Refactor memory allocation implementation and add KernelReserve flag to memory mappings

This commit is contained in:
EnderIce2
2024-03-19 03:57:30 +02:00
parent 1bd58a309f
commit b35045e7ca
9 changed files with 610 additions and 562 deletions

View File

@ -122,13 +122,13 @@ NIF void MapFramebuffer(PageTable *PT)
{
vmm.OptimizedMap(bInfo.Framebuffer[itrfb].BaseAddress,
bInfo.Framebuffer[itrfb].BaseAddress,
fbSize, RW | G);
fbSize, RW | G | KRsv);
}
else
{
vmm.Map(bInfo.Framebuffer[itrfb].BaseAddress,
bInfo.Framebuffer[itrfb].BaseAddress,
fbSize, RW | G);
fbSize, RW | G | KRsv);
}
itrfb++;
}
@ -190,7 +190,7 @@ NIF void MapKernel(PageTable *PT)
{
for (k = BootstrapStart; k < BootstrapEnd; k += PAGE_SIZE)
{
vmm.Map((void *)k, (void *)BaseKernelMapAddress, RW | G);
vmm.Map((void *)k, (void *)BaseKernelMapAddress, RW | G | KRsv);
KernelAllocator.ReservePage((void *)BaseKernelMapAddress);
BaseKernelMapAddress += PAGE_SIZE;
}
@ -204,7 +204,7 @@ NIF void MapKernel(PageTable *PT)
/* Text section */
for (k = KernelTextStart; k < KernelTextEnd; k += PAGE_SIZE)
{
vmm.Map((void *)k, (void *)BaseKernelMapAddress, RW | G);
vmm.Map((void *)k, (void *)BaseKernelMapAddress, RW | G | KRsv);
KernelAllocator.ReservePage((void *)BaseKernelMapAddress);
BaseKernelMapAddress += PAGE_SIZE;
}
@ -212,7 +212,7 @@ NIF void MapKernel(PageTable *PT)
/* Data section */
for (k = KernelDataStart; k < KernelDataEnd; k += PAGE_SIZE)
{
vmm.Map((void *)k, (void *)BaseKernelMapAddress, RW | G);
vmm.Map((void *)k, (void *)BaseKernelMapAddress, RW | G | KRsv);
KernelAllocator.ReservePage((void *)BaseKernelMapAddress);
BaseKernelMapAddress += PAGE_SIZE;
}
@ -220,7 +220,7 @@ NIF void MapKernel(PageTable *PT)
/* Read only data section */
for (k = KernelRoDataStart; k < KernelRoDataEnd; k += PAGE_SIZE)
{
vmm.Map((void *)k, (void *)BaseKernelMapAddress, G);
vmm.Map((void *)k, (void *)BaseKernelMapAddress, G | KRsv);
KernelAllocator.ReservePage((void *)BaseKernelMapAddress);
BaseKernelMapAddress += PAGE_SIZE;
}
@ -228,7 +228,7 @@ NIF void MapKernel(PageTable *PT)
/* Block starting symbol section */
for (k = KernelBssStart; k < KernelBssEnd; k += PAGE_SIZE)
{
vmm.Map((void *)k, (void *)BaseKernelMapAddress, RW | G);
vmm.Map((void *)k, (void *)BaseKernelMapAddress, RW | G | KRsv);
KernelAllocator.ReservePage((void *)BaseKernelMapAddress);
BaseKernelMapAddress += PAGE_SIZE;
}
@ -240,7 +240,7 @@ NIF void MapKernel(PageTable *PT)
{
for (k = KernelFileStart; k < KernelFileEnd; k += PAGE_SIZE)
{
vmm.Map((void *)k, (void *)k, G);
vmm.Map((void *)k, (void *)k, G | KRsv);
KernelAllocator.ReservePage((void *)k);
}
}

View File

@ -38,7 +38,7 @@ namespace Memory
debug("AllocatedStack: %#lx", AllocatedStack);
memset(AllocatedStack, 0, USER_STACK_SIZE);
Virtual vmm = Virtual(this->vma->GetTable());
Virtual vmm = Virtual(this->vma->Table);
for (size_t i = 0; i < TO_PAGES(USER_STACK_SIZE); i++)
{
void *VirtualPage = (void *)((uintptr_t)this->StackBottom - (i * PAGE_SIZE));
@ -79,8 +79,8 @@ namespace Memory
if (this->UserMode)
{
std::vector<AllocatedPages> ParentAllocatedPages = Parent->GetAllocatedPages();
Virtual vma(this->vma->GetTable());
std::list<AllocatedPages> ParentAllocatedPages = Parent->GetAllocatedPages();
Virtual vma(this->vma->Table);
foreach (auto Page in ParentAllocatedPages)
{
void *NewPhysical = this->vma->RequestPages(1);
@ -114,7 +114,7 @@ namespace Memory
debug("AllocatedStack: %#lx", AllocatedStack);
{
Virtual vmm = Virtual(vma->GetTable());
