#include #include #include #include #include "../kernel.h" namespace CPU { char *Vendor() { static char Vendor[13]; #if defined(__amd64__) uint32_t rax, rbx, rcx, rdx; x64::cpuid(0x0, &rax, &rbx, &rcx, &rdx); memcpy(Vendor + 0, &rbx, 4); memcpy(Vendor + 4, &rdx, 4); memcpy(Vendor + 8, &rcx, 4); #elif defined(__i386__) uint32_t rax, rbx, rcx, rdx; x32::cpuid(0x0, &rax, &rbx, &rcx, &rdx); memcpy(Vendor + 0, &rbx, 4); memcpy(Vendor + 4, &rdx, 4); memcpy(Vendor + 8, &rcx, 4); #elif defined(__aarch64__) asmv("mrs %0, MIDR_EL1" : "=r"(Vendor[0])); #endif return Vendor; } char *Name() { static char Name[49]; #if defined(__amd64__) uint32_t rax, rbx, rcx, rdx; x64::cpuid(0x80000002, &rax, &rbx, &rcx, &rdx); memcpy(Name + 0, &rax, 4); memcpy(Name + 4, &rbx, 4); memcpy(Name + 8, &rcx, 4); memcpy(Name + 12, &rdx, 4); x64::cpuid(0x80000003, &rax, &rbx, &rcx, &rdx); memcpy(Name + 16, &rax, 4); memcpy(Name + 20, &rbx, 4); memcpy(Name + 24, &rcx, 4); memcpy(Name + 28, &rdx, 4); x64::cpuid(0x80000004, &rax, &rbx, &rcx, &rdx); memcpy(Name + 32, &rax, 4); memcpy(Name + 36, &rbx, 4); memcpy(Name + 40, &rcx, 4); memcpy(Name + 44, &rdx, 4); #elif defined(__i386__) uint32_t rax, rbx, rcx, rdx; x32::cpuid(0x80000002, &rax, &rbx, &rcx, &rdx); memcpy(Name + 0, &rax, 4); memcpy(Name + 4, &rbx, 4); memcpy(Name + 8, &rcx, 4); memcpy(Name + 12, &rdx, 4); x32::cpuid(0x80000003, &rax, &rbx, &rcx, &rdx); memcpy(Name + 16, &rax, 4); memcpy(Name + 20, &rbx, 4); memcpy(Name + 24, &rcx, 4); memcpy(Name + 28, &rdx, 4); x32::cpuid(0x80000004, &rax, &rbx, &rcx, &rdx); memcpy(Name + 32, &rax, 4); memcpy(Name + 36, &rbx, 4); memcpy(Name + 40, &rcx, 4); memcpy(Name + 44, &rdx, 4); #elif defined(__aarch64__) asmv("mrs %0, MIDR_EL1" : "=r"(Name[0])); #endif return Name; } char *Hypervisor() { static char Hypervisor[13]; #if defined(__amd64__) uint32_t rax, rbx, rcx, rdx; x64::cpuid(0x40000000, &rax, &rbx, &rcx, &rdx); memcpy(Hypervisor + 0, &rbx, 4); memcpy(Hypervisor + 4, &rcx, 4); memcpy(Hypervisor + 8, &rdx, 4); #elif defined(__i386__) uint32_t rax, rbx, rcx, rdx; x64::cpuid(0x40000000, &rax, &rbx, &rcx, &rdx); memcpy(Hypervisor + 0, &rbx, 4); memcpy(Hypervisor + 4, &rcx, 4); memcpy(Hypervisor + 8, &rdx, 4); #elif defined(__aarch64__) asmv("mrs %0, MIDR_EL1" : "=r"(Hypervisor[0])); #endif return Hypervisor; } bool Interrupts(InterruptsType Type) { switch (Type) { case Check: { uintptr_t Flags; #if defined(__amd64__) asmv("pushfq"); asmv("popq %0" : "=r"(Flags)); return Flags & (1 << 9); #elif defined(__i386__) asmv("pushfl"); asmv("popl %0" : "=r"(Flags)); return Flags & (1 << 9); #elif defined(__aarch64__) asmv("mrs %0, daif" : "=r"(Flags)); return !