/* This file is part of Fennix Kernel. Fennix Kernel is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Fennix Kernel is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Fennix Kernel. If not, see . */ #include #include #include #include #include #include "../kernel.h" namespace CPU { static bool SSEEnabled = false; char *Vendor() { static char Vendor[13]; #if defined(a64) uint32_t eax, ebx, ecx, edx; x64::cpuid(0x0, &eax, &ebx, &ecx, &edx); memcpy_unsafe(Vendor + 0, &ebx, 4); memcpy_unsafe(Vendor + 4, &edx, 4); memcpy_unsafe(Vendor + 8, &ecx, 4); #elif defined(a32) uint32_t eax, ebx, ecx, edx; x32::cpuid(0x0, &eax, &ebx, &ecx, &edx); memcpy_unsafe(Vendor + 0, &ebx, 4); memcpy_unsafe(Vendor + 4, &edx, 4); memcpy_unsafe(Vendor + 8, &ecx, 4); #elif defined(aa64) asmv("mrs %0, MIDR_EL1" : "=r"(Vendor[0])); #endif return Vendor; } char *Name() { static char Name[49]; #if defined(a64) uint32_t eax, ebx, ecx, edx; x64::cpuid(0x80000002, &eax, &ebx, &ecx, &edx); memcpy_unsafe(Name + 0, &eax, 4); memcpy_unsafe(Name + 4, &ebx, 4); memcpy_unsafe(Name + 8, &ecx, 4); memcpy_unsafe(Name + 12, &edx, 4); x64::cpuid(0x80000003, &eax, &ebx, &ecx, &edx); memcpy_unsafe(Name + 16, &eax, 4); memcpy_unsafe(Name + 20, &ebx, 4); memcpy_unsafe(Name + 24, &ecx, 4); memcpy_unsafe(Name + 28, &edx, 4); x64::cpuid(0x80000004, &eax, &ebx, &ecx, &edx); memcpy_unsafe(Name + 32, &eax, 4); memcpy_unsafe(Name + 36, &ebx, 4); memcpy_unsafe(Name + 40, &ecx, 4); memcpy_unsafe(Name + 44, &edx, 4); #elif defined(a32) uint32_t eax, ebx, ecx, edx; x32::cpuid(0x80000002, &eax, &ebx, &ecx, &edx); memcpy_unsafe(Name + 0, &eax, 4); memcpy_unsafe(Name + 4, &ebx, 4); memcpy_unsafe(Name + 8, &ecx, 4); memcpy_unsafe(Name + 12, &edx, 4); x32::cpuid(0x80000003, &eax, &ebx, &ecx, &edx); memcpy_unsafe(Name + 16, &eax, 4); memcpy_unsafe(Name + 20, &ebx, 4); memcpy_unsafe(Name + 24, &ecx, 4); memcpy_unsafe(Name + 28, &edx, 4); x32::cpuid(0x80000004, &eax, &ebx, &ecx, &edx); memcpy_unsafe(Name + 32, &eax, 4); memcpy_unsafe(Name + 36, &ebx, 4); memcpy_unsafe(Name + 40, &ecx, 4); memcpy_unsafe(Name + 44, &edx, 4); #elif defined(aa64) asmv("mrs %0, MIDR_EL1" : "=r"(Name[0])); #endif return Name; } char *Hypervisor() { static char Hypervisor[13]; #if defined(a64) uint32_t eax, ebx, ecx, edx; x64::cpuid(0x40000000, &eax, &ebx, &ecx, &edx); memcpy_unsafe(Hypervisor + 0, &ebx, 4); memcpy_unsafe(Hypervisor + 4, &ecx, 4); memcpy_unsafe(Hypervisor + 8, &edx, 4); #elif defined(a32) uint32_t eax, ebx, ecx, edx; x64::cpuid(0x40000000, &eax, &ebx, &ecx, &edx); memcpy_unsafe(Hypervisor + 0, &ebx, 4); memcpy_unsafe(Hypervisor + 4, &ecx, 4); memcpy_unsafe(Hypervisor + 8, &edx, 4); #elif defined(aa64) asmv("mrs %0, MIDR_EL1" : "=r"(Hypervisor[0])); #endif return Hypervisor; } bool Interrupts(InterruptsType Type) { switch (Type) { case Check: { uintptr_t Flags; #if defined(a64) asmv("pushfq"); asmv("popq %0" : "=r"(Flags)); return Flags & (1 << 9); #elif defined(a32) asmv("pushfl"); asmv("popl %0" : "=r"(Flags)); return Flags & (1 << 9); #elif defined(aa64) asmv("mrs %0, daif" : "=r"(Flags)); return !