Virtual vmm = Virtual(vma->Table);
for (size_t i = 0; i < TO_PAGES(USER_STACK_SIZE); i++)
{
void *VirtualPage = (void *)(USER_STACK_BASE + (i * PAGE_SIZE));

View File

@ -17,51 +17,14 @@
#include <memory/vma.hpp>
#include <memory/table.hpp>
#include <cpu.hpp>
#include <debug.h>
#include <bitset>
#include "../../kernel.h"
namespace Memory
{
// ReadFSFunction(MEM_Read)
// {
// if (Size <= 0)
// Size = node->Length;
// if (RefOffset > node->Length)
// return 0;
// if ((node->Length - RefOffset) == 0)
// return 0; /* EOF */
// if (RefOffset + (off_t)Size > node->Length)
// Size = node->Length;
// memcpy(Buffer, (uint8_t *)(node->Address + RefOffset), Size);
// return Size;
// }
// WriteFSFunction(MEM_Write)
// {
// if (Size <= 0)
// Size = node->Length;
// if (RefOffset > node->Length)
// return 0;
// if (RefOffset + (off_t)Size > node->Length)
// Size = node->Length;
// memcpy((uint8_t *)(node->Address + RefOffset), Buffer, Size);
// return Size;
// }
// vfs::FileSystemOperations mem_op = {
// .Name = "mem",
// .Read = MEM_Read,
// .Write = MEM_Write,
// };
uint64_t VirtualMemoryArea::GetAllocatedMemorySize()
{
SmartLock(MgrLock);
@ -71,120 +34,89 @@ namespace Memory
return FROM_PAGES(Size);
}
bool VirtualMemoryArea::Add(void *Address, size_t Count)
void *VirtualMemoryArea::RequestPages(size_t Count, bool User, bool Protect)
{
SmartLock(MgrLock);
function("%#lx, %lld", Address, Count);
if (Address == nullptr)
{
error("Address is null!");
return false;
}
if (Count == 0)
{
error("Count is 0!");
return false;
}
for (size_t i = 0; i < AllocatedPagesList.size(); i++)
{
if (AllocatedPagesList[i].Address == Address)
{
error("Address already exists!");
return false;
}
else if ((uintptr_t)Address < (uintptr_t)AllocatedPagesList[i].Address)
{
if ((uintptr_t)Address + (Count * PAGE_SIZE) > (uintptr_t)AllocatedPagesList[i].Address)
{
error("Address intersects with an allocated page!");
return false;
}
}
else
{
if ((uintptr_t)AllocatedPagesList[i].Address + (AllocatedPagesList[i].PageCount * PAGE_SIZE) > (uintptr_t)Address)
{
error("Address intersects with an allocated page!");
return false;
}
}
}
AllocatedPagesList.push_back({Address, Count});
return true;
}
void *VirtualMemoryArea::RequestPages(size_t Count, bool User)
{
SmartLock(MgrLock);
function("%lld, %s", Count, User ? "true" : "false");
function("%lld, %s, %s", Count,
User ? "true" : "false",
Protect ? "true" : "false");
void *Address = KernelAllocator.RequestPages(Count);
memset(Address, 0, Count * PAGE_SIZE);
for (size_t i = 0; i < Count; i++)
{
int Flags = Memory::PTFlag::RW;
if (User)
Flags |= Memory::PTFlag::US;
void *AddressToMap = (void *)((uintptr_t)Address + (i * PAGE_SIZE));
int Flags = PTFlag::RW;
if (User)
Flags |= PTFlag::US;
if (Protect)
Flags |= PTFlag::KRsv;
Memory::Virtual vmm(this->Table);
vmm.Map(AddressToMap, AddressToMap, Flags);
}
Virtual vmm(this->Table);
AllocatedPagesList.push_back({Address, Count});
SmartLock(MgrLock);
vmm.Map(Address, Address, FROM_PAGES(Count), Flags);
AllocatedPagesList.push_back({Address, Count, Protect});
debug("%#lx +{%#lx, %lld}", this, Address, Count);
return Address;
}
void VirtualMemoryArea::FreePages(void *Address, size_t Count)
{
SmartLock(MgrLock);
function("%#lx, %lld", Address, Count);
SmartLock(MgrLock);
forItr(itr, AllocatedPagesList)
{
if (itr->Address == Address)
if (itr->Address != Address)
continue;
if (itr->Protected)
{
/** TODO: Advanced checks. Allow if the page count is less than the requested one.
