/* This file is part of Fennix Kernel. Fennix Kernel is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Fennix Kernel is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Fennix Kernel. If not, see . */ #include #include #include #include #include #include #include #include "../kernel.h" #if defined(a64) #include "../Architecture/amd64/cpu/apic.hpp" #include "../Architecture/amd64/cpu/gdt.hpp" #elif defined(a32) #include "../Architecture/i386/cpu/apic.hpp" #elif defined(aa64) #endif // #define DEBUG_TASKING 1 #ifdef DEBUG_TASKING #define tskdbg(m, ...) \ debug(m, ##__VA_ARGS__); \ __sync #else #define tskdbg(m, ...) #endif void ThreadDoExit() { CPUData *CPUData = GetCurrentCPU(); Tasking::TCB *CurrentThread = CPUData->CurrentThread.load(); CurrentThread->Status = Tasking::TaskStatus::Terminated; debug("\"%s\"(%d) exited with code: %#lx", CurrentThread->Name, CurrentThread->ID, CurrentThread->ExitCode); CPU::Halt(true); } namespace Tasking { void TCB::Rename(const char *name) { assert(name != nullptr); assert(strlen(name) > 0); trace("Renaming thread %s to %s", this->Name, name); if (this->Name) delete[] this->Name; this->Name = new char[strlen(name) + 1]; strcpy((char *)this->Name, name); } void TCB::SetPriority(TaskPriority priority) { assert(priority >= _PriorityMin); // assert(priority <= _PriorityMax); trace("Setting priority of thread %s to %d", this->Name, priority); Info.Priority = priority; } void TCB::SetCritical(bool Critical) { trace("Setting criticality of thread %s to %s", this->Name, Critical ? "true" : "false"); Security.IsCritical = Critical; } void TCB::SetDebugMode(bool Enable) { trace("Setting debug mode of thread %s to %s", this->Name, Enable ? "true" : "false"); Security.IsDebugEnabled = Enable; } void TCB::SetKernelDebugMode(bool Enable) { trace("Setting kernel debug mode of thread %s to %s", this->Name, Enable ? "true" : "false"); Security.IsKernelDebugEnabled = Enable; } void TCB::SYSV_ABI_Call(uintptr_t Arg1, uintptr_t Arg2, uintptr_t Arg3, uintptr_t Arg4, uintptr_t Arg5, uintptr_t Arg6, void *Function) { #if defined(a64) this->Registers.rdi = Arg1; this->Registers.rsi = Arg2; this->Registers.rdx = Arg3; this->Registers.rcx = Arg4; this->Registers.r8 = Arg5; this->Registers.r9 = Arg6; if (Function != nullptr) this->Registers.rip = (uint64_t)Function; #else #warning "SYSV ABI not implemented for this architecture" #endif } __no_sanitize("undefined") TCB::TCB(Task *ctx, PCB *Parent, IP EntryPoint, const char **argv, const char **envp, const std::vector &auxv, TaskArchitecture Architecture, TaskCompatibility Compatibility, bool ThreadNotReady) { assert(ctx != nullptr); assert(Architecture >= _ArchitectureMin); assert(Architecture <= _ArchitectureMax); assert(Compatibility >= _CompatibilityMin); assert(Compatibility <= _CompatibilityMax); if (Parent == nullptr) { this->Parent = ctx->GetCurrentProcess(); assert(this->Parent != nullptr); } else this->Parent = Parent; this->ctx = ctx; this->ID = ctx->NextTID++; if (this->Name) delete[] this->Name; this->Name = new char[strlen(this->Parent->Name) + 1]; strcpy((char *)this->Name, this->Parent->Name); this->EntryPoint = EntryPoint; this->ExitCode = KILL_CRASH; this->Info.Architecture = Architecture; this->Info.Compatibility = Compatibility; this->Security.ExecutionMode = this->Parent->Security.ExecutionMode; if (ThreadNotReady) this->Status = TaskStatus::Zombie; else this->Status = TaskStatus::Ready; this->Memory = new Memory::MemMgr(this->Parent->PageTable, this->Parent->memDirectory); std::size_t FXPgs = TO_PAGES(sizeof(CPU::x64::FXState) + 1); this->FPU = (CPU::x64::FXState *)this->Memory->RequestPages(FXPgs); memset(this->FPU, 0, sizeof(CPU::x64::FXState)); // TODO: Is really a good idea to use the FPU in kernel mode? this->FPU->mxcsr = 0b0001111110000000; this->FPU->mxcsrmask = 0b1111111110111111; this->FPU->fcw = 