Update kernel

This commit is contained in:
EnderIce2
2024-01-19 06:47:42 +02:00
parent fd15592608
commit 96daa43d38
282 changed files with 25486 additions and 15700 deletions

View File

@ -1,18 +1,18 @@
/*
This file is part of Fennix Kernel.
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef __FENNIX_KERNEL_CRASH_HANDLERS_FUNCTIONS_H__
@ -29,22 +29,22 @@ typedef struct CPU::x64::TrapFrame CHArchTrapFrame;
struct CRData
{
CHArchTrapFrame *Frame;
CHArchTrapFrame *Frame;
CPU::x64::CR0 cr0;
CPU::x64::CR2 cr2;
CPU::x64::CR3 cr3;
CPU::x64::CR4 cr4;
CPU::x64::CR8 cr8;
CPU::x64::EFER efer;
uintptr_t dr0, dr1, dr2, dr3;
CPU::x64::DR6 dr6;
CPU::x64::DR7 dr7;
CPU::x64::CR0 cr0;
CPU::x64::CR2 cr2;
CPU::x64::CR3 cr3;
CPU::x64::CR4 cr4;
CPU::x64::CR8 cr8;
CPU::x64::EFER efer;
uintptr_t dr0, dr1, dr2, dr3;
CPU::x64::DR6 dr6;
CPU::x64::DR7 dr7;
long ID;
void *CPUData;
Tasking::PCB *Process;
Tasking::TCB *Thread;
long ID;
void *CPUData;
Tasking::PCB *Process;
Tasking::TCB *Thread;
};
#elif defined(a32)
@ -52,251 +52,245 @@ typedef struct CPU::x32::TrapFrame CHArchTrapFrame;
struct CRData
{
CHArchTrapFrame *Frame;
CHArchTrapFrame *Frame;
CPU::x32::CR0 cr0;
CPU::x32::CR2 cr2;
CPU::x32::CR3 cr3;
CPU::x32::CR4 cr4;
CPU::x32::CR8 cr8;
uintptr_t dr0, dr1, dr2, dr3;
CPU::x32::DR6 dr6;
CPU::x32::DR7 dr7;
CPU::x32::CR0 cr0;
CPU::x32::CR2 cr2;
CPU::x32::CR3 cr3;
CPU::x32::CR4 cr4;
CPU::x32::CR8 cr8;
uintptr_t dr0, dr1, dr2, dr3;
CPU::x32::DR6 dr6;
CPU::x32::DR7 dr7;
long ID;
void *CPUData;
Tasking::PCB *Process;
Tasking::TCB *Thread;
long ID;
void *CPUData;
Tasking::PCB *Process;
Tasking::TCB *Thread;
};
#elif defined(aa64)
typedef struct CPU::aarch64::TrapFrame CHArchTrapFrame;
struct CRData
{
CHArchTrapFrame *Frame;
CHArchTrapFrame *Frame;
long ID;
void *CPUData;
Tasking::PCB *Process;
Tasking::TCB *Thread;
long ID;
void *CPUData;
Tasking::PCB *Process;
Tasking::TCB *Thread;
};
#endif
enum Keys
{
KEY_INVALID = 0x0,
KEY_D_ESCAPE = 0x1,
KEY_D_1 = 0x2,
KEY_D_2 = 0x3,
KEY_D_3 = 0x4,
KEY_D_4 = 0x5,
KEY_D_5 = 0x6,
KEY_D_6 = 0x7,
KEY_D_7 = 0x8,
KEY_D_8 = 0x9,
KEY_D_9 = 0xa,
KEY_D_0 = 0xb,
KEY_D_MINUS = 0xc,
KEY_D_EQUALS = 0xd,
KEY_D_BACKSPACE = 0xe,
KEY_D_TAB = 0xf,
KEY_D_Q = 0x10,
KEY_D_W = 0x11,
KEY_D_E = 0x12,
KEY_D_R = 0x13,
KEY_D_T = 0x14,
KEY_D_Y = 0x15,
KEY_D_U = 0x16,
KEY_D_I = 0x17,
KEY_D_O = 0x18,
KEY_D_P = 0x19,
KEY_D_LBRACKET = 0x1a,
KEY_D_RBRACKET = 0x1b,
KEY_D_RETURN = 0x1c,
KEY_D_LCTRL = 0x1d,
KEY_D_A = 0x1e,
KEY_D_S = 0x1f,
KEY_D_D = 0x20,
KEY_D_F = 0x21,
KEY_D_G = 0x22,
KEY_D_H = 0x23,
KEY_D_J = 0x24,
KEY_D_K = 0x25,
KEY_D_L = 0x26,
KEY_D_SEMICOLON = 0x27,
KEY_D_APOSTROPHE = 0x28,
KEY_D_GRAVE = 0x29,
KEY_D_LSHIFT = 0x2a,
KEY_D_BACKSLASH = 0x2b,
KEY_D_Z = 0x2c,
KEY_D_X = 0x2d,
KEY_D_C = 0x2e,
KEY_D_V = 0x2f,
KEY_D_B = 0x30,
KEY_D_N = 0x31,
KEY_D_M = 0x32,
KEY_D_COMMA = 0x33,
KEY_D_PERIOD = 0x34,
KEY_D_SLASH = 0x35,
KEY_D_RSHIFT = 0x36,
KEY_D_PRTSC = 0x37,
KEY_D_LALT = 0x38,
KEY_D_SPACE = 0x39,
KEY_D_CAPSLOCK = 0x3a,
KEY_D_NUMLOCK = 0x45,
KEY_D_SCROLLLOCK = 0x46,
KEY_INVALID = 0x0,
KEY_D_ESCAPE = 0x1,
KEY_D_1 = 0x2,
KEY_D_2 = 0x3,
KEY_D_3 = 0x4,
KEY_D_4 = 0x5,
KEY_D_5 = 0x6,
KEY_D_6 = 0x7,
KEY_D_7 = 0x8,
KEY_D_8 = 0x9,
KEY_D_9 = 0xa,
KEY_D_0 = 0xb,
KEY_D_MINUS = 0xc,
KEY_D_EQUALS = 0xd,
KEY_D_BACKSPACE = 0xe,
KEY_D_TAB = 0xf,
KEY_D_Q = 0x10,
KEY_D_W = 0x11,
KEY_D_E = 0x12,
KEY_D_R = 0x13,
KEY_D_T = 0x14,
KEY_D_Y = 0x15,
KEY_D_U = 0x16,
KEY_D_I = 0x17,
KEY_D_O = 0x18,
KEY_D_P = 0x19,
KEY_D_LBRACKET = 0x1a,
KEY_D_RBRACKET = 0x1b,
KEY_D_RETURN = 0x1c,
KEY_D_LCTRL = 0x1d,
KEY_D_A = 0x1e,
KEY_D_S = 0x1f,
KEY_D_D = 0x20,
KEY_D_F = 0x21,
KEY_D_G = 0x22,
KEY_D_H = 0x23,
KEY_D_J = 0x24,
KEY_D_K = 0x25,
KEY_D_L = 0x26,
KEY_D_SEMICOLON = 0x27,
KEY_D_APOSTROPHE = 0x28,
KEY_D_GRAVE = 0x29,
KEY_D_LSHIFT = 0x2a,
KEY_D_BACKSLASH = 0x2b,
KEY_D_Z = 0x2c,
KEY_D_X = 0x2d,
KEY_D_C = 0x2e,
KEY_D_V = 0x2f,
KEY_D_B = 0x30,
KEY_D_N = 0x31,
KEY_D_M = 0x32,
KEY_D_COMMA = 0x33,
KEY_D_PERIOD = 0x34,
KEY_D_SLASH = 0x35,
KEY_D_RSHIFT = 0x36,
KEY_D_PRTSC = 0x37,
KEY_D_LALT = 0x38,
KEY_D_SPACE = 0x39,
KEY_D_CAPSLOCK = 0x3a,
KEY_D_NUMLOCK = 0x45,
KEY_D_SCROLLLOCK = 0x46,
KEY_D_KP_MULTIPLY = 0x37,
KEY_D_KP_7 = 0x47,
KEY_D_KP_8 = 0x48,
KEY_D_KP_9 = 0x49,
KEY_D_KP_MINUS = 0x4a,
KEY_D_KP_4 = 0x4b,
KEY_D_KP_5 = 0x4c,
KEY_D_KP_6 = 0x4d,
KEY_D_KP_PLUS = 0x4e,
KEY_D_KP_1 = 0x4f,
KEY_D_KP_2 = 0x50,
KEY_D_KP_3 = 0x51,
KEY_D_KP_0 = 0x52,
KEY_D_KP_PERIOD = 0x53,
KEY_D_KP_MULTIPLY = 0x37,
KEY_D_KP_7 = 0x47,
KEY_D_KP_8 = 0x48,
KEY_D_KP_9 = 0x49,
KEY_D_KP_MINUS = 0x4a,
KEY_D_KP_4 = 0x4b,
KEY_D_KP_5 = 0x4c,
KEY_D_KP_6 = 0x4d,
KEY_D_KP_PLUS = 0x4e,
KEY_D_KP_1 = 0x4f,
KEY_D_KP_2 = 0x50,
KEY_D_KP_3 = 0x51,
KEY_D_KP_0 = 0x52,
KEY_D_KP_PERIOD = 0x53,
KEY_D_F1 = 0x3b,
KEY_D_F2 = 0x3c,
KEY_D_F3 = 0x3d,
KEY_D_F4 = 0x3e,
KEY_D_F5 = 0x3f,
KEY_D_F6 = 0x40,
KEY_D_F7 = 0x41,
KEY_D_F8 = 0x42,
KEY_D_F9 = 0x43,
KEY_D_F10 = 0x44,
KEY_D_F11 = 0x57,
KEY_D_F12 = 0x58,
KEY_D_F1 = 0x3b,
KEY_D_F2 = 0x3c,
KEY_D_F3 = 0x3d,
KEY_D_F4 = 0x3e,
KEY_D_F5 = 0x3f,
KEY_D_F6 = 0x40,
KEY_D_F7 = 0x41,
KEY_D_F8 = 0x42,
KEY_D_F9 = 0x43,
KEY_D_F10 = 0x44,
KEY_D_F11 = 0x57,
KEY_D_F12 = 0x58,
KEY_D_UP = 0x48,
KEY_D_LEFT = 0x4b,
KEY_D_RIGHT = 0x4d,
KEY_D_DOWN = 0x50,
KEY_D_UP = 0x48,
KEY_D_LEFT = 0x4b,
KEY_D_RIGHT = 0x4d,
KEY_D_DOWN = 0x50,
KEY_U_ESCAPE = 0x81,
KEY_U_1 = 0x82,
KEY_U_2 = 0x83,
KEY_U_3 = 0x84,
KEY_U_4 = 0x85,
KEY_U_5 = 0x86,
KEY_U_6 = 0x87,
KEY_U_7 = 0x88,
KEY_U_8 = 0x89,
KEY_U_9 = 0x8a,
KEY_U_0 = 0x8b,
KEY_U_MINUS = 0x8c,
KEY_U_EQUALS = 0x8d,
KEY_U_BACKSPACE = 0x8e,
KEY_U_TAB = 0x8f,
KEY_U_Q = 0x90,
KEY_U_W = 0x91,
KEY_U_E = 0x92,
KEY_U_R = 0x93,
KEY_U_T = 0x94,
KEY_U_Y = 0x95,
KEY_U_U = 0x96,
KEY_U_I = 0x97,
KEY_U_O = 0x98,
KEY_U_P = 0x99,
KEY_U_LBRACKET = 0x9a,
KEY_U_RBRACKET = 0x9b,
KEY_U_RETURN = 0x9c,
KEY_U_LCTRL = 0x9d,
KEY_U_A = 0x9e,
KEY_U_S = 0x9f,
KEY_U_D = 0xa0,
KEY_U_F = 0xa1,
KEY_U_G = 0xa2,
KEY_U_H = 0xa3,
KEY_U_J = 0xa4,
KEY_U_K = 0xa5,
KEY_U_L = 0xa6,
KEY_U_SEMICOLON = 0xa7,
KEY_U_APOSTROPHE = 0xa8,
KEY_U_GRAVE = 0xa9,
KEY_U_LSHIFT = 0xaa,
KEY_U_BACKSLASH = 0xab,
KEY_U_Z = 0xac,
KEY_U_X = 0xad,
KEY_U_C = 0xae,
KEY_U_V = 0xaf,
KEY_U_B = 0xb0,
KEY_U_N = 0xb1,
KEY_U_M = 0xb2,
KEY_U_COMMA = 0xb3,
KEY_U_PERIOD = 0xb4,
KEY_U_SLASH = 0xb5,
KEY_U_RSHIFT = 0xb6,
KEY_U_KP_MULTIPLY = 0xb7,
KEY_U_LALT = 0xb8,
KEY_U_SPACE = 0xb9,
KEY_U_CAPSLOCK = 0xba,
KEY_U_F1 = 0xbb,
KEY_U_F2 = 0xbc,
KEY_U_F3 = 0xbd,
KEY_U_F4 = 0xbe,
KEY_U_F5 = 0xbf,
KEY_U_F6 = 0xc0,
KEY_U_F7 = 0xc1,
KEY_U_F8 = 0xc2,
KEY_U_F9 = 0xc3,
KEY_U_F10 = 0xc4,
KEY_U_NUMLOCK = 0xc5,
KEY_U_SCROLLLOCK = 0xc6,
KEY_U_KP_7 = 0xc7,
KEY_U_KP_8 = 0xc8,
KEY_U_KP_9 = 0xc9,
KEY_U_KP_MINUS = 0xca,
KEY_U_KP_4 = 0xcb,
KEY_U_KP_5 = 0xcc,
KEY_U_KP_6 = 0xcd,
KEY_U_KP_PLUS = 0xce,
KEY_U_KP_1 = 0xcf,
KEY_U_KP_2 = 0xd0,
KEY_U_KP_3 = 0xd1,
KEY_U_KP_0 = 0xd2,
KEY_U_KP_PERIOD = 0xd3,
KEY_U_F11 = 0xd7,
KEY_U_F12 = 0xd8,
KEY_U_ESCAPE = 0x81,
KEY_U_1 = 0x82,
KEY_U_2 = 0x83,
KEY_U_3 = 0x84,
KEY_U_4 = 0x85,
KEY_U_5 = 0x86,
KEY_U_6 = 0x87,
KEY_U_7 = 0x88,
KEY_U_8 = 0x89,
KEY_U_9 = 0x8a,
KEY_U_0 = 0x8b,
KEY_U_MINUS = 0x8c,
KEY_U_EQUALS = 0x8d,
KEY_U_BACKSPACE = 0x8e,
KEY_U_TAB = 0x8f,
KEY_U_Q = 0x90,
KEY_U_W = 0x91,
KEY_U_E = 0x92,
KEY_U_R = 0x93,
KEY_U_T = 0x94,
KEY_U_Y = 0x95,
KEY_U_U = 0x96,
KEY_U_I = 0x97,
KEY_U_O = 0x98,
KEY_U_P = 0x99,
KEY_U_LBRACKET = 0x9a,
KEY_U_RBRACKET = 0x9b,
KEY_U_RETURN = 0x9c,
KEY_U_LCTRL = 0x9d,
KEY_U_A = 0x9e,
KEY_U_S = 0x9f,
KEY_U_D = 0xa0,
KEY_U_F = 0xa1,
KEY_U_G = 0xa2,
KEY_U_H = 0xa3,
KEY_U_J = 0xa4,
KEY_U_K = 0xa5,
KEY_U_L = 0xa6,
KEY_U_SEMICOLON = 0xa7,
KEY_U_APOSTROPHE = 0xa8,
KEY_U_GRAVE = 0xa9,
KEY_U_LSHIFT = 0xaa,
KEY_U_BACKSLASH = 0xab,
KEY_U_Z = 0xac,
KEY_U_X = 0xad,
KEY_U_C = 0xae,
KEY_U_V = 0xaf,
KEY_U_B = 0xb0,
KEY_U_N = 0xb1,
KEY_U_M = 0xb2,
KEY_U_COMMA = 0xb3,
KEY_U_PERIOD = 0xb4,
KEY_U_SLASH = 0xb5,
KEY_U_RSHIFT = 0xb6,
KEY_U_KP_MULTIPLY = 0xb7,
KEY_U_LALT = 0xb8,
KEY_U_SPACE = 0xb9,
KEY_U_CAPSLOCK = 0xba,
KEY_U_F1 = 0xbb,
KEY_U_F2 = 0xbc,
KEY_U_F3 = 0xbd,
KEY_U_F4 = 0xbe,
KEY_U_F5 = 0xbf,
KEY_U_F6 = 0xc0,
KEY_U_F7 = 0xc1,
KEY_U_F8 = 0xc2,
KEY_U_F9 = 0xc3,
KEY_U_F10 = 0xc4,
KEY_U_NUMLOCK = 0xc5,
KEY_U_SCROLLLOCK = 0xc6,
KEY_U_KP_7 = 0xc7,
KEY_U_KP_8 = 0xc8,
KEY_U_KP_9 = 0xc9,
KEY_U_KP_MINUS = 0xca,
KEY_U_KP_4 = 0xcb,
KEY_U_KP_5 = 0xcc,
KEY_U_KP_6 = 0xcd,
KEY_U_KP_PLUS = 0xce,
KEY_U_KP_1 = 0xcf,
KEY_U_KP_2 = 0xd0,
KEY_U_KP_3 = 0xd1,
KEY_U_KP_0 = 0xd2,
KEY_U_KP_PERIOD = 0xd3,
KEY_U_F11 = 0xd7,
KEY_U_F12 = 0xd8,
};
namespace CrashHandler
{
extern int SBIdx;
extern int SBIdx;
class CrashKeyboardDriver : public Interrupts::Handler
{
private:
void PS2Wait(bool Read);
class CrashKeyboardDriver : public Interrupts::Handler
{
private:
void PS2Wait(bool Read);
void OnInterruptReceived(CPU::TrapFrame *Frame);
#if defined(a64)
void OnInterruptReceived(CPU::x64::TrapFrame *Frame);
#elif defined(a32)
void OnInterruptReceived(CPU::x32::TrapFrame *Frame);
#elif defined(aa64)
void OnInterruptReceived(CPU::aarch64::TrapFrame *Frame);
#endif
public:
CrashKeyboardDriver();
~CrashKeyboardDriver();
};
public:
CrashKeyboardDriver();
~CrashKeyboardDriver();
};
void TraceFrames(CRData data, int Count, SymbolResolver::Symbols *SymHandle, bool Kernel);
void TraceFrames(CRData data, int Count, SymbolResolver::Symbols *SymHandle, bool Kernel);
void ArrowInput(uint8_t key);
void UserInput(char *Input);
void ArrowInput(uint8_t key);
void UserInput(char *Input);
void DisplayMainScreen(CRData data);
void DisplayDetailsScreen(CRData data);
void DisplayStackFrameScreen(CRData data);
void DisplayTasksScreen(CRData data);
void DisplayConsoleScreen(CRData data);
void DisplayMainScreen(CRData data);
void DisplayDetailsScreen(CRData data);
void DisplayStackFrameScreen(CRData data);
void DisplayTasksScreen(CRData data);
void DisplayConsoleScreen(CRData data);
}
void DivideByZeroExceptionHandler(CHArchTrapFrame *Frame);

