/* This file is part of Fennix Kernel. Fennix Kernel is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Fennix Kernel is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Fennix Kernel. If not, see . */ #include #include #include #include #include #include "../kernel.h" #if defined(a64) using namespace CPU::x64; #elif defined(a32) using namespace CPU::x32; #elif defined(aa64) #endif namespace CPU { static bool SSEEnabled = false; const char *Vendor() { static char Vendor[13] = {0}; if (Vendor[0] != 0) return Vendor; #if defined(a64) uint32_t eax, ebx, ecx, edx; x64::cpuid(0x0, &eax, &ebx, &ecx, &edx); memcpy(Vendor + 0, &ebx, 4); memcpy(Vendor + 4, &edx, 4); memcpy(Vendor + 8, &ecx, 4); #elif defined(a32) uint32_t eax, ebx, ecx, edx; x32::cpuid(0x0, &eax, &ebx, &ecx, &edx); memcpy(Vendor + 0, &ebx, 4); memcpy(Vendor + 4, &edx, 4); memcpy(Vendor + 8, &ecx, 4); #elif defined(aa64) #error "Not implemented" #endif return Vendor; } const char *Name() { static char Name[49] = {0}; if (Name[0] != 0) return Name; #if defined(a64) uint32_t eax, ebx, ecx, edx; x64::cpuid(0x80000002, &eax, &ebx, &ecx, &edx); memcpy(Name + 0, &eax, 4); memcpy(Name + 4, &ebx, 4); memcpy(Name + 8, &ecx, 4); memcpy(Name + 12, &edx, 4); x64::cpuid(0x80000003, &eax, &ebx, &ecx, &edx); memcpy(Name + 16, &eax, 4); memcpy(Name + 20, &ebx, 4); memcpy(Name + 24, &ecx, 4); memcpy(Name + 28, &edx, 4); x64::cpuid(0x80000004, &eax, &ebx, &ecx, &edx); memcpy(Name + 32, &eax, 4); memcpy(Name + 36, &ebx, 4); memcpy(Name + 40, &ecx, 4); memcpy(Name + 44, &edx, 4); #elif defined(a32) uint32_t eax, ebx, ecx, edx; x32::cpuid(0x80000002, &eax, &ebx, &ecx, &edx); memcpy(Name + 0, &eax, 4); memcpy(Name + 4, &ebx, 4); memcpy(Name + 8, &ecx, 4); memcpy(Name + 12, &edx, 4); x32::cpuid(0x80000003, &eax, &ebx, &ecx, &edx); memcpy(Name + 16, &eax, 4); memcpy(Name + 20, &ebx, 4); memcpy(Name + 24, &ecx, 4); memcpy(Name + 28, &edx, 4); x32::cpuid(0x80000004, &eax, &ebx, &ecx, &edx); memcpy(Name + 32, &eax, 4); memcpy(Name + 36, &ebx, 4); memcpy(Name + 40, &ecx, 4); memcpy(Name + 44, &edx, 4); #elif defined(aa64) #error "Not implemented" #endif return Name; } const char *Hypervisor() { static char Hypervisor[13] = {0}; if (Hypervisor[0] != 0) return Hypervisor; #if defined(a64) uint32_t eax, ebx, ecx, edx; x64::cpuid(0x1, &eax, &ebx, &ecx, &edx); if (!(ecx & (1 << 31))) /* Intel & AMD are the same */ { Hypervisor[0] = 'N'; Hypervisor[1] = 'o'; Hypervisor[2] = 'n'; Hypervisor[3] = 'e'; return Hypervisor; } x64::cpuid(0x40000000, &eax, &ebx, &ecx, &edx); memcpy(Hypervisor + 0, &ebx, 4); memcpy(Hypervisor + 4, &ecx, 4); memcpy(Hypervisor + 8, &edx, 4); #elif defined(a32) uint32_t eax, ebx, ecx, edx; x32::cpuid(0x1, &eax, &ebx, &ecx, &edx); if (!