0b0000001100111111; // CPU::x64::fxrstor(this->FPU); // uint16_t FCW = 0b1100111111; // asmv("fldcw %0" // : // : "m"(FCW) // : "memory"); // uint32_t MXCSR = 0b1111110000000; // asmv("ldmxcsr %0" // : // : "m"(MXCSR) // : "memory"); // CPU::x64::fxsave(this->FPU); #if defined(a64) this->Registers.rip = EntryPoint; #elif defined(a32) this->Registers.eip = EntryPoint; #elif defined(aa64) this->Registers.pc = EntryPoint; #endif switch (this->Parent->Security.ExecutionMode) { case TaskExecutionMode::System: fixme("System mode not supported."); [[fallthrough]]; case TaskExecutionMode::Kernel: { this->Security.IsCritical = true; this->Stack = new Memory::StackGuard(false, this->Parent->PageTable); #if defined(a64) this->ShadowGSBase = CPU::x64::rdmsr(CPU::x64::MSRID::MSR_SHADOW_GS_BASE); this->GSBase = CPU::x64::rdmsr(CPU::x64::MSRID::MSR_GS_BASE); this->FSBase = CPU::x64::rdmsr(CPU::x64::MSRID::MSR_FS_BASE); this->Registers.cs = GDT_KERNEL_CODE; this->Registers.ss = GDT_KERNEL_DATA; this->Registers.rflags.AlwaysOne = 1; this->Registers.rflags.IF = 1; this->Registers.rflags.ID = 1; this->Registers.rsp = ((uintptr_t)this->Stack->GetStackTop()); POKE(uintptr_t, this->Registers.rsp) = (uintptr_t)ThreadDoExit; #elif defined(a32) #elif defined(aa64) #endif break; } case TaskExecutionMode::User: { this->Stack = new Memory::StackGuard(true, this->Parent->PageTable); gsTCB *gsT = (gsTCB *)this->Memory->RequestPages(TO_PAGES(sizeof(gsTCB))); gsT->SyscallStack = (uintptr_t)this->Memory->RequestPages(TO_PAGES(STACK_SIZE)) + STACK_SIZE - 0x10; gsT->TempStack = 0x0; gsT->t = this; #if defined(a64) this->ShadowGSBase = (uintptr_t)gsT; this->GSBase = 0; this->FSBase = 0; this->Registers.cs = GDT_USER_CODE; this->Registers.ss = GDT_USER_DATA; this->Registers.rflags.AlwaysOne = 1; this->Registers.rflags.IF = 1; this->Registers.rflags.ID = 1; /* We need to leave the libc's crt to make a syscall when the Thread is exited or we are going to get GPF or PF exception. */ #pragma region size_t ArgvSize = 0; if (argv) while (argv[ArgvSize] != nullptr) ArgvSize++; size_t EnvpSize = 0; if (envp) while (envp[EnvpSize] != nullptr) EnvpSize++; debug("ArgvSize: %d", ArgvSize); debug("EnvpSize: %d", EnvpSize); /* https://articles.manugarg.com/aboutelfauxiliaryvectors.html */ /* https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.pdf#figure.3.9 */ // rsp is the top of the stack char *Stack = (char *)this->Stack->GetStackPhysicalTop(); // Temporary stack pointer for strings char *StackStrings = (char *)Stack; char *StackStringsVirtual = (char *)this->Stack->GetStackTop(); // Store string pointers for later uintptr_t *ArgvStrings = nullptr; uintptr_t *EnvpStrings = nullptr; if (ArgvSize > 0) ArgvStrings = new uintptr_t[ArgvSize]; if (EnvpSize > 0) EnvpStrings = new uintptr_t[EnvpSize]; for (size_t i = 0; i < ArgvSize; i++) { // Subtract the length of the string and the null terminator StackStrings -= strlen(argv[i]) + 1; StackStringsVirtual -= strlen(argv[i]) + 1; // Store the pointer to the string ArgvStrings[i] = (uintptr_t)StackStringsVirtual; // Copy the string to the stack strcpy(StackStrings, argv[i]); debug("argv[%d]: %s", i, argv[i]); } for (size_t i = 0; i < EnvpSize; i++) { // Subtract the length of the string and the null terminator StackStrings -= strlen(envp[i]) + 1; StackStringsVirtual -= strlen(envp[i]) + 1; // Store the pointer to the string EnvpStrings[i] = (uintptr_t)StackStringsVirtual; // Copy the string to the stack strcpy(StackStrings, envp[i]); debug("envp[%d]: %s", i, envp[i]); } // Align the stack to 16 bytes StackStrings -= (uintptr_t)StackStrings & 0xF; // Set "Stack" to the new stack pointer Stack = (char *)StackStrings; // If argv and envp sizes are odd then we need to align the stack Stack -= (ArgvSize + EnvpSize) % 2; // We need 8 bit pointers for the stack from here uintptr_t *Stack64 = (uintptr_t *)Stack; // Store the null terminator