View File

@ -33,316 +33,316 @@
#include "../../kernel.h"
static const char *PageFaultDescriptions[8] = {
"Supervisory process tried to read a non-present page entry\n",
"Supervisory process tried to read a page and caused a protection fault\n",
"Supervisory process tried to write to a non-present page entry\n",
"Supervisory process tried to write a page and caused a protection fault\n",
"User process tried to read a non-present page entry\n",
"User process tried to read a page and caused a protection fault\n",
"User process tried to write to a non-present page entry\n",
"User process tried to write a page and caused a protection fault\n"};
"Supervisory process tried to read a non-present page entry\n",
"Supervisory process tried to read a page and caused a protection fault\n",
"Supervisory process tried to write to a non-present page entry\n",
"Supervisory process tried to write a page and caused a protection fault\n",
"User process tried to read a non-present page entry\n",
"User process tried to read a page and caused a protection fault\n",
"User process tried to write to a non-present page entry\n",
"User process tried to write a page and caused a protection fault\n"};
SafeFunction void DivideByZeroExceptionHandler(CHArchTrapFrame *Frame)
{
fixme("Divide by zero exception\n");
UNUSED(Frame);
fixme("Divide by zero exception\n");
UNUSED(Frame);
}
SafeFunction void DebugExceptionHandler(CHArchTrapFrame *Frame)
{
CrashHandler::EHPrint("Kernel triggered debug exception.\n");
UNUSED(Frame);
CrashHandler::EHPrint("Kernel triggered debug exception.\n");
UNUSED(Frame);
}
SafeFunction void NonMaskableInterruptExceptionHandler(CHArchTrapFrame *Frame)
{
fixme("NMI exception");
UNUSED(Frame);
fixme("NMI exception");
UNUSED(Frame);
}
SafeFunction void BreakpointExceptionHandler(CHArchTrapFrame *Frame)
{
fixme("Breakpoint exception");
UNUSED(Frame);
fixme("Breakpoint exception");
UNUSED(Frame);
}
SafeFunction void OverflowExceptionHandler(CHArchTrapFrame *Frame)
{
fixme("Overflow exception");
UNUSED(Frame);
fixme("Overflow exception");
UNUSED(Frame);
}
SafeFunction void BoundRangeExceptionHandler(CHArchTrapFrame *Frame)
{
fixme("Bound range exception");
UNUSED(Frame);
fixme("Bound range exception");
UNUSED(Frame);
}
SafeFunction void InvalidOpcodeExceptionHandler(CHArchTrapFrame *Frame)
{
CrashHandler::EHPrint("Kernel tried to execute an invalid opcode.\n");
UNUSED(Frame);
CrashHandler::EHPrint("Kernel tried to execute an invalid opcode.\n");
UNUSED(Frame);
}
SafeFunction void DeviceNotAvailableExceptionHandler(CHArchTrapFrame *Frame)
{
fixme("Device not available exception");
UNUSED(Frame);
fixme("Device not available exception");
UNUSED(Frame);
}
SafeFunction void DoubleFaultExceptionHandler(CHArchTrapFrame *Frame)
{
fixme("Double fault exception");
UNUSED(Frame);
fixme("Double fault exception");
UNUSED(Frame);
}
SafeFunction void CoprocessorSegmentOverrunExceptionHandler(CHArchTrapFrame *Frame)
{
fixme("Coprocessor segment overrun exception");
UNUSED(Frame);
fixme("Coprocessor segment overrun exception");
UNUSED(Frame);
}
SafeFunction void InvalidTSSExceptionHandler(CHArchTrapFrame *Frame)
{
fixme("Invalid TSS exception");
UNUSED(Frame);
fixme("Invalid TSS exception");
UNUSED(Frame);
}
SafeFunction void SegmentNotPresentExceptionHandler(CHArchTrapFrame *Frame)
{
fixme("Segment not present exception");
UNUSED(Frame);
fixme("Segment not present exception");
UNUSED(Frame);
}
SafeFunction void StackFaultExceptionHandler(CHArchTrapFrame *Frame)
{
CPU::x64::SelectorErrorCode SelCode = {.raw = Frame->ErrorCode};
CPU::x64::SelectorErrorCode SelCode = {.raw = Frame->ErrorCode};
#if defined(a64)
CrashHandler::EHPrint("Stack segment fault at address %#lx\n", Frame->rip);
CrashHandler::EHPrint("Stack segment fault at address %#lx\n", Frame->rip);
#elif defined(a32)
CrashHandler::EHPrint("Stack segment fault at address %#lx\n", Frame->eip);
CrashHandler::EHPrint("Stack segment fault at address %#lx\n", Frame->eip);
#elif defined(aa64)
#endif
CrashHandler::EHPrint("External: %d\n", SelCode.External);
CrashHandler::EHPrint("Table: %d\n", SelCode.Table);
CrashHandler::EHPrint("Index: %#x\n", SelCode.Idx);
CrashHandler::EHPrint("Error code: %#lx\n", Frame->ErrorCode);
CrashHandler::EHPrint("External: %d\n", SelCode.External);
CrashHandler::EHPrint("Table: %d\n", SelCode.Table);
CrashHandler::EHPrint("Index: %#x\n", SelCode.Idx);
CrashHandler::EHPrint("Error code: %#lx\n", Frame->ErrorCode);
}
SafeFunction void GeneralProtectionExceptionHandler(CHArchTrapFrame *Frame)
{
CPU::x64::SelectorErrorCode SelCode = {.raw = Frame->ErrorCode};
// switch (SelCode.Table)
// {
// case CPU::x64::0b00:
// memcpy(desc_tmp, "GDT", 3);
// break;
// case CPU::x64::0b01:
// memcpy(desc_tmp, "IDT", 3);
// break;
// case CPU::x64::0b10:
// memcpy(desc_tmp, "LDT", 3);
// break;
// case CPU::x64::0b11:
// memcpy(desc_tmp, "IDT", 3);
// break;
// default:
// memcpy(desc_tmp, "Unknown", 7);
// break;
// }
CrashHandler::EHPrint("Kernel performed an illegal operation.\n");
CrashHandler::EHPrint("External: %d\n", SelCode.External);
CrashHandler::EHPrint("Table: %d\n", SelCode.Table);
CrashHandler::EHPrint("Index: %#x\n", SelCode.Idx);
CPU::x64::SelectorErrorCode SelCode = {.raw = Frame->ErrorCode};
// switch (SelCode.Table)
// {
// case CPU::x64::0b00:
// memcpy(desc_tmp, "GDT", 3);
// break;
// case CPU::x64::0b01:
// memcpy(desc_tmp, "IDT", 3);
// break;
// case CPU::x64::0b10:
// memcpy(desc_tmp, "LDT", 3);
// break;
// case CPU::x64::0b11:
// memcpy(desc_tmp, "IDT", 3);
// break;
// default:
// memcpy(desc_tmp, "Unknown", 7);
// break;
// }
CrashHandler::EHPrint("Kernel performed an illegal operation.\n");
CrashHandler::EHPrint("External: %d\n", SelCode.External);
CrashHandler::EHPrint("Table: %d\n", SelCode.Table);
CrashHandler::EHPrint("Index: %#x\n", SelCode.Idx);
}
SafeFunction void PageFaultExceptionHandler(CHArchTrapFrame *Frame)
{
CPU::x64::PageFaultErrorCode params = {.raw = (uint32_t)Frame->ErrorCode};
CPU::x64::PageFaultErrorCode params = {.raw = (uint32_t)Frame->ErrorCode};
#if defined(a64)
CrashHandler::EHPrint("\eAFAFAFAn exception occurred at %#lx by %#lx\n", CrashHandler::PageFaultAddress, Frame->rip);
CrashHandler::EHPrint("\eAFAFAFAn exception occurred at %#lx by %#lx\n", CrashHandler::PageFaultAddress, Frame->rip);
#elif defined(a32)
CrashHandler::EHPrint("\eAFAFAFAn exception occurred at %#lx by %#lx\n", CrashHandler::PageFaultAddress, Frame->eip);
CrashHandler::EHPrint("\eAFAFAFAn exception occurred at %#lx by %#lx\n", CrashHandler::PageFaultAddress, Frame->eip);
#elif defined(aa64)
#endif
CrashHandler::EHPrint("Page: %s\n", params.P ? "Present" : "Not Present");
CrashHandler::EHPrint("Write Operation: %s\n", params.W ? "Read-Only" : "Read-Write");
CrashHandler::EHPrint("Processor Mode: %s\n", params.U ? "User-Mode" : "Kernel-Mode");
CrashHandler::EHPrint("CPU Reserved Bits: %s\n", params.R ? "Reserved" : "Unreserved");
CrashHandler::EHPrint("Caused By An Instruction Fetch: %s\n", params.I ? "Yes" : "No");
CrashHandler::EHPrint("Caused By A Protection-Key Violation: %s\n", params.PK ? "Yes" : "No");
CrashHandler::EHPrint("Caused By A Shadow Stack Access: %s\n", params.SS ? "Yes" : "No");
CrashHandler::EHPrint("Caused By An SGX Violation: %s\n", params.SGX ? "Yes" : "No");
if (Frame->ErrorCode & 0x00000008)
CrashHandler::EHPrint("One or more page directory entries contain reserved bits which are set to 1.\n");
else
CrashHandler::EHPrint(PageFaultDescriptions[Frame->ErrorCode & 0b111]);
CrashHandler::EHPrint("Page: %s\n", params.P ? "Present" : "Not Present");
CrashHandler::EHPrint("Write Operation: %s\n", params.W ? "Read-Only" : "Read-Write");
CrashHandler::EHPrint("Processor Mode: %s\n", params.U ? "User-Mode" : "Kernel-Mode");
CrashHandler::EHPrint("CPU Reserved Bits: %s\n", params.R ? "Reserved" : "Unreserved");
CrashHandler::EHPrint("Caused By An Instruction Fetch: %s\n", params.I ? "Yes" : "No");
CrashHandler::EHPrint("Caused By A Protection-Key Violation: %s\n", params.PK ? "Yes" : "No");
CrashHandler::EHPrint("Caused By A Shadow Stack Access: %s\n", params.SS ? "Yes" : "No");
CrashHandler::EHPrint("Caused By An SGX Violation: %s\n", params.SGX ? "Yes" : "No");
if (Frame->ErrorCode & 0x00000008)
CrashHandler::EHPrint("One or more page directory entries contain reserved bits which are set to 1.\n");
else
CrashHandler::EHPrint(PageFaultDescriptions[Frame->ErrorCode & 0b111]);
#ifdef DEBUG
uintptr_t CheckPageFaultAddress = 0;
CheckPageFaultAddress = CrashHandler::PageFaultAddress;
if (CheckPageFaultAddress == 0)
uintptr_t CheckPageFaultAddress = 0;
CheckPageFaultAddress = CrashHandler::PageFaultAddress;
if (CheckPageFaultAddress == 0)
#ifdef a64
CheckPageFaultAddress = Frame->rip;
CheckPageFaultAddress = Frame->rip;
#elif defined(a32)
CheckPageFaultAddress = Frame->eip;
CheckPageFaultAddress = Frame->eip;
#elif defined(aa64)
CheckPageFaultAddress = 0;
CheckPageFaultAddress = 0;
#endif
#if defined(a64)
Memory::Virtual vmm = Memory::Virtual(((Memory::PageTable *)CPU::x64::readcr3().raw));
Memory::Virtual vmm(((Memory::PageTable *)CPU::x64::readcr3().raw));
#elif defined(a32)
Memory::Virtual vmm = Memory::Virtual(((Memory::PageTable *)CPU::x32::readcr3().raw));
Memory::Virtual vmm(((Memory::PageTable *)CPU::x32::readcr3().raw));
#elif defined(aa64)
Memory::Virtual vmm = Memory::Virtual();
Memory::Virtual vmm();
#warning "TODO: aa64"
#endif
bool PageAvailable = vmm.Check((void *)CheckPageFaultAddress);
debug("Page available (Check(...)): %s. %s",
PageAvailable ? "Yes" : "No",
(params.P && !PageAvailable) ? "CR2 == Present; Check() != Present??????" : "CR2 confirms Check() result.");
bool PageAvailable = vmm.Check((void *)CheckPageFaultAddress);
debug("Page available (Check(...)): %s. %s",
PageAvailable ? "Yes" : "No",
(params.P && !PageAvailable) ? "CR2 == Present; Check() != Present??????" : "CR2 confirms Check() result.");
if (PageAvailable)
{
bool Present = vmm.Check((void *)CheckPageFaultAddress);
bool ReadWrite = vmm.Check((void *)CheckPageFaultAddress, Memory::PTFlag::RW);
bool User = vmm.Check((void *)CheckPageFaultAddress, Memory::PTFlag::US);
