/* This file is part of Fennix Kernel. Fennix Kernel is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Fennix Kernel is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Fennix Kernel. If not, see . */ #include #include #include #include #include #include #include #include "../kernel.h" #if defined(a64) #include "../Architecture/amd64/cpu/apic.hpp" #include "../Architecture/amd64/cpu/gdt.hpp" #elif defined(a32) #include "../Architecture/i386/cpu/apic.hpp" #elif defined(aa64) #endif // #define DEBUG_TASKING 1 #ifdef DEBUG_TASKING #define tskdbg(m, ...) \ debug(m, ##__VA_ARGS__); \ __sync #else #define tskdbg(m, ...) #endif NewLock(TaskingLock); namespace Tasking { void Task::Schedule() { if (!StopScheduler) TaskingScheduler_OneShot(1); // APIC::InterruptCommandRegisterLow icr; // icr.Vector = CPU::x86::IRQ16; // icr.Level = APIC::APICLevel::Assert; // ((APIC::APIC *)Interrupts::apic[0])->IPI(GetCurrentCPU()->ID, icr); } #if defined(a86) __naked __used __no_stack_protector NIF void IdleProcessLoop() { asmv("IdleLoop:\n" "hlt\n" "jmp IdleLoop\n"); #elif defined(aa64) __used __no_stack_protector NIF void IdleProcessLoop() { asmv("IdleLoop:\n" "wfe\n" "b IdleLoop\n"); #endif } SafeFunction NIF bool Task::InvalidPCB(PCB *pcb) { if (!pcb) return true; if (pcb >= (PCB *)(UINTPTR_MAX - 0x1ffe)) /* Uninitialized pointers may have uintptr_t max value instead of nullptr. */ return true; if (pcb < (PCB *)(0x1000)) /* In this section of the memory is reserved by the kernel. */ return true; if (!Memory::Virtual().Check((void *)pcb)) /* Check if it's mapped. */ return true; return false; } SafeFunction NIF bool Task::InvalidTCB(TCB *tcb) { if (!tcb) return true; if (tcb >= (TCB *)(UINTPTR_MAX - 0x1ffe)) /* Uninitialized pointers may have uintptr_t max value instead of nullptr. */ return true; if (tcb < (TCB *)(0x1000)) /* In this section of the memory is reserved by the kernel. */ return true; if (!Memory::Virtual().Check((void *)tcb)) /* Check if it's mapped. */ return true; return false; } SafeFunction NIF void Task::RemoveThread(TCB *Thread) { for (size_t i = 0; i < Thread->Parent->Threads.size(); i++) if (Thread->Parent->Threads[i] == Thread) { trace("Thread \"%s\"(%d) removed from process \"%s\"(%d)", Thread->Name, Thread->ID, Thread->Parent->Name, Thread->Parent->ID); // Free memory delete Thread->Stack, Thread->Stack = nullptr; delete Thread->Memory, Thread->Memory = nullptr; SecurityManager.DestroyToken(Thread->Security.UniqueToken); delete Thread->Parent->Threads[i], Thread->Parent->Threads[i] = nullptr; // Remove from the list Thread->Parent->Threads.remove(i); break; } } SafeFunction NIF void Task::RemoveProcess(PCB *Process) { if (Process == nullptr) return; if (Process->Status == Terminated) { foreach (TCB *thread in Process->Threads) RemoveThread(thread); foreach (PCB *process in Process->Children) RemoveProcess(process); for (size_t i = 0; i < ProcessList.size(); i++) { if (ProcessList[i] == Process) { trace("Process \"%s\"(%d) removed from the list", Process->Name, Process->ID); // Free memory delete ProcessList[i]->IPC, ProcessList[i]->IPC = nullptr; delete ProcessList[i]->ELFSymbolTable, ProcessList[i]->ELFSymbolTable = nullptr; SecurityManager.DestroyToken(ProcessList[i]->Security.UniqueToken); if (ProcessList[i]->Security.TrustLevel == TaskTrustLevel::User) KernelAllocator.FreePages((void *)ProcessList[i]->PageTable, TO_PAGES(sizeof(Memory::PageTable4) + 1)); // Remove the process from parent's children