* This will allow the user to free only a part of the allocated pages.
*
* But this will be in a separate function because we need to specify if we
* want to free from the start or from the end and return the new address.
*/
if (itr->PageCount != Count)
{
error("Page count mismatch! (Allocated: %lld, Requested: %lld)", itr->PageCount, Count);
return;
}
KernelAllocator.FreePages(Address, Count);
Memory::Virtual vmm(this->Table);
for (size_t i = 0; i < Count; i++)
{
void *AddressToMap = (void *)((uintptr_t)Address + (i * PAGE_SIZE));
vmm.Remap(AddressToMap, AddressToMap, Memory::PTFlag::RW);
// vmm.Unmap((void *)((uintptr_t)Address + (i * PAGE_SIZE)));
}
AllocatedPagesList.erase(itr);
error("Address %#lx is protected", Address);
return;
}
/** TODO: Advanced checks. Allow if the page count is less than the requested one.
* This will allow the user to free only a part of the allocated pages.
*
* But this will be in a separate function because we need to specify if we
* want to free from the start or from the end and return the new address.
*/
if (itr->PageCount != Count)
{
error("Page count mismatch! (Allocated: %lld, Requested: %lld)",
itr->PageCount, Count);
return;
}
Virtual vmm(this->Table);
for (size_t i = 0; i < Count; i++)
{
void *AddressToMap = (void *)((uintptr_t)Address + (i * PAGE_SIZE));
vmm.Remap(AddressToMap, AddressToMap, PTFlag::RW);
}
KernelAllocator.FreePages(Address, Count);
AllocatedPagesList.erase(itr);
debug("%#lx -{%#lx, %lld}", this, Address, Count);
return;
}
}
void VirtualMemoryArea::DetachAddress(void *Address)
{
SmartLock(MgrLock);
function("%#lx", Address);
SmartLock(MgrLock);
forItr(itr, AllocatedPagesList)
{
if (itr->Address == Address)
{
if (itr->Protected)
{
error("Address %#lx is protected", Address);
return;
}
AllocatedPagesList.erase(itr);
return;
}
@ -203,14 +135,14 @@ namespace Memory
Fixed ? "true" : "false",
Shared ? "true" : "false");
Memory::Virtual vmm(this->Table);
Virtual vmm(this->Table);
// FIXME
// for (uintptr_t j = uintptr_t(Address);
// j < uintptr_t(Address) + Length;
// j += PAGE_SIZE)
// {
// if (vmm.Check((void *)j, Memory::G))
// if (vmm.Check((void *)j, G))
// {
// if (Fixed)
// return (void *)-EINVAL;
@ -230,6 +162,12 @@ namespace Memory
}
SmartLock(MgrLock);
if (vmm.Check(Address, PTFlag::KRsv))
{
error("Cannot create CoW region at %#lx", Address);
return (void *)-EPERM;
}
vmm.Unmap(Address, Length);
vmm.Map(Address, nullptr, Length, PTFlag::CoW);
debug("CoW region created at range %#lx-%#lx for pt %#lx",
@ -254,8 +192,10 @@ namespace Memory
bool VirtualMemoryArea::HandleCoW(uintptr_t PFA)
{
function("%#lx", PFA);
Memory::Virtual vmm(this->Table);
Memory::PageTableEntry *pte = vmm.GetPTE((void *)PFA);
Virtual vmm(this->Table);
PageTableEntry *pte = vmm.GetPTE((void *)PFA);
debug("ctx: %#lx", this);
if (!pte)
{
@ -264,51 +204,51 @@ namespace Memory
return false;
}
if (pte->CopyOnWrite == true)
if (!pte->CopyOnWrite)
{
foreach (auto sr in SharedRegions)
debug("PFA %#lx is not CoW (pt %#lx) (flags %#lx)",
PFA, this->Table, pte->raw);
return false;
}
foreach (auto sr in SharedRegions)
{
uintptr_t Start = (uintptr_t)sr.Address;
uintptr_t End = (uintptr_t)sr.Address + sr.Length;
