes,
|
|
unsigned char *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
int num_channels, int alpha_channel, int flags)
|
|
{
|
|
return stbir__resize_arbitrary(NULL, input_pixels, input_w, input_h, input_stride_in_bytes,
|
|
output_pixels, output_w, output_h, output_stride_in_bytes,
|
|
0, 0, 1, 1, NULL, num_channels, alpha_channel, flags, STBIR_TYPE_UINT8, STBIR_FILTER_DEFAULT, STBIR_FILTER_DEFAULT,
|
|
STBIR_EDGE_CLAMP, STBIR_EDGE_CLAMP, STBIR_COLORSPACE_SRGB);
|
|
}
|
|
|
|
STBIRDEF int stbir_resize_uint8_srgb_edgemode(const unsigned char *input_pixels, int input_w, int input_h, int input_stride_in_bytes,
|
|
unsigned char *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
int num_channels, int alpha_channel, int flags,
|
|
stbir_edge edge_wrap_mode)
|
|
{
|
|
return stbir__resize_arbitrary(NULL, input_pixels, input_w, input_h, input_stride_in_bytes,
|
|
output_pixels, output_w, output_h, output_stride_in_bytes,
|
|
0, 0, 1, 1, NULL, num_channels, alpha_channel, flags, STBIR_TYPE_UINT8, STBIR_FILTER_DEFAULT, STBIR_FILTER_DEFAULT,
|
|
edge_wrap_mode, edge_wrap_mode, STBIR_COLORSPACE_SRGB);
|
|
}
|
|
|
|
STBIRDEF int stbir_resize_uint8_generic(const unsigned char *input_pixels, int input_w, int input_h, int input_stride_in_bytes,
|
|
unsigned char *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
int num_channels, int alpha_channel, int flags,
|
|
stbir_edge edge_wrap_mode, stbir_filter filter, stbir_colorspace space,
|
|
void *alloc_context)
|
|
{
|
|
return stbir__resize_arbitrary(alloc_context, input_pixels, input_w, input_h, input_stride_in_bytes,
|
|
output_pixels, output_w, output_h, output_stride_in_bytes,
|
|
0, 0, 1, 1, NULL, num_channels, alpha_channel, flags, STBIR_TYPE_UINT8, filter, filter,
|
|
edge_wrap_mode, edge_wrap_mode, space);
|
|
}
|
|
|
|
STBIRDEF int stbir_resize_uint16_generic(const stbir_uint16 *input_pixels, int input_w, int input_h, int input_stride_in_bytes,
|
|
stbir_uint16 *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
int num_channels, int alpha_channel, int flags,
|
|
stbir_edge edge_wrap_mode, stbir_filter filter, stbir_colorspace space,
|
|
void *alloc_context)
|
|
{
|
|
return stbir__resize_arbitrary(alloc_context, input_pixels, input_w, input_h, input_stride_in_bytes,
|
|
output_pixels, output_w, output_h, output_stride_in_bytes,
|
|
0, 0, 1, 1, NULL, num_channels, alpha_channel, flags, STBIR_TYPE_UINT16, filter, filter,
|
|
edge_wrap_mode, edge_wrap_mode, space);
|
|
}
|
|
|
|
STBIRDEF int stbir_resize_float_generic(const float *input_pixels, int input_w, int input_h, int input_stride_in_bytes,
|
|
float *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
int num_channels, int alpha_channel, int flags,
|
|
stbir_edge edge_wrap_mode, stbir_filter filter, stbir_colorspace space,
|
|
void *alloc_context)
|
|
{
|
|
return stbir__resize_arbitrary(alloc_context, input_pixels, input_w, input_h, input_stride_in_bytes,
|
|
output_pixels, output_w, output_h, output_stride_in_bytes,
|
|
0, 0, 1, 1, NULL, num_channels, alpha_channel, flags, STBIR_TYPE_FLOAT, filter, filter,
|
|
edge_wrap_mode, edge_wrap_mode, space);
|
|
}
|
|
|
|
STBIRDEF int stbir_resize(const void *input_pixels, int input_w, int input_h, int input_stride_in_bytes,
|
|
void *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
stbir_datatype datatype,
|
|
int num_channels, int alpha_channel, int flags,
|
|
stbir_edge edge_mode_horizontal, stbir_edge edge_mode_vertical,
|
|
stbir_filter filter_horizontal, stbir_filter filter_vertical,
|
|
stbir_colorspace space, void *alloc_context)
|
|
{
|
|
return stbir__resize_arbitrary(alloc_context, input_pixels, input_w, input_h, input_stride_in_bytes,
|
|
output_pixels, output_w, output_h, output_stride_in_bytes,
|
|
0, 0, 1, 1, NULL, num_channels, alpha_channel, flags, datatype, filter_horizontal, filter_vertical,
|
|
edge_mode_horizontal, edge_mode_vertical, space);
