/*
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "../../kernel.h"
using namespace vfs;
namespace Driver
{
void Manager::PreloadDrivers()
{
debug("Initializing driver manager");
const char *DriverDirectory = Config.DriverDirectory;
FileNode *drvDirNode = fs->GetByPath(DriverDirectory, nullptr);
if (!drvDirNode)
{
error("Failed to open driver directory %s", DriverDirectory);
KPrint("Failed to open driver directory %s", DriverDirectory);
return;
}
foreach (const auto &drvNode in drvDirNode->Children)
{
debug("Checking driver %s", drvNode->Path.c_str());
if (!drvNode->IsRegularFile())
continue;
if (Execute::GetBinaryType(drvNode->Path) != Execute::BinTypeELF)
{
error("Driver %s is not an ELF binary", drvNode->Path.c_str());
continue;
}
DriverObject drvObj = {.BaseAddress = 0,
.EntryPoint = 0,
.vma = new Memory::VirtualMemoryArea(thisProcess->PageTable),
.Path = drvNode->Path,
.InterruptHandlers = new std::unordered_map(),
.DeviceOperations = new std::unordered_map(),
.ID = DriverIDCounter};
int err = this->LoadDriverFile(drvObj, drvNode);
debug("err = %d (%s)", err, strerror(err));
if (err != 0)
{
error("Failed to load driver %s: %s",
drvNode->Path.c_str(), strerror(err));
delete drvObj.vma;
delete drvObj.InterruptHandlers;
delete drvObj.DeviceOperations;
continue;
}
debug("gdb: \"0x%lX\" %s", drvObj.BaseAddress, drvObj.Name);
Drivers.insert({DriverIDCounter++, drvObj});
}
}
void Manager::LoadAllDrivers()
{
if (Drivers.empty())
{
KPrint("\x1b[1;31;41mNo drivers to load");
return;
}
foreach (auto &var in Drivers)
{
DriverObject &Drv = var.second;
debug("Calling driver %s at %#lx", Drv.Path.c_str(), Drv.EntryPoint);
int (*DrvInit)(dev_t) = (int (*)(dev_t))Drv.EntryPoint;
Drv.ErrorCode = DrvInit(Drv.ID);
if (Drv.ErrorCode < 0)
{
KPrint("FATAL: _start() failed for %s: %s",
Drv.Name, strerror(Drv.ErrorCode));
error("Failed to load driver %s: %s",
Drv.Path.c_str(), strerror(Drv.ErrorCode));
Drv.vma->FreeAllPages();
continue;
}
KPrint("Loading driver %s", Drv.Name);
debug("Calling Probe()=%#lx on driver %s",
Drv.Probe, Drv.Path.c_str());
Drv.ErrorCode = Drv.Probe();
if (Drv.ErrorCode < 0)
{
KPrint("Probe() failed for %s: %s",
Drv.Name, strerror(Drv.ErrorCode));
error("Failed to probe driver %s: %s",
Drv.Path.c_str(), strerror(Drv.ErrorCode));
Drv.vma->FreeAllPages();
continue;
}
debug("Calling driver Entry()=%#lx function on driver %s",
Drv.Entry, Drv.Path.c_str());
Drv.ErrorCode = Drv.Entry();
if (Drv.ErrorCode < 0)
{
KPrint("Entry() failed for %s: %s",
Drv.Name, strerror(Drv.ErrorCode));
error("Failed to initialize driver %s: %s",
Drv.Path.c_str(), strerror(Drv.ErrorCode));
Drv.vma->FreeAllPages();
continue;
}
debug("Loaded driver %s", Drv.Path.c_str());
Drv.Initialized = true;
}
}
void Manager::UnloadAllDrivers()
{
foreach (auto &var in Drivers)
{
DriverObject *Drv = &var.second;
if (!Drv->Initialized)
continue;