Stack64--; *Stack64 = AT_NULL; // auxv_array is initialized with auxv elements. If the array is empty then we add a null terminator std::vector auxv_array = auxv; if (auxv_array.size() == 0) auxv_array.push_back({.archaux = {.a_type = AT_NULL, .a_un = {.a_val = 0}}}); // Store auxillary vector foreach (AuxiliaryVector var in auxv_array) { // Subtract the size of the auxillary vector Stack64 -= sizeof(Elf64_auxv_t) / sizeof(uintptr_t); // Store the auxillary vector POKE(Elf64_auxv_t, Stack64) = var.archaux; // TODO: Store strings to the stack } // Store the null terminator Stack64--; *Stack64 = AT_NULL; // Store EnvpStrings[] to the stack Stack64 -= EnvpSize; // (1 Stack64 = 8 bits; Stack64 = 8 * EnvpSize) for (size_t i = 0; i < EnvpSize; i++) { *(Stack64 + i) = (uintptr_t)EnvpStrings[i]; debug("EnvpStrings[%d]: %#lx", i, EnvpStrings[i]); } // Store the null terminator Stack64--; *Stack64 = AT_NULL; // Store ArgvStrings[] to the stack Stack64 -= ArgvSize; // (1 Stack64 = 8 bits; Stack64 = 8 * ArgvSize) for (size_t i = 0; i < ArgvSize; i++) { *(Stack64 + i) = (uintptr_t)ArgvStrings[i]; debug("ArgvStrings[%d]: %#lx", i, ArgvStrings[i]); } // Store the argc Stack64--; *Stack64 = ArgvSize; // Set "Stack" to the new stack pointer Stack = (char *)Stack64; /* We need the virtual address but because we are in the kernel we can't use the process page table. So we modify the physical address and store how much we need to subtract to get the virtual address for RSP. */ uintptr_t SubtractStack = (uintptr_t)this->Stack->GetStackPhysicalTop() - (uintptr_t)Stack; debug("SubtractStack: %#lx", SubtractStack); // Set the stack pointer to the new stack this->Registers.rsp = ((uintptr_t)this->Stack->GetStackTop() - SubtractStack); if (ArgvSize > 0) delete[] ArgvStrings; if (EnvpSize > 0) delete[] EnvpStrings; #ifdef DEBUG DumpData("Stack Data", (void *)((uintptr_t)this->Stack->GetStackPhysicalTop() - (uintptr_t)SubtractStack), SubtractStack); #endif this->Registers.rdi = (uintptr_t)ArgvSize; // argc this->Registers.rsi = (uintptr_t)(this->Registers.rsp + 8); // argv this->Registers.rcx = (uintptr_t)EnvpSize; // envc this->Registers.rdx = (uintptr_t)(this->Registers.rsp + 8 + (8 * ArgvSize) + 8); // envp #pragma endregion #elif defined(a32) #elif defined(aa64) #endif #ifdef DEBUG_TASKING DumpData(this->Name, this->Stack, STACK_SIZE); #endif break; } default: assert(false); } this->Info.SpawnTime = TimeManager->GetCounter(); #ifdef DEBUG #ifdef a64 debug("Thread EntryPoint: %#lx => RIP: %#lx", this->EntryPoint, this->Registers.rip); if (this->Parent->Security.ExecutionMode == TaskExecutionMode::User) debug("Thread stack region is %#lx-%#lx (U) and rsp is %#lx", this->Stack->GetStackBottom(), this->Stack->GetStackTop(), this->Registers.rsp); else debug("Thread stack region is %#lx-%#lx (K) and rsp is %#lx", this->Stack->GetStackBottom(), this->Stack->GetStackTop(), this->Registers.rsp); #elif defined(a32) debug("Thread EntryPoint: %#lx => RIP: %#lx", this->EntryPoint, this->Registers.eip); if (Parent->Security.ExecutionMode == TaskExecutionMode::User) debug("Thread stack region is %#lx-%#lx (U) and rsp is %#lx", this->Stack->GetStackBottom(), this->Stack->GetStackTop(), this->Registers.esp); else debug("Thread stack region is %#lx-%#lx (K) and rsp is %#lx", this->Stack->GetStackBottom(), this->Stack->GetStackTop(), this->Registers.esp); #elif defined(aa64) #endif debug("Created thread \"%s\"(%d) in process \"%s\"(%d)", this->Name, this->ID, this->Parent->Name, this->Parent->ID); #endif this->Parent->Threads.push_back(this); if (this->Parent->Threads.size() == 1 && this->Parent->Status == Zombie && ThreadNotReady == false) { this->Parent->Status = Ready; } } TCB::~TCB() { std::vector &Threads = this->Parent->Threads; Threads.erase(std::find(Threads.begin(), Threads.end(), this)); delete[] this->Name; delete this->Stack; delete this->Memory; } }