bool WriteThrough = vmm.Check((void *)CheckPageFaultAddress, Memory::PTFlag::PWT);
bool CacheDisabled = vmm.Check((void *)CheckPageFaultAddress, Memory::PTFlag::PCD);
bool Accessed = vmm.Check((void *)CheckPageFaultAddress, Memory::PTFlag::A);
bool Dirty = vmm.Check((void *)CheckPageFaultAddress, Memory::PTFlag::D);
bool Global = vmm.Check((void *)CheckPageFaultAddress, Memory::PTFlag::G);
/* ... */
if (PageAvailable)
{
bool Present = vmm.Check((void *)CheckPageFaultAddress);
bool ReadWrite = vmm.Check((void *)CheckPageFaultAddress, Memory::PTFlag::RW);
bool User = vmm.Check((void *)CheckPageFaultAddress, Memory::PTFlag::US);
bool WriteThrough = vmm.Check((void *)CheckPageFaultAddress, Memory::PTFlag::PWT);
bool CacheDisabled = vmm.Check((void *)CheckPageFaultAddress, Memory::PTFlag::PCD);
bool Accessed = vmm.Check((void *)CheckPageFaultAddress, Memory::PTFlag::A);
bool Dirty = vmm.Check((void *)CheckPageFaultAddress, Memory::PTFlag::D);
bool Global = vmm.Check((void *)CheckPageFaultAddress, Memory::PTFlag::G);
/* ... */
debug("Page available: %s", Present ? "Yes" : "No");
debug("Page read/write: %s", ReadWrite ? "Yes" : "No");
debug("Page user/kernel: %s", User ? "User" : "Kernel");
debug("Page write-through: %s", WriteThrough ? "Yes" : "No");
debug("Page cache disabled: %s", CacheDisabled ? "Yes" : "No");
debug("Page accessed: %s", Accessed ? "Yes" : "No");
debug("Page dirty: %s", Dirty ? "Yes" : "No");
debug("Page global: %s", Global ? "Yes" : "No");
debug("Page available: %s", Present ? "Yes" : "No");
debug("Page read/write: %s", ReadWrite ? "Yes" : "No");
debug("Page user/kernel: %s", User ? "User" : "Kernel");
debug("Page write-through: %s", WriteThrough ? "Yes" : "No");
debug("Page cache disabled: %s", CacheDisabled ? "Yes" : "No");
debug("Page accessed: %s", Accessed ? "Yes" : "No");
debug("Page dirty: %s", Dirty ? "Yes" : "No");
debug("Page global: %s", Global ? "Yes" : "No");
if (Present)
{
if (Present)
{
#if defined(a64)
uintptr_t CheckPageFaultLinearAddress = (uintptr_t)CheckPageFaultAddress;
CheckPageFaultLinearAddress &= 0xFFFFFFFFFFFFF000;
debug("%#lx -> %#lx", CheckPageFaultAddress, CheckPageFaultLinearAddress);
uintptr_t CheckPageFaultLinearAddress = (uintptr_t)CheckPageFaultAddress;
CheckPageFaultLinearAddress &= 0xFFFFFFFFFFFFF000;
debug("%#lx -> %#lx", CheckPageFaultAddress, CheckPageFaultLinearAddress);
Memory::Virtual::PageMapIndexer Index = Memory::Virtual::PageMapIndexer((uintptr_t)CheckPageFaultLinearAddress);
debug("Index for %#lx is PML:%d PDPTE:%d PDE:%d PTE:%d",
CheckPageFaultLinearAddress,
Index.PMLIndex,
Index.PDPTEIndex,
Index.PDEIndex,
Index.PTEIndex);
Memory::Virtual::PageMapIndexer Index = Memory::Virtual::PageMapIndexer((uintptr_t)CheckPageFaultLinearAddress);
debug("Index for %#lx is PML:%d PDPTE:%d PDE:%d PTE:%d",
CheckPageFaultLinearAddress,
Index.PMLIndex,
Index.PDPTEIndex,
Index.PDEIndex,
Index.PTEIndex);
#if defined(a64)
Memory::PageMapLevel4 PML4 = ((Memory::PageTable *)CPU::x64::readcr3().raw)->Entries[Index.PMLIndex];
Memory::PageMapLevel4 PML4 = ((Memory::PageTable *)CPU::x64::readcr3().raw)->Entries[Index.PMLIndex];
#elif defined(a32)
Memory::PageMapLevel4 PML4 = ((Memory::PageTable *)CPU::x32::readcr3().raw)->Entries[Index.PMLIndex];
Memory::PageMapLevel4 PML4 = ((Memory::PageTable *)CPU::x32::readcr3().raw)->Entries[Index.PMLIndex];
#elif defined(aa64)
Memory::PageMapLevel4 PML4 = {.raw = 0};
Memory::PageMapLevel4 PML4 = {.raw = 0};
#warning "TODO: aa64"
#endif
Memory::PageDirectoryPointerTableEntryPtr *PDPTE = (Memory::PageDirectoryPointerTableEntryPtr *)((uintptr_t)PML4.GetAddress() << 12);
Memory::PageDirectoryEntryPtr *PDE = (Memory::PageDirectoryEntryPtr *)((uintptr_t)PDPTE->Entries[Index.PDPTEIndex].GetAddress() << 12);
Memory::PageTableEntryPtr *PTE = (Memory::PageTableEntryPtr *)((uintptr_t)PDE->Entries[Index.PDEIndex].GetAddress() << 12);
Memory::PageDirectoryPointerTableEntryPtr *PDPTE = (Memory::PageDirectoryPointerTableEntryPtr *)((uintptr_t)PML4.GetAddress() << 12);
Memory::PageDirectoryEntryPtr *PDE = (Memory::PageDirectoryEntryPtr *)((uintptr_t)PDPTE->Entries[Index.PDPTEIndex].GetAddress() << 12);
Memory::PageTableEntryPtr *PTE = (Memory::PageTableEntryPtr *)((uintptr_t)PDE->Entries[Index.PDEIndex].GetAddress() << 12);
debug("# %03d-%03d-%03d-%03d: P:%s RW:%s US:%s PWT:%s PCB:%s A:%s NX:%s Address:%#lx",
Index.PMLIndex, 0, 0, 0,
PML4.Present ? "1" : "0",
PML4.ReadWrite ? "1" : "0",
PML4.UserSupervisor ? "1" : "0",
PML4.WriteThrough ? "1" : "0",
PML4.CacheDisable ? "1" : "0",
PML4.Accessed ? "1" : "0",
PML4.ExecuteDisable ? "1" : "0",
PML4.GetAddress() << 12);
debug("# %03d-%03d-%03d-%03d: P:%s RW:%s US:%s PWT:%s PCB:%s A:%s NX:%s Address:%#lx",
Index.PMLIndex, 0, 0, 0,
PML4.Present ? "1" : "0",
PML4.ReadWrite ? "1" : "0",
PML4.UserSupervisor ? "1" : "0",
PML4.WriteThrough ? "1" : "0",
PML4.CacheDisable ? "1" : "0",
PML4.Accessed ? "1" : "0",
PML4.ExecuteDisable ? "1" : "0",
PML4.GetAddress() << 12);
debug("# %03d-%03d-%03d-%03d: P:%s RW:%s US:%s PWT:%s PCB:%s A:%s NX:%s Address:%#lx",
Index.PMLIndex, Index.PDPTEIndex, 0, 0,
PDPTE->Entries[Index.PDPTEIndex].Present ? "1" : "0",
PDPTE->Entries[Index.PDPTEIndex].ReadWrite ? "1" : "0",
PDPTE->Entries[Index.PDPTEIndex].UserSupervisor ? "1" : "0",
PDPTE->Entries[Index.PDPTEIndex].WriteThrough ? "1" : "0",
PDPTE->Entries[Index.PDPTEIndex].CacheDisable ? "1" : "0",
PDPTE->Entries[Index.PDPTEIndex].Accessed ? "1" : "0",
PDPTE->Entries[Index.PDPTEIndex].ExecuteDisable ? "1" : "0",
PDPTE->Entries[Index.PDPTEIndex].GetAddress() << 12);
debug("# %03d-%03d-%03d-%03d: P:%s RW:%s US:%s PWT:%s PCB:%s A:%s NX:%s Address:%#lx",
Index.PMLIndex, Index.PDPTEIndex, 0, 0,
PDPTE->Entries[Index.PDPTEIndex].Present ? "1" : "0",
PDPTE->Entries[Index.PDPTEIndex].ReadWrite ? "1" : "0",
PDPTE->Entries[Index.PDPTEIndex].UserSupervisor ? "1" : "0",
PDPTE->Entries[Index.PDPTEIndex].WriteThrough ? "1" : "0",
PDPTE->Entries[Index.PDPTEIndex].CacheDisable ? "1" : "0",
PDPTE->Entries[Index.PDPTEIndex].Accessed ? "1" : "0",
PDPTE->Entries[Index.PDPTEIndex].ExecuteDisable ? "1" : "0",
PDPTE->Entries[Index.PDPTEIndex].GetAddress() << 12);
debug("# %03d-%03d-%03d-%03d: P:%s RW:%s US:%s PWT:%s PCB:%s A:%s NX:%s Address:%#lx",
Index.PMLIndex, Index.PDPTEIndex, Index.PDEIndex, 0,
PDE->Entries[Index.PDEIndex].Present ? "1" : "0",
PDE->Entries[Index.PDEIndex].ReadWrite ? "1" : "0",
PDE->Entries[Index.PDEIndex].UserSupervisor ? "1" : "0",
PDE->Entries[Index.PDEIndex].WriteThrough ? "1" : "0",
PDE->Entries[Index.PDEIndex].CacheDisable ? "1" : "0",
PDE->Entries[Index.PDEIndex].Accessed ? "1" : "0",
PDE->Entries[Index.PDEIndex].ExecuteDisable ? "1" : "0",
PDE->Entries[Index.PDEIndex].GetAddress() << 12);
debug("# %03d-%03d-%03d-%03d: P:%s RW:%s US:%s PWT:%s PCB:%s A:%s NX:%s Address:%#lx",
Index.PMLIndex, Index.PDPTEIndex, Index.PDEIndex, 0,
PDE->Entries[Index.PDEIndex].Present ? "1" : "0",
PDE->Entries[Index.PDEIndex].ReadWrite ? "1" : "0",
PDE->Entries[Index.PDEIndex].UserSupervisor ? "1" : "0",
PDE->Entries[Index.PDEIndex].WriteThrough ? "1" : "0",
PDE->Entries[Index.PDEIndex].CacheDisable ? "1" : "0",
PDE->Entries[Index.PDEIndex].Accessed ? "1" : "0",
PDE->Entries[Index.PDEIndex].ExecuteDisable ? "1" : "0",
PDE->Entries[Index.PDEIndex].GetAddress() << 12);
debug("# %03d-%03d-%03d-%03d: P:%s RW:%s US:%s PWT:%s PCB:%s A:%s D:%s PAT:%s G:%s PK:%d NX:%s Address:%#lx",
Index.PMLIndex, Index.PDPTEIndex, Index.PDEIndex, Index.PTEIndex,
PTE->Entries[Index.PTEIndex].Present ? "1" : "0",
PTE->Entries[Index.PTEIndex].ReadWrite ? "1" : "0",
PTE->Entries[Index.PTEIndex].UserSupervisor ? "1" : "0",
PTE->Entries[Index.PTEIndex].WriteThrough ? "1" : "0",
PTE->Entries[Index.PTEIndex].CacheDisable ? "1" : "0",
PTE->Entries[Index.PTEIndex].Accessed ? "1" : "0",
PTE->Entries[Index.PTEIndex].Dirty ? "1" : "0",
PTE->Entries[Index.PTEIndex].PageAttributeTable ? "1" : "0",
PTE->Entries[Index.PTEIndex].Global ? "1" : "0",
PTE->Entries[Index.PTEIndex].ProtectionKey,
PTE->Entries[Index.PTEIndex].ExecuteDisable ? "1" : "0",
PTE->Entries[Index.PTEIndex].GetAddress() << 12);
debug("# %03d-%03d-%03d-%03d: P:%s RW:%s US:%s PWT:%s PCB:%s A:%s D:%s PAT:%s G:%s PK:%d NX:%s Address:%#lx",
Index.PMLIndex, Index.PDPTEIndex, Index.PDEIndex, Index.PTEIndex,
PTE->Entries[Index.PTEIndex].Present ? "1" : "0",
PTE->Entries[Index.PTEIndex].ReadWrite ? "1" : "0",
PTE->Entries[Index.PTEIndex].UserSupervisor ? "1" : "0",
PTE->Entries[Index.PTEIndex].WriteThrough ? "1" : "0",
PTE->Entries[Index.PTEIndex].CacheDisable ? "1" : "0",
PTE->Entries[Index.PTEIndex].Accessed ? "1" : "0",
PTE->Entries[Index.PTEIndex].Dirty ? "1" : "0",
PTE->Entries[Index.PTEIndex].PageAttributeTable ? "1" : "0",
PTE->Entries[Index.PTEIndex].Global ? "1" : "0",
PTE->Entries[Index.PTEIndex].ProtectionKey,
PTE->Entries[Index.PTEIndex].ExecuteDisable ? "1" : "0",
PTE->Entries[Index.PTEIndex].GetAddress() << 12);
#endif
}
}
}
}
#endif
}
SafeFunction void x87FloatingPointExceptionHandler(CHArchTrapFrame *Frame)
{
fixme("x87 floating point exception");
UNUSED(Frame);
fixme("x87 floating point exception");
UNUSED(Frame);
}
SafeFunction void AlignmentCheckExceptionHandler(CHArchTrapFrame *Frame)
{
fixme("Alignment check exception");
UNUSED(Frame);
fixme("Alignment check exception");
UNUSED(Frame);
}
SafeFunction void MachineCheckExceptionHandler(CHArchTrapFrame *Frame)
{
fixme("Machine check exception");
UNUSED(Frame);
fixme("Machine check exception");
UNUSED(Frame);
}
SafeFunction void SIMDFloatingPointExceptionHandler(CHArchTrapFrame *Frame)
{
fixme("SIMD floating point exception");
UNUSED(Frame);
fixme("SIMD floating point exception");
UNUSED(Frame);
}
SafeFunction void VirtualizationExceptionHandler(CHArchTrapFrame *Frame)
{
fixme("Virtualization exception");
UNUSED(Frame);
fixme("Virtualization exception");
UNUSED(Frame);
}
SafeFunction void SecurityExceptionHandler(CHArchTrapFrame *Frame)
{
fixme("Security exception");
UNUSED(Frame);
fixme("Security exception");
UNUSED(Frame);
}
SafeFunction void UnknownExceptionHandler(CHArchTrapFrame *Frame)
{
fixme("Unknown exception");
UNUSED(Frame);
fixme("Unknown exception");
UNUSED(Frame);
}