debug("Unloading driver %s", Drv->Name);
int err = Drv->Final();
if (err < 0)
{
warn("Failed to unload driver %s: %s",
Drv->Name, strerror(err));
}
if (!Drv->InterruptHandlers->empty())
{
foreach (auto &rInt in * Drv->InterruptHandlers)
{
Interrupts::RemoveHandler((void (*)(CPU::TrapFrame *))rInt.second);
}
Drv->InterruptHandlers->clear();
}
}
Drivers.clear();
}
void Manager::Panic()
{
Memory::Virtual vmm;
if (Drivers.size() == 0)
return;
foreach (auto Driver in Drivers)
{
if (!Driver.second.Initialized)
continue;
trace("Panic on driver %s", Driver.second.Name);
debug("%#lx", Driver.second.Panic);
/* Crash while probing? */
if (Driver.second.Panic && vmm.Check((void *)Driver.second.Panic))
Driver.second.Panic();
else
error("No panic function for driver %s",
Driver.second.Name);
}
}
int Manager::LoadDriverFile(DriverObject &Drv, FileNode *File)
{
trace("Loading driver %s in memory", File->Name.c_str());
Elf_Ehdr ELFHeader{};
File->Read(&ELFHeader, sizeof(Elf_Ehdr), 0);
AssertReturnError(ELFHeader.e_ident[EI_CLASS] == ELFCLASS64, -ENOEXEC);
AssertReturnError(ELFHeader.e_ident[EI_DATA] == ELFDATA2LSB, -ENOEXEC);
AssertReturnError(ELFHeader.e_ident[EI_OSABI] == ELFOSABI_SYSV, -ENOEXEC);
AssertReturnError(ELFHeader.e_ident[EI_ABIVERSION] == 0, -ENOEXEC);
AssertReturnError(ELFHeader.e_type == ET_DYN, -ENOEXEC);
AssertReturnError(ELFHeader.e_machine == EM_X86_64, -ENOEXEC);
AssertReturnError(ELFHeader.e_version == EV_CURRENT, -ENOEXEC);
AssertReturnError(ELFHeader.e_entry != 0x0, -ENOEXEC);
AssertReturnError(ELFHeader.e_shstrndx != SHN_UNDEF, -ENOEXEC);
Drv.EntryPoint = ELFHeader.e_entry;
size_t segSize = 0;
Elf_Phdr phdr{};
for (Elf_Half i = 0; i < ELFHeader.e_phnum; i++)
{
File->Read(&phdr, sizeof(Elf_Phdr), ELFHeader.e_phoff + (i * sizeof(Elf_Phdr)));
if (phdr.p_type == PT_LOAD || phdr.p_type == PT_DYNAMIC)
{
if (segSize < phdr.p_vaddr + phdr.p_memsz)
segSize = phdr.p_vaddr + phdr.p_memsz;
continue;
}
if (phdr.p_type == PT_INTERP)
{
char interp[17];
File->Read(interp, sizeof(interp), phdr.p_offset);
if (strncmp(interp, "/boot/fennix.elf", sizeof(interp)) != 0)
{
error("Interpreter is not /boot/fennix.elf");
return -ENOEXEC;
}
}
}
debug("segSize: %ld", segSize);
Drv.BaseAddress = (uintptr_t)Drv.vma->RequestPages(TO_PAGES(segSize) + 1);
Drv.EntryPoint += Drv.BaseAddress;
debug("Driver %s has entry point %#lx and base %#lx",
File->Name.c_str(), Drv.EntryPoint, Drv.BaseAddress);
Elf64_Shdr sht_strtab{};
Elf64_Shdr sht_symtab{};
Elf_Shdr shstrtab{};
Elf_Shdr shdr{};
__DriverInfo driverInfo{};
File->Read(&shstrtab, sizeof(Elf_Shdr), ELFHeader.e_shoff + (ELFHeader.e_shstrndx * ELFHeader.e_shentsize));
for (Elf_Half i = 0; i < ELFHeader.e_shnum; i++)
{
if (i == ELFHeader.e_shstrndx)
continue;
File->Read(&shdr, ELFHeader.e_shentsize, ELFHeader.e_shoff + (i * ELFHeader.e_shentsize));
switch (shdr.sh_type)
{
case SHT_PROGBITS:
break;
case SHT_SYMTAB:
sht_symtab = shdr;
continue;
case SHT_STRTAB:
sht_strtab = shdr;
continue;
case SHT_NULL:
default:
continue;
}
char symName[16];
File->Read(symName, sizeof(symName), shstrtab.sh_offset + shdr.sh_name);
if (strcmp(symName, ".driver.info") != 0)
continue;
File->Read(&driverInfo, sizeof(__DriverInfo), shdr.sh_offset);
/* Perform relocations */
driverInfo.Name = (const char *)(Drv.BaseAddress + (uintptr_t)driverInfo.Name);
driverInfo.Description = (const char *)(Drv.BaseAddress + (uintptr_t)driverInfo.Description);
driverInfo.Author = (const char *)(Drv.BaseAddress + (uintptr_t)driverInfo.Author);
driverInfo.License = (const char *)(Drv.BaseAddress + (uintptr_t)driverInfo.License);
}
for (size_t h = 0; h < (sht_symtab.sh_size / sizeof(Elf64_Sym)); h++)
{
Elf64_Sym symEntry{};
uintptr_t symOffset = sht_symtab.sh_offset + (h * sizeof(Elf64_Sym));
File->Read(&symEntry, sizeof(Elf64_Sym), symOffset);
if (symEntry.st_name == 0)
continue;
char symName[16];
File->Read(symName, sizeof(symName), sht_strtab.sh_offset + symEntry.st_name);
switch (symEntry.st_shndx)
{
case SHN_UNDEF:
case SHN_ABS:
case SHN_LOPROC /* , SHN_LORESERVE and SHN_BEFORE */:
case SHN_AFTER:
case SHN_HIPROC:
case SHN_COMMON:
case SHN_HIRESERVE:
break;
default:
{
debug("shndx: %d", symEntry.st_shndx);
if (strcmp(symName, "DriverEntry") == 0)
Drv.Entry = (int (*)())(Drv.BaseAddress + symEntry.st_value);
else if (strcmp(symName, "DriverFinal") == 0)
Drv.Final = (int (*)())(Drv.BaseAddress + symEntry.st_value);
else if (strcmp(symName, "DriverPanic") == 0)
Drv.Panic = (int (*)())(Drv.BaseAddress + symEntry.st_value);
else if (strcmp(symName, "DriverProbe") == 0)
Drv.Probe = (int (*)())(Drv.BaseAddress + symEntry.st_value);
debug("Found %s at %#lx", symName, symEntry.st_value);
break;
}
}
}
for (Elf_Half i = 0; i < ELFHeader.e_phnum; i++)
{
File->Read(&phdr, sizeof(Elf_Phdr), ELFHeader.e_phoff + (i * sizeof(Elf_Phdr)));
switch (phdr.p_type)
{
case PT_LOAD:
case PT_DYNAMIC:
{
if (phdr.p_memsz == 0)
continue;
uintptr_t dest = Drv.BaseAddress + phdr.p_vaddr;
debug("Copying PHDR %#lx to %#lx-%#lx (%ld file bytes, %ld mem bytes)",
phdr.p_type, dest, dest + phdr.p_memsz,
phdr.p_filesz, phdr.p_memsz);
if (phdr.p_filesz > 0)
File->Read(dest, phdr.p_filesz, phdr.p_offset);
if (phdr.p_memsz - phdr.p_filesz > 0)
{
void *zero = (void *)(dest + phdr.p_filesz);
memset(zero, 0, phdr.p_memsz - phdr.p_filesz);
}
if (phdr.p_type != PT_DYNAMIC)
break;
Elf64_Dyn *dyn = (Elf64_Dyn *)(Drv.BaseAddress + phdr.p_vaddr);
Elf64_Dyn *relaSize = nullptr;
Elf64_Dyn *pltrelSize = nullptr;
while (dyn->d_tag != DT_NULL)
{
switch (dyn->d_tag)
{
case DT_PLTRELSZ:
{
pltrelSize = dyn;
break;
}
case DT_PLTGOT:
{
Elf_Addr *got = (Elf_Addr *)(Drv.BaseAddress + dyn->d_un.d_ptr);
got[1] = 0;
got[2] = 0;
break;
}
case DT_RELASZ:
{
relaSize = dyn;
break;
}
case DT_PLTREL:
{
AssertReturnError(dyn->d_un.d_val == DT_RELA, -ENOEXEC);
break;
}
default:
break;
}
dyn++;
}
dyn = (Elf64_Dyn *)(Drv.BaseAddress + phdr.p_vaddr);
while (dyn->d_tag != DT_NULL)
{
switch (dyn->d_tag)
{
case DT_RELA: /* .rela.dyn */
{
AssertReturnError(relaSize != nullptr, -ENOEXEC);
Elf64_Rela *rela = (Elf64_Rela *)(Drv.BaseAddress + dyn->d_un.d_ptr);
for (size_t i = 0; i < (relaSize->d_un.d_val / sizeof(Elf64_Rela)); i++)
{
Elf64_Rela *r = &rela[i];
uintptr_t *reloc = (uintptr_t *)(Drv.BaseAddress + r->r_offset);
uintptr_t relocTarget = 0;
switch (ELF64_R_TYPE(r->r_info))
{
case R_X86_64_GLOB_DAT:
case R_X86_64_JUMP_SLOT:
{
relocTarget = Drv.BaseAddress;
break;
}
case R_X86_64_RELATIVE:
case R_X86_64_64:
{
relocTarget = Drv.BaseAddress + r->r_addend;
break;
}
default:
{
fixme("Unhandled relocation type: %#lx",
ELF64_R_TYPE(r->r_info));
break;
}
}
*reloc = relocTarget;
debug("Relocated %#lx to %#lx",
r->r_offset, *reloc);
}
break;
}
case DT_JMPREL: /* .rela.plt */
{
AssertReturnError(pltrelSize != nullptr, -ENOEXEC);
std::vector symtab = Execute::ELFGetDynamicTag_x86_64(File, DT_SYMTAB);
Elf64_Sym *symbols = (Elf64_Sym *)((uintptr_t)Drv.BaseAddress + symtab[0].d_un.d_ptr);
std::vector StrTab = Execute::ELFGetDynamicTag_x86_64(File, DT_STRTAB);
char *DynStr = (char *)((uintptr_t)Drv.BaseAddress + StrTab[0].d_un.d_ptr);
Elf64_Rela *rela = (Elf64_Rela *)(Drv.BaseAddress + dyn->d_un.d_ptr);
for (size_t i = 0; i < (pltrelSize->d_un.d_val / sizeof(Elf64_Rela)); i++)
{
Elf64_Rela *r = &rela[i];
uintptr_t *reloc = (uintptr_t *)(Drv.BaseAddress + r->r_offset);
switch (ELF64_R_TYPE(r->r_info))
{
case R_X86_64_JUMP_SLOT:
{
Elf64_Xword symIndex = ELF64_R_SYM(r->r_info);
Elf64_Sym *sym = symbols + symIndex;
const char *symName = DynStr + sym->st_name;
debug("Resolving symbol %s", symName);
*reloc = (uintptr_t)GetSymbolByName(symName, driverInfo.Version.APIVersion);
break;
}
default:
{
fixme("Unhandled relocation type: %#lx",
ELF64_R_TYPE(r->r_info));
break;
}
}
}
break;
}
case DT_PLTGOT:
case DT_PLTRELSZ:
case DT_RELASZ:
case DT_PLTREL:
break;
default:
{
fixme("Unhandled dynamic tag: %#lx", dyn->d_tag);
break;
}
}
dyn++;
}
break;
}
case PT_PHDR:
case PT_INTERP:
break;
default:
{
fixme("Unhandled program header type: %#lx", phdr.p_type);
break;
}
}
}
AssertReturnError(driverInfo.Name != nullptr, -EFAULT);
strncpy(Drv.Name, driverInfo.Name, sizeof(Drv.Name));
strncpy(Drv.Description, driverInfo.Description, sizeof(Drv.Description));
strncpy(Drv.Author, driverInfo.Author, sizeof(Drv.Author));
Drv.Version.Major = driverInfo.Version.Major;
Drv.Version.Minor = driverInfo.Version.Minor;
Drv.Version.Patch = driverInfo.Version.Patch;
strncpy(Drv.License, driverInfo.License, sizeof(Drv.License));
return 0;
}
Manager::Manager() { this->InitializeDaemonFS(); }
Manager::~Manager()
{
debug("Unloading drivers");
UnloadAllDrivers();
}
}