/* This file is part of Fennix Kernel. Fennix Kernel is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Fennix Kernel is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Fennix Kernel. If not, see . */ #include #include #include #include #include #include "../kernel.h" namespace CPU { static bool SSEEnabled = false; const char *Vendor() { static char Vendor[13] = {0}; if (Vendor[0] != 0) return Vendor; #if defined(a64) uint32_t eax, ebx, ecx, edx; x64::cpuid(0x0, &eax, &ebx, &ecx, &edx); memcpy(Vendor + 0, &ebx, 4); memcpy(Vendor + 4, &edx, 4); memcpy(Vendor + 8, &ecx, 4); #elif defined(a32) uint32_t eax, ebx, ecx, edx; x32::cpuid(0x0, &eax, &ebx, &ecx, &edx); memcpy(Vendor + 0, &ebx, 4); memcpy(Vendor + 4, &edx, 4); memcpy(Vendor + 8, &ecx, 4); #elif defined(aa64) asmv("mrs %0, MIDR_EL1" : "=r"(Vendor[0])); #endif return Vendor; } const char *Name() { static char Name[49] = {0}; if (Name[0] != 0) return Name; #if defined(a64) uint32_t eax, ebx, ecx, edx; x64::cpuid(0x80000002, &eax, &ebx, &ecx, &edx); memcpy(Name + 0, &eax, 4); memcpy(Name + 4, &ebx, 4); memcpy(Name + 8, &ecx, 4); memcpy(Name + 12, &edx, 4); x64::cpuid(0x80000003, &eax, &ebx, &ecx, &edx); memcpy(Name + 16, &eax, 4); memcpy(Name + 20, &ebx, 4); memcpy(Name + 24, &ecx, 4); memcpy(Name + 28, &edx, 4); x64::cpuid(0x80000004, &eax, &ebx, &ecx, &edx); memcpy(Name + 32, &eax, 4); memcpy(Name + 36, &ebx, 4); memcpy(Name + 40, &ecx, 4); memcpy(Name + 44, &edx, 4); #elif defined(a32) uint32_t eax, ebx, ecx, edx; x32::cpuid(0x80000002, &eax, &ebx, &ecx, &edx); memcpy(Name + 0, &eax, 4); memcpy(Name + 4, &ebx, 4); memcpy(Name + 8, &ecx, 4); memcpy(Name + 12, &edx, 4); x32::cpuid(0x80000003, &eax, &ebx, &ecx, &edx); memcpy(Name + 16, &eax, 4); memcpy(Name + 20, &ebx, 4); memcpy(Name + 24, &ecx, 4); memcpy(Name + 28, &edx, 4); x32::cpuid(0x80000004, &eax, &ebx, &ecx, &edx); memcpy(Name + 32, &eax, 4); memcpy(Name + 36, &ebx, 4); memcpy(Name + 40, &ecx, 4); memcpy(Name + 44, &edx, 4); #elif defined(aa64) asmv("mrs %0, MIDR_EL1" : "=r"(Name[0])); #endif return Name; } const char *Hypervisor() { static char Hypervisor[13] = {0}; if (Hypervisor[0] != 0) return Hypervisor; #if defined(a64) uint32_t eax, ebx, ecx, edx; x64::cpuid(0x40000000, &eax, &ebx, &ecx, &edx); memcpy(Hypervisor + 0, &ebx, 4); memcpy(Hypervisor + 4, &ecx, 4); memcpy(Hypervisor + 8, &edx, 4); #elif defined(a32) uint32_t eax, ebx, ecx, edx; x64::cpuid(0x40000000, &eax, &ebx, &ecx, &edx); memcpy(Hypervisor + 0, &ebx, 4); memcpy(Hypervisor + 4, &ecx, 4); memcpy(Hypervisor + 8, &edx, 4); #elif defined(aa64) asmv("mrs %0, MIDR_EL1" : "=r"(Hypervisor[0])); #endif return Hypervisor; } bool Interrupts(InterruptsType Type) { switch (Type) { case Check: { uintptr_t Flags; #if defined(a64) asmv("pushfq"); asmv("popq %0" : "=r"(Flags)); return Flags & (1 << 9); #elif defined(a32) asmv("pushfl"); asmv("popl %0" : "=r"(Flags)); return Flags & (1 << 9); #elif defined(aa64) asmv("mrs %0, daif" : "=r"(Flags)); return !