View File

@ -40,7 +40,6 @@
#endif
#include "../../kernel.h"
#include "../../mapi.hpp"
NewLock(UserInputLock);
@ -411,7 +410,7 @@ namespace CrashHandler
#elif defined(aa64)
if ((uintptr_t)EHIntFrames[i] >= 0xFFFFFFFF80000000 && (uintptr_t)EHIntFrames[i] <= (uintptr_t)&_kernel_end)
#endif
EHPrint("\e25CCC9%s", KernelSymbolTable->GetSymbolFromAddress((uintptr_t)EHIntFrames[i]));
EHPrint("\e25CCC9%s", KernelSymbolTable->GetSymbol((uintptr_t)EHIntFrames[i]));
else
EHPrint("\eFF4CA9Outside Kernel");
#if defined(a86)
@ -726,7 +725,7 @@ namespace CrashHandler
uint64_t ProgressLength = TotalMemLength;
UniversalAsynchronousReceiverTransmitter::UART uart(port);
Memory::Virtual vmm;
uint8_t *Address = reinterpret_cast<uint8_t *>(0x0);
uint8_t *Address = 0x0;
int Progress = 0;
for (size_t i = 0; i < TotalMemLength; i++)
{
@ -806,33 +805,50 @@ namespace CrashHandler
* Also it makes every core to stay at 100% usage for some reason.
*/
// if (SMP::CPUCores > 1)
// {
// for (int i = 1; i < SMP::CPUCores; i++)
// {
// APIC::InterruptCommandRegisterLow icr;
// icr.Vector = CPU::x86::IRQ29;
// icr.Level = APIC::APICLevel::Assert;
// ((APIC::APIC *)Interrupts::apic[i])->IPI(i, icr);
// __sync;
// }
// }
// APIC::InterruptCommandRegisterLow icr;
// icr.Vector = CPU::x86::IRQ29;
// icr.Level = APIC::APICLevel::Assert;
// icr.DestinationShorthand = APIC::APICDestinationShorthand::AllExcludingSelf;
// ((APIC::APIC *)Interrupts::apic[0])->IPI(0, icr);
// CPU::Interrupts(CPU::Enable);
__sync;
CPU::Interrupts(CPU::Disable);
// }
return;
if (SMP::CPUCores > 1)
{
APIC::InterruptCommandRegister icr{};
bool x2APIC = ((APIC::APIC *)Interrupts::apic[0])->x2APIC;
if (likely(x2APIC))
{
icr.x2.VEC = s_cst(uint8_t, CPU::x86::IRQ31);
icr.x2.MT = APIC::Fixed;
icr.x2.L = APIC::Assert;
for (int i = 1; i < SMP::CPUCores; i++)
{
icr.x2.DES = uint8_t(i);
((APIC::APIC *)Interrupts::apic[i])->ICR(icr);
}
}
else
{
icr.VEC = s_cst(uint8_t, CPU::x86::IRQ31);
icr.MT = APIC::Fixed;
icr.L = APIC::Assert;
for (int i = 1; i < SMP::CPUCores; i++)
{
icr.DES = uint8_t(i);
((APIC::APIC *)Interrupts::apic[i])->ICR(icr);
}
}
CPU::Interrupts(CPU::Disable);
}
#elif defined(aa64)
#endif
}
SafeFunction inline void Handle_x86_64(CHArchTrapFrame *Frame)
SafeFunction inline bool Handle_x86_64(CHArchTrapFrame *Frame)
{
#ifdef a64
trace("Exception at %s",
KernelSymbolTable
? KernelSymbolTable->GetSymbol(Frame->rip)
: "No symbol");
for (size_t i = 0; i < INT_FRAMES_MAX; i++)
EHIntFrames[i] = Interrupts::InterruptFrames[i];
PageFaultAddress = CPU::x64::readcr2().PFLA;
@ -844,14 +860,14 @@ namespace CrashHandler
{
debug("Exception in kernel mode (ip: %#lx cr2: %#lx (%s))",
Frame->rip, PageFaultAddress,
KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress(Frame->rip)
KernelSymbolTable ? KernelSymbolTable->GetSymbol(Frame->rip)
: "No symbol");
}
else
{
debug("Exception in kernel mode (ip: %#lx (%s))",
Frame->rip,
KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress(Frame->rip)
KernelSymbolTable ? KernelSymbolTable->GetSymbol(Frame->rip)
: "No symbol");
}
@ -881,7 +897,7 @@ namespace CrashHandler
debug("Exception in user mode (ip: %#lx cr2: %#lx (%s))",
Frame->rip, PageFaultAddress,
data->CurrentProcess->ELFSymbolTable
? data->CurrentProcess->ELFSymbolTable->GetSymbolFromAddress(Frame->rip)
? data->CurrentProcess->ELFSymbolTable->GetSymbol(Frame->rip)
: "No symbol");
}
else
@ -889,16 +905,18 @@ namespace CrashHandler
debug("Exception in user mode (ip: %#lx (%s))",
Frame->rip,
data->CurrentProcess->ELFSymbolTable
? data->CurrentProcess->ELFSymbolTable->GetSymbolFromAddress(Frame->rip)
? data->CurrentProcess->ELFSymbolTable->GetSymbol(Frame->rip)
: "No symbol");
}
if (UserModeExceptionHandler(Frame))
return;
return true;
else if (DebuggerIsAttached)
asmv("int $0x8");
if (unlikely(data->CurrentThread->Security.IsCritical))
{
debug("Critical thread \"%s\"(%d) died",
error("Critical thread \"%s\"(%d) died",
data->CurrentThread->Name,
data->CurrentThread->ID);
if (TaskManager)
@ -906,26 +924,29 @@ namespace CrashHandler
ForceUnlock = true;
Display->CreateBuffer(0, 0, SBIdx);
StopAllCores();
return;
return false;
}
Tasking::TCB *tcb = data->CurrentThread;
Tasking::Task *ctx = tcb->GetContext();
tcb->State = Tasking::Terminated;
tcb->ExitCode = Tasking::KILL_CRASH;
CPU::Interrupts(CPU::Enable);
while (true)
{
ctx->Yield();
tcb->GetContext()->Yield();
CPU::Halt(TaskManager->IsPanic());
}
}
#endif
return false;
}
SafeFunction inline void Handle_x86_32(CHArchTrapFrame *Frame)
SafeFunction inline bool Handle_x86_32(CHArchTrapFrame *Frame)
{
#ifdef a32
trace("Exception at %s",
KernelSymbolTable
? KernelSymbolTable->GetSymbol(Frame->eip)
: "No symbol");
for (size_t i = 0; i < INT_FRAMES_MAX; i++)
EHIntFrames[i] = Interrupts::InterruptFrames[i];
PageFaultAddress = CPU::x32::readcr2().PFLA;
@ -938,7 +959,7 @@ namespace CrashHandler
debug("Exception in kernel mode (ip: %#lx cr2: %#lx (%s))",
Frame->eip, PageFaultAddress,
data->CurrentProcess->ELFSymbolTable
? data->CurrentProcess->ELFSymbolTable->GetSymbolFromAddress(Frame->eip)
? data->CurrentProcess->ELFSymbolTable->GetSymbol(Frame->eip)
: "No symbol");
}
else
@ -946,12 +967,14 @@ namespace CrashHandler
debug("Exception in kernel mode (ip: %#lx (%s))",
Frame->eip,
data->CurrentProcess->ELFSymbolTable
? data->CurrentProcess->ELFSymbolTable->GetSymbolFromAddress(Frame->eip)
? data->CurrentProcess->ELFSymbolTable->GetSymbol(Frame->eip)
: "No symbol");
}
if (UserModeExceptionHandler(Frame))
return;
return true;
else if (DebuggerIsAttached)
asmv("int $0x8");
if (data->CurrentThread)
{
@ -974,23 +997,25 @@ namespace CrashHandler
{
debug("Exception in user mode (ip: %#lx cr2: %#lx (%s))",
Frame->eip, PageFaultAddress,
KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress(Frame->eip)
KernelSymbolTable ? KernelSymbolTable->GetSymbol(Frame->eip)
: "No symbol");
}
else
{
debug("Exception in user mode (ip: %#lx (%s))",
Frame->eip,
KernelSymbolTable ? KernelSymbolTable->GetSymbolFromAddress(Frame->eip)
KernelSymbolTable ? KernelSymbolTable->GetSymbol(Frame->eip)
: "No symbol");
}
if (UserModeExceptionHandler(Frame))
return;
return true;
else if (DebuggerIsAttached)
asmv("int $0x8");
if (unlikely(data->CurrentThread->Security.IsCritical))
{
debug("Critical thread \"%s\"(%d) died",
error("Critical thread \"%s\"(%d) died",
data->CurrentThread->Name,
data->CurrentThread->ID);
if (TaskManager)
@ -998,21 +1023,19 @@ namespace CrashHandler
ForceUnlock = true;
Display->CreateBuffer(0, 0, SBIdx);
StopAllCores();
return;
return false;
}
Tasking::TCB *tcb = data->CurrentThread;
Tasking::Task *ctx = tcb->GetContext();
tcb->State = Tasking::Terminated;
tcb->ExitCode = Tasking::KILL_CRASH;
CPU::Interrupts(CPU::Enable);
while (true)
{
ctx->Yield();
tcb->GetContext()->Yield();
CPU::Halt(TaskManager->IsPanic());
}
}
#endif
return false;
}
SafeFunction inline void Print_x86_64(CHArchTrapFrame *Frame)
@ -1155,12 +1178,17 @@ namespace CrashHandler
CHArchTrapFrame *Frame = (CHArchTrapFrame *)Data;
SBIdx = 255;
debug("-----------------------------------------------------------------------------------");
debug("%ld MiB / %ld MiB (%ld MiB Reserved)",
TO_MiB(KernelAllocator.GetUsedMemory()),
TO_MiB(KernelAllocator.GetTotalMemory()),
TO_MiB(KernelAllocator.GetReservedMemory()));
error("Exception: %#x", Frame->InterruptNumber);
#if defined(a64)
Handle_x86_64(Frame);
if (Handle_x86_64(Frame))
#elif defined(a32)
Handle_x86_32(Frame);
if (Handle_x86_32(Frame))
#endif
return;
if (ExceptionOccurred)
{
@ -1180,8 +1208,8 @@ namespace CrashHandler
ExceptionOccurred = true;
if (ModuleManager)
ModuleManager->Panic();
if (DriverManager)
DriverManager->Panic();
debug("Reading control registers...");
crashdata.Frame = Frame;
@ -1397,6 +1425,7 @@ namespace CrashHandler
DisplayTopOverlay();
DisplayMainScreen(crashdata);
Display->SetBuffer(255);
Interrupts::RemoveAll();
kbd = new CrashKeyboardDriver;
DisplayBottomOverlay();
Display->SetBuffer(255);

