/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include "../../kernel.h"
#include "../../Fex.hpp"
using namespace Tasking;
using namespace vfs;
namespace Execute
{
void ELFObject::LoadPhdrs_x86_32(int fd,
Elf64_Ehdr ELFHeader,
Memory::VirtualMemoryArea *vma,
PCB *TargetProcess)
{
stub;
UNUSED(fd);
UNUSED(ELFHeader);
UNUSED(TargetProcess);
}
void ELFObject::LoadPhdrs_x86_64(int fd,
Elf64_Ehdr ELFHeader,
Memory::VirtualMemoryArea *vma,
PCB *TargetProcess)
{
#if defined(a64)
// assert(ELFHeader.e_phentsize == sizeof(Elf64_Phdr));
size_t size = ELFHeader.e_phnum * sizeof(Elf64_Phdr);
assert(size > 0);
assert(size < 65536);
assert(size < PAGE_SIZE);
ELFProgramHeaders = vma->RequestPages(TO_PAGES(size), true);
lseek(fd, ELFHeader.e_phoff, SEEK_SET);
fread(fd, (uint8_t *)ELFProgramHeaders, size);
#endif
}
void ELFObject::GenerateAuxiliaryVector_x86_32(Memory::VirtualMemoryArea *vma,
int fd,
Elf32_Ehdr ELFHeader,
uint32_t EntryPoint,
uint32_t BaseAddress)
{
}
void ELFObject::GenerateAuxiliaryVector_x86_64(Memory::VirtualMemoryArea *vma,
int fd,
Elf64_Ehdr ELFHeader,
uint64_t EntryPoint,
uint64_t BaseAddress)
{
#if defined(a64)
char *aux_platform = (char *)vma->RequestPages(1, true); /* TODO: 4KiB is too much for this */
strcpy(aux_platform, "x86_64");
const char *execfn = thisProcess->FileDescriptors->GetAbsolutePath(fd);
void *execfn_str = vma->RequestPages(TO_PAGES(strlen(execfn) + 1), true);
strcpy((char *)execfn_str, execfn);
delete[] execfn;
void *at_random = vma->RequestPages(1, true);
*(uint64_t *)at_random = Random::rand16();
Elfauxv.push_back({.archaux = {.a_type = AT_NULL, .a_un = {.a_val = 0}}});
Elfauxv.push_back({.archaux = {.a_type = AT_PLATFORM, .a_un = {.a_val = (uint64_t)aux_platform}}});
Elfauxv.push_back({.archaux = {.a_type = AT_EXECFN, .a_un = {.a_val = (uint64_t)execfn_str}}});
// AT_HWCAP2 26
Elfauxv.push_back({.archaux = {.a_type = AT_RANDOM, .a_un = {.a_val = (uint64_t)at_random}}});
Elfauxv.push_back({.archaux = {.a_type = AT_SECURE, .a_un = {.a_val = (uint64_t)0}}}); /* FIXME */
Elfauxv.push_back({.archaux = {.a_type = AT_EGID, .a_un = {.a_val = (uint64_t)0}}}); /* FIXME */
Elfauxv.push_back({.archaux = {.a_type = AT_GID, .a_un = {.a_val = (uint64_t)0}}}); /* FIXME */
Elfauxv.push_back({.archaux = {.a_type = AT_EUID, .a_un = {.a_val = (uint64_t)0}}}); /* FIXME */
Elfauxv.push_back({.archaux = {.a_type = AT_UID, .a_un = {.a_val = (uint64_t)0}}}); /* FIXME */
Elfauxv.push_back({.archaux = {.a_type = AT_ENTRY, .a_un = {.a_val = (uint64_t)EntryPoint}}});
// AT_FLAGS 8
Elfauxv.push_back({.archaux = {.a_type = AT_BASE, .a_un = {.a_val = (uint64_t)BaseAddress}}});
Elfauxv.push_back({.archaux = {.a_type = AT_PHNUM, .a_un = {.a_val = (uint64_t)ELFHeader.e_phnum}}});
Elfauxv.push_back({.archaux = {.a_type = AT_PHENT, .a_un = {.a_val = (uint64_t)ELFHeader.e_phentsize}}});