(Flags & (1 << 2)); #endif } case Enable: { #if defined(a86) asmv("sti"); #elif defined(aa64) asmv("msr daifclr, #2"); #endif return true; } case Disable: { #if defined(a86) asmv("cli"); #elif defined(aa64) asmv("msr daifset, #2"); #endif return true; } default: break; } return false; } void *PageTable(void *PT) { #if defined(a64) if (PT) asmv("movq %0, %%cr3" : : "r"(PT)); else asmv("movq %%cr3, %0" : "=r"(PT)); #elif defined(a32) if (PT) asmv("movl %0, %%cr3" : : "r"(PT)); else asmv("movl %%cr3, %0" : "=r"(PT)); #elif defined(aa64) if (PT) asmv("msr ttbr0_el1, %0" : : "r"(PT)); else asmv("mrs %0, ttbr0_el1" : "=r"(PT)); #endif return PT; } void InitializeFeatures(long Core) { static int BSP = 0; bool PGESupport = false; bool SSESupport = false; #if defined(a64) bool UMIPSupport = false; bool SMEPSupport = false; bool SMAPSupport = false; x64::CR0 cr0 = x64::readcr0(); x64::CR4 cr4 = x64::readcr4(); if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_AMD) == 0) { CPU::x86::AMD::CPUID0x00000001 cpuid1; CPU::x86::AMD::CPUID0x00000007 cpuid7; cpuid1.Get(); cpuid7.Get(); PGESupport = cpuid1.EDX.PGE; SSESupport = cpuid1.EDX.SSE; SMEPSupport = cpuid7.EBX.SMEP; SMAPSupport = cpuid7.EBX.SMAP; UMIPSupport = cpuid7.ECX.UMIP; } else if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_INTEL) == 0) { CPU::x86::Intel::CPUID0x00000001 cpuid1; CPU::x86::Intel::CPUID0x00000007_0 cpuid7_0; cpuid1.Get(); cpuid7_0.Get(); PGESupport = cpuid1.EDX.PGE; SSESupport = cpuid1.EDX.SSE; SMEPSupport = cpuid7_0.EBX.SMEP; SMAPSupport = cpuid7_0.EBX.SMAP; UMIPSupport = cpuid7_0.ECX.UMIP; } if (Config.SIMD == false) { debug("Disabling SSE support..."); SSESupport = false; } if (PGESupport) { debug("Enabling global pages support..."); if (!BSP) KPrint("Global Pages is supported."); cr4.PGE = 1; } bool SSEEnableAfter = false; /* Not sure if my code is not working properly or something else is the issue. */ if ((strcmp(Hypervisor(), x86_CPUID_VENDOR_VIRTUALBOX) != 0) && SSESupport) { debug("Enabling SSE support..."); if (!BSP) KPrint("SSE is supported."); cr0.EM = 0; cr0.MP = 1; cr4.OSFXSR = 1; cr4.OSXMMEXCPT = 1; CPUData *CoreData = GetCPU(Core); CoreData->Data.FPU = (CPU::x64::FXState *)KernelAllocator.RequestPages(TO_PAGES(sizeof(CPU::x64::FXState) + 1)); memset(CoreData->Data.FPU, 0, FROM_PAGES(TO_PAGES(sizeof(CPU::x64::FXState)))); CoreData->Data.FPU->mxcsr = 0b0001111110000000; CoreData->Data.FPU->mxcsrmask = 0b1111111110111111; CoreData->Data.FPU->fcw = 0b0000001100111111; CPU::x64::fxrstor(CoreData->Data.FPU); SSEEnableAfter = true; } cr0.NW = 0; cr0.CD = 0; cr0.WP = 1; x64::writecr0(cr0); if (strcmp(Hypervisor(), x86_CPUID_VENDOR_VIRTUALBOX) != 0 && strcmp(Hypervisor(), x86_CPUID_VENDOR_TCG) != 0) { // FIXME: I don't think this is reporting correctly. This has to be fixed asap. debug("Enabling UMIP, SMEP & SMAP support..."); if (UMIPSupport) { if (!BSP) KPrint("UMIP is supported."); debug("UMIP is supported."); // cr4.UMIP = 1; } if (SMEPSupport) { if (!BSP) KPrint("SMEP is supported."); debug("SMEP