View File

@ -120,125 +120,109 @@ namespace CrashHandler
#define WaitWrite PS2Wait(false)
CPU::Interrupts(CPU::Disable);
#if defined(a86)
// Disable devices
/* Disable Port 1 */
WaitWrite;
outb(0x64, 0xAD);
/* Disable Port 2 */
WaitWrite;
outb(0x64, 0xA7);
// Flush buffer
/* Flush */
WaitRead;
inb(0x60);
// outb(0x64, 0xAE);
// Configure devices
WaitWrite;
outb(0x64, 0x20);
WaitRead;
uint8_t cfg = inb(0x60);
bool DualChannel = cfg & 0b00100000;
if (DualChannel)
trace("Dual channel PS/2 controller detected.");
cfg |= 0b01000011;
WaitWrite;
outb(0x64, 0x60);
WaitWrite;
outb(0x60, cfg);
/* Test PS/2 controller */
WaitWrite;
outb(0x64, 0xAA);
WaitRead;
uint8_t test = inb(0x60);
if (test != 0x55)
{
error("PS/2 controller self test failed! (%#x)", test);
printf("PS/2 controller self test failed! (%#x)\n", test);
CPU::Stop();
if (test == 0xFA)
warn("PS/2 controller acknowledged? (expected TEST_PASSED = 0x55)");
else
{
error("PS/2 controller self test failed (%#x)", test);
// CPU::Stop();
}
}
/* Enable Port 1 */
WaitWrite;
outb(0x64, 0xAE);
/* Reset Port 1 */
WaitWrite;
outb(0x64, 0xFF); /* This may break some keyboards? */
/* Test Port 1 */
WaitWrite;
outb(0x64, 0xAB);
WaitRead;
test = inb(0x60);
if (test != 0x00)
{
if (test == 0xFA)
warn("PS/2 keyboard acknowledged? (expected TEST_PASSED = 0x00)");
else
{
error("PS/2 keyboard self test failed (%#x)", test);
// CPU::Stop();
}
}
/* Disable Port 1 */
WaitWrite;
outb(0x64, 0xAD);
/* Disable Port 2 */
WaitWrite;
outb(0x64, 0xA7);
/* Flush Port 1 */
WaitRead;
inb(0x60);
/* Read Controller Configuration */
WaitWrite;
outb(0x64, 0x20);
WaitRead;
uint8_t cfg = inb(0x60);
/* Enable Port 1 & Port 1 translation */
cfg |= 0b01000001;
/* Write Controller Configuration */
WaitWrite;
outb(0x64, 0x60);
WaitWrite;
outb(0x60, cfg);
bool DCExists = false;
if (DualChannel)
{
WaitWrite;
outb(0x64, 0xAE);
WaitWrite;
outb(0x64, 0x20);
WaitRead;
cfg = inb(0x60);
DCExists = !(cfg & 0b00100000);
WaitWrite;
outb(0x64, 0xAD);
debug("DCExists: %d", DCExists);
}
WaitWrite;
outb(0x64, 0xAB);
WaitRead;
test = inb(0x60);
if (test != 0x00)
{
error("PS/2 keyboard self test failed! (%#x)", test);
printf("PS/2 keyboard self test failed! (%#x)\n", test);
CPU::Stop();
}
if (DCExists)
{
WaitWrite;
outb(0x64, 0xA9);
WaitRead;
test = inb(0x60);
if (test != 0x00)
{
error("PS/2 mouse self test failed! (%#x)", test);
printf("PS/2 mouse self test failed! (%#x)\n", test);
CPU::Stop();
}
}
WaitWrite;
/* Enable Port 1 */
outb(0x64, 0xAE);
if (DCExists)
{
WaitWrite;
outb(0x64, 0xA8);
}
/* Set scan code set 1 */
WaitWrite;
outb(0x60, 0xFF);
outb(0x60, 0xF0);
WaitWrite;
outb(0x60, 0x02);
/* Check if we have scan code set 1 */
WaitWrite;
outb(0x60, 0xF0);
WaitWrite;
outb(0x60, 0x00);
/* Read scan code set */
WaitRead;
test = inb(0x60);
if (test == 0xFC)
uint8_t scs = inb(0x60);
if (scs != 0x41)
{
error("PS/2 keyboard reset failed! (%#x)", test);
printf("PS/2 keyboard reset failed! (%#x)\n", test);
CPU::Stop();
warn("PS/2 keyboard scan code set 1 not supported (%#x)", scs);
}
WaitWrite;
outb(0x60, 0xD4);
WaitWrite;
outb(0x60, 0xFF);
WaitRead;
test = inb(0x60);
if (test == 0xFC)
{
error("PS/2 mouse reset failed! (%#x)", test);
printf("PS/2 mouse reset failed! (%#x)\n", test);
CPU::Stop();
}
// outb(0x60, 0xF4);
// outb(0x21, 0xFD);
// outb(0xA1, 0xFF);
#endif // defined(a86)
CPU::Interrupts(CPU::Enable);
@ -246,19 +230,13 @@ namespace CrashHandler
CrashKeyboardDriver::~CrashKeyboardDriver()
{
error("CrashKeyboardDriver::~CrashKeyboardDriver() called!");
error("CrashKeyboardDriver::~CrashKeyboardDriver() called");
}
int BackSpaceLimit = 0;
static char UserInputBuffer[1024];
#if defined(a64)
SafeFunction void CrashKeyboardDriver::OnInterruptReceived(CPU::x64::TrapFrame *Frame)
#elif defined(a32)
SafeFunction void CrashKeyboardDriver::OnInterruptReceived(CPU::x32::TrapFrame *Frame)
#elif defined(aa64)
SafeFunction void CrashKeyboardDriver::OnInterruptReceived(CPU::aarch64::TrapFrame *Frame)
#endif
SafeFunction void CrashKeyboardDriver::OnInterruptReceived(CPU::TrapFrame *Frame)
{
#if defined(a86)
UNUSED(Frame);

View File

@ -34,9 +34,9 @@
namespace CrashHandler
{
SafeFunction void DisplayConsoleScreen(CRData data)
{
EHPrint("TODO");
UNUSED(data);
}
SafeFunction void DisplayConsoleScreen(CRData data)
{
EHPrint("TODO");
UNUSED(data);
}
}