|
|
}
|
|
|
|
STBIRDEF int stbir_resize_subpixel(const void *input_pixels, int input_w, int input_h, int input_stride_in_bytes,
|
|
void *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
stbir_datatype datatype,
|
|
int num_channels, int alpha_channel, int flags,
|
|
stbir_edge edge_mode_horizontal, stbir_edge edge_mode_vertical,
|
|
stbir_filter filter_horizontal, stbir_filter filter_vertical,
|
|
stbir_colorspace space, void *alloc_context,
|
|
float x_scale, float y_scale,
|
|
float x_offset, float y_offset)
|
|
{
|
|
float transform[4];
|
|
transform[0] = x_scale;
|
|
transform[1] = y_scale;
|
|
transform[2] = x_offset;
|
|
transform[3] = y_offset;
|
|
return stbir__resize_arbitrary(alloc_context, input_pixels, input_w, input_h, input_stride_in_bytes,
|
|
output_pixels, output_w, output_h, output_stride_in_bytes,
|
|
0, 0, 1, 1, transform, num_channels, alpha_channel, flags, datatype, filter_horizontal, filter_vertical,
|
|
edge_mode_horizontal, edge_mode_vertical, space);
|
|
}
|
|
|
|
STBIRDEF int stbir_resize_region(const void *input_pixels, int input_w, int input_h, int input_stride_in_bytes,
|
|
void *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
stbir_datatype datatype,
|
|
int num_channels, int alpha_channel, int flags,
|
|
stbir_edge edge_mode_horizontal, stbir_edge edge_mode_vertical,
|
|
stbir_filter filter_horizontal, stbir_filter filter_vertical,
|
|
stbir_colorspace space, void *alloc_context,
|
|
float s0, float t0, float s1, float t1)
|
|
{
|
|
return stbir__resize_arbitrary(alloc_context, input_pixels, input_w, input_h, input_stride_in_bytes,
|
|
output_pixels, output_w, output_h, output_stride_in_bytes,
|
|
s0, t0, s1, t1, NULL, num_channels, alpha_channel, flags, datatype, filter_horizontal, filter_vertical,
|
|
edge_mode_horizontal, edge_mode_vertical, space);
|
|
}
|
|
|
|
#endif // STB_IMAGE_RESIZE_IMPLEMENTATION
|
|
|
|
/*
|
|
------------------------------------------------------------------------------
|
|
This software is available under 2 licenses -- choose whichever you prefer.
|
|
------------------------------------------------------------------------------
|
|
ALTERNATIVE A - MIT License
|
|
Copyright (c) 2017 Sean Barrett
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
this software and associated documentation files (the "Software"), to deal in
|
|
the Software without restriction, including without limitation the rights to
|
|
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
|
|
of the Software, and to permit persons to whom the Software is furnished to do
|
|
so, subject to the following conditions:
|
|
The above copyright notice and this permission notice shall be included in all
|
|
copies or substantial portions of the Software.
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
SOFTWARE.
|
|
------------------------------------------------------------------------------
|
|
ALTERNATIVE B - Public Domain (www.unlicense.org)
|
|
This is free and unencumbered software released into the public domain.
|
|
Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
|
|
software, either in source code form or as a compiled binary, for any purpose,
|
|
commercial or non-commercial, and by any means.
|
|
In jurisdictions that recognize copyright laws, the author or authors of this
|
|
software dedicate any and all copyright interest in the software to the public
|
|
domain. We make this dedication for the benefit of the public at large and to
|
|
the detriment of our heirs and successors. We intend this dedication to be an
|
|
overt act of relinquishment in perpetuity of all present and future rights to
|
|
this software under copyright law.
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
|
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
------------------------------------------------------------------------------
|
|
*/
|