list if (ProcessList[i]->Parent) for (size_t j = 0; j < ProcessList[i]->Parent->Children.size(); j++) { if (ProcessList[i]->Parent->Children[j] == ProcessList[i]) { ProcessList[i]->Parent->Children.remove(j); break; } } // Delete process directory vfs->Delete(ProcessList[i]->ProcessDirectory, true); // Free memory delete ProcessList[i], ProcessList[i] = nullptr; // Remove from the list ProcessList.remove(i); break; } } } else { foreach (TCB *thread in Process->Threads) if (thread->Status == Terminated) RemoveThread(thread); } } SafeFunction NIF void Task::UpdateUserTime(TaskInfo *Info) { // TODO Info->UserTime++; } SafeFunction NIF void Task::UpdateKernelTime(TaskInfo *Info) { // TODO Info->KernelTime++; } SafeFunction NIF void Task::UpdateUsage(TaskInfo *Info, int Core) { if (Info->Affinity[Core] == true) { // TODO: Not working(?) uint64_t CounterNow = CPU::Counter(); Info->OldUserTime = Info->CurrentUserTime; Info->OldKernelTime = Info->CurrentKernelTime; Info->CurrentUserTime = Info->UserTime; Info->CurrentKernelTime = Info->KernelTime; Info->Usage[Core] = (Info->CurrentUserTime - Info->OldUserTime) + (Info->CurrentKernelTime - Info->OldKernelTime); Info->Usage[Core] = (Info->Usage[Core] * 100) / (CounterNow - Info->SpawnTime); Info->OldUserTime = Info->CurrentUserTime; Info->OldKernelTime = Info->CurrentKernelTime; Info->CurrentUserTime = Info->UserTime; Info->CurrentKernelTime = Info->KernelTime; } } void ThreadDoExit() { // TODO: How I can lock the scheduler without causing a deadlock? CPUData *CPUData = GetCurrentCPU(); CPUData->CurrentThread->Status = TaskStatus::Terminated; debug("\"%s\"(%d) exited with code: %#lx", CPUData->CurrentThread->Name, CPUData->CurrentThread->ID, CPUData->CurrentThread->ExitCode); CPU::Halt(true); } PCB *Task::GetCurrentProcess() { return GetCurrentCPU()->CurrentProcess.load(); } TCB *Task::GetCurrentThread() { return GetCurrentCPU()->CurrentThread.load(); } PCB *Task::GetProcessByID(UPID ID) { for (size_t i = 0; i < ProcessList.size(); i++) if (ProcessList[i]->ID == ID) return ProcessList[i]; return nullptr; } TCB *Task::GetThreadByID(UTID ID) { for (size_t i = 0; i < ProcessList.size(); i++) for (size_t j = 0; j < ProcessList[i]->Threads.size(); j++) if (ProcessList[i]->Threads[j]->ID == ID) return ProcessList[i]->Threads[j]; return nullptr; } void Task::WaitForProcess(PCB *pcb) { if (InvalidPCB(pcb)) return; if (pcb->Status == TaskStatus::UnknownStatus) return; debug("Waiting for process \"%s\"(%d)", pcb->Name, pcb->ID); while (pcb->Status != TaskStatus::Terminated) CPU::Pause(); } void Task::WaitForThread(TCB *tcb) { if (InvalidTCB(tcb)) return; if (tcb->Status == TaskStatus::UnknownStatus) return; debug("Waiting for thread \"%s\"(%d)", tcb->Name, tcb->ID); while (tcb->Status != TaskStatus::Terminated) CPU::Pause(); } void Task::WaitForProcessStatus(PCB *pcb, TaskStatus status) { if (InvalidPCB(pcb)) return; if (pcb->Status == TaskStatus::UnknownStatus) return; debug("Waiting for process \"%s\"(%d) to reach status: %d", pcb->Name, pcb->ID, status); while (pcb->Status != status) CPU::Pause(); } void Task::WaitForThreadStatus(TCB *tcb, TaskStatus status) { if (InvalidTCB(tcb)) return; if (tcb->Status == TaskStatus::UnknownStatus) return; debug("Waiting for thread \"%s\"(%d) to reach status: %d", tcb->Name, tcb->ID, status); while (tcb->Status != status) CPU::Pause(); } void Task::Sleep(uint64_t Milliseconds) { SmartLock(TaskingLock); TCB *thread = this->GetCurrentThread(); thread->Status = TaskStatus::Sleeping; if (thread->Parent->Threads.size() == 1) thread->Parent->Status = TaskStatus::Sleeping; thread->Info.SleepUntil = TimeManager->CalculateTarget(Milliseconds, Time::Units::Milliseconds); tskdbg("Thread \"%s\"(%d) is going to sleep until %llu", thread->Name, thread->ID, thread->Info.SleepUntil); // TaskingScheduler_OneShot(1); // IRQ16 TaskingLock.Unlock(); #if defined(a86) asmv("int $0x30"); /* This will trigger the IRQ16 instantly so we won't execute the next instruction */ #elif defined(aa64) asmv("svc #0x30"); /* This will trigger the IRQ16 instantly so we won't execute the next instruction */ #endif } void Task::SignalShutdown() { fixme("SignalShutdown()"); // TODO: Implement this // This should hang until all processes are terminated } void Task::CleanupProcessesThread() { while (true) { this->Sleep(1000); foreach (auto process in ProcessList) { if (InvalidPCB(process)) continue; RemoveProcess(process); } } } void Task::RevertProcessCreation(PCB *Process) { for (size_t i = 0; i < ProcessList.size(); i++) { if (ProcessList[i] == Process) { SecurityManager.DestroyToken(Process->Security.UniqueToken); if (Process->Security.TrustLevel == TaskTrustLevel::User) KernelAllocator.FreePages((void *)Process->PageTable, TO_PAGES(sizeof(Memory::PageTable4) + 1)); if (Process->Parent) for (size_t j = 0; j < Process->Parent->Children.size(); j++) { if (Process->Parent->Children[j] == Process) { Process->Parent->Children.remove(j); break; } } delete Process->IPC, Process->IPC = nullptr; delete Process->ELFSymbolTable, Process->ELFSymbolTable = nullptr; delete Process, Process = nullptr; ProcessList.remove(i); NextPID--; break; } } } void Task::RevertThreadCreation(TCB *Thread) { for (size_t j = 0; j < Thread->Parent->Threads.size(); j++) { if (Thread->Parent->Threads[j] == Thread) { Thread->Parent->Threads.remove(j); break; } } delete Thread->Stack, Thread->Stack = nullptr; delete Thread->Memory, Thread->Memory = nullptr; SecurityManager.DestroyToken(Thread->Security.UniqueToken); delete Thread, Thread = nullptr; NextTID--; } TCB *Task::CreateThread(PCB *Parent, IP EntryPoint, const char **argv, const char **envp, const std::vector &auxv, IPOffset Offset, TaskArchitecture Architecture, TaskCompatibility Compatibility) { SmartLock(TaskingLock); TCB *Thread = new TCB; if (Parent == nullptr) { Thread->Parent = this->GetCurrentProcess(); if (Thread->Parent == nullptr) { error("Failed to get current process. Thread cannot be created."); delete Thread; return nullptr; } } else Thread->Parent = Parent; if (InvalidPCB(Parent)) { error("Parent is invalid"); delete Thread; return nullptr; } Thread->ID = this->NextTID++; strcpy(Thread->Name, Parent->Name); Thread->EntryPoint = EntryPoint; Thread->Offset = Offset; Thread->ExitCode = 0xdead; Thread->Status = TaskStatus::Ready; Thread->Memory = new Memory::MemMgr(Parent->PageTable, Parent->memDirectory); Thread->FPU = (CPU::x64::FXState *)Thread->Memory->RequestPages(TO_PAGES(sizeof(CPU::x64::FXState) + 1)); memset(Thread->FPU, 0, FROM_PAGES(TO_PAGES(sizeof(CPU::x64::FXState)))); Thread->Security.TrustLevel = Parent->Security.TrustLevel; Thread->Security.UniqueToken = SecurityManager.CreateToken(); // TODO: Is really a good idea to use the FPU in kernel mode? Thread->FPU->mxcsr = 0b0001111110000000; Thread->FPU->mxcsrmask = 0b1111111110111111; Thread->FPU->fcw = 0b0000001100111111; CPU::x64::fxrstor(Thread->FPU); // uint16_t FCW = 0b1100111111; // asmv("fldcw %0" // : // : "m"(FCW) // : "memory"); // uint32_t MXCSR = 0b1111110000000; // asmv("ldmxcsr %0" // : // : "m"(MXCSR) // : "memory"); // CPU::x64::fxsave(Thread->FPU); #if defined(a64) memset(&Thread->Registers, 0, sizeof(CPU::x64::TrapFrame)); // Just in case Thread->Registers.rip = (EntryPoint + Offset); #elif defined(a32) #elif defined(aa64) #endif switch (Parent->Security.TrustLevel) { case TaskTrustLevel::System: warn("Trust level not supported."); [[fallthrough]]; case TaskTrustLevel::Kernel: { Thread->Security.IsCritical = true; Thread->Stack = new Memory::StackGuard(false, Parent->PageTable); #if defined(a64) SecurityManager.TrustToken(Thread->Security.UniqueToken, TTL::TrustedByKernel); Thread->GSBase = CPU::x64::rdmsr(CPU::x64::MSRID::MSR_GS_BASE); Thread->FSBase = CPU::x64::rdmsr(CPU::x64::MSRID::MSR_FS_BASE); Thread->Registers.cs = GDT_KERNEL_CODE; Thread->Registers.ss = GDT_KERNEL_DATA; Thread->Registers.rflags.AlwaysOne = 1; Thread->Registers.rflags.IF = 1; Thread->Registers.rflags.ID = 1; Thread->Registers.rsp = ((uintptr_t)Thread->Stack->GetStackTop()); POKE(uintptr_t, Thread->Registers.rsp) = (uintptr_t)ThreadDoExit; #elif defined(a32) #elif defined(aa64) #endif break; } case TaskTrustLevel::User: { Thread->Stack = new Memory::StackGuard(true, Parent->PageTable); #if defined(a64) SecurityManager.TrustToken(Thread->Security.UniqueToken, TTL::Untrusted); Thread->GSBase = 0; Thread->FSBase = 0; Thread->Registers.cs = GDT_USER_CODE; Thread->Registers.ss = GDT_USER_DATA; Thread->Registers.rflags.AlwaysOne = 1; Thread->Registers.rflags.IF = 1; Thread->Registers.rflags.ID = 1; Thread->Registers.rsp = ((uintptr_t)Thread->Stack->GetStackTop()); #pragma region size_t ArgvSize = 0; if (argv) while (argv[ArgvSize] != nullptr) ArgvSize++; size_t EnvpSize = 0; if (envp) while (envp[EnvpSize] != nullptr) EnvpSize++; debug("ArgvSize: %d", ArgvSize); debug("EnvpSize: %d", EnvpSize); /* https://articles.manugarg.com/aboutelfauxiliaryvectors.html */ /* https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.pdf#figure.3.9 */ // rsp is the top of the stack char *Stack = (char *)Thread->Stack->GetStackPhysicalTop(); // Temporary stack pointer for strings char *StackStrings = (char *)Stack; char *StackStringsVirtual = (char *)Thread->Stack->GetStackTop(); // Store string pointers for later uintptr_t *ArgvStrings = new uintptr_t[ArgvSize]; uintptr_t *EnvpStrings = new uintptr_t[EnvpSize]; for (size_t i = 0; i < ArgvSize; i++) { // Subtract the length of the string and the null terminator StackStrings -= strlen(argv[i]) + 1; StackStringsVirtual -= strlen(argv[i]) + 1; // Store the pointer to the string ArgvStrings[i] = (uintptr_t)StackStringsVirtual; // Copy the string to the stack strcpy(StackStrings, argv[i]); } for (size_t i = 0; i < EnvpSize; i++) { // Subtract the length of the string and the null terminator StackStrings -= strlen(envp[i]) + 1; StackStringsVirtual -= strlen(envp[i]) + 1; // Store the pointer to the string EnvpStrings[i] = (uintptr_t)StackStringsVirtual; // Copy the string to the stack strcpy(StackStrings, envp[i]); } // Align the stack to 16 bytes StackStrings -= (uintptr_t)StackStrings & 0xF; // Set "Stack" to the new stack pointer Stack = (char *)StackStrings; // If argv and envp sizes are odd then we need to align the stack Stack -= (ArgvSize + EnvpSize) % 2; // We need 8 bit pointers for the stack from here uintptr_t *Stack64 = (uintptr_t *)Stack; // Store the null terminator