/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see .
*/
#include "ahci.hpp"
#include
#include
#include "../../DAPI.hpp"
#include "../drv.hpp"
using namespace PCI;
namespace AdvancedHostControllerInterface
{
KernelAPI KAPI;
HBAMemory *ABAR;
Port *Ports[32];
uint8_t PortCount = 0;
PCIDeviceHeader *PCIBaseAddress;
const char *PortTypeName[] = {"None",
"SATA",
"SEMB",
"PM",
"SATAPI"};
PortType CheckPortType(HBAPort *Port)
{
uint32_t SataStatus = Port->SataStatus;
uint8_t InterfacePowerManagement = (SataStatus >> 8) & 0b111;
uint8_t DeviceDetection = SataStatus & 0b111;
if (DeviceDetection != HBA_PORT_DEV_PRESENT)
return PortType::None;
if (InterfacePowerManagement != HBA_PORT_IPM_ACTIVE)
return PortType::None;
switch (Port->Signature)
{
case SATA_SIG_ATAPI:
return PortType::SATAPI;
case SATA_SIG_ATA:
return PortType::SATA;
case SATA_SIG_PM:
return PortType::PM;
case SATA_SIG_SEMB:
return PortType::SEMB;
default:
return PortType::None;
}
}
Port::Port(PortType Type, HBAPort *PortPtr, uint8_t PortNumber)
{
this->AHCIPortType = Type;
this->HBAPortPtr = PortPtr;
this->Buffer = static_cast(KAPI.Memory.RequestPage(1));
memset(this->Buffer, 0, KAPI.Memory.PageSize);
this->PortNumber = PortNumber;
}
Port::~Port()
{
KAPI.Memory.FreePage(this->Buffer, 1);
}
void Port::StartCMD()
{
while (HBAPortPtr->CommandStatus & HBA_PxCMD_CR)
;
HBAPortPtr->CommandStatus |= HBA_PxCMD_FRE;
HBAPortPtr->CommandStatus |= HBA_PxCMD_ST;
}
void Port::StopCMD()
{
HBAPortPtr->CommandStatus &= ~HBA_PxCMD_ST;
HBAPortPtr->CommandStatus &= ~HBA_PxCMD_FRE;
while (true)
{
if (HBAPortPtr->CommandStatus & HBA_PxCMD_FR)
continue;
if (HBAPortPtr->CommandStatus & HBA_PxCMD_CR)
continue;
break;
}
}
void Port::Configure()
{
StopCMD();
void *NewBase = KAPI.Memory.RequestPage(1);
HBAPortPtr->CommandListBase = (uint32_t)(uint64_t)NewBase;
HBAPortPtr->CommandListBaseUpper = (uint32_t)((uint64_t)NewBase >> 32);
memset(reinterpret_cast(HBAPortPtr->CommandListBase), 0, 1024);
void *FISBase = KAPI.Memory.RequestPage(1);
HBAPortPtr->FISBaseAddress = (uint32_t)(uint64_t)FISBase;
HBAPortPtr->FISBaseAddressUpper = (uint32_t)((uint64_t)FISBase >> 32);
memset(FISBase, 0, 256);
HBACommandHeader *CommandHeader = (HBACommandHeader *)((uint64_t)HBAPortPtr->CommandListBase + ((uint64_t)HBAPortPtr->CommandListBaseUpper << 32));
for (int i = 0; i < 32; i++)
{
CommandHeader[i].PRDTLength = 8;
void *CommandTableAddress = KAPI.Memory.RequestPage(1);
uint64_t Address = (uint64_t)CommandTableAddress + (i << 8);
CommandHeader[i].CommandTableBaseAddress = (uint32_t)(uint64_t)Address;
CommandHeader[i].CommandTableBaseAddressUpper = (uint32_t)((uint64_t)Address >> 32);
memset(CommandTableAddress, 0, 256);
}
StartCMD();
}
bool Port::ReadWrite(uint64_t Sector, uint32_t SectorCount, uint8_t *Buffer, bool Write)
{
if (this->PortNumber == PortType::SATAPI && Write)
{
error("SATAPI port does not support write.");
return false;
}
uint32_t SectorL = (uint32_t)Sector;
uint32_t SectorH = (uint32_t)(Sector >> 32);
HBAPortPtr->InterruptStatus = (uint32_t)-1; // Clear pending interrupt bits
HBACommandHeader *CommandHeader = reinterpret_cast(HBAPortPtr->CommandListBase);
CommandHeader->CommandFISLength = sizeof(FIS_REG_H2D) / sizeof(uint32_t);
if (Write)
CommandHeader->Write = 1;
else
CommandHeader->Write = 0;
CommandHeader->PRDTLength = 1;
HBACommandTable *CommandTable = reinterpret_cast(CommandHeader->CommandTableBaseAddress);
memset(CommandTable, 0, sizeof(HBACommandTable) + (CommandHeader->PRDTLength - 1) * sizeof(HBAPRDTEntry));