debug("Start: %#lx, End: %#lx (PFA: %#lx)",
Start, End, PFA);
if (PFA >= Start && PFA < End)
{
uintptr_t Start = (uintptr_t)sr.Address;
uintptr_t End = (uintptr_t)sr.Address + sr.Length;
if (PFA >= Start && PFA < End)
if (sr.Shared)
{
debug("Start: %#lx, End: %#lx (PFA: %#lx)",
Start, End, PFA);
if (sr.Shared)
{
fixme("Shared CoW");
return false;
}
else
{
void *pAddr = this->RequestPages(1);
if (pAddr == nullptr)
return false;
memset(pAddr, 0, PAGE_SIZE);
assert(pte->Present == true);
pte->ReadWrite = sr.Write;
pte->UserSupervisor = sr.Read;
pte->ExecuteDisable = sr.Exec;
pte->CopyOnWrite = false;
debug("PFA %#lx is CoW (pt %#lx, flags %#lx)",
PFA, this->Table, pte->raw);
#if defined(a64)
CPU::x64::invlpg((void *)PFA);
#elif defined(a32)
CPU::x32::invlpg((void *)PFA);
#endif
return true;
}
fixme("Shared CoW");
return false;
}
void *pAddr = this->RequestPages(1);
if (pAddr == nullptr)
return false;
memset(pAddr, 0, PAGE_SIZE);
assert(pte->Present == true);
pte->ReadWrite = sr.Write;
pte->UserSupervisor = sr.Read;
pte->ExecuteDisable = sr.Exec;
pte->CopyOnWrite = false;
debug("PFA %#lx is CoW (pt %#lx, flags %#lx)",
PFA, this->Table, pte->raw);
#if defined(a64)
CPU::x64::invlpg((void *)PFA);
#elif defined(a32)
CPU::x32::invlpg((void *)PFA);
#endif
return true;
}
}
debug("PFA %#lx is not CoW (pt %#lx)",
PFA, this->Table);
debug("%#lx not found in CoW regions", PFA);
return false;
}
@ -318,11 +258,11 @@ namespace Memory
foreach (auto ap in AllocatedPagesList)
{
KernelAllocator.FreePages(ap.Address, ap.PageCount);
Memory::Virtual vmm(this->Table);
Virtual vmm(this->Table);
for (size_t i = 0; i < ap.PageCount; i++)
vmm.Remap((void *)((uintptr_t)ap.Address + (i * PAGE_SIZE)),
(void *)((uintptr_t)ap.Address + (i * PAGE_SIZE)),
Memory::PTFlag::RW);
PTFlag::RW);
}
AllocatedPagesList.clear();
}
@ -330,59 +270,66 @@ namespace Memory
void VirtualMemoryArea::Fork(VirtualMemoryArea *Parent)
{
function("%#lx", Parent);
assert(Parent);
if (Parent == nullptr)
{
error("Parent is null!");
return;
}
debug("parent apl:%d sr:%d [P:%#lx C:%#lx]",
Parent->AllocatedPagesList.size(), Parent->SharedRegions.size(),
Parent->Table, this->Table);
debug("ctx: this: %#lx parent: %#lx", this, Parent);
if (Parent->Table == nullptr)
{
error("Parent's table is null!");
return;
}
Memory::Virtual vmm(this->Table);
Virtual vmm(this->Table);
SmartLock(MgrLock);
foreach (auto &ap in Parent->GetAllocatedPagesList())
foreach (auto &ap in Parent->AllocatedPagesList)
{
if (ap.Protected)
{
debug("Protected %#lx-%#lx", ap.Address,
(uintptr_t)ap.Address + (ap.PageCount * PAGE_SIZE));
continue; /* We don't want to modify these pages. */
}
MgrLock.Unlock();
void *Address = this->RequestPages(ap.PageCount);
MgrLock.Lock(__FUNCTION__);
if (Address == nullptr)
return;
memcpy(Address, ap.Address, ap.PageCount * PAGE_SIZE);
memcpy(Address, ap.Address, FROM_PAGES(ap.PageCount));
// map these new allocated pages to be the same as the parent
for (size_t i = 0; i < ap.PageCount; i++)
{
void *AddressToMap = (void *)((uintptr_t)ap.Address + (i * PAGE_SIZE));
void *RealAddress = (void *)((uintptr_t)Address + (i * PAGE_SIZE));
#if defined(a86)
Memory::PageTableEntry *pte = vmm.GetPTE(AddressToMap);
