/* This file is part of Fennix Kernel. Fennix Kernel is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Fennix Kernel is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Fennix Kernel. If not, see . */ #include "ahci.hpp" #include #include #include "../../DAPI.hpp" #include "../drv.hpp" using namespace PCI; namespace AdvancedHostControllerInterface { KernelAPI KAPI; HBAMemory *ABAR; Port *Ports[32]; uint8_t PortCount = 0; PCIDeviceHeader *PCIBaseAddress; const char *PortTypeName[] = {"None", "SATA", "SEMB", "PM", "SATAPI"}; PortType CheckPortType(HBAPort *Port) { uint32_t SataStatus = Port->SataStatus; uint8_t InterfacePowerManagement = (SataStatus >> 8) & 0b111; uint8_t DeviceDetection = SataStatus & 0b111; if (DeviceDetection != HBA_PORT_DEV_PRESENT) return PortType::None; if (InterfacePowerManagement != HBA_PORT_IPM_ACTIVE) return PortType::None; switch (Port->Signature) { case SATA_SIG_ATAPI: return PortType::SATAPI; case SATA_SIG_ATA: return PortType::SATA; case SATA_SIG_PM: return PortType::PM; case SATA_SIG_SEMB: return PortType::SEMB; default: return PortType::None; } } Port::Port(PortType Type, HBAPort *PortPtr, uint8_t PortNumber) { this->AHCIPortType = Type; this->HBAPortPtr = PortPtr; this->Buffer = static_cast(KAPI.Memory.RequestPage(1)); memset(this->Buffer, 0, KAPI.Memory.PageSize); this->PortNumber = PortNumber; } Port::~Port() { KAPI.Memory.FreePage(this->Buffer, 1); } void Port::StartCMD() { while (HBAPortPtr->CommandStatus & HBA_PxCMD_CR) ; HBAPortPtr->CommandStatus |= HBA_PxCMD_FRE; HBAPortPtr->CommandStatus |= HBA_PxCMD_ST; } void Port::StopCMD() { HBAPortPtr->CommandStatus &= ~HBA_PxCMD_ST; HBAPortPtr->CommandStatus &= ~HBA_PxCMD_FRE; while (true) { if (HBAPortPtr->CommandStatus & HBA_PxCMD_FR) continue; if (HBAPortPtr->CommandStatus & HBA_PxCMD_CR) continue; break; } } void Port::Configure() { StopCMD(); void *NewBase = KAPI.Memory.RequestPage(1); HBAPortPtr->CommandListBase = (uint32_t)(uint64_t)NewBase; HBAPortPtr->CommandListBaseUpper = (uint32_t)((uint64_t)NewBase >> 32); memset(reinterpret_cast(HBAPortPtr->CommandListBase), 0, 1024); void *FISBase = KAPI.Memory.RequestPage(1); HBAPortPtr->FISBaseAddress = (uint32_t)(uint64_t)FISBase; HBAPortPtr->FISBaseAddressUpper = (uint32_t)((uint64_t)FISBase >> 32); memset(FISBase, 0, 256); HBACommandHeader *CommandHeader = (HBACommandHeader *)((uint64_t)HBAPortPtr->CommandListBase + ((uint64_t)HBAPortPtr->CommandListBaseUpper << 32)); for (int i = 0; i < 32; i++) { CommandHeader[i].PRDTLength = 8; void *CommandTableAddress = KAPI.Memory.RequestPage(1); uint64_t Address = (uint64_t)CommandTableAddress + (i << 8); CommandHeader[i].CommandTableBaseAddress = (uint32_t)(uint64_t)Address; CommandHeader[i].CommandTableBaseAddressUpper = (uint32_t)((uint64_t)Address >> 32); memset(CommandTableAddress, 0, 256); } StartCMD(); } bool Port::ReadWrite(uint64_t Sector, uint32_t SectorCount, uint8_t *Buffer, bool Write) { if (this->PortNumber == PortType::SATAPI && Write) { error("SATAPI port does not support write."); return false; } uint32_t SectorL = (uint32_t)Sector; uint32_t SectorH = (uint32_t)(Sector >> 32); HBAPortPtr->InterruptStatus = (uint32_t)-1; // Clear pending interrupt bits HBACommandHeader *CommandHeader = reinterpret_cast(HBAPortPtr->CommandListBase); CommandHeader->CommandFISLength = sizeof(FIS_REG_H2D) / sizeof(uint32_t); if (Write) CommandHeader->Write = 1; else CommandHeader->Write = 0; CommandHeader->PRDTLength = 1; HBACommandTable *CommandTable = reinterpret_cast(CommandHeader->CommandTableBaseAddress); memset(CommandTable, 