(ecx & (1 << 31))) /* Intel & AMD are the same */ { Hypervisor[0] = 'N'; Hypervisor[1] = 'o'; Hypervisor[2] = 'n'; Hypervisor[3] = 'e'; return Hypervisor; } x32::cpuid(0x40000000, &eax, &ebx, &ecx, &edx); memcpy(Hypervisor + 0, &ebx, 4); memcpy(Hypervisor + 4, &ecx, 4); memcpy(Hypervisor + 8, &edx, 4); #elif defined(aa64) #error "Not implemented" #endif return Hypervisor; } bool Interrupts(InterruptsType Type) { switch (Type) { case Check: { uintptr_t Flags; #if defined(a64) asmv("pushfq"); asmv("popq %0" : "=r"(Flags)); return Flags & (1 << 9); #elif defined(a32) asmv("pushfl"); asmv("popl %0" : "=r"(Flags)); return Flags & (1 << 9); #elif defined(aa64) asmv("mrs %0, cpsr" : "=r"(Flags)); return Flags & (1 << 7); #endif } case Enable: { #if defined(a86) asmv("sti"); #elif defined(aa64) asmv("cpsie i"); #endif return true; } case Disable: { #if defined(a86) asmv("cli"); #elif defined(aa64) asmv("cpsid i"); #endif return true; } default: assert(!"Unknown InterruptsType"); break; } return false; } void *PageTable(void *PT) { void *ret; #if defined(a64) asmv("movq %%cr3, %0" : "=r"(ret)); if (PT) { asmv("movq %0, %%cr3" : : "r"(PT) : "memory"); } #elif defined(a32) asmv("movl %%cr3, %0" : "=r"(ret)); if (PT) { asmv("movl %0, %%cr3" : : "r"(PT) : "memory"); } #elif defined(aa64) asmv("mrs %0, ttbr0_el1" : "=r"(ret)); if (PT) { asmv("msr ttbr0_el1, %0" : : "r"(PT) : "memory"); } #endif return ret; } struct SupportedFeat { bool PGE = false; bool SSE = false; bool UMIP = false; bool SMEP = false; bool SMAP = false; bool FSGSBASE = false; }; SupportedFeat GetCPUFeat() { SupportedFeat feat{}; if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_AMD) == 0) { CPU::x86::AMD::CPUID0x00000001 cpuid1; CPU::x86::AMD::CPUID0x00000007_ECX_0 cpuid7; feat.PGE = cpuid1.EDX.PGE; feat.SSE = cpuid1.EDX.SSE; feat.SMEP = cpuid7.EBX.SMEP; feat.SMAP = cpuid7.EBX.SMAP; feat.UMIP = cpuid7.ECX.UMIP; feat.FSGSBASE = cpuid7.EBX.FSGSBASE; } else if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_INTEL) == 0) { CPU::x86::Intel::CPUID0x00000001 cpuid1; CPU::x86::Intel::CPUID0x00000007_0 cpuid7_0; feat.PGE = cpuid1.EDX.PGE; feat.SSE = cpuid1.EDX.SSE; feat.SMEP = cpuid7_0.EBX.SMEP; feat.SMAP = cpuid7_0.EBX.SMAP; feat.UMIP = cpuid7_0.ECX.UMIP; feat.FSGSBASE = cpuid7_0.EBX.FSGSBase; } return feat; } void InitializeFeatures(int Core) { static int BSP = 0; SupportedFeat feat = GetCPUFeat(); CR0 cr0 = readcr0(); CR4 cr4 = readcr4(); if (Config.SIMD == false) { debug("Disabling SSE support..."); feat.SSE = false; } if (feat.PGE) { debug("Enabling global pages support..."); if (!BSP) KPrint("Global Pages is supported."); cr4.PGE = true; } bool SSEEnableAfter = false; /* Not sure if my code is not working properly or something else is the issue. */ if ((strcmp(Hypervisor(), x86_CPUID_VENDOR_VIRTUALBOX) != 0) && feat.SSE) { debug("Enabling SSE support..."); if (!BSP) KPrint("SSE is supported."); cr0.EM = false; cr0.MP = true; cr4.OSFXSR = true; cr4.OSXMMEXCPT = true; CPUData *CoreData = GetCPU(Core); CoreData->Data.FPU.mxcsr = 0b0001111110000000; CoreData->Data.FPU.mxcsrmask = 0b1111111110111111; CoreData->Data.FPU.fcw = 0b0000001100111111; fxrstor(&CoreData->Data.FPU); SSEEnableAfter = true; } /* More info in AMD64 Architecture Programmer's Manual Volume 2: 3.1.1 CR0 Register */ /* Not Write-Through This is ignored on recent processors. */ cr0.NW = false; /* Cache Disable Wether the CPU should cache memory or not. If it's enabled, PWT and PCD are ignored. */ cr0.CD = false; /* Write Protect When set, the supervisor can't write to read-only pages. */ cr0.WP = true; /* Alignment check The CPU checks the alignment of memory operands and generates #AC if the alignment is incorrect. The condition for an alignment check is: - The AM flag in CR0 is set. - The AC flag in the RFLAGS register is set. - CPL is 3. */ cr0.AM = true; writecr0(cr0); if (strcmp(Hypervisor(), x86_CPUID_VENDOR_VIRTUALBOX) != 0 && strcmp(Hypervisor(), x86_CPUID_VENDOR_TCG) != 0) { debug("Enabling UMIP, SMEP & SMAP support..."); if (feat.UMIP) { if (!BSP) KPrint("UMIP is supported."); fixme("UMIP is supported."); // cr4.UMIP = true; } if (feat.SMEP) { if (!BSP) KPrint("SMEP is supported."); fixme("SMEP is supported."); // cr4.SMEP = true; } if (feat.SMAP) { if (!BSP) KPrint("SMAP is supported."); fixme("SMAP is supported."); // cr4.SMAP = true; } } else { if (!BSP) { if (strcmp(Hypervisor(), x86_CPUID_VENDOR_VIRTUALBOX) == 0) KPrint("VirtualBox detected. Not using UMIP, SMEP & SMAP"); else if (strcmp(Hypervisor(), x86_CPUID_VENDOR_TCG) == 0) KPrint("QEMU (TCG) detected. Not using UMIP, SMEP & SMAP"); } } if (feat.FSGSBASE) { if (!BSP) KPrint("FSGSBASE is supported."); fixme("FSGSBASE is supported."); // cr4.FSGSBASE = true; } debug("Writing CR4..."); writecr4(cr4); debug("Wrote CR4."); debug("Enabling PAT support..."); wrmsr(MSR_CR_PAT, 0x6 | (0x0 << 8) | (0x1 << 16)); if (!BSP++) trace("Features for BSP initialized."); if (SSEEnableAfter) { SSEEnabled = true; debug("SSE support enabled."); } } uint64_t Counter() { // TODO: Get the counter from the x2APIC or any other timer that is available. (TSC is not available on all CPUs) uint64_t Counter; #if defined(a86) uint32_t eax, edx; asmv("rdtsc" : "=a"(eax), "=d"(edx)); Counter = ((uint64_t)eax) | (((uint64_t)edx) << 32); #elif defined(aa64) asmv("mrs %0, cntvct_el0" : "=r"(Counter)); #endif return Counter; } uint64_t CheckSIMD() { if (unlikely(!SSEEnabled)) return SIMD_NONE; #warning "TODO: Proper SIMD support" return SIMD_NONE; #if defined(a86) static uint64_t SIMDType = SIMD_NONE; if (likely(SIMDType != SIMD_NONE)) return SIMDType; if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_AMD) == 0) { CPU::x86::AMD::CPUID0x00000001 cpuid; asmv("cpuid" : "=a"(cpuid.EAX.raw), "=b"(cpuid.EBX.raw), "=c"(cpuid.ECX.raw), "=d"(cpuid.EDX.raw) : "a"(0x1)); if (cpuid.ECX.SSE42) SIMDType |= SIMD_SSE42; else if (cpuid.ECX.SSE41) SIMDType |= SIMD_SSE41; else if (cpuid.ECX.SSSE3) SIMDType |= SIMD_SSSE3; else if (cpuid.ECX.SSE3) SIMDType |= SIMD_SSE3; else if (cpuid.EDX.SSE2) SIMDType |= SIMD_SSE2; else if (cpuid.EDX.SSE) SIMDType |= SIMD_SSE; #ifdef DEBUG if (cpuid.ECX.SSE42) debug("SSE4.2 is supported."); if (cpuid.ECX.SSE41) debug("SSE4.1 is supported."); if (cpuid.ECX.SSSE3) debug("SSSE3 is supported."); if (cpuid.ECX.SSE3) debug("SSE3 is supported."); if (cpuid.EDX.SSE2) debug("SSE2 is supported."); if (cpuid.EDX.SSE) debug("SSE is supported."); #endif return SIMDType; } else if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_INTEL) == 0) { CPU::x86::Intel::CPUID0x00000001 cpuid; asmv("cpuid" : "=a"(cpuid.EAX.raw), "=b"(cpuid.EBX.raw), "=c"(cpuid.ECX.raw), "=d"(cpuid.EDX.raw) : "a"(0x1)); if (cpuid.ECX.SSE4_2) SIMDType |= SIMD_SSE42; else if (cpuid.ECX.SSE4_1) SIMDType |= SIMD_SSE41; else if (cpuid.ECX.SSSE3) SIMDType |= SIMD_SSSE3; else if (cpuid.ECX.SSE3) SIMDType |= SIMD_SSE3; else if (cpuid.EDX.SSE2) SIMDType |= SIMD_SSE2; else if (cpuid.EDX.SSE) SIMDType |= SIMD_SSE; #ifdef DEBUG if (cpuid.ECX.SSE4_2) debug("SSE4.2 is supported."); if (cpuid.ECX.SSE4_1) debug("SSE4.1 is supported."); if (cpuid.ECX.SSSE3) debug("SSSE3 is supported."); if (cpuid.ECX.SSE3) debug("SSE3 is supported."); if (cpuid.EDX.SSE2) debug("SSE2 is supported."); if (cpuid.EDX.SSE) debug("SSE is supported."); #endif return SIMDType; } debug("No SIMD support."); #endif // a64 || a32 return SIMD_NONE; } bool CheckSIMD(x86SIMDType Type) { if (unlikely(!SSEEnabled)) return false; #if defined(a86) if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_AMD) == 0) { CPU::x86::AMD::CPUID0x00000001 cpuid; asmv("cpuid" : "=a"(cpuid.EAX.raw), "=b"(cpuid.EBX.raw), "=c"(cpuid.ECX.raw), "=d"(cpuid.EDX.raw) : "a"(0x1)); if (Type == SIMD_SSE42) return cpuid.ECX.SSE42; else if (Type == SIMD_SSE41) return cpuid.ECX.SSE41; else if (Type == SIMD_SSSE3) return cpuid.ECX.SSSE3; else if (Type == SIMD_SSE3) return cpuid.ECX.SSE3; else if (Type == SIMD_SSE2) return cpuid.EDX.SSE2; else if (Type == SIMD_SSE) return cpuid.EDX.SSE; } else if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_INTEL) == 0) { CPU::x86::Intel::CPUID0x00000001 cpuid; asmv("cpuid" : "=a"(cpuid.EAX.raw), "=b"(cpuid.EBX.raw), "=c"(cpuid.ECX.raw), "=d"(cpuid.EDX.raw) : "a"(0x1)); if (Type == SIMD_SSE42) return cpuid.ECX.SSE4_2; else if (Type == SIMD_SSE41) return cpuid.ECX.SSE4_1; else if (Type == SIMD_SSSE3) return cpuid.ECX.SSSE3; else if (Type == SIMD_SSE3) return cpuid.ECX.SSE3; else if (Type == SIMD_SSE2) return cpuid.EDX.SSE2; else if (Type == SIMD_SSE) return cpuid.EDX.SSE; } #endif // a64 || a32 return false; } }