View File

@ -34,232 +34,232 @@
namespace CrashHandler
{
SafeFunction void DisplayDetailsScreen(CRData data)
{
if (data.Process)
EHPrint("\e7981FCCurrent Process: %s(%ld)\n",
data.Process->Name,
data.Process->ID);
if (data.Thread)
EHPrint("\e7981FCCurrent Thread: %s(%ld)\n",
data.Thread->Name,
data.Thread->ID);
EHPrint("\e7981FCTechnical Informations on CPU %lld:\n", data.ID);
uintptr_t ds;
SafeFunction void DisplayDetailsScreen(CRData data)
{
if (data.Process)
EHPrint("\e7981FCCurrent Process: %s(%ld)\n",
data.Process->Name,
data.Process->ID);
if (data.Thread)
EHPrint("\e7981FCCurrent Thread: %s(%ld)\n",
data.Thread->Name,
data.Thread->ID);
EHPrint("\e7981FCTechnical Informations on CPU %lld:\n", data.ID);
uintptr_t ds;
#if defined(a64)
CPUData *cpu = (CPUData *)data.CPUData;
if (cpu)
{
EHPrint("\eE46CEBCPU Data Address: %#lx\n", cpu);
EHPrint("Core Stack: %#lx, Core ID: %ld, Error Code: %ld\n",
cpu->Stack, cpu->ID, cpu->ErrorCode);
EHPrint("Is Active: %s\n", cpu->IsActive ? "true" : "false");
EHPrint("Current Process: %#lx, Current Thread: %#lx\n",
cpu->CurrentProcess.load(), cpu->CurrentThread.load());
EHPrint("Arch Specific Data: %#lx\n", cpu->Data);
EHPrint("Checksum: 0x%X\n", cpu->Checksum);
}
CPUData *cpu = (CPUData *)data.CPUData;
if (cpu)
{
EHPrint("\eE46CEBCPU Data Address: %#lx\n", cpu);
EHPrint("Core Stack: %#lx, Core ID: %ld, Error Code: %ld\n",
cpu->Stack, cpu->ID, cpu->ErrorCode);
EHPrint("Is Active: %s\n", cpu->IsActive ? "true" : "false");
EHPrint("Current Process: %#lx, Current Thread: %#lx\n",
cpu->CurrentProcess.load(), cpu->CurrentThread.load());
EHPrint("Arch Specific Data: %#lx\n", cpu->Data);
EHPrint("Checksum: 0x%X\n", cpu->Checksum);
}
asmv("mov %%ds, %0"
: "=r"(ds));
asmv("mov %%ds, %0"
: "=r"(ds));
#elif defined(a32)
asmv("mov %%ds, %0"
: "=r"(ds));
asmv("mov %%ds, %0"
: "=r"(ds));
#elif defined(aa64)
#endif
#if defined(a64)
EHPrint("\e7981FCFS=%#lx GS=%#lx SS=%#lx CS=%#lx DS=%#lx\n",
CPU::x64::rdmsr(CPU::x64::MSR_FS_BASE), CPU::x64::rdmsr(CPU::x64::MSR_GS_BASE),
data.Frame->ss, data.Frame->cs, ds);
EHPrint("R8=%#lx R9=%#lx R10=%#lx R11=%#lx\n", data.Frame->r8, data.Frame->r9, data.Frame->r10, data.Frame->r11);
EHPrint("R12=%#lx R13=%#lx R14=%#lx R15=%#lx\n", data.Frame->r12, data.Frame->r13, data.Frame->r14, data.Frame->r15);
EHPrint("RAX=%#lx RBX=%#lx RCX=%#lx RDX=%#lx\n", data.Frame->rax, data.Frame->rbx, data.Frame->rcx, data.Frame->rdx);
EHPrint("RSI=%#lx RDI=%#lx RBP=%#lx RSP=%#lx\n", data.Frame->rsi, data.Frame->rdi, data.Frame->rbp, data.Frame->rsp);
EHPrint("RIP=%#lx RFL=%#lx INT=%#lx ERR=%#lx EFER=%#lx\n", data.Frame->rip, data.Frame->rflags.raw, data.Frame->InterruptNumber, data.Frame->ErrorCode, data.efer.raw);
EHPrint("\e7981FCFS=%#lx GS=%#lx SS=%#lx CS=%#lx DS=%#lx\n",
CPU::x64::rdmsr(CPU::x64::MSR_FS_BASE), CPU::x64::rdmsr(CPU::x64::MSR_GS_BASE),
data.Frame->ss, data.Frame->cs, ds);
EHPrint("R8=%#lx R9=%#lx R10=%#lx R11=%#lx\n", data.Frame->r8, data.Frame->r9, data.Frame->r10, data.Frame->r11);
EHPrint("R12=%#lx R13=%#lx R14=%#lx R15=%#lx\n", data.Frame->r12, data.Frame->r13, data.Frame->r14, data.Frame->r15);
EHPrint("RAX=%#lx RBX=%#lx RCX=%#lx RDX=%#lx\n", data.Frame->rax, data.Frame->rbx, data.Frame->rcx, data.Frame->rdx);
EHPrint("RSI=%#lx RDI=%#lx RBP=%#lx RSP=%#lx\n", data.Frame->rsi, data.Frame->rdi, data.Frame->rbp, data.Frame->rsp);
EHPrint("RIP=%#lx RFL=%#lx INT=%#lx ERR=%#lx EFER=%#lx\n", data.Frame->rip, data.Frame->rflags.raw, data.Frame->InterruptNumber, data.Frame->ErrorCode, data.efer.raw);
#elif defined(a32)
EHPrint("\e7981FCFS=%#x GS=%#x CS=%#x DS=%#x\n",
CPU::x32::rdmsr(CPU::x32::MSR_FS_BASE), CPU::x32::rdmsr(CPU::x32::MSR_GS_BASE),
data.Frame->cs, ds);
EHPrint("EAX=%#x EBX=%#x ECX=%#x EDX=%#x\n", data.Frame->eax, data.Frame->ebx, data.Frame->ecx, data.Frame->edx);
EHPrint("ESI=%#x EDI=%#x EBP=%#x ESP=%#x\n", data.Frame->esi, data.Frame->edi, data.Frame->ebp, data.Frame->esp);
EHPrint("EIP=%#x EFL=%#x INT=%#x ERR=%#x\n", data.Frame->eip, data.Frame->eflags.raw, data.Frame->InterruptNumber, data.Frame->ErrorCode);
EHPrint("\e7981FCFS=%#x GS=%#x CS=%#x DS=%#x\n",
CPU::x32::rdmsr(CPU::x32::MSR_FS_BASE), CPU::x32::rdmsr(CPU::x32::MSR_GS_BASE),
data.Frame->cs, ds);
EHPrint("EAX=%#x EBX=%#x ECX=%#x EDX=%#x\n", data.Frame->eax, data.Frame->ebx, data.Frame->ecx, data.Frame->edx);
EHPrint("ESI=%#x EDI=%#x EBP=%#x ESP=%#x\n", data.Frame->esi, data.Frame->edi, data.Frame->ebp, data.Frame->esp);
EHPrint("EIP=%#x EFL=%#x INT=%#x ERR=%#x\n", data.Frame->eip, data.Frame->eflags.raw, data.Frame->InterruptNumber, data.Frame->ErrorCode);
#elif defined(aa64)
#endif
#if defined(a86)
EHPrint("CR0=%#lx CR2=%#lx CR3=%#lx CR4=%#lx CR8=%#lx\n", data.cr0.raw, data.cr2.raw, data.cr3.raw, data.cr4.raw, data.cr8.raw);
EHPrint("DR0=%#lx DR1=%#lx DR2=%#lx DR3=%#lx DR6=%#lx DR7=%#lx\n", data.dr0, data.dr1, data.dr2, data.dr3, data.dr6, data.dr7.raw);
EHPrint("CR0=%#lx CR2=%#lx CR3=%#lx CR4=%#lx CR8=%#lx\n", data.cr0.raw, data.cr2.raw, data.cr3.raw, data.cr4.raw, data.cr8.raw);
EHPrint("DR0=%#lx DR1=%#lx DR2=%#lx DR3=%#lx DR6=%#lx DR7=%#lx\n", data.dr0, data.dr1, data.dr2, data.dr3, data.dr6, data.dr7.raw);
EHPrint("\eFC797BCR0: PE:%s MP:%s EM:%s TS:%s\n ET:%s NE:%s WP:%s AM:%s\n NW:%s CD:%s PG:%s\n",
data.cr0.PE ? "True " : "False", data.cr0.MP ? "True " : "False", data.cr0.EM ? "True " : "False", data.cr0.TS ? "True " : "False",
data.cr0.ET ? "True " : "False", data.cr0.NE ? "True " : "False", data.cr0.WP ? "True " : "False", data.cr0.AM ? "True " : "False",
data.cr0.NW ? "True " : "False", data.cr0.CD ? "True " : "False", data.cr0.PG ? "True " : "False");
EHPrint("\eFC797BCR0: PE:%s MP:%s EM:%s TS:%s\n ET:%s NE:%s WP:%s AM:%s\n NW:%s CD:%s PG:%s\n",
data.cr0.PE ? "True " : "False", data.cr0.MP ? "True " : "False", data.cr0.EM ? "True " : "False", data.cr0.TS ? "True " : "False",
data.cr0.ET ? "True " : "False", data.cr0.NE ? "True " : "False", data.cr0.WP ? "True " : "False", data.cr0.AM ? "True " : "False",
data.cr0.NW ? "True " : "False", data.cr0.CD ? "True " : "False", data.cr0.PG ? "True " : "False");
EHPrint("\eFCBD79CR2: PFLA: %#lx\n",
data.cr2.PFLA);
EHPrint("\eFCBD79CR2: PFLA: %#lx\n",
data.cr2.PFLA);
EHPrint("\e79FC84CR3: PWT:%s PCD:%s PDBR:%#lx\n",
data.cr3.PWT ? "True " : "False", data.cr3.PCD ? "True " : "False", data.cr3.PDBR);
EHPrint("\e79FC84CR3: PWT:%s PCD:%s PDBR:%#lx\n",
data.cr3.PWT ? "True " : "False", data.cr3.PCD ? "True " : "False", data.cr3.PDBR);
EHPrint("\eBD79FCCR4: VME:%s PVI:%s TSD:%s DE:%s\n PSE:%s PAE:%s MCE:%s PGE:%s\n PCE:%s UMIP:%s OSFXSR:%s OSXMMEXCPT:%s\n LA57:%s VMXE:%s SMXE:%s PCIDE:%s\n OSXSAVE:%s SMEP:%s SMAP:%s PKE:%s\n",
data.cr4.VME ? "True " : "False", data.cr4.PVI ? "True " : "False", data.cr4.TSD ? "True " : "False", data.cr4.DE ? "True " : "False",
data.cr4.PSE ? "True " : "False", data.cr4.PAE ? "True " : "False", data.cr4.MCE ? "True " : "False", data.cr4.PGE ? "True " : "False",
data.cr4.PCE ? "True " : "False", data.cr4.UMIP ? "True " : "False", data.cr4.OSFXSR ? "True " : "False", data.cr4.OSXMMEXCPT ? "True " : "False",
data.cr4.LA57 ? "True " : "False", data.cr4.VMXE ? "True " : "False", data.cr4.SMXE ? "True " : "False", data.cr4.PCIDE ? "True " : "False",
data.cr4.OSXSAVE ? "True " : "False", data.cr4.SMEP ? "True " : "False", data.cr4.SMAP ? "True " : "False", data.cr4.PKE ? "True " : "False");
EHPrint("\e79FCF5CR8: TPL:%d\n", data.cr8.TPL);
EHPrint("\eBD79FCCR4: VME:%s PVI:%s TSD:%s DE:%s\n PSE:%s PAE:%s MCE:%s PGE:%s\n PCE:%s UMIP:%s OSFXSR:%s OSXMMEXCPT:%s\n LA57:%s VMXE:%s SMXE:%s PCIDE:%s\n OSXSAVE:%s SMEP:%s SMAP:%s PKE:%s\n",
data.cr4.VME ? "True " : "False", data.cr4.PVI ? "True " : "False", data.cr4.TSD ? "True " : "False", data.cr4.DE ? "True " : "False",
data.cr4.PSE ? "True " : "False", data.cr4.PAE ? "True " : "False", data.cr4.MCE ? "True " : "False", data.cr4.PGE ? "True " : "False",
data.cr4.PCE ? "True " : "False", data.cr4.UMIP ? "True " : "False", data.cr4.OSFXSR ? "True " : "False", data.cr4.OSXMMEXCPT ? "True " : "False",
data.cr4.LA57 ? "True " : "False", data.cr4.VMXE ? "True " : "False", data.cr4.SMXE ? "True " : "False", data.cr4.PCIDE ? "True " : "False",
data.cr4.OSXSAVE ? "True " : "False", data.cr4.SMEP ? "True " : "False", data.cr4.SMAP ? "True " : "False", data.cr4.PKE ? "True " : "False");
EHPrint("\e79FCF5CR8: TPL:%d\n", data.cr8.TPL);
#endif // a64 || a32
#if defined(a64)
EHPrint("\eFCFC02RFL: CF:%s PF:%s AF:%s ZF:%s\n SF:%s TF:%s IF:%s DF:%s\n OF:%s IOPL:%s NT:%s RF:%s\n VM:%s AC:%s VIF:%s VIP:%s\n ID:%s AlwaysOne:%d\n",
data.Frame->rflags.CF ? "True " : "False", data.Frame->rflags.PF ? "True " : "False", data.Frame->rflags.AF ? "True " : "False", data.Frame->rflags.ZF ? "True " : "False",
data.Frame->rflags.SF ? "True " : "False", data.Frame->rflags.TF ? "True " : "False", data.Frame->rflags.IF ? "True " : "False", data.Frame->rflags.DF ? "True " : "False",
data.Frame->rflags.OF ? "True " : "False", data.Frame->rflags.IOPL ? "True " : "False", data.Frame->rflags.NT ? "True " : "False", data.Frame->rflags.RF ? "True " : "False",
data.Frame->rflags.VM ? "True " : "False", data.Frame->rflags.AC ? "True " : "False", data.Frame->rflags.VIF ? "True " : "False", data.Frame->rflags.VIP ? "True " : "False",
data.Frame->rflags.ID ? "True " : "False", data.Frame->rflags.AlwaysOne);
EHPrint("\eFCFC02RFL: CF:%s PF:%s AF:%s ZF:%s\n SF:%s TF:%s IF:%s DF:%s\n OF:%s IOPL:%s NT:%s RF:%s\n VM:%s AC:%s VIF:%s VIP:%s\n ID:%s AlwaysOne:%d\n",