0, sizeof(HBACommandTable) + (CommandHeader->PRDTLength - 1) * sizeof(HBAPRDTEntry)); CommandTable->PRDTEntry[0].DataBaseAddress = (uint32_t)(uint64_t)Buffer; CommandTable->PRDTEntry[0].DataBaseAddressUpper = (uint32_t)((uint64_t)Buffer >> 32); #pragma GCC diagnostic push /* conversion from ‘uint32_t’ {aka ‘unsigned int’} to ‘unsigned int:22’ may change value */ #pragma GCC diagnostic ignored "-Wconversion" CommandTable->PRDTEntry[0].ByteCount = (SectorCount << 9) - 1; /* 512 bytes per sector */ #pragma GCC diagnostic pop CommandTable->PRDTEntry[0].InterruptOnCompletion = 1; FIS_REG_H2D *CommandFIS = (FIS_REG_H2D *)(&CommandTable->CommandFIS); CommandFIS->FISType = FIS_TYPE_REG_H2D; CommandFIS->CommandControl = 1; if (Write) CommandFIS->Command = ATA_CMD_WRITE_DMA_EX; else CommandFIS->Command = ATA_CMD_READ_DMA_EX; CommandFIS->LBA0 = (uint8_t)SectorL; CommandFIS->LBA1 = (uint8_t)(SectorL >> 8); CommandFIS->LBA2 = (uint8_t)(SectorL >> 16); CommandFIS->LBA3 = (uint8_t)SectorH; CommandFIS->LBA4 = (uint8_t)(SectorH >> 8); CommandFIS->LBA5 = (uint8_t)(SectorH >> 16); CommandFIS->DeviceRegister = 1 << 6; // LBA mode CommandFIS->CountLow = SectorCount & 0xFF; CommandFIS->CountHigh = (SectorCount >> 8) & 0xFF; uint64_t Spin = 0; while ((HBAPortPtr->TaskFileData & (ATA_DEV_BUSY | ATA_DEV_DRQ)) && Spin < 1000000) Spin++; if (Spin == 1000000) { error("Port not responding."); return false; } HBAPortPtr->CommandIssue = 1; Spin = 0; int TryCount = 0; while (true) { if (Spin > 100000000) { error("Port %d not responding. (%d)", this->PortNumber, TryCount); Spin = 0; TryCount++; if (TryCount > 10) return false; } if (HBAPortPtr->CommandIssue == 0) break; Spin++; if (HBAPortPtr->InterruptStatus & HBA_PxIS_TFES) { error("Error reading/writing (%d).", Write); return false; } } return true; } int DriverEntry(void *Data) { if (!Data) return INVALID_KERNEL_API; KAPI = *(KernelAPI *)Data; if (KAPI.Version.Major < 0 || KAPI.Version.Minor < 0 || KAPI.Version.Patch < 0) return KERNEL_API_VERSION_NOT_SUPPORTED; return OK; } int CallbackHandler(KernelCallback *Data) { switch (Data->Reason) { case AcknowledgeReason: { debug("Kernel acknowledged the driver."); break; } case ConfigurationReason: { debug("Driver received configuration data."); PCIBaseAddress = reinterpret_cast(Data->RawPtr); ABAR = reinterpret_cast(((PCIHeader0 *)PCIBaseAddress)->BAR5); KAPI.Memory.Map((void *)ABAR, (void *)ABAR, (1 << 1)); uint32_t PortsImplemented = ABAR->PortsImplemented; for (int i = 0; i < 32; i++) { if (PortsImplemented & (1 << i)) { PortType portType = CheckPortType(&ABAR->Ports[i]); if (portType == PortType::SATA || portType == PortType::SATAPI) { trace("%s drive found at port %d", PortTypeName[portType], i); Ports[PortCount] = new Port(portType, &ABAR->Ports[i], PortCount); PortCount++; } else { if (portType != PortType::None) warn("Unsupported drive type %s found at port %d", PortTypeName[portType], i); } } } for (int i = 0; i < PortCount; i++) Ports[i]->Configure(); break; } case FetchReason: { Data->DiskCallback.Fetch.Ports = PortCount; Data->DiskCallback.Fetch.BytesPerSector = 512; break; } case StopReason: { // TODO: Stop the driver. debug("Driver stopped."); break; } case SendReason: case ReceiveReason: { Ports[Data->DiskCallback.RW.Port]->ReadWrite(Data->DiskCallback.RW.Sector, (uint32_t)Data->DiskCallback.RW.SectorCount, Data->DiskCallback.RW.Buffer, Data->DiskCallback.RW.Write); break; } default: { warn("Unknown reason."); break; } } return OK; } int InterruptCallback(CPURegisters *) { /* There's no need to do anything here. */ return OK; } }