is supported."); // cr4.SMEP = 1; } if (SMAPSupport) { if (!BSP) KPrint("SMAP is supported."); debug("SMAP is supported."); // cr4.SMAP = 1; } } else { if (!BSP) { if (strcmp(Hypervisor(), x86_CPUID_VENDOR_VIRTUALBOX) == 0) KPrint("VirtualBox detected. Not using UMIP, SMEP & SMAP"); else if (strcmp(Hypervisor(), x86_CPUID_VENDOR_TCG) == 0) KPrint("QEMU (TCG) detected. Not using UMIP, SMEP & SMAP"); } } debug("Writing CR4..."); x64::writecr4(cr4); debug("Wrote CR4."); debug("Enabling PAT support..."); x64::wrmsr(x64::MSR_CR_PAT, 0x6 | (0x0 << 8) | (0x1 << 16)); if (!BSP++) trace("Features for BSP initialized."); if (SSEEnableAfter) SSEEnabled = true; #elif defined(a32) x32::CR0 cr0 = x32::readcr0(); x32::CR4 cr4 = x32::readcr4(); if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_AMD) == 0) { CPU::x86::AMD::CPUID0x00000001 cpuid1; cpuid1.Get(); PGESupport = cpuid1.EDX.PGE; SSESupport = cpuid1.EDX.SSE; } else if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_INTEL) == 0) { CPU::x86::Intel::CPUID0x00000001 cpuid1; cpuid1.Get(); PGESupport = cpuid1.EDX.PGE; SSESupport = cpuid1.EDX.SSE; } if (Config.SIMD == false) { debug("Disabling SSE support..."); SSESupport = false; } if (PGESupport) { debug("Enabling global pages support..."); if (!BSP) KPrint("Global Pages is supported."); cr4.PGE = 1; } bool SSEEnableAfter = false; /* Not sure if my code is not working properly or something else is the issue. */ if ((strcmp(Hypervisor(), x86_CPUID_VENDOR_TCG) != 0 && strcmp(Hypervisor(), x86_CPUID_VENDOR_VIRTUALBOX) != 0) && SSESupport) { debug("Enabling FPU..."); bool FPU = false; { x32::CR0 _cr0; __asm__ __volatile__( "mov %%cr0, %0\n\t" "and $0xfffffff8, %0\n\t" "mov %0, %%cr0\n\t" "fninit\n\t" "fwait\n\t" "mov %%cr0, %0\n\t" : "=r"(_cr0.raw) : : "memory"); if ((_cr0.EM) == 0) { FPU = true; debug("FPU is supported"); } } if (FPU) KPrint("FPU is supported."); debug("Enabling SSE support..."); if (!BSP) KPrint("SSE is supported."); cr0.EM = 0; cr0.MP = 1; cr4.OSFXSR = 1; cr4.OSXMMEXCPT = 1; CPUData *CoreData = GetCPU(Core); CoreData->Data.FPU = (CPU::x32::FXState *)KernelAllocator.RequestPages(TO_PAGES(sizeof(CPU::x32::FXState) + 1)); memset(CoreData->Data.FPU, 0, FROM_PAGES(TO_PAGES(sizeof(CPU::x32::FXState)))); CoreData->Data.FPU->mxcsr = 0b0001111110000000; CoreData->Data.FPU->mxcsrmask = 0b1111111110111111; CoreData->Data.FPU->fcw = 0b0000001100111111; CPU::x32::fxrstor(CoreData->Data.FPU); SSEEnableAfter = true; } cr0.NW = 0; cr0.CD = 0; cr0.WP = 1; x32::writecr0(cr0); debug("Writing CR4..."); x32::writecr4(cr4); debug("Wrote CR4."); debug("Enabling PAT support..."); x32::wrmsr(x32::MSR_CR_PAT, 0x6 | (0x0 << 8) | (0x1 << 16)); if (!BSP++) trace("Features for BSP initialized."); if (SSEEnableAfter) SSEEnabled = true; #elif defined(aa64) #endif } uint64_t Counter() { // TODO: Get the counter from the x2APIC or any other timer that is available. (TSC is not available on all CPUs) uint64_t Counter; #if defined(a86) uint32_t eax, edx; asmv("rdtsc" : "=a"(eax), "=d"(edx)); Counter = ((uint64_t)eax) | (((uint64_t)edx) << 32); #elif defined(aa64) asmv("mrs %0, cntvct_el0" : "=r"(Counter)); #endif return Counter; } uint64_t CheckSIMD() { if (unlikely(!SSEEnabled)) return SIMD_NONE; // return SIMD_SSE; #if defined(a86) static uint64_t SIMDType = SIMD_NONE; if (likely(SIMDType != SIMD_NONE)) return SIMDType; if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_AMD) == 0) { CPU::x86::AMD::CPUID0x00000001 cpuid; asmv("cpuid" : "=a"(cpuid.EAX.raw), "=b"(cpuid.EBX.raw), "=c"(cpuid.ECX.raw), "=d"(cpuid.EDX.raw) : "a"(0x1)); if (cpuid.ECX.SSE42) SIMDType |= SIMD_SSE42; else if (cpuid.ECX.SSE41) SIMDType |= SIMD_SSE41; else if (cpuid.ECX.SSE3) SIMDType |= SIMD_SSE3; else if (cpuid.EDX.SSE2) SIMDType |= SIMD_SSE2; else if (cpuid.EDX.SSE) SIMDType |= SIMD_SSE; #ifdef DEBUG if (cpuid.ECX.SSE42) debug("SSE4.2 is supported."); if (cpuid.ECX.SSE41) debug("SSE4.1 is supported."); if (cpuid.ECX.SSE3) debug("SSE3 is supported."); if (cpuid.EDX.SSE2) debug("SSE2 is supported."); if (cpuid.EDX.SSE) debug("SSE is supported."); #endif return SIMDType; } else if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_INTEL) == 0) { CPU::x86::Intel::CPUID0x00000001 cpuid; asmv("cpuid" : "=a"(cpuid.EAX.raw), "=b"(cpuid.EBX.raw), "=c"(cpuid.ECX.raw), "=d"(cpuid.EDX.raw) : "a"(0x1)); if (cpuid.ECX.SSE4_2) SIMDType |= SIMD_SSE42; else if (cpuid.ECX.SSE4_1) SIMDType |= SIMD_SSE41; else if (cpuid.ECX.SSE3) SIMDType |= SIMD_SSE3; else if (cpuid.EDX.SSE2) SIMDType |= SIMD_SSE2; else if (cpuid.EDX.SSE) SIMDType |= SIMD_SSE; #ifdef DEBUG if (cpuid.ECX.SSE4_2) debug("SSE4.2 is supported."); if (cpuid.ECX.SSE4_1) debug("SSE4.1 is supported."); if (cpuid.ECX.SSE3) debug("SSE3 is supported."); if (cpuid.EDX.SSE2) debug("SSE2 is supported."); if (cpuid.EDX.SSE) debug("SSE is supported."); #endif return SIMDType; } debug("No SIMD support."); #endif // a64 || a32 return SIMD_NONE; } bool CheckSIMD(x86SIMDType Type) { if (unlikely(!SSEEnabled)) return false; #if defined(a86) if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_AMD) == 0) { CPU::x86::AMD::CPUID0x00000001 cpuid; asmv("cpuid" : "=a"(cpuid.EAX.raw), "=b"(cpuid.EBX.raw), "=c"(cpuid.ECX.raw), "=d"(cpuid.EDX.raw) : "a"(0x1)); if (Type == SIMD_SSE42) return cpuid.ECX.SSE42; else if (Type == SIMD_SSE41) return cpuid.ECX.SSE41; else if (Type == SIMD_SSE3) return cpuid.ECX.SSE3; else if (Type == SIMD_SSE2) return cpuid.EDX.SSE2; else if (Type == SIMD_SSE) return cpuid.EDX.SSE; } else if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_INTEL) == 0) { CPU::x86::Intel::CPUID0x00000001 cpuid; asmv("cpuid" : "=a"(cpuid.EAX.raw), "=b"(cpuid.EBX.raw), "=c"(cpuid.ECX.raw), "=d"(cpuid.EDX.raw) : "a"(0x1)); if (Type == SIMD_SSE42) return cpuid.ECX.SSE4_2; else if (Type == SIMD_SSE41) return cpuid.ECX.SSE4_1; else if (Type == SIMD_SSE3) return cpuid.ECX.SSE3; else if (Type == SIMD_SSE2) return cpuid.EDX.SSE2; else if (Type == SIMD_SSE) return cpuid.EDX.SSE; } #endif // a64 || a32 return false; } }