Stack64--; *Stack64 = AT_NULL; // auxv_array is initialized with auxv elements. If the array is empty then we add a null terminator std::vector auxv_array = auxv; if (auxv_array.size() == 0) auxv_array.push_back({.archaux = {.a_type = AT_NULL, .a_un = {.a_val = 0}}}); // Store auxillary vector foreach (AuxiliaryVector var in auxv_array) { // Subtract the size of the auxillary vector Stack64 -= sizeof(Elf64_auxv_t) / sizeof(uintptr_t); // Store the auxillary vector POKE(Elf64_auxv_t, Stack64) = var.archaux; // TODO: Store strings to the stack } // Store the null terminator Stack64--; *Stack64 = AT_NULL; // Store EnvpStrings[] to the stack Stack64 -= EnvpSize; // (1 Stack64 = 8 bits; Stack64 = 8 * EnvpSize) for (size_t i = 0; i < EnvpSize; i++) { *(Stack64 + i) = (uintptr_t)EnvpStrings[i]; debug("EnvpStrings[%d]: %#lx", i, EnvpStrings[i]); } // Store the null terminator Stack64--; *Stack64 = AT_NULL; // Store ArgvStrings[] to the stack Stack64 -= ArgvSize; // (1 Stack64 = 8 bits; Stack64 = 8 * ArgvSize) for (size_t i = 0; i < ArgvSize; i++) { *(Stack64 + i) = (uintptr_t)ArgvStrings[i]; debug("ArgvStrings[%d]: %#lx", i, ArgvStrings[i]); } // Store the argc Stack64--; *Stack64 = ArgvSize; // Set "Stack" to the new stack pointer Stack = (char *)Stack64; /* We need the virtual address but because we are in the kernel we can't use the process page table. So we modify the physical address and store how much we need to subtract to get the virtual address for RSP. */ uintptr_t SubtractStack = (uintptr_t)Thread->Stack->GetStackPhysicalTop() - (uintptr_t)Stack; debug("SubtractStack: %#lx", SubtractStack); // Set the stack pointer to the new stack Thread->Registers.rsp = ((uintptr_t)Thread->Stack->GetStackTop() - SubtractStack); delete[] ArgvStrings; delete[] EnvpStrings; #ifdef DEBUG DumpData("Stack Data", (void *)((uintptr_t)Thread->Stack->GetStackPhysicalTop() - (uintptr_t)SubtractStack), SubtractStack); #endif Thread->Registers.rdi = (uintptr_t)ArgvSize; // argc Thread->Registers.rsi = (uintptr_t)(Thread->Registers.rsp + 8); // argv Thread->Registers.rcx = (uintptr_t)EnvpSize; // envc Thread->Registers.rdx = (uintptr_t)(Thread->Registers.rsp + 8 + (8 * ArgvSize) + 8); // envp #pragma endregion /* We need to leave the libc's crt to make a syscall when the Thread is exited or we are going to get GPF or PF exception. */ Memory::Virtual uva = Memory::Virtual(Parent->PageTable); if (!uva.Check((void *)Offset, Memory::PTFlag::US)) { error("Offset is not user accessible"); uva.Map((void *)Offset, (void *)Offset, Memory::PTFlag::RW | Memory::PTFlag::US); // We try one more time. } #elif defined(a32) #elif defined(aa64) #endif #ifdef DEBUG_TASKING DumpData(Thread->Name, Thread->Stack, STACK_SIZE); #endif break; } default: { error("Unknown elevation."); delete Thread->Stack; this->NextTID--; delete Thread; return nullptr; } } Thread->Info = {}; Thread->Info.SpawnTime = CPU::Counter(); Thread->Info.Year = 0; Thread->Info.Month = 0; Thread->Info.Day = 0; Thread->Info.Hour = 0; Thread->Info.Minute = 0; Thread->Info.Second = 0; for (int i = 0; i < MAX_CPU; i++) { Thread->Info.Usage[i] = 0; Thread->Info.Affinity[i] = true; } Thread->Info.Priority = TaskPriority::Normal; Thread->Info.Architecture = Architecture; Thread->Info.Compatibility = Compatibility; #ifdef DEBUG #ifdef a64 debug("Thread offset is %#lx (EntryPoint: %#lx) => RIP: %#lx", Thread->Offset, Thread->EntryPoint, Thread->Registers.rip); if (Parent->Security.TrustLevel == TaskTrustLevel::User) debug("Thread stack region is %#lx-%#lx (U) and rsp is %#lx", Thread->Stack->GetStackBottom(), Thread->Stack->GetStackTop(), Thread->Registers.rsp); else debug("Thread stack region is %#lx-%#lx (K) and rsp is %#lx", Thread->Stack->GetStackBottom(), Thread->Stack->GetStackTop(), Thread->Registers.rsp); #elif defined(a32) debug("Thread offset is %#lx (EntryPoint: %#lx) => RIP: %#lx", Thread->Offset, Thread->EntryPoint, Thread->Registers.eip); if (Parent->Security.TrustLevel == TaskTrustLevel::User) debug("Thread stack region is %#lx-%#lx (U) and rsp is %#lx", Thread->Stack->GetStackBottom(), Thread->Stack->GetStackTop(), Thread->Registers.esp); else debug("Thread stack region is %#lx-%#lx (K) and rsp is %#lx", Thread->Stack->GetStackBottom(), Thread->Stack->GetStackTop(), Thread->Registers.esp); #elif defined(aa64) #endif debug("Created thread \"%s\"(%d) in process \"%s\"(%d)", Thread->Name, Thread->ID, Thread->Parent->Name, Thread->Parent->ID); #endif Parent->Threads.push_back(Thread); return Thread; } PCB *Task::CreateProcess(PCB *Parent, const char *Name, TaskTrustLevel TrustLevel, void *Image, bool DoNotCreatePageTable) { SmartLock(TaskingLock); PCB *Process = new PCB; Process->ID = this->NextPID++; strcpy(Process->Name, Name); if (Parent == nullptr) Process->Parent = this->GetCurrentProcess(); else Process->Parent = Parent; Process->ExitCode = 0xdead; Process->Status = TaskStatus::Ready; Process->Security.TrustLevel = TrustLevel; Process->Security.UniqueToken = SecurityManager.CreateToken(); char ProcFSName[16]; sprintf(ProcFSName, "%ld", Process->ID); Process->ProcessDirectory = vfs->Create(ProcFSName, VirtualFileSystem::NodeFlags::DIRECTORY, ProcFS); Process->memDirectory = vfs->Create("mem", VirtualFileSystem::NodeFlags::DIRECTORY, Process->ProcessDirectory); Process->IPC = new InterProcessCommunication::IPC((void *)Process); switch (TrustLevel) { case TaskTrustLevel::System: warn("Trust level not supported."); [[fallthrough]]; case TaskTrustLevel::Kernel: { Process->Security.IsCritical = true; SecurityManager.TrustToken(Process->Security.UniqueToken, TTL::TrustedByKernel); #if defined(a64) if (!DoNotCreatePageTable) Process->PageTable = (Memory::PageTable4 *)CPU::x64::readcr3().raw; #elif defined(a32) #elif defined(aa64) #endif break; } case TaskTrustLevel::User: { SecurityManager.TrustToken(Process->Security.UniqueToken, TTL::Untrusted); #if defined(a64) if (!DoNotCreatePageTable) { Process->PageTable = (Memory::PageTable4 *)KernelAllocator.RequestPages(TO_PAGES(sizeof(Memory::PageTable4) + 1)); memcpy(Process->PageTable, (void *)KernelPageTable, PAGE_SIZE); } #elif defined(a32) #elif defined(aa64) #endif break; } default: { error("Unknown elevation."); this->NextPID--; delete Process; return nullptr; } } Process->Info = {}; Process->Info.SpawnTime = CPU::Counter(); Process->Info.Year = 0; Process->Info.Month = 0; Process->Info.Day = 0; Process->Info.Hour = 0; Process->Info.Minute = 0; Process->Info.Second = 0; for (int i = 0; i < MAX_CPU; i++) { Process->Info.Usage[i] = 0; Process->Info.Affinity[i] = true; } Process->Info.Priority = TaskPriority::Normal; debug("Process page table: %#lx", Process->PageTable); debug("Created process \"%s\"(%d) in process \"%s\"(%d)", Process->Name, Process->ID, Parent ? Process->Parent->Name : "None", Parent ? Process->Parent->ID : 0); if (Image) { // TODO: Check if it's ELF Process->ELFSymbolTable = new SymbolResolver::Symbols((uintptr_t)Image); } else { debug("No