data.Frame->rflags.CF ? "True " : "False", data.Frame->rflags.PF ? "True " : "False", data.Frame->rflags.AF ? "True " : "False", data.Frame->rflags.ZF ? "True " : "False",
data.Frame->rflags.SF ? "True " : "False", data.Frame->rflags.TF ? "True " : "False", data.Frame->rflags.IF ? "True " : "False", data.Frame->rflags.DF ? "True " : "False",
data.Frame->rflags.OF ? "True " : "False", data.Frame->rflags.IOPL ? "True " : "False", data.Frame->rflags.NT ? "True " : "False", data.Frame->rflags.RF ? "True " : "False",
data.Frame->rflags.VM ? "True " : "False", data.Frame->rflags.AC ? "True " : "False", data.Frame->rflags.VIF ? "True " : "False", data.Frame->rflags.VIP ? "True " : "False",
data.Frame->rflags.ID ? "True " : "False", data.Frame->rflags.AlwaysOne);
#elif defined(a32)
EHPrint("\eFCFC02EFL: CF:%s PF:%s AF:%s ZF:%s\n SF:%s TF:%s IF:%s DF:%s\n OF:%s IOPL:%s NT:%s RF:%s\n VM:%s AC:%s VIF:%s VIP:%s\n ID:%s AlwaysOne:%d\n",
data.Frame->eflags.CF ? "True " : "False", data.Frame->eflags.PF ? "True " : "False", data.Frame->eflags.AF ? "True " : "False", data.Frame->eflags.ZF ? "True " : "False",
data.Frame->eflags.SF ? "True " : "False", data.Frame->eflags.TF ? "True " : "False", data.Frame->eflags.IF ? "True " : "False", data.Frame->eflags.DF ? "True " : "False",
data.Frame->eflags.OF ? "True " : "False", data.Frame->eflags.IOPL ? "True " : "False", data.Frame->eflags.NT ? "True " : "False", data.Frame->eflags.RF ? "True " : "False",
data.Frame->eflags.VM ? "True " : "False", data.Frame->eflags.AC ? "True " : "False", data.Frame->eflags.VIF ? "True " : "False", data.Frame->eflags.VIP ? "True " : "False",
data.Frame->eflags.ID ? "True " : "False", data.Frame->eflags.AlwaysOne);
EHPrint("\eFCFC02EFL: CF:%s PF:%s AF:%s ZF:%s\n SF:%s TF:%s IF:%s DF:%s\n OF:%s IOPL:%s NT:%s RF:%s\n VM:%s AC:%s VIF:%s VIP:%s\n ID:%s AlwaysOne:%d\n",
data.Frame->eflags.CF ? "True " : "False", data.Frame->eflags.PF ? "True " : "False", data.Frame->eflags.AF ? "True " : "False", data.Frame->eflags.ZF ? "True " : "False",
data.Frame->eflags.SF ? "True " : "False", data.Frame->eflags.TF ? "True " : "False", data.Frame->eflags.IF ? "True " : "False", data.Frame->eflags.DF ? "True " : "False",
data.Frame->eflags.OF ? "True " : "False", data.Frame->eflags.IOPL ? "True " : "False", data.Frame->eflags.NT ? "True " : "False", data.Frame->eflags.RF ? "True " : "False",
data.Frame->eflags.VM ? "True " : "False", data.Frame->eflags.AC ? "True " : "False", data.Frame->eflags.VIF ? "True " : "False", data.Frame->eflags.VIP ? "True " : "False",
data.Frame->eflags.ID ? "True " : "False", data.Frame->eflags.AlwaysOne);
#elif defined(aa64)
#endif
#if defined(a86)
EHPrint("\eA0A0A0DR6: B0:%s B1:%s B2:%s B3:%s\n BD:%s BS:%s BT:%s\n",
data.dr6.B0 ? "True " : "False", data.dr6.B1 ? "True " : "False", data.dr6.B2 ? "True " : "False", data.dr6.B3 ? "True " : "False",
data.dr6.BD ? "True " : "False", data.dr6.BS ? "True " : "False", data.dr6.BT ? "True " : "False");
EHPrint("\eA0A0A0DR6: B0:%s B1:%s B2:%s B3:%s\n BD:%s BS:%s BT:%s\n",
data.dr6.B0 ? "True " : "False", data.dr6.B1 ? "True " : "False", data.dr6.B2 ? "True " : "False", data.dr6.B3 ? "True " : "False",
data.dr6.BD ? "True " : "False", data.dr6.BS ? "True " : "False", data.dr6.BT ? "True " : "False");
EHPrint("\eA0F0F0DR7: L0:%s G0:%s L1:%s G1:%s\n L2:%s G2:%s L3:%s G3:%s\n LE:%s GE:%s GD:%s\n R/W0:%s LEN0:%s R/W1:%s LEN1:%s\n R/W2:%s LEN2:%s R/W3:%s LEN3:%s\n",
data.dr7.L0 ? "True " : "False", data.dr7.G0 ? "True " : "False", data.dr7.L1 ? "True " : "False", data.dr7.G1 ? "True " : "False",
data.dr7.L2 ? "True " : "False", data.dr7.G2 ? "True " : "False", data.dr7.L3 ? "True " : "False", data.dr7.G3 ? "True " : "False",
data.dr7.LE ? "True " : "False", data.dr7.GE ? "True " : "False", data.dr7.GD ? "True " : "False", data.dr7.RW0 ? "True " : "False",
data.dr7.LEN0 ? "True " : "False", data.dr7.RW1 ? "True " : "False", data.dr7.LEN1 ? "True " : "False", data.dr7.RW2 ? "True " : "False",
data.dr7.LEN2 ? "True " : "False", data.dr7.RW3 ? "True " : "False", data.dr7.LEN3 ? "True " : "False");
EHPrint("\eA0F0F0DR7: L0:%s G0:%s L1:%s G1:%s\n L2:%s G2:%s L3:%s G3:%s\n LE:%s GE:%s GD:%s\n R/W0:%s LEN0:%s R/W1:%s LEN1:%s\n R/W2:%s LEN2:%s R/W3:%s LEN3:%s\n",
data.dr7.L0 ? "True " : "False", data.dr7.G0 ? "True " : "False", data.dr7.L1 ? "True " : "False", data.dr7.G1 ? "True " : "False",
data.dr7.L2 ? "True " : "False", data.dr7.G2 ? "True " : "False", data.dr7.L3 ? "True " : "False", data.dr7.G3 ? "True " : "False",
data.dr7.LE ? "True " : "False", data.dr7.GE ? "True " : "False", data.dr7.GD ? "True " : "False", data.dr7.RW0 ? "True " : "False",
data.dr7.LEN0 ? "True " : "False", data.dr7.RW1 ? "True " : "False", data.dr7.LEN1 ? "True " : "False", data.dr7.RW2 ? "True " : "False",
data.dr7.LEN2 ? "True " : "False", data.dr7.RW3 ? "True " : "False", data.dr7.LEN3 ? "True " : "False");
#ifdef a64
EHPrint("\e009FF0EFER: SCE:%s LME:%s LMA:%s NXE:%s\n SVME:%s LMSLE:%s FFXSR:%s TCE:%s\n\n",
data.efer.SCE ? "True " : "False", data.efer.LME ? "True " : "False", data.efer.LMA ? "True " : "False", data.efer.NXE ? "True " : "False",
data.efer.SVME ? "True " : "False", data.efer.LMSLE ? "True " : "False", data.efer.FFXSR ? "True " : "False", data.efer.TCE ? "True " : "False");
EHPrint("\e009FF0EFER: SCE:%s LME:%s LMA:%s NXE:%s\n SVME:%s LMSLE:%s FFXSR:%s TCE:%s\n\n",
data.efer.SCE ? "True " : "False", data.efer.LME ? "True " : "False", data.efer.LMA ? "True " : "False", data.efer.NXE ? "True " : "False",
data.efer.SVME ? "True " : "False", data.efer.LMSLE ? "True " : "False", data.efer.FFXSR ? "True " : "False", data.efer.TCE ? "True " : "False");
#endif // a64
#endif
switch (data.Frame->InterruptNumber)
{
case CPU::x86::DivideByZero:
{
DivideByZeroExceptionHandler(data.Frame);
break;
}
case CPU::x86::Debug:
{
DebugExceptionHandler(data.Frame);
break;
}
case CPU::x86::NonMaskableInterrupt:
{
NonMaskableInterruptExceptionHandler(data.Frame);
break;
}
case CPU::x86::Breakpoint:
{
BreakpointExceptionHandler(data.Frame);
break;
}
case CPU::x86::Overflow:
{
OverflowExceptionHandler(data.Frame);
break;
}
case CPU::x86::BoundRange:
{
BoundRangeExceptionHandler(data.Frame);
break;
}
case CPU::x86::InvalidOpcode:
{
InvalidOpcodeExceptionHandler(data.Frame);
break;
}
case CPU::x86::DeviceNotAvailable:
{
DeviceNotAvailableExceptionHandler(data.Frame);
break;
}
case CPU::x86::DoubleFault:
{
DoubleFaultExceptionHandler(data.Frame);
break;
}
case CPU::x86::CoprocessorSegmentOverrun:
{
CoprocessorSegmentOverrunExceptionHandler(data.Frame);
break;
}
case CPU::x86::InvalidTSS:
{
InvalidTSSExceptionHandler(data.Frame);
break;
}
case CPU::x86::SegmentNotPresent:
{
SegmentNotPresentExceptionHandler(data.Frame);
break;
}
case CPU::x86::StackSegmentFault:
{
StackFaultExceptionHandler(data.Frame);
break;
}
case CPU::x86::GeneralProtectionFault:
{
GeneralProtectionExceptionHandler(data.Frame);
break;
}
case CPU::x86::PageFault:
{
PageFaultExceptionHandler(data.Frame);
break;
}
case CPU::x86::x87FloatingPoint:
{
x87FloatingPointExceptionHandler(data.Frame);
break;
}
case CPU::x86::AlignmentCheck:
{
AlignmentCheckExceptionHandler(data.Frame);
break;
}
case CPU::x86::MachineCheck:
{
MachineCheckExceptionHandler(data.Frame);
break;
}
case CPU::x86::SIMDFloatingPoint:
{
SIMDFloatingPointExceptionHandler(data.Frame);
break;
}
case CPU::x86::Virtualization:
{
VirtualizationExceptionHandler(data.Frame);
break;
}
case CPU::x86::Security:
{
SecurityExceptionHandler(data.Frame);
break;
}
default:
{
UnknownExceptionHandler(data.Frame);
break;
}
}
}
switch (data.Frame->InterruptNumber)
{
case CPU::x86::DivideByZero:
{
DivideByZeroExceptionHandler(data.Frame);
break;
}
case CPU::x86::Debug:
{
DebugExceptionHandler(data.Frame);
break;
}
case CPU::x86::NonMaskableInterrupt:
{
NonMaskableInterruptExceptionHandler(data.Frame);
break;
}
case CPU::x86::Breakpoint:
{
BreakpointExceptionHandler(data.Frame);
break;
}
case CPU::x86::Overflow:
{
OverflowExceptionHandler(data.Frame);
break;
}
case CPU::x86::BoundRange:
{
BoundRangeExceptionHandler(data.Frame);
break;
}
case CPU::x86::InvalidOpcode:
{
InvalidOpcodeExceptionHandler(data.Frame);
break;
}
case CPU::x86::DeviceNotAvailable:
{
DeviceNotAvailableExceptionHandler(data.Frame);
break;
}
case CPU::x86::DoubleFault:
{
DoubleFaultExceptionHandler(data.Frame);
break;
}
case CPU::x86::CoprocessorSegmentOverrun:
{
CoprocessorSegmentOverrunExceptionHandler(data.Frame);
break;
}
case CPU::x86::InvalidTSS:
{
InvalidTSSExceptionHandler(data.Frame);
break;
}
case CPU::x86::SegmentNotPresent:
{
SegmentNotPresentExceptionHandler(data.Frame);
break;
}
case CPU::x86::StackSegmentFault:
{
StackFaultExceptionHandler(data.Frame);
break;
}
case CPU::x86::GeneralProtectionFault:
{
GeneralProtectionExceptionHandler(data.Frame);
break;
}
case CPU::x86::PageFault:
{
PageFaultExceptionHandler(data.Frame);
break;
}
case CPU::x86::x87FloatingPoint:
{
x87FloatingPointExceptionHandler(data.Frame);
break;
}
case CPU::x86::AlignmentCheck:
{
AlignmentCheckExceptionHandler(data.Frame);
break;
}
case CPU::x86::MachineCheck:
{
MachineCheckExceptionHandler(data.Frame);
break;
}
case CPU::x86::SIMDFloatingPoint:
{
SIMDFloatingPointExceptionHandler(data.Frame);
break;
}
case CPU::x86::Virtualization:
{
VirtualizationExceptionHandler(data.Frame);
break;
}
case CPU::x86::Security:
{
SecurityExceptionHandler(data.Frame);
break;
}
default:
{
UnknownExceptionHandler(data.Frame);
break;
}
}
}
}