Elfauxv.push_back({.archaux = {.a_type = AT_PHDR, .a_un = {.a_val = (uint64_t)ELFProgramHeaders}}});
// AT_CLKTCK 17
Elfauxv.push_back({.archaux = {.a_type = AT_PAGESZ, .a_un = {.a_val = (uint64_t)PAGE_SIZE}}});
// AT_HWCAP 16
// AT_MINSIGSTKSZ 51
// AT_SYSINFO_EHDR 33
#endif
}
void ELFObject::LoadExec_x86_32(int fd, PCB *TargetProcess)
{
stub;
UNUSED(fd);
UNUSED(TargetProcess);
}
void ELFObject::LoadExec_x86_64(int fd, PCB *TargetProcess)
{
#if defined(a64)
std::vector PhdrINTERP = ELFGetSymbolType_x86_64(fd, PT_INTERP);
foreach (auto Interp in PhdrINTERP)
{
Memory::SmartHeap InterpreterPath = Memory::SmartHeap(256);
lseek(fd, Interp.p_offset, SEEK_SET);
fread(fd, InterpreterPath, 256);
int ifd = fopen((const char *)InterpreterPath.Get(), "r");
if (ifd < 0)
{
warn("Failed to open interpreter file: %s",
(const char *)InterpreterPath.Get());
continue;
}
else
{
if (GetBinaryType((const char *)InterpreterPath.Get()) != BinTypeELF)
{
warn("Interpreter %s is not an ELF file",
(const char *)InterpreterPath.Get());
fclose(ifd);
continue;
}
if (LoadInterpreter(ifd, TargetProcess))
{
/* FIXME: specify argv[1] as the location for the interpreter */
debug("Interpreter loaded successfully");
fclose(ifd);
return;
}
}
}
Elf64_Ehdr ELFHeader;
fread(fd, (uint8_t *)&ELFHeader, sizeof(Elf64_Ehdr));
uintptr_t EntryPoint = ELFHeader.e_entry;
debug("Entry point is %#lx", EntryPoint);
Memory::Virtual vmm = Memory::Virtual(TargetProcess->PageTable);
Memory::VirtualMemoryArea *vma = TargetProcess->vma;
LoadPhdrs_x86_64(fd, ELFHeader, vma, TargetProcess);
/* Copy segments into memory */
{
Elf64_Phdr ProgramBreakHeader{};
Elf64_Phdr ProgramHeader;
for (Elf64_Half i = 0; i < ELFHeader.e_phnum; i++)
{
lseek(fd, ELFHeader.e_phoff + (i * sizeof(Elf64_Phdr)), SEEK_SET);
fread(fd, (uint8_t *)&ProgramHeader, sizeof(Elf64_Phdr));
switch (ProgramHeader.p_type)
{
case PT_LOAD:
{
if (ProgramHeader.p_memsz == 0)
continue;
void *pAddr = vma->RequestPages(TO_PAGES(ProgramHeader.p_memsz), true);
void *SegmentDestination = (void *)ProgramHeader.p_vaddr;
vmm.Map(SegmentDestination, pAddr,
ProgramHeader.p_memsz,
Memory::P | Memory::RW | Memory::US);
debug("Mapped %#lx to %#lx", SegmentDestination, pAddr);
debug("Copying segment to p: %#lx-%#lx; v: %#lx-%#lx (%ld file bytes, %ld mem bytes)",
pAddr, uintptr_t(pAddr) + ProgramHeader.p_memsz,
SegmentDestination, uintptr_t(SegmentDestination) + ProgramHeader.p_memsz,
ProgramHeader.p_filesz, ProgramHeader.p_memsz);
if (ProgramHeader.p_filesz > 0)
{
lseek(fd, ProgramHeader.p_offset, SEEK_SET);
fread(fd, (uint8_t *)pAddr, ProgramHeader.p_filesz);
}
if (ProgramHeader.p_memsz - ProgramHeader.p_filesz > 0)
{
void *zAddr = (void *)(uintptr_t(pAddr) + ProgramHeader.p_filesz);
memset(zAddr, 0, ProgramHeader.p_memsz - ProgramHeader.p_filesz);
}
ProgramBreakHeader = ProgramHeader;
break;
}
default:
{
fixme("Unhandled program header type: %#lx",