image provided for process \"%s\"(%d)", Process->Name, Process->ID); } if (Parent) Parent->Children.push_back(Process); ProcessList.push_back(Process); return Process; } Task::Task(const IP EntryPoint) : Interrupts::Handler(16) /* IRQ16 */ { SmartLock(TaskingLock); #if defined(a64) // Map the IRQ16 to the first CPU. ((APIC::APIC *)Interrupts::apic[0])->RedirectIRQ(0, CPU::x86::IRQ16 - CPU::x86::IRQ0, 1); #elif defined(a32) #elif defined(aa64) #endif KPrint("Starting Tasking With Instruction Pointer: %p (\e666666%s\eCCCCCC)", EntryPoint, KernelSymbolTable->GetSymbolFromAddress(EntryPoint)); TaskingLock.Unlock(); #if defined(a64) TaskArchitecture Arch = TaskArchitecture::x64; #elif defined(a32) TaskArchitecture Arch = TaskArchitecture::x32; #elif defined(aa64) TaskArchitecture Arch = TaskArchitecture::ARM64; #endif PCB *kproc = CreateProcess(nullptr, "Kernel", TaskTrustLevel::Kernel); TCB *kthrd = CreateThread(kproc, EntryPoint, nullptr, nullptr, std::vector(), 0, Arch); kthrd->Rename("Main Thread"); debug("Created Kernel Process: %s and Thread: %s", kproc->Name, kthrd->Name); TaskingLock.Lock(__FUNCTION__); bool MONITORSupported = false; if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_AMD) == 0) { CPU::x86::AMD::CPUID0x00000001 cpuid; cpuid.Get(); MONITORSupported = cpuid.ECX.MONITOR; } else if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_INTEL) == 0) { CPU::x86::Intel::CPUID0x00000001 cpuid; cpuid.Get(); MONITORSupported = cpuid.ECX.MONITOR; } if (MONITORSupported) { trace("CPU has MONITOR/MWAIT support."); } if (!CPU::Interrupts(CPU::Check)) { error("Interrupts are not enabled."); CPU::Interrupts(CPU::Enable); } TaskingLock.Unlock(); IdleProcess = CreateProcess(nullptr, (char *)"Idle", TaskTrustLevel::Kernel); for (int i = 0; i < SMP::CPUCores; i++) { IdleThread = CreateThread(IdleProcess, reinterpret_cast(IdleProcessLoop)); char IdleName[16]; sprintf(IdleName, "Idle Thread %d", i); IdleThread->Rename(IdleName); IdleThread->SetPriority(Idle); for (int j = 0; j < MAX_CPU; j++) IdleThread->Info.Affinity[j] = false; IdleThread->Info.Affinity[i] = true; } debug("Tasking Started"); #if defined(a64) ((APIC::Timer *)Interrupts::apicTimer[0])->OneShot(CPU::x86::IRQ16, 100); /* FIXME: The kernel is not ready for multi-core tasking. */ // for (int i = 1; i < SMP::CPUCores; i++) // { // ((APIC::Timer *)Interrupts::apicTimer[i])->OneShot(CPU::x86::IRQ16, 100); // APIC::InterruptCommandRegisterLow icr; // icr.Vector = CPU::x86::IRQ16; // icr.Level = APIC::APICLevel::Assert; // ((APIC::APIC *)Interrupts::apic[0])->IPI(i, icr); // } #elif defined(a32) #elif defined(aa64) #endif } Task::~Task() { debug("Destructor called"); { SmartLock(TaskingLock); foreach (PCB *Process in ProcessList) { foreach (TCB *Thread in Process->Threads) { if (Thread == GetCurrentCPU()->CurrentThread.load() || Thread == CleanupThread) continue; this->KillThread(Thread, 0xFFFF); } if (Process == GetCurrentCPU()->CurrentProcess.load()) continue; this->KillProcess(Process, 0xFFFF); } } while (ProcessList.size() > 0) { trace("Waiting for %d processes to terminate", ProcessList.size()); int NotTerminated = 0; foreach (PCB *Process in ProcessList) { debug("Process %s(%d) is still running (or waiting to be removed status %#lx)", Process->Name, Process->ID, Process->Status); if (Process->Status == TaskStatus::Terminated) continue; NotTerminated++; } if (NotTerminated == 1) break; TaskingScheduler_OneShot(100); } trace("Tasking stopped"); } }