PageTableEntry *pte = vmm.GetPTE(AddressToMap);
uintptr_t Flags = 0;
Flags |= pte->Present ? 1UL : 0;
Flags |= pte->ReadWrite ? 2UL : 0;
Flags |= pte->UserSupervisor ? 4UL : 0;
Flags |= pte->CopyOnWrite ? 512UL : 0;
Flags |= pte->Present ? (uintptr_t)PTFlag::P : 0;
Flags |= pte->ReadWrite ? (uintptr_t)PTFlag::RW : 0;
Flags |= pte->UserSupervisor ? (uintptr_t)PTFlag::US : 0;
Flags |= pte->CopyOnWrite ? (uintptr_t)PTFlag::CoW : 0;
Flags |= pte->KernelReserve ? (uintptr_t)PTFlag::KRsv : 0;
debug("Mapping %#lx to %#lx (flags %s/%s/%s/%s)",
debug("Mapping %#lx to %#lx (flags %s/%s/%s/%s/%s)",
RealAddress, AddressToMap,
Flags & PTFlag::P ? "P" : "-",
Flags & PTFlag::RW ? "RW" : "-",
Flags & PTFlag::US ? "US" : "-",
Flags & PTFlag::CoW ? "CoW" : "-");
vmm.Map(AddressToMap, RealAddress, Flags);
Flags & PTFlag::CoW ? "CoW" : "-",
Flags & PTFlag::KRsv ? "KRsv" : "-");
MgrLock.Unlock();
this->Map(AddressToMap, RealAddress, PAGE_SIZE, Flags);
MgrLock.Lock(__FUNCTION__);
#else
#warning "Not implemented"
#error "Not implemented"
#endif
}
debug("Forked %#lx-%#lx", ap.Address,
(uintptr_t)ap.Address + (ap.PageCount * PAGE_SIZE));
}
foreach (auto &sr in Parent->GetSharedRegions())
foreach (auto &sr in Parent->SharedRegions)
{
MgrLock.Unlock();
void *Address = this->CreateCoWRegion(sr.Address, sr.Length,
@ -392,53 +339,154 @@ namespace Memory
if (Address == nullptr)
return;
memcpy(Address, sr.Address, sr.Length);
debug("Forked CoW region %#lx-%#lx", sr.Address,
(uintptr_t)sr.Address + sr.Length);
}
}
VirtualMemoryArea::VirtualMemoryArea(PageTable *Table)
int VirtualMemoryArea::Map(void *VirtualAddress, void *PhysicalAddress,
size_t Length, uint64_t Flags)
{
debug("+ %#lx %s", this,
KernelSymbolTable ? KernelSymbolTable->GetSymbol((uintptr_t)__builtin_return_address(0)) : "");
Virtual vmm(this->Table);
SmartLock(MgrLock);
if (Table)
this->Table = Table;
else
uintptr_t intVirtualAddress = (uintptr_t)VirtualAddress;
uintptr_t intPhysicalAddress = (uintptr_t)PhysicalAddress;
for (uintptr_t va = intVirtualAddress;
va < intVirtualAddress + Length; va += PAGE_SIZE)
{
if (vmm.Check(VirtualAddress, PTFlag::KRsv))
{
error("Virtual address %#lx is reserved", VirtualAddress);
return -EPERM;
}
}
for (uintptr_t va = intPhysicalAddress;
va < intPhysicalAddress + Length; va += PAGE_SIZE)
{
if (vmm.Check(PhysicalAddress, PTFlag::KRsv))
{
error("Physical address %#lx is reserved", PhysicalAddress);
return -EPERM;
}
}
vmm.Map(VirtualAddress, PhysicalAddress, Length, Flags);
debug("Mapped %#lx-%#lx to %#lx-%#lx (flags %#lx)",
VirtualAddress, intVirtualAddress + Length,
PhysicalAddress, intPhysicalAddress + Length,
Flags);
return 0;
}
int VirtualMemoryArea::Remap(void *VirtualAddress, void *PhysicalAddress, uint64_t Flags)
{
Virtual vmm(this->Table);
SmartLock(MgrLock);
if (vmm.Check(VirtualAddress, PTFlag::KRsv))
{
error("Virtual address %#lx is reserved", VirtualAddress);
return -EPERM;
}
if (vmm.Check(PhysicalAddress, PTFlag::KRsv))
{
error("Physical address %#lx is reserved", PhysicalAddress);
return -EPERM;
}
vmm.Remap(VirtualAddress, PhysicalAddress, Flags);
debug("Remapped %#lx to %#lx (flags %#lx)",
VirtualAddress, PhysicalAddress, Flags);
return 0;
}