ProgramHeader.p_type);
break;
}
}
}
/* Set program break */
uintptr_t ProgramBreak = ROUND_UP(ProgramBreakHeader.p_vaddr +
ProgramBreakHeader.p_memsz,
PAGE_SIZE);
TargetProcess->ProgramBreak->InitBrk(ProgramBreak);
}
struct stat statbuf;
fstat(fd, &statbuf);
Memory::SmartHeap sh = Memory::SmartHeap(statbuf.st_size);
lseek(fd, 0, SEEK_SET);
fread(fd, sh, statbuf.st_size);
TargetProcess->ELFSymbolTable->AppendSymbols(uintptr_t(sh.Get()));
debug("Entry Point: %#lx", EntryPoint);
this->GenerateAuxiliaryVector_x86_64(vma, fd, ELFHeader,
EntryPoint, 0);
this->ip = EntryPoint;
this->IsElfValid = true;
#endif
}
void ELFObject::LoadDyn_x86_32(int fd, PCB *TargetProcess)
{
stub;
UNUSED(fd);
UNUSED(TargetProcess);
}
void ELFObject::LoadDyn_x86_64(int fd, PCB *TargetProcess)
{
#if defined(a64)
std::vector PhdrINTERP = ELFGetSymbolType_x86_64(fd, PT_INTERP);
foreach (auto Interp in PhdrINTERP)
{
Memory::SmartHeap InterpreterPath = Memory::SmartHeap(256);
lseek(fd, Interp.p_offset, SEEK_SET);
fread(fd, InterpreterPath, 256);
InterpreterPath = InterpreterPath;
int ifd = fopen((const char *)InterpreterPath.Get(), "r");
if (ifd < 0)
{
warn("Failed to open interpreter file: %s",
(const char *)InterpreterPath.Get());
continue;
}
else
{
if (GetBinaryType((const char *)InterpreterPath.Get()) != BinTypeELF)
{
warn("Interpreter %s is not an ELF file",
(const char *)InterpreterPath.Get());
fclose(ifd);
continue;
}
if (LoadInterpreter(ifd, TargetProcess))
{
/* FIXME: specify argv[1] as the location for the interpreter */
debug("Interpreter loaded successfully");
fclose(ifd);
return;
}
}
}
Elf64_Ehdr ELFHeader;
fread(fd, (uint8_t *)&ELFHeader, sizeof(Elf64_Ehdr));
uintptr_t EntryPoint = ELFHeader.e_entry;
debug("Entry point is %#lx", EntryPoint);
Memory::Virtual vmm = Memory::Virtual(TargetProcess->PageTable);
Memory::VirtualMemoryArea *vma = TargetProcess->vma;
uintptr_t BaseAddress = 0;
LoadPhdrs_x86_64(fd, ELFHeader, vma, TargetProcess);
/* Copy segments into memory */
{
Elf64_Phdr ProgramBreakHeader{};
Elf64_Phdr ProgramHeader;
size_t SegmentsSize = 0;
for (Elf64_Half i = 0; i < ELFHeader.e_phnum; i++)
{
lseek(fd, ELFHeader.e_phoff + (i * sizeof(Elf64_Phdr)), SEEK_SET);
fread(fd, (uint8_t *)&ProgramHeader, sizeof(Elf64_Phdr));
if (ProgramHeader.p_type == PT_LOAD ||
ProgramHeader.p_type == PT_DYNAMIC)
{
if (SegmentsSize < ProgramHeader.p_vaddr + ProgramHeader.p_memsz)
{
SegmentsSize = ProgramHeader.p_vaddr + ProgramHeader.p_memsz;
ProgramBreakHeader = ProgramHeader;
}
}
}
debug("SegmentsSize: %#lx", SegmentsSize);
/* TODO: Check if this is correct and/or it needs more
complex calculations & allocations */
void *SegmentsAddress = vma->RequestPages(TO_PAGES(SegmentsSize) + 1, true);
BaseAddress = (uintptr_t)SegmentsAddress;
debug("BaseAddress: %#lx, End: %#lx (%#lx)", BaseAddress,
BaseAddress + FROM_PAGES(TO_PAGES(SegmentsSize)),
SegmentsSize);