CommandTable->PRDTEntry[0].DataBaseAddress = (uint32_t)(uint64_t)Buffer;
CommandTable->PRDTEntry[0].DataBaseAddressUpper = (uint32_t)((uint64_t)Buffer >> 32);
#pragma GCC diagnostic push
/* conversion from ‘uint32_t’ {aka ‘unsigned int’} to ‘unsigned int:22’ may change value */
#pragma GCC diagnostic ignored "-Wconversion"
CommandTable->PRDTEntry[0].ByteCount = (SectorCount << 9) - 1; /* 512 bytes per sector */
#pragma GCC diagnostic pop
CommandTable->PRDTEntry[0].InterruptOnCompletion = 1;
FIS_REG_H2D *CommandFIS = (FIS_REG_H2D *)(&CommandTable->CommandFIS);
CommandFIS->FISType = FIS_TYPE_REG_H2D;
CommandFIS->CommandControl = 1;
if (Write)
CommandFIS->Command = ATA_CMD_WRITE_DMA_EX;
else
CommandFIS->Command = ATA_CMD_READ_DMA_EX;
CommandFIS->LBA0 = (uint8_t)SectorL;
CommandFIS->LBA1 = (uint8_t)(SectorL >> 8);
CommandFIS->LBA2 = (uint8_t)(SectorL >> 16);
CommandFIS->LBA3 = (uint8_t)SectorH;
CommandFIS->LBA4 = (uint8_t)(SectorH >> 8);
CommandFIS->LBA5 = (uint8_t)(SectorH >> 16);
CommandFIS->DeviceRegister = 1 << 6; // LBA mode
CommandFIS->CountLow = SectorCount & 0xFF;
CommandFIS->CountHigh = (SectorCount >> 8) & 0xFF;
uint64_t Spin = 0;
while ((HBAPortPtr->TaskFileData & (ATA_DEV_BUSY | ATA_DEV_DRQ)) && Spin < 1000000)
Spin++;
if (Spin == 1000000)
{
error("Port not responding.");
return false;
}
HBAPortPtr->CommandIssue = 1;
Spin = 0;
int TryCount = 0;
while (true)
{
if (Spin > 100000000)
{
error("Port %d not responding. (%d)", this->PortNumber, TryCount);
Spin = 0;
TryCount++;
if (TryCount > 10)
return false;
}
if (HBAPortPtr->CommandIssue == 0)
break;
Spin++;
if (HBAPortPtr->InterruptStatus & HBA_PxIS_TFES)
{
error("Error reading/writing (%d).", Write);
return false;
}
}
return true;
}
int DriverEntry(void *Data)
{
if (!Data)
return INVALID_KERNEL_API;
KAPI = *(KernelAPI *)Data;
if (KAPI.Version.Major < 0 || KAPI.Version.Minor < 0 || KAPI.Version.Patch < 0)
return KERNEL_API_VERSION_NOT_SUPPORTED;
return OK;
}
int CallbackHandler(KernelCallback *Data)
{
switch (Data->Reason)
{
case AcknowledgeReason:
{
debug("Kernel acknowledged the driver.");
break;
}
case ConfigurationReason:
{
debug("Driver received configuration data.");
PCIBaseAddress = reinterpret_cast(Data->RawPtr);
ABAR = reinterpret_cast(((PCIHeader0 *)PCIBaseAddress)->BAR5);
KAPI.Memory.Map((void *)ABAR, (void *)ABAR, (1 << 1));
uint32_t PortsImplemented = ABAR->PortsImplemented;
for (int i = 0; i < 32; i++)
{
if (PortsImplemented & (1 << i))
{
PortType portType = CheckPortType(&ABAR->Ports[i]);
if (portType == PortType::SATA || portType == PortType::SATAPI)
{
trace("%s drive found at port %d", PortTypeName[portType], i);
Ports[PortCount] = new Port(portType, &ABAR->Ports[i], PortCount);
PortCount++;
}
else
{
if (portType != PortType::None)
warn("Unsupported drive type %s found at port %d", PortTypeName[portType], i);
}
}
}
for (int i = 0; i < PortCount; i++)
Ports[i]->Configure();
break;
}
case FetchReason:
{
Data->DiskCallback.Fetch.Ports = PortCount;
Data->DiskCallback.Fetch.BytesPerSector = 512;
break;
}
case StopReason:
{
// TODO: Stop the driver.
debug("Driver stopped.");
break;
}
case SendReason:
case ReceiveReason:
{
Ports[Data->DiskCallback.RW.Port]->ReadWrite(Data->DiskCallback.RW.Sector,
(uint32_t)Data->DiskCallback.RW.SectorCount,
Data->DiskCallback.RW.Buffer,
Data->DiskCallback.RW.Write);
break;
}
default:
{
warn("Unknown reason.");
break;
}
}
return OK;
}
int InterruptCallback(CPURegisters *)
{
/* There's no need to do anything here. */
return OK;
}
}