View File

@ -33,358 +33,358 @@
#include "../../../kernel.h"
static const char *PagefaultDescriptions[8] = {
"Supervisory process tried to read a non-present page entry\n",
"Supervisory process tried to read a page and caused a protection fault\n",
"Supervisory process tried to write to a non-present page entry\n",
"Supervisory process tried to write a page and caused a protection fault\n",
"User process tried to read a non-present page entry\n",
"User process tried to read a page and caused a protection fault\n",
"User process tried to write to a non-present page entry\n",
"User process tried to write a page and caused a protection fault\n"};
"Supervisory process tried to read a non-present page entry\n",
"Supervisory process tried to read a page and caused a protection fault\n",
"Supervisory process tried to write to a non-present page entry\n",
"Supervisory process tried to write a page and caused a protection fault\n",
"User process tried to read a non-present page entry\n",
"User process tried to read a page and caused a protection fault\n",
"User process tried to write to a non-present page entry\n",
"User process tried to write a page and caused a protection fault\n"};
namespace CrashHandler
{
SafeFunction void DisplayMainScreen(CRData data)
{
CHArchTrapFrame *Frame = data.Frame;
SafeFunction void DisplayMainScreen(CRData data)
{
CHArchTrapFrame *Frame = data.Frame;
/*
/*
_______ ___ ___ _______ _______ _______ _______ ______ ______ _______ _______ _______ _______ _____
| __| | | __|_ _| ___| | | | | __ \ _ | __| | | ___| \
|__ |\ /|__ | | | | ___| | | ---| < |__ | | ___| -- |
|_______| |___| |_______| |___| |_______|__|_|__| |______|___|__|___|___|_______|___|___|_______|_____/
*/
EHPrint("\eFF5500 _______ ___ ___ _______ _______ _______ _______ ______ ______ _______ _______ _______ _______ _____ \n");
EHPrint("| __| | | __|_ _| ___| | | | | __ \\ _ | __| | | ___| \\ \n");
EHPrint("|__ |\\ /|__ | | | | ___| | | ---| < |__ | | ___| -- |\n");
EHPrint("|_______| |___| |_______| |___| |_______|__|_|__| |______|___|__|___|___|_______|___|___|_______|_____/ \n\eFAFAFA");
*/
EHPrint("\eFF5500 _______ ___ ___ _______ _______ _______ _______ ______ ______ _______ _______ _______ _______ _____ \n");
EHPrint("| __| | | __|_ _| ___| | | | | __ \\ _ | __| | | ___| \\ \n");
EHPrint("|__ |\\ /|__ | | | | ___| | | ---| < |__ | | ___| -- |\n");
EHPrint("|_______| |___| |_______| |___| |_______|__|_|__| |______|___|__|___|___|_______|___|___|_______|_____/ \n\eFAFAFA");
switch (Frame->InterruptNumber)
{
case CPU::x86::DivideByZero:
{
EHPrint("Exception: Divide By Zero\n");
EHPrint("The processor attempted to divide a number by zero.\n");
break;
}
case CPU::x86::Debug:
{
EHPrint("Exception: Debug\n");
EHPrint("A debug exception has occurred.\n");
break;
}
case CPU::x86::NonMaskableInterrupt:
{
EHPrint("Exception: Non-Maskable Interrupt\n");
EHPrint("A non-maskable interrupt was received.\n");
break;
}
case CPU::x86::Breakpoint:
{
EHPrint("Exception: Breakpoint\n");
EHPrint("The processor encountered a breakpoint.\n");
break;
}
case CPU::x86::Overflow:
{
EHPrint("Exception: Overflow\n");
EHPrint("The processor attempted to add a number to a number that was too large.\n");
break;
}
case CPU::x86::BoundRange:
{
EHPrint("Exception: Bound Range\n");
EHPrint("The processor attempted to access an array element that is out of bounds.\n");
break;
}
case CPU::x86::InvalidOpcode:
{
EHPrint("Exception: Invalid Opcode\n");
EHPrint("The processor attempted to execute an invalid opcode.\n");
break;
}
case CPU::x86::DeviceNotAvailable:
{
EHPrint("Exception: Device Not Available\n");
EHPrint("The processor attempted to use a device that is not available.\n");
break;
}
case CPU::x86::DoubleFault:
{
EHPrint("Exception: Double Fault\n");
EHPrint("The processor encountered a double fault.\n");
break;
}
case CPU::x86::CoprocessorSegmentOverrun:
{
EHPrint("Exception: Coprocessor Segment Overrun\n");
EHPrint("The processor attempted to access a segment that is not available.\n");
break;
}
case CPU::x86::InvalidTSS:
{
EHPrint("Exception: Invalid TSS\n");
EHPrint("The processor attempted to access a task state segment that is not available or valid.\n");
CPU::x64::SelectorErrorCode SelCode = {.raw = Frame->ErrorCode};
EHPrint("External? %s\n", SelCode.External ? "Yes" : "No");
EHPrint("GDT IDT LDT IDT\n");
switch (SelCode.Table)
{
case 0b00:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b01:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b10:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b11:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
default:
{
EHPrint(" ? \n");
EHPrint(" ? \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
}
break;
}
case CPU::x86::SegmentNotPresent:
{
EHPrint("Exception: Segment Not Present\n");
EHPrint("The processor attempted to access a segment that is not present.\n");
CPU::x64::SelectorErrorCode SelCode = {.raw = Frame->ErrorCode};
EHPrint("External? %s\n", SelCode.External ? "Yes" : "No");
EHPrint("GDT IDT LDT IDT\n");
switch (SelCode.Table)
{
case 0b00:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b01:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b10:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b11:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
default:
{
EHPrint(" ? \n");
EHPrint(" ? \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
}
break;
}
case CPU::x86::StackSegmentFault:
{
EHPrint("Exception: Stack Segment Fault\n");
CPU::x64::SelectorErrorCode SelCode = {.raw = Frame->ErrorCode};
EHPrint("External? %s\n", SelCode.External ? "Yes" : "No");
EHPrint("GDT IDT LDT IDT\n");
switch (SelCode.Table)
{
case 0b00:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b01:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b10:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b11:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
default:
{
EHPrint(" ? \n");
EHPrint(" ? \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
}
break;
}
case CPU::x86::GeneralProtectionFault:
{
EHPrint("Exception: General Protection Fault\n");
EHPrint("Kernel performed an illegal operation.\n");
CPU::x64::SelectorErrorCode SelCode = {.raw = Frame->ErrorCode};
EHPrint("External? %s\n", SelCode.External ? "Yes" : "No");
EHPrint("GDT IDT LDT IDT\n");
switch (SelCode.Table)
{
case 0b00:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b01:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b10:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b11:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
default:
{
EHPrint(" ? \n");
EHPrint(" ? \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
}
break;
}
case CPU::x86::PageFault:
{
EHPrint("Exception: Page Fault\n");
EHPrint("The processor attempted to access a page that is not present/accessible.\n");
switch (Frame->InterruptNumber)
{
case CPU::x86::DivideByZero:
{
EHPrint("Exception: Divide By Zero\n");
EHPrint("The processor attempted to divide a number by zero.\n");
break;
}
case CPU::x86::Debug:
{
EHPrint("Exception: Debug\n");
EHPrint("A debug exception has occurred.\n");
break;
}
case CPU::x86::NonMaskableInterrupt:
{
EHPrint("Exception: Non-Maskable Interrupt\n");
EHPrint("A non-maskable interrupt was received.\n");
break;
}
case CPU::x86::Breakpoint:
{
EHPrint("Exception: Breakpoint\n");
EHPrint("The processor encountered a breakpoint.\n");
break;
}
case CPU::x86::Overflow:
{
EHPrint("Exception: Overflow\n");
EHPrint("The processor attempted to add a number to a number that was too large.\n");
break;
}
case CPU::x86::BoundRange:
{
EHPrint("Exception: Bound Range\n");
EHPrint("The processor attempted to access an array element that is out of bounds.\n");
break;
}
case CPU::x86::InvalidOpcode:
{
EHPrint("Exception: Invalid Opcode\n");
EHPrint("The processor attempted to execute an invalid opcode.\n");
break;
}
case CPU::x86::DeviceNotAvailable:
{
EHPrint("Exception: Device Not Available\n");
EHPrint("The processor attempted to use a device that is not available.\n");
break;
}
case CPU::x86::DoubleFault:
{
EHPrint("Exception: Double Fault\n");
EHPrint("The processor encountered a double fault.\n");
break;
}
case CPU::x86::CoprocessorSegmentOverrun:
{
EHPrint("Exception: Coprocessor Segment Overrun\n");
EHPrint("The processor attempted to access a segment that is not available.\n");
break;
}
case CPU::x86::InvalidTSS:
{
EHPrint("Exception: Invalid TSS\n");
EHPrint("The processor attempted to access a task state segment that is not available or valid.\n");
CPU::x64::SelectorErrorCode SelCode = {.raw = Frame->ErrorCode};
EHPrint("External? %s\n", SelCode.External ? "Yes" : "No");
EHPrint("GDT IDT LDT IDT\n");
switch (SelCode.Table)
{
case 0b00:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b01:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b10:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b11:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
default:
{
EHPrint(" ? \n");
EHPrint(" ? \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
}
break;
}
case CPU::x86::SegmentNotPresent:
{
EHPrint("Exception: Segment Not Present\n");
EHPrint("The processor attempted to access a segment that is not present.\n");
CPU::x64::SelectorErrorCode SelCode = {.raw = Frame->ErrorCode};
EHPrint("External? %s\n", SelCode.External ? "Yes" : "No");
EHPrint("GDT IDT LDT IDT\n");
switch (SelCode.Table)
{
case 0b00:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b01:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b10:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b11:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
default:
{
EHPrint(" ? \n");
EHPrint(" ? \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
}
break;
}
case CPU::x86::StackSegmentFault:
{
EHPrint("Exception: Stack Segment Fault\n");
CPU::x64::SelectorErrorCode SelCode = {.raw = Frame->ErrorCode};
EHPrint("External? %s\n", SelCode.External ? "Yes" : "No");
EHPrint("GDT IDT LDT IDT\n");
switch (SelCode.Table)
{
case 0b00:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b01:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b10:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b11:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
default:
{
EHPrint(" ? \n");
EHPrint(" ? \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
}
break;
}
case CPU::x86::GeneralProtectionFault:
{
EHPrint("Exception: General Protection Fault\n");
EHPrint("Kernel performed an illegal operation.\n");
CPU::x64::SelectorErrorCode SelCode = {.raw = Frame->ErrorCode};
EHPrint("External? %s\n", SelCode.External ? "Yes" : "No");
EHPrint("GDT IDT LDT IDT\n");
switch (SelCode.Table)
{
case 0b00:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b01:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b10:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
case 0b11:
{
EHPrint(" ^ \n");
EHPrint(" | \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
default:
{
EHPrint(" ? \n");
EHPrint(" ? \n");
EHPrint(" %ld\n", SelCode.Idx);
break;
}
}
break;
}
case CPU::x86::PageFault:
{
EHPrint("Exception: Page Fault\n");
EHPrint("The processor attempted to access a page that is not present/accessible.\n");
CPU::x64::PageFaultErrorCode params = {.raw = (uint32_t)Frame->ErrorCode};
CPU::x64::PageFaultErrorCode params = {.raw = (uint32_t)Frame->ErrorCode};
#if defined(a64)
EHPrint("At \e8888FF%#lx \eFAFAFAby \e8888FF%#lx\eFAFAFA\n", PageFaultAddress, Frame->rip);
EHPrint("At \e8888FF%#lx \eFAFAFAby \e8888FF%#lx\eFAFAFA\n", PageFaultAddress, Frame->rip);
#elif defined(a32)
EHPrint("At \e8888FF%#lx \eFAFAFAby \e8888FF%#lx\eFAFAFA\n", PageFaultAddress, Frame->eip);
EHPrint("At \e8888FF%#lx \eFAFAFAby \e8888FF%#lx\eFAFAFA\n", PageFaultAddress, Frame->eip);
#elif defined(aa64)
#endif
EHPrint("Page: %s\eFAFAFA\n", params.P ? "\e058C19Present" : "\eE85230Not Present");
EHPrint("Write Operation: \e8888FF%s\eFAFAFA\n", params.W ? "Read-Only" : "Read-Write");
EHPrint("Processor Mode: \e8888FF%s\eFAFAFA\n", params.U ? "User-Mode" : "Kernel-Mode");
EHPrint("CPU Reserved Bits: %s\eFAFAFA\n", params.R ? "\eE85230Reserved" : "\e058C19Unreserved");
EHPrint("Caused By An Instruction Fetch: %s\eFAFAFA\n", params.I ? "\eE85230Yes" : "\e058C19No");
EHPrint("Caused By A Protection-Key Violation: %s\eFAFAFA\n", params.PK ? "\eE85230Yes" : "\e058C19No");
EHPrint("Caused By A Shadow Stack Access: %s\eFAFAFA\n", params.SS ? "\eE85230Yes" : "\e058C19No");
EHPrint("Caused By An SGX Violation: %s\eFAFAFA\n", params.SGX ? "\eE85230Yes" : "\e058C19No");
EHPrint("More Info: \e8888FF");
if (Frame->ErrorCode & 0x00000008)
EHPrint("One or more page directory entries contain reserved bits which are set to 1.\n");
else
EHPrint(PagefaultDescriptions[Frame->ErrorCode & 0b111]);
EHPrint("\eFAFAFA");
break;
}
case CPU::x86::x87FloatingPoint:
{
EHPrint("Exception: x87 Floating Point\n");
EHPrint("The x87 FPU generated an error.\n");
break;
}
case CPU::x86::AlignmentCheck:
{
EHPrint("Exception: Alignment Check\n");
EHPrint("The CPU detected an unaligned memory access.\n");
break;
}
case CPU::x86::MachineCheck:
{
EHPrint("Exception: Machine Check\n");
EHPrint("The CPU detected a hardware error.\n");
break;
}
case CPU::x86::SIMDFloatingPoint:
{
EHPrint("Exception: SIMD Floating Point\n");
EHPrint("The CPU detected an error in the SIMD unit.\n");
break;
}
case CPU::x86::Virtualization:
{
EHPrint("Exception: Virtualization\n");
EHPrint("The CPU detected a virtualization error.\n");
break;
}
case CPU::x86::Security:
{
EHPrint("Exception: Security\n");
EHPrint("The CPU detected a security violation.\n");
break;
}
default:
{
EHPrint("Exception: Unknown\n");
EHPrint("The CPU generated an unknown exception.\n");
break;
}
}
EHPrint("Page: %s\eFAFAFA\n", params.P ? "\e058C19Present" : "\eE85230Not Present");
EHPrint("Write Operation: \e8888FF%s\eFAFAFA\n", params.W ? "Read-Only" : "Read-Write");
EHPrint("Processor Mode: \e8888FF%s\eFAFAFA\n", params.U ? "User-Mode" : "Kernel-Mode");
EHPrint("CPU Reserved Bits: %s\eFAFAFA\n", params.R ? "\eE85230Reserved" : "\e058C19Unreserved");
EHPrint("Caused By An Instruction Fetch: %s\eFAFAFA\n", params.I ? "\eE85230Yes" : "\e058C19No");
EHPrint("Caused By A Protection-Key Violation: %s\eFAFAFA\n", params.PK ? "\eE85230Yes" : "\e058C19No");
EHPrint("Caused By A Shadow Stack Access: %s\eFAFAFA\n", params.SS ? "\eE85230Yes" : "\e058C19No");
EHPrint("Caused By An SGX Violation: %s\eFAFAFA\n", params.SGX ? "\eE85230Yes" : "\e058C19No");
EHPrint("More Info: \e8888FF");
if (Frame->ErrorCode & 0x00000008)
EHPrint("One or more page directory entries contain reserved bits which are set to 1.\n");
else
EHPrint(PagefaultDescriptions[Frame->ErrorCode & 0b111]);
EHPrint("\eFAFAFA");
break;
}
case CPU::x86::x87FloatingPoint:
{
EHPrint("Exception: x87 Floating Point\n");
EHPrint("The x87 FPU generated an error.\n");
break;
}
case CPU::x86::AlignmentCheck:
{
EHPrint("Exception: Alignment Check\n");
EHPrint("The CPU detected an unaligned memory access.\n");
break;
}
case CPU::x86::MachineCheck:
{
EHPrint("Exception: Machine Check\n");
EHPrint("The CPU detected a hardware error.\n");
break;
}
case CPU::x86::SIMDFloatingPoint:
{
EHPrint("Exception: SIMD Floating Point\n");
EHPrint("The CPU detected an error in the SIMD unit.\n");
break;
}
case CPU::x86::Virtualization:
{
EHPrint("Exception: Virtualization\n");
EHPrint("The CPU detected a virtualization error.\n");
break;
}
case CPU::x86::Security:
{
EHPrint("Exception: Security\n");
EHPrint("The CPU detected a security violation.\n");
break;
}
default:
{
EHPrint("Exception: Unknown\n");
EHPrint("The CPU generated an unknown exception.\n");
break;
}
}
#if defined(a64)
EHPrint("The exception happened at \e8888FF%#lx\eFAFAFA\n", Frame->rip);
EHPrint("The exception happened at \e8888FF%#lx\eFAFAFA\n", Frame->rip);
#elif defined(a32)
EHPrint("The exception happened at \e8888FF%#lx\eFAFAFA\n", Frame->eip);
EHPrint("The exception happened at \e8888FF%#lx\eFAFAFA\n", Frame->eip);
#elif defined(aa64)
#endif
}
}
}

View File

@ -35,65 +35,44 @@
namespace CrashHandler
{
SafeFunction void DisplayStackFrameScreen(CRData data)
{
EHPrint("\eFAFAFATracing 10 frames...");
TraceFrames(data, 10, KernelSymbolTable, true);
if (data.Process)
{
EHPrint("\n\eFAFAFATracing 10 process frames...");
SymbolResolver::Symbols *sh = data.Process->ELFSymbolTable;
if (!sh)
EHPrint("\n\eFF0000< No symbol table available. >\n");
else
TraceFrames(data, 10, sh, false);
}
EHPrint("\n\eFAFAFATracing interrupt frames...");
for (short i = 0; i < 