(Flags & (1 << 2)); #endif } case Enable: { #if defined(a64) || defined(a32) asmv("sti"); #elif defined(aa64) asmv("msr daifclr, #2"); #endif return true; } case Disable: { #if defined(a64) || defined(a32) asmv("cli"); #elif defined(aa64) asmv("msr daifset, #2"); #endif return true; } default: break; } return false; } void *PageTable(void *PT) { #if defined(a64) if (PT) asmv("movq %0, %%cr3" : : "r"(PT)); else asmv("movq %%cr3, %0" : "=r"(PT)); #elif defined(a32) if (PT) asmv("movl %0, %%cr3" : : "r"(PT)); else asmv("movl %%cr3, %0" : "=r"(PT)); #elif defined(aa64) if (PT) asmv("msr ttbr0_el1, %0" : : "r"(PT)); else asmv("mrs %0, ttbr0_el1" : "=r"(PT)); #endif return PT; } void InitializeFeatures(long Core) { bool PGESupport = false; bool SSESupport = false; #if defined(a64) static int BSP = 0; x64::CR0 cr0 = x64::readcr0(); x64::CR4 cr4 = x64::readcr4(); if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_AMD) == 0) { #if defined(a64) CPU::x64::AMD::CPUID0x1 cpuid1amd; #elif defined(a32) CPU::x32::AMD::CPUID0x1 cpuid1amd; #endif #if defined(a64) || defined(a32) asmv("cpuid" : "=a"(cpuid1amd.EAX.raw), "=b"(cpuid1amd.EBX.raw), "=c"(cpuid1amd.ECX.raw), "=d"(cpuid1amd.EDX.raw) : "a"(0x1)); #endif if (cpuid1amd.EDX.PGE) PGESupport = true; if (cpuid1amd.EDX.SSE) SSESupport = true; } else if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_INTEL) == 0) { #if defined(a64) CPU::x64::Intel::CPUID0x1 cpuid1intel; #elif defined(a32) CPU::x32::Intel::CPUID0x1 cpuid1intel; #endif #if defined(a64) || defined(a32) asmv("cpuid" : "=a"(cpuid1intel.EAX.raw), "=b"(cpuid1intel.EBX.raw), "=c"(cpuid1intel.ECX.raw), "=d"(cpuid1intel.EDX.raw) : "a"(0x1)); #endif if (cpuid1intel.EDX.PGE) PGESupport = true; if (cpuid1intel.EDX.SSE) SSESupport = true; } if (Config.SIMD == false) { debug("Disabling SSE support..."); SSESupport = false; } if (PGESupport) { debug("Enabling global pages support..."); if (!BSP) KPrint("Global Pages is supported."); cr4.PGE = 1; } bool SSEEnableAfter = false; /* Not sure if my code is not working properly or something else is the issue. */ if ((strcmp(Hypervisor(), x86_CPUID_VENDOR_TCG) != 0 && strcmp(Hypervisor(), x86_CPUID_VENDOR_VIRTUALBOX) != 0) && SSESupport) { debug("Enabling SSE support..."); if (!BSP) KPrint("SSE is supported."); cr0.EM = 0; cr0.MP = 1; cr4.OSFXSR = 1; cr4.OSXMMEXCPT = 1; CPUData *CoreData = GetCPU(Core); CoreData->Data.FPU = (CPU::x64::FXState *)KernelAllocator.RequestPages(TO_PAGES(sizeof(CPU::x64::FXState))); memset(CoreData->Data.FPU, 0, FROM_PAGES(TO_PAGES(sizeof(CPU::x64::FXState)))); CoreData->Data.FPU->mxcsr = 0b0001111110000000; CoreData->Data.FPU->mxcsrmask = 0b1111111110111111; CoreData->Data.FPU->fcw = 0b0000001100111111; CPU::x64::fxrstor(CoreData->Data.FPU); SSEEnableAfter = true; } if (!BSP) KPrint("Enabling CPU cache."); cr0.NW = 0; cr0.CD = 0; cr0.WP = 1; x64::writecr0(cr0); // FIXME: I don't think this is reporting correctly. This has to be fixed asap. debug("Enabling UMIP, SMEP & SMAP support..."); uint32_t eax, ebx, ecx, edx; x64::cpuid(0x1, &eax, &ebx, &ecx, &edx); if (edx & (1 << 2)) // https://en.wikipedia.org/wiki/Control_register { if (!BSP) KPrint("UMIP is supported."); debug("UMIP is supported."); // cr4.UMIP = 1; } if (edx & (1 << 7)) // https://en.wikipedia.org/wiki/Control_register#SMEP // https://web.archive.org/web/20160312223150/http://ncsi.com/nsatc11/presentations/wednesday/emerging_technologies/fischer.pdf { if (!BSP) KPrint("SMEP is supported."); debug("SMEP is supported."); // cr4.SMEP = 1; } if (edx & (1 << 20)) // https://en.wikipedia.org/wiki/Supervisor_Mode_Access_Prevention { if (!BSP) KPrint("SMAP is supported."); debug("SMAP is supported."); // cr4.SMAP = 1; } if (strcmp(Hypervisor(), x86_CPUID_VENDOR_VIRTUALBOX) != 0 && strcmp(Hypervisor(), x86_CPUID_VENDOR_TCG) != 0) { debug("Writing CR4..."); x64::writecr4(cr4); debug("Wrote CR4."); } else { if (!BSP) { if (strcmp(Hypervisor(), x86_CPUID_VENDOR_VIRTUALBOX) == 0) KPrint("VirtualBox detected. Not using UMIP, SMEP & SMAP"); else if (strcmp(Hypervisor(), x86_CPUID_VENDOR_TCG) == 0) KPrint("QEMU (TCG) detected. Not using UMIP, SMEP & SMAP"); } } debug("Enabling PAT support..."); x64::wrmsr(x64::MSR_CR_PAT, 0x6 | (0x0 << 8) | (0x1 << 16)); if (!BSP++) trace("Features for BSP initialized."); if (SSEEnableAfter) SSEEnabled = true; #elif defined(a32) #elif defined(aa64) #endif } uintptr_t Counter() { // TODO: Get the counter from the x2APIC or any other timer that is available. (TSC is not available on all CPUs) uintptr_t Counter; #if defined(a64) asmv("rdtsc" : "=A"(Counter)); #elif defined(a32) asmv("rdtsc" : "=A"(Counter)); #elif defined(aa64) asmv("mrs %0, cntvct_el0" : "=r"(Counter)); #endif return Counter; } uint64_t CheckSIMD() { #if defined(a32) return SIMD_NONE; /* TODO: Support x86 SIMD on x32 */ #endif if (unlikely(!SSEEnabled)) return SIMD_NONE; // return SIMD_SSE; static uint64_t SIMDType = SIMD_NONE; if (likely(SIMDType != SIMD_NONE)) return SIMDType; if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_AMD) == 0) { #if defined(a64) CPU::x64::AMD::CPUID0x1 cpuid1amd; #elif defined(a32) CPU::x32::AMD::CPUID0x1 cpuid1amd; #endif #if defined(a64) || defined(a32) asmv("cpuid" : "=a"(cpuid1amd.EAX.raw), "=b"(cpuid1amd.EBX.raw), "=c"(cpuid1amd.ECX.raw), "=d"(cpuid1amd.EDX.raw) : "a"(0x1)); #endif if (cpuid1amd.ECX.SSE4_2) SIMDType |= SIMD_SSE42; else if (cpuid1amd.ECX.SSE4_1) SIMDType |= SIMD_SSE41; else