(Flags & (1 << 2)); #endif } case Enable: { #if defined(__amd64__) || defined(__i386__) asmv("sti"); #elif defined(__aarch64__) asmv("msr daifclr, #2"); #endif return true; } case Disable: { #if defined(__amd64__) || defined(__i386__) asmv("cli"); #elif defined(__aarch64__) asmv("msr daifset, #2"); #endif return true; } } return false; } void *PageTable(void *PT) { #if defined(__amd64__) if (PT) asmv("movq %0, %%cr3" : : "r"(PT)); else asmv("movq %%cr3, %0" : "=r"(PT)); #elif defined(__i386__) if (PT) asmv("movl %0, %%cr3" : : "r"(PT)); else asmv("movl %%cr3, %0" : "=r"(PT)); #elif defined(__aarch64__) if (PT) asmv("msr ttbr0_el1, %0" : : "r"(PT)); else asmv("mrs %0, ttbr0_el1" : "=r"(PT)); #endif return PT; } void InitializeFeatures() { #if defined(__amd64__) static int BSP = 0; x64::CR0 cr0 = x64::readcr0(); x64::CR4 cr4 = x64::readcr4(); uint32_t rax, rbx, rcx, rdx; x64::cpuid(0x1, &rax, &rbx, &rcx, &rdx); if (rdx & x64::CPUID_FEAT_RDX_PGE) { debug("Enabling global pages support..."); if (!BSP) KPrint("Global Pages is supported."); cr4.PGE = 1; } if (rdx & x64::CPUID_FEAT_RDX_SSE) { debug("Enabling SSE support..."); if (!BSP) KPrint("SSE is supported."); cr0.EM = 0; cr0.MP = 1; cr4.OSFXSR = 1; cr4.OSXMMEXCPT = 1; } if (!BSP) KPrint("Enabling CPU cache."); cr0.NW = 0; cr0.CD = 0; cr0.WP = 1; x64::writecr0(cr0); debug("Enabling UMIP, SMEP & SMAP support..."); x64::cpuid(0x1, &rax, &rbx, &rcx, &rdx); if (rdx & x64::CPUID_FEAT_RDX_UMIP) // https://en.wikipedia.org/wiki/Control_register { if (!BSP) KPrint("UMIP is supported."); debug("UMIP is supported."); // cr4.UMIP = 1; } if (rdx & x64::CPUID_FEAT_RDX_SMEP) // https://en.wikipedia.org/wiki/Control_register#SMEP // https://web.archive.org/web/20160312223150/http://ncsi.com/nsatc11/presentations/wednesday/emerging_technologies/fischer.pdf { if (!BSP) KPrint("SMEP is supported."); debug("SMEP is supported."); // cr4.SMEP = 1; } if (rdx & x64::CPUID_FEAT_RDX_SMAP) // https://en.wikipedia.org/wiki/Supervisor_Mode_Access_Prevention { if (!BSP) KPrint("SMAP is supported."); debug("SMAP is supported."); // cr4.SMAP = 1; } if (strcmp(Hypervisor(), x86_CPUID_VENDOR_VIRTUALBOX) != 0 && strcmp(Hypervisor(), x86_CPUID_VENDOR_TCG) != 0) { debug("Writing CR4..."); x64::writecr4(cr4); debug("Wrote CR4."); } else { if (!BSP) { if (strcmp(Hypervisor(), x86_CPUID_VENDOR_VIRTUALBOX) == 0) KPrint("VirtualBox detected. Not using UMIP, SMEP & SMAP"); else if (strcmp(Hypervisor(), x86_CPUID_VENDOR_TCG) == 0) KPrint("QEMU (TCG) detected. Not using UMIP, SMEP & SMAP"); } } debug("Enabling PAT support..."); x64::wrmsr(x64::MSR_CR_PAT, 0x6 | (0x0 << 8) | (0x1 << 16)); if (!BSP++) trace("Features for BSP initialized."); #elif defined(__i386__) #elif defined(__aarch64__) #endif } uintptr_t Counter() { // TODO: Get the counter from the x2APIC or any other timer that is available. (TSC is not available on all CPUs) uintptr_t Counter; #if defined(__amd64__) asmv("rdtsc" : "=A"(Counter)); #elif