int VirtualMemoryArea::Unmap(void *VirtualAddress, size_t Length)
{
Virtual vmm(this->Table);
SmartLock(MgrLock);
uintptr_t intVirtualAddress = (uintptr_t)VirtualAddress;
for (uintptr_t va = intVirtualAddress;
va < intVirtualAddress + Length; va += PAGE_SIZE)
{
if (vmm.Check(VirtualAddress, PTFlag::KRsv))
{
error("Virtual address %#lx is reserved", VirtualAddress);
return -EPERM;
}
}
vmm.Unmap(VirtualAddress, Length);
debug("Unmapped %#lx-%#lx", VirtualAddress, intVirtualAddress + Length);
return 0;
}
void *VirtualMemoryArea::__UserCheckAndGetAddress(void *Address, size_t Length)
{
Virtual vmm(this->Table);
SmartLock(MgrLock);
void *pAddress = this->Table->Get(Address);
if (pAddress == nullptr)
{
debug("Virtual address %#lx returns nullptr", Address);
return nullptr;
}
uintptr_t intAddress = (uintptr_t)Address;
intAddress = ALIGN_DOWN(intAddress, PAGE_SIZE);
for (uintptr_t va = intAddress; va < intAddress + Length; va += PAGE_SIZE)
{
if (vmm.Check((void *)va, PTFlag::US))
continue;
fixme("Unable to get address %#lx, page is not user accessible", va);
return nullptr;
}
return pAddress;
}
int VirtualMemoryArea::__UserCheck(void *Address, size_t Length)
{
Virtual vmm(this->Table);
SmartLock(MgrLock);
if (vmm.Check(Address, PTFlag::US))
return 0;
error("Address %#lx is not user accessible", Address);
return -EFAULT;
}
VirtualMemoryArea::VirtualMemoryArea(PageTable *_Table)
: Table(_Table)
{
SmartLock(MgrLock);
if (_Table == nullptr)
{
if (TaskManager)
{
Tasking::PCB *pcb = thisProcess;
assert(pcb);
this->Table = thisProcess->PageTable;
}
else
#if defined(a64)
this->Table = (PageTable *)CPU::x64::readcr3().raw;
#elif defined(a32)
this->Table = (PageTable *)CPU::x32::readcr3().raw;
#endif
this->Table = (PageTable *)CPU::PageTable();
}
}
VirtualMemoryArea::~VirtualMemoryArea()
{
debug("- %#lx %s", this,
KernelSymbolTable ? KernelSymbolTable->GetSymbol((uintptr_t)__builtin_return_address(0)) : "");
#ifdef DEBUG
if (this->Table == KernelPageTable)
debug("Not remapping kernel page table allocated pages.");
#endif
/* No need to remap pages, the page table will be destroyed */
SmartLock(MgrLock);
Memory::Virtual vmm(this->Table);
foreach (auto ap in AllocatedPagesList)
{
KernelAllocator.FreePages(ap.Address, ap.PageCount);
if (this->Table == KernelPageTable)
continue;
for (size_t i = 0; i < ap.PageCount; i++)
vmm.Remap((void *)((uintptr_t)ap.Address + (i * PAGE_SIZE)),
(void *)((uintptr_t)ap.Address + (i * PAGE_SIZE)),
Memory::PTFlag::RW);
}
}
}

View File

@ -424,13 +424,14 @@ nsa void DisplayDetailsScreen(CPU::ExceptionFrame *Frame)
{
Memory::Virtual vmm((Memory::PageTable *)Frame->cr3);
if (vmm.GetMapType((void *)Frame->cr2) != Memory::Virtual::FourKiB)
ExPrint("Can't display page at address %#lx\n", Frame->cr2);
ExPrint("Can't display page %#lx\n", Frame->cr2);
else
{
Memory::PageTableEntry *pte = vmm.GetPTE((void *)Frame->cr2);
ExPrint("Page %#lx: P:%d W:%d U:%d G:%d CoW:%d NX:%d\n",
ExPrint("Page %#lx: P:%d W:%d U:%d G:%d CoW:%d KRsv:%d NX:%d\n",
ALIGN_DOWN(Frame->cr2, 0x1000), pte->Present, pte->ReadWrite,
pte->UserSupervisor, pte->Global, pte->CopyOnWrite, pte->ExecuteDisable);
pte->UserSupervisor, pte->Global, pte->CopyOnWrite,
pte->KernelReserve, pte->ExecuteDisable);
}
}