if (cpuid1amd.ECX.SSE3) SIMDType |= SIMD_SSE3; else if (cpuid1amd.EDX.SSE2) SIMDType |= SIMD_SSE2; else if (cpuid1amd.EDX.SSE) SIMDType |= SIMD_SSE; #ifdef DEBUG if (cpuid1amd.ECX.SSE4_2) debug("SSE4.2 is supported."); if (cpuid1amd.ECX.SSE4_1) debug("SSE4.1 is supported."); if (cpuid1amd.ECX.SSE3) debug("SSE3 is supported."); if (cpuid1amd.EDX.SSE2) debug("SSE2 is supported."); if (cpuid1amd.EDX.SSE) debug("SSE is supported."); #endif return SIMDType; } else if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_INTEL) == 0) { #if defined(a64) CPU::x64::Intel::CPUID0x1 cpuid1intel; #elif defined(a32) CPU::x32::Intel::CPUID0x1 cpuid1intel; #endif #if defined(a64) || defined(a32) asmv("cpuid" : "=a"(cpuid1intel.EAX.raw), "=b"(cpuid1intel.EBX.raw), "=c"(cpuid1intel.ECX.raw), "=d"(cpuid1intel.EDX.raw) : "a"(0x1)); #endif if (cpuid1intel.ECX.SSE4_2) SIMDType |= SIMD_SSE42; else if (cpuid1intel.ECX.SSE4_1) SIMDType |= SIMD_SSE41; else if (cpuid1intel.ECX.SSE3) SIMDType |= SIMD_SSE3; else if (cpuid1intel.EDX.SSE2) SIMDType |= SIMD_SSE2; else if (cpuid1intel.EDX.SSE) SIMDType |= SIMD_SSE; #ifdef DEBUG if (cpuid1intel.ECX.SSE4_2) debug("SSE4.2 is supported."); if (cpuid1intel.ECX.SSE4_1) debug("SSE4.1 is supported."); if (cpuid1intel.ECX.SSE3) debug("SSE3 is supported."); if (cpuid1intel.EDX.SSE2) debug("SSE2 is supported."); if (cpuid1intel.EDX.SSE) debug("SSE is supported."); #endif return SIMDType; } debug("No SIMD support."); return SIMD_NONE; } bool CheckSIMD(x86SIMDType Type) { if (unlikely(!SSEEnabled)) return false; if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_AMD) == 0) { #if defined(a64) CPU::x64::AMD::CPUID0x1 cpuid1amd; #elif defined(a32) CPU::x32::AMD::CPUID0x1 cpuid1amd; #endif #if defined(a64) || defined(a32) asmv("cpuid" : "=a"(cpuid1amd.EAX.raw), "=b"(cpuid1amd.EBX.raw), "=c"(cpuid1amd.ECX.raw), "=d"(cpuid1amd.EDX.raw) : "a"(0x1)); #endif if (Type == SIMD_SSE42) return cpuid1amd.ECX.SSE4_2; else if (Type == SIMD_SSE41) return cpuid1amd.ECX.SSE4_1; else if (Type == SIMD_SSE3) return cpuid1amd.ECX.SSE3; else if (Type == SIMD_SSE2) return cpuid1amd.EDX.SSE2; else if (Type == SIMD_SSE) return cpuid1amd.EDX.SSE; } else if (strcmp(CPU::Vendor(), x86_CPUID_VENDOR_INTEL) == 0) { #if defined(a64) CPU::x64::Intel::CPUID0x1 cpuid1intel; #elif defined(a32) CPU::x32::Intel::CPUID0x1 cpuid1intel; #endif #if defined(a64) || defined(a32) asmv("cpuid" : "=a"(cpuid1intel.EAX.raw), "=b"(cpuid1intel.EBX.raw), "=c"(cpuid1intel.ECX.raw), "=d"(cpuid1intel.EDX.raw) : "a"(0x1)); #endif if (Type == SIMD_SSE42) return cpuid1intel.ECX.SSE4_2; else if (Type == SIMD_SSE41) return cpuid1intel.ECX.SSE4_1; else if (Type == SIMD_SSE3) return cpuid1intel.ECX.SSE3; else if (Type == SIMD_SSE2) return cpuid1intel.EDX.SSE2; else if (Type == SIMD_SSE) return cpuid1intel.EDX.SSE; } return false; } }