defined(__i386__) asmv("rdtsc" : "=A"(Counter)); #elif defined(__aarch64__) asmv("mrs %0, cntvct_el0" : "=r"(Counter)); #endif return Counter; } x86SIMDType CheckSIMD() { if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_AMD) == 0) { #if defined(__amd64__) CPU::x64::AMD::CPUID0x1 cpuid1amd; #elif defined(__i386__) CPU::x32::AMD::CPUID0x1 cpuid1amd; #endif #if defined(__amd64__) || defined(__i386__) asmv("cpuid" : "=a"(cpuid1amd.EAX.raw), "=b"(cpuid1amd.EBX.raw), "=c"(cpuid1amd.ECX.raw), "=d"(cpuid1amd.EDX.raw) : "a"(0x1)); #endif if (cpuid1amd.ECX.SSE4_2) return SIMD_SSE42; else if (cpuid1amd.ECX.SSE4_1) return SIMD_SSE41; else if (cpuid1amd.ECX.SSE3) return SIMD_SSE3; else if (cpuid1amd.EDX.SSE2) return SIMD_SSE2; else if (cpuid1amd.EDX.SSE) return SIMD_SSE; } if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_INTEL) == 0) { #if defined(__amd64__) CPU::x64::Intel::CPUID0x1 cpuid1intel; #elif defined(__i386__) CPU::x32::Intel::CPUID0x1 cpuid1intel; #endif #if defined(__amd64__) || defined(__i386__) asmv("cpuid" : "=a"(cpuid1intel.EAX.raw), "=b"(cpuid1intel.EBX.raw), "=c"(cpuid1intel.ECX.raw), "=d"(cpuid1intel.EDX.raw) : "a"(0x1)); #endif if (cpuid1intel.ECX.SSE4_2) return SIMD_SSE42; else if (cpuid1intel.ECX.SSE4_1) return SIMD_SSE41; else if (cpuid1intel.ECX.SSE3) return SIMD_SSE3; else if (cpuid1intel.EDX.SSE2) return SIMD_SSE2; else if (cpuid1intel.EDX.SSE) return SIMD_SSE; } return SIMD_NONE; } bool CheckSIMD(x86SIMDType Type) { if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_AMD) == 0) { #if defined(__amd64__) CPU::x64::AMD::CPUID0x1 cpuid1amd; #elif defined(__i386__) CPU::x32::AMD::CPUID0x1 cpuid1amd; #endif #if defined(__amd64__) || defined(__i386__) asmv("cpuid" : "=a"(cpuid1amd.EAX.raw), "=b"(cpuid1amd.EBX.raw), "=c"(cpuid1amd.ECX.raw), "=d"(cpuid1amd.EDX.raw) : "a"(0x1)); #endif if (Type == SIMD_SSE42) return cpuid1amd.ECX.SSE4_2; else if (Type == SIMD_SSE41) return cpuid1amd.ECX.SSE4_1; else if (Type == SIMD_SSE3) return cpuid1amd.ECX.SSE3; else if (Type == SIMD_SSE2) return cpuid1amd.EDX.SSE2; else if (Type == SIMD_SSE) return cpuid1amd.EDX.SSE; } if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_INTEL) == 0) { #if defined(__amd64__) CPU::x64::Intel::CPUID0x1 cpuid1intel; #elif defined(__i386__) CPU::x32::Intel::CPUID0x1 cpuid1intel; #endif #if defined(__amd64__) || defined(__i386__) asmv("cpuid" : "=a"(cpuid1intel.EAX.raw), "=b"(cpuid1intel.EBX.raw), "=c"(cpuid1intel.ECX.raw), "=d"(cpuid1intel.EDX.raw) : "a"(0x1)); #endif if (Type == SIMD_SSE42) return cpuid1intel.ECX.SSE4_2; else if (Type == SIMD_SSE41) return cpuid1intel.ECX.SSE4_1; else if (Type == SIMD_SSE3) return cpuid1intel.ECX.SSE3; else if (Type == SIMD_SSE2) return cpuid1intel.EDX.SSE2; else if (Type == SIMD_SSE) return cpuid1intel.EDX.SSE; } return false; } }