for (Elf64_Half i = 0; i < ELFHeader.e_phnum; i++)
{
lseek(fd, ELFHeader.e_phoff + (i * sizeof(Elf64_Phdr)), SEEK_SET);
fread(fd, (uint8_t *)&ProgramHeader, sizeof(Elf64_Phdr));
switch (ProgramHeader.p_type)
{
case PT_LOAD:
{
/* Because this is ET_DYN, we can load the segments
anywhere we want. */
uintptr_t SegmentDestination = BaseAddress + ProgramHeader.p_vaddr;
if (ProgramHeader.p_memsz == 0)
continue;
debug("Copying PT_LOAD to %#lx-%#lx (%ld file bytes, %ld mem bytes)",
SegmentDestination, SegmentDestination + ProgramHeader.p_memsz,
ProgramHeader.p_filesz, ProgramHeader.p_memsz);
if (ProgramHeader.p_filesz > 0)
{
lseek(fd, ProgramHeader.p_offset, SEEK_SET);
fread(fd, (uint8_t *)SegmentDestination, ProgramHeader.p_filesz);
}
if (ProgramHeader.p_memsz - ProgramHeader.p_filesz > 0)
{
void *zAddr = (void *)(SegmentDestination + ProgramHeader.p_filesz);
memset(zAddr, 0, ProgramHeader.p_memsz - ProgramHeader.p_filesz);
}
break;
}
case PT_DYNAMIC:
{
/* PT_DYNAMIC contains the dynamic linking information for the
executable or shared library. */
uintptr_t DynamicSegmentDestination = BaseAddress + ProgramHeader.p_vaddr;
if (ProgramHeader.p_memsz == 0)
continue;
debug("Copying PT_DYNAMIC to %#lx-%#lx (%ld file bytes, %ld mem bytes)",
DynamicSegmentDestination, DynamicSegmentDestination + ProgramHeader.p_memsz,
ProgramHeader.p_filesz, ProgramHeader.p_memsz);
if (ProgramHeader.p_filesz > 0)
{
lseek(fd, ProgramHeader.p_offset, SEEK_SET);
fread(fd, (uint8_t *)DynamicSegmentDestination, ProgramHeader.p_filesz);
}
if (ProgramHeader.p_memsz - ProgramHeader.p_filesz > 0)
{
void *zAddr = (void *)(DynamicSegmentDestination + ProgramHeader.p_filesz);
memset(zAddr, 0, ProgramHeader.p_memsz - ProgramHeader.p_filesz);
}
break;
}
default:
{
fixme("Unhandled program header type: %#lx",
ProgramHeader.p_type);
break;
}
}
}
/* Set program break */
uintptr_t ProgramBreak = ROUND_UP(BaseAddress +
ProgramBreakHeader.p_vaddr +
ProgramBreakHeader.p_memsz,
PAGE_SIZE);
TargetProcess->ProgramBreak->InitBrk(ProgramBreak);
}
EntryPoint += BaseAddress;
debug("The new ep is %#lx", EntryPoint);
std::vector JmpRel = ELFGetDynamicTag_x86_64(fd, DT_JMPREL);
std::vector SymTab = ELFGetDynamicTag_x86_64(fd, DT_SYMTAB);
std::vector StrTab = ELFGetDynamicTag_x86_64(fd, DT_STRTAB);
std::vector RelaDyn = ELFGetDynamicTag_x86_64(fd, DT_RELA);
std::vector RelaDynSize = ELFGetDynamicTag_x86_64(fd, DT_RELASZ);
size_t JmpRelSize = JmpRel.size();
size_t SymTabSize = SymTab.size();
size_t StrTabSize = StrTab.size();
size_t RelaDynSize_v = RelaDyn.size();
if (JmpRelSize < 1)
{
debug("No DT_JMPREL");
}
if (SymTabSize < 1)
{
debug("No DT_SYMTAB");
}
if (StrTabSize < 1)
{
debug("No DT_STRTAB");
}
if (RelaDynSize_v < 1)
{
debug("No DT_RELA");
}
if (RelaDynSize[0].d_un.d_val < 1)
{
debug("DT_RELASZ is < 1");
}
if (JmpRelSize > 0 && SymTabSize > 0 && StrTabSize > 0)
{
debug("JmpRel: %#lx, SymTab: %#lx, StrTab: %#lx",
JmpRel[0].d_un.d_ptr, SymTab[0].d_un.d_ptr,
StrTab[0].d_un.d_ptr);
Elf64_Rela *_JmpRel = (Elf64_Rela *)((uintptr_t)BaseAddress + JmpRel[0].d_un.d_ptr);
Elf64_Sym *_SymTab = (Elf64_Sym *)((uintptr_t)BaseAddress + SymTab[0].d_un.d_ptr);
char *_DynStr = (char *)((uintptr_t)BaseAddress + StrTab[0].d_un.d_ptr);
Elf64_Rela *_RelaDyn = (Elf64_Rela *)((uintptr_t)BaseAddress + RelaDyn[0].d_un.d_ptr);
Elf64_Shdr shdr;
for (Elf64_Half i = 0; i < ELFHeader.e_shnum; i++)
{
lseek(fd, ELFHeader.e_shoff + i * sizeof(Elf64_Shdr), SEEK_SET);
fread(fd, (uint8_t *)&shdr, sizeof(Elf64_Shdr));
char sectionName[32];
Elf64_Shdr n_shdr;
lseek(fd, ELFHeader.e_shoff + ELFHeader.e_shstrndx * sizeof(Elf64_Shdr), SEEK_SET);
fread(fd, (uint8_t *)&n_shdr, sizeof(Elf64_Shdr));
lseek(fd, n_shdr.sh_offset + shdr.sh_name, SEEK_SET);
fread(fd, (uint8_t *)sectionName, 32);
debug("shdr: %s", sectionName);
if (strcmp(sectionName, ".rela.plt") == 0)
{
// .rela.plt
// R_X86_64_JUMP_SLOT
Elf64_Xword numEntries = shdr.sh_size / shdr.sh_entsize;
for (Elf64_Xword i = 0; i < numEntries; i++)
{
Elf64_Addr *GOTEntry = (Elf64_Addr *)(shdr.sh_addr +
BaseAddress +
i * sizeof(Elf64_Addr));
Elf64_Rela *Rel = _JmpRel + i;
Elf64_Xword RelType = ELF64_R_TYPE(Rel->r_info);
switch (RelType)
{
case R_X86_64_JUMP_SLOT:
{
Elf64_Xword SymIndex = ELF64_R_SYM(Rel->r_info);
Elf64_Sym *Sym = _SymTab + SymIndex;
if (Sym->st_name)
{
char *SymName = _DynStr + Sym->st_name;
debug("SymName: %s", SymName);
Elf64_Sym LibSym = ELFLookupSymbol(fd, SymName);
if (LibSym.st_value)
{
*GOTEntry = (Elf64_Addr)(BaseAddress + LibSym.st_value);
debug("GOT[%ld](%#lx): %#lx",
i, uintptr_t(GOTEntry) - BaseAddress,
*GOTEntry);
}
}
continue;
}
default:
{
fixme("Unhandled relocation type: %#lx", RelType);
break;
}
}
}
}
else if (strcmp(sectionName, ".rela.dyn") == 0)
{
// .rela.dyn
// R_X86_64_RELATIVE
// R_X86_64_GLOB_DAT
if (RelaDynSize_v < 1 || RelaDynSize[0].d_un.d_val < 1)
continue;
Elf64_Xword numRelaDynEntries = RelaDynSize[0].d_un.d_val / sizeof(Elf64_Rela);
for (Elf64_Xword i = 0; i < numRelaDynEntries; i++)
{
Elf64_Rela *Rel = _RelaDyn + i;
Elf64_Addr *GOTEntry = (Elf64_Addr *)(Rel->r_offset + BaseAddress);
Elf64_Xword RelType = ELF64_R_TYPE(Rel->r_info);
switch (RelType)
{
case R_X86_64_RELATIVE:
{
*GOTEntry = (Elf64_Addr)(BaseAddress + Rel->r_addend);
debug("GOT[%ld](%#lx): %#lx (R_X86_64_RELATIVE)",
i, uintptr_t(GOTEntry) - BaseAddress,
*GOTEntry);
break;
}
case R_X86_64_GLOB_DAT:
{
Elf64_Xword SymIndex = ELF64_R_SYM(Rel->r_info);
Elf64_Sym *Sym = _SymTab + SymIndex;
if (Sym->st_name)
{
char *SymName = _DynStr + Sym->st_name;
debug("SymName: %s", SymName);
Elf64_Sym LibSym = ELFLookupSymbol(fd, SymName);
if (LibSym.st_value)
{
*GOTEntry = (Elf64_Addr)(BaseAddress + LibSym.st_value);
debug("GOT[%ld](%#lx): %#lx (R_X86_64_GLOB_DAT)",
i, uintptr_t(GOTEntry) - BaseAddress,
*GOTEntry);
}
}
break;
}
default:
{
fixme("Unhandled relocation type: %#lx", RelType);
break;
}
}
}
}
else if (strcmp(sectionName, ".dynsym") == 0)
{
// .dynsym
// STT_OBJECT
Elf64_Sym *SymArray = (Elf64_Sym *)(shdr.sh_addr + BaseAddress);
Elf64_Xword numEntries = shdr.sh_size / shdr.sh_entsize;
debug("start %#lx (off %#lx), entries %ld",
SymArray, shdr.sh_addr, numEntries);
for (Elf64_Xword j = 0; j < numEntries; j++)
{
Elf64_Sym Sym = SymArray[j];
if (Sym.st_shndx == SHN_UNDEF)
continue;
if (Sym.st_value == 0)
continue;
unsigned char SymType = ELF64_ST_TYPE(Sym.st_info);
if (SymType == STT_OBJECT)
{
Elf64_Addr *GOTEntry = (Elf64_Addr *)(Sym.st_value + BaseAddress);
*GOTEntry = (Elf64_Addr)(BaseAddress + Sym.st_value);
debug("%ld: \"%s\" %#lx -> %#lx", j,
_DynStr + Sym.st_name,
uintptr_t(GOTEntry) - BaseAddress,
*GOTEntry);
}
}
}
else if (strcmp(sectionName, ".symtab") == 0)
{
// .symtab
// STT_OBJECT
Elf64_Xword numEntries = shdr.sh_size / shdr.sh_entsize;
Elf64_Sym *SymArray = new Elf64_Sym[numEntries];
lseek(fd, shdr.sh_offset, SEEK_SET);
fread(fd, (uint8_t *)SymArray, shdr.sh_size);
debug("start %#lx (off %#lx), entries %ld",
SymArray, shdr.sh_addr, numEntries);
for (Elf64_Xword j = 0; j < numEntries; j++)
{
Elf64_Sym Sym = SymArray[j];
if (Sym.st_shndx == SHN_UNDEF)
continue;
if (Sym.st_value == 0)
continue;
unsigned char SymType = ELF64_ST_TYPE(Sym.st_info);
if (SymType == STT_OBJECT)
{
Elf64_Addr *GOTEntry = (Elf64_Addr *)(Sym.st_value + BaseAddress);
*GOTEntry = (Elf64_Addr)(BaseAddress + Sym.st_value);
debug("%ld: \"\" %#lx -> %#lx", j,
/*_DynStr + Sym.st_name,*/
uintptr_t(GOTEntry) - BaseAddress,
*GOTEntry);
}
}
delete[] SymArray;
}
// if (shdr.sh_type == SHT_PROGBITS &&
// (shdr.sh_flags & SHF_WRITE) &&
// (shdr.sh_flags & SHF_ALLOC))
}
}
/* ------------------------------------------------------------------------ */
struct stat statbuf;
fstat(fd, &statbuf);
Memory::SmartHeap sh = Memory::SmartHeap(statbuf.st_size);
lseek(fd, 0, SEEK_SET);
fread(fd, sh, statbuf.st_size);
TargetProcess->ELFSymbolTable->AppendSymbols(uintptr_t(sh.Get()), BaseAddress);
debug("Entry Point: %#lx", EntryPoint);
this->GenerateAuxiliaryVector_x86_64(vma, fd, ELFHeader,
EntryPoint, BaseAddress);
this->ip = EntryPoint;
this->IsElfValid = true;
#endif
}
bool ELFObject::LoadInterpreter(int fd, PCB *TargetProcess)
{
Elf32_Ehdr ELFHeader;
fread(fd, &ELFHeader, sizeof(Elf32_Ehdr));
switch (ELFHeader.e_type)
{
case ET_REL:
{
fixme("ET_REL not implemented");
break;
}
case ET_EXEC:
{
switch (ELFHeader.e_machine)
{
case EM_386:
this->LoadExec_x86_32(fd, TargetProcess);
return true;
case EM_X86_64:
this->LoadExec_x86_64(fd, TargetProcess);
return true;
case EM_ARM:
error("ARM is not supported yet!");
break;
case EM_AARCH64:
error("ARM64 is not supported yet!");
break;
default:
error("Unknown architecture: %d", ELFHeader.e_machine);
break;
}
break;
}
case ET_DYN:
{
switch (ELFHeader.e_machine)
{
case EM_386:
this->LoadDyn_x86_32(fd, TargetProcess);
return true;
case EM_X86_64:
this->LoadDyn_x86_64(fd, TargetProcess);
return true;
case EM_ARM:
error("ARM is not supported yet!");
break;
case EM_AARCH64:
error("ARM64 is not supported yet!");
break;
default:
error("Unknown architecture: %d", ELFHeader.e_machine);
break;
}
break;
}
case ET_CORE:
{
fixme("ET_CORE not implemented");
break;
}
case ET_NONE:
default:
{
error("Unknown ELF Type: %d", ELFHeader.e_type);
break;
}
}
return false;
}
ELFObject::ELFObject(char *AbsolutePath,
PCB *TargetProcess,
const char **argv,
const char **envp)
{
if (GetBinaryType(AbsolutePath) != BinaryType::BinTypeELF)
{
error("%s is not an ELF file or is invalid.", AbsolutePath);
return;
}
int fd = fopen(AbsolutePath, "r");
if (fd < 0)
{
error("Failed to open %s, errno: %d", AbsolutePath, fd);
return;
}
int argc = 0;
int envc = 0;
while (argv[argc] != nullptr)
argc++;
while (envp[envc] != nullptr)
envc++;
// ELFargv = new const char *[argc + 2];
size_t argv_size = TO_PAGES(argc + 2 * sizeof(char *));
ELFargv = (const char **)TargetProcess->vma->RequestPages(argv_size);
for (int i = 0; i < argc; i++)
{
size_t arg_size = TO_PAGES(strlen(argv[i]) + 1);
ELFargv[i] = (const char *)TargetProcess->vma->RequestPages(arg_size);
strcpy((char *)ELFargv[i], argv[i]);
}
ELFargv[argc] = nullptr;
// ELFenvp = new const char *[envc + 1];
size_t envp_size = TO_PAGES(envc + 1 * sizeof(char *));
ELFenvp = (const char **)TargetProcess->vma->RequestPages(envp_size);
for (int i = 0; i < envc; i++)
{
size_t env_size = TO_PAGES(strlen(envp[i]) + 1);
ELFenvp[i] = (const char *)TargetProcess->vma->RequestPages(env_size);
strcpy((char *)ELFenvp[i], envp[i]);
}
ELFenvp[envc] = nullptr;
Elf32_Ehdr ELFHeader;
fread(fd, &ELFHeader, sizeof(Elf32_Ehdr));
switch (ELFHeader.e_type)
{
case ET_REL:
{
fixme("ET_REL not implemented");
break;
}
case ET_EXEC:
{
switch (ELFHeader.e_machine)
{
case EM_386:
this->LoadExec_x86_32(fd, TargetProcess);
break;
case EM_X86_64:
this->LoadExec_x86_64(fd, TargetProcess);
break;
case EM_ARM:
error("ARM is not supported yet!");
break;
case EM_AARCH64:
error("ARM64 is not supported yet!");
break;
default:
error("Unknown architecture: %d", ELFHeader.e_machine);
break;
}
break;
}
case ET_DYN:
{
switch (ELFHeader.e_machine)
{
case EM_386:
this->LoadDyn_x86_32(fd, TargetProcess);
break;
case EM_X86_64:
this->LoadDyn_x86_64(fd, TargetProcess);
break;
case EM_ARM:
error("ARM is not supported yet!");
break;
case EM_AARCH64:
error("ARM64 is not supported yet!");
break;
default:
error("Unknown architecture: %d", ELFHeader.e_machine);
break;
}
break;
}
case ET_CORE:
{
fixme("ET_CORE not implemented");
break;
}
case ET_NONE:
default:
{
error("Unknown ELF Type: %d", ELFHeader.e_type);
break;
}
}
fclose(fd);
}
ELFObject::~ELFObject()
{
}
}