#include #include #include #include #include "../kernel.h" namespace CPU { char *Vendor() { static char Vendor[13]; #if defined(__amd64__) uint32_t rax, rbx, rcx, rdx; x64::cpuid(0x0, &rax, &rbx, &rcx, &rdx); memcpy(Vendor + 0, &rbx, 4); memcpy(Vendor + 4, &rdx, 4); memcpy(Vendor + 8, &rcx, 4); #elif defined(__i386__) uint32_t rax, rbx, rcx, rdx; x32::cpuid(0x0, &rax, &rbx, &rcx, &rdx); memcpy(Vendor + 0, &rbx, 4); memcpy(Vendor + 4, &rdx, 4); memcpy(Vendor + 8, &rcx, 4); #elif defined(__aarch64__) asmv("mrs %0, MIDR_EL1" : "=r"(Vendor[0])); #endif return Vendor; } char *Name() { static char Name[49]; #if defined(__amd64__) uint32_t rax, rbx, rcx, rdx; x64::cpuid(0x80000002, &rax, &rbx, &rcx, &rdx); memcpy(Name + 0, &rax, 4); memcpy(Name + 4, &rbx, 4); memcpy(Name + 8, &rcx, 4); memcpy(Name + 12, &rdx, 4); x64::cpuid(0x80000003, &rax, &rbx, &rcx, &rdx); memcpy(Name + 16, &rax, 4); memcpy(Name + 20, &rbx, 4); memcpy(Name + 24, &rcx, 4); memcpy(Name + 28, &rdx, 4); x64::cpuid(0x80000004, &rax, &rbx, &rcx, &rdx); memcpy(Name + 32, &rax, 4); memcpy(Name + 36, &rbx, 4); memcpy(Name + 40, &rcx, 4); memcpy(Name + 44, &rdx, 4); #elif defined(__i386__) uint32_t rax, rbx, rcx, rdx; x32::cpuid(0x80000002, &rax, &rbx, &rcx, &rdx); memcpy(Name + 0, &rax, 4); memcpy(Name + 4, &rbx, 4); memcpy(Name + 8, &rcx, 4); memcpy(Name + 12, &rdx, 4); x32::cpuid(0x80000003, &rax, &rbx, &rcx, &rdx); memcpy(Name + 16, &rax, 4); memcpy(Name + 20, &rbx, 4); memcpy(Name + 24, &rcx, 4); memcpy(Name + 28, &rdx, 4); x32::cpuid(0x80000004, &rax, &rbx, &rcx, &rdx); memcpy(Name + 32, &rax, 4); memcpy(Name + 36, &rbx, 4); memcpy(Name + 40, &rcx, 4); memcpy(Name + 44, &rdx, 4); #elif defined(__aarch64__) asmv("mrs %0, MIDR_EL1" : "=r"(Name[0])); #endif return Name; } char *Hypervisor() { static char Hypervisor[13]; #if defined(__amd64__) uint32_t rax, rbx, rcx, rdx; x64::cpuid(0x40000000, &rax, &rbx, &rcx, &rdx); memcpy(Hypervisor + 0, &rbx, 4); memcpy(Hypervisor + 4, &rcx, 4); memcpy(Hypervisor + 8, &rdx, 4); #elif defined(__i386__) uint32_t rax, rbx, rcx, rdx; x64::cpuid(0x40000000, &rax, &rbx, &rcx, &rdx); memcpy(Hypervisor + 0, &rbx, 4); memcpy(Hypervisor + 4, &rcx, 4); memcpy(Hypervisor + 8, &rdx, 4); #elif defined(__aarch64__) asmv("mrs %0, MIDR_EL1" : "=r"(Hypervisor[0])); #endif return Hypervisor; } bool Interrupts(InterruptsType Type) { switch (Type) { case Check: { #if defined(__amd64__) uint64_t rflags; asmv("pushfq"); asmv("popq %0" : "=r"(rflags)); return rflags & (1 << 9); #elif defined(__i386__) uint32_t rflags; asmv("pushfl"); asmv("popl %0" : "=r"(rflags)); return rflags & (1 << 9); #elif defined(__aarch64__) uint64_t daif; asmv("mrs %0, daif" : "=r"(daif)); return !(daif & (1 << 2)); #endif } case Enable: { #if defined(__amd64__) || defined(__i386__) asmv("sti"); #elif defined(__aarch64__) asmv("msr daifclr, #2"); #endif return true; } case Disable: { #if defined(__amd64__) || defined(__i386__) asmv("cli"); #elif defined(__aarch64__) asmv("msr daifset, #2"); #endif return true; } } return false; } void *PageTable(void *PT) { #if defined(__amd64__) if (PT) asmv("movq %0, %%cr3" : : "r"(PT)); else asmv("movq %%cr3, %0" : "=r"(PT)); #elif defined(__i386__) if (PT) asmv("movl %0, %%cr3" : : "r"(PT)); else asmv("movl %%cr3, %0" : "=r"(PT)); #elif defined(__aarch64__) if (PT) asmv("msr ttbr0_el1, %0" : : "r"(PT)); else asmv("mrs %0, ttbr0_el1" : "=r"(PT)); #endif return PT; } void InitializeFeatures() { #if defined(__amd64__) static int BSP = 0; x64::CR0 cr0 = x64::readcr0(); x64::CR4 cr4 = x64::readcr4(); uint32_t rax, rbx, rcx, rdx; x64::cpuid(0x1, &rax, &rbx, &rcx, &rdx); if (rdx & x64::CPUID_FEAT_RDX_PGE) { debug("Enabling global pages support..."); if (!BSP) KPrint("Global Pages is supported."); cr4.PGE = 1; } if (rdx & x64::CPUID_FEAT_RDX_SSE) { debug("Enabling SSE support..."); if (!BSP) KPrint("SSE is supported."); cr0.EM = 0; cr0.MP = 1; cr4.OSFXSR = 1; cr4.OSXMMEXCPT = 1; } if (!BSP) KPrint("Enabling CPU cache."); cr0.NW = 0; cr0.CD = 0; cr0.WP = 1; x64::writecr0(cr0); debug("Enabling UMIP, SMEP & SMAP support..."); x64::cpuid(0x1, &rax, &rbx, &rcx, &rdx); if (rdx & x64::CPUID_FEAT_RDX_UMIP) { if (!BSP) KPrint("UMIP is supported."); fixme("Not going to enable UMIP."); // cr4.UMIP = 1; } if (rdx & x64::CPUID_FEAT_RDX_SMEP) { if (!BSP) KPrint("SMEP is supported."); fixme("Not going to enable SMEP."); // cr4.SMEP = 1; } if (rdx & x64::CPUID_FEAT_RDX_SMAP) { if (!BSP) KPrint("SMAP is supported."); fixme("Not going to enable SMAP."); // cr4.SMAP = 1; } if (strcmp(Hypervisor(), x86_CPUID_VENDOR_VIRTUALBOX) != 0 && strcmp(Hypervisor(), x86_CPUID_VENDOR_TCG) != 0) x64::writecr4(cr4); else { if (!BSP) { if (strcmp(Hypervisor(), x86_CPUID_VENDOR_VIRTUALBOX) != 0) KPrint("VirtualBox detected. Not using UMIP, SMEP & SMAP"); else if (strcmp(Hypervisor(), x86_CPUID_VENDOR_TCG) != 0) KPrint("QEMU (TCG) detected. Not using UMIP, SMEP & SMAP"); } } debug("Enabling PAT support..."); x64::wrmsr(x64::MSR_CR_PAT, 0x6 | (0x0 << 8) | (0x1 << 16)); if (!BSP++) trace("Features for BSP initialized."); #elif defined(__i386__) #elif defined(__aarch64__) #endif } uint64_t Counter() { // TODO: Get the counter from the x2APIC or any other timer that is available. (TSC is not available on all CPUs) #if defined(__amd64__) uint64_t counter; asmv("rdtsc" : "=A"(counter)); return counter; #elif defined(__i386__) return 0; #elif defined(__aarch64__) uint64_t counter; asmv("mrs %0, cntvct_el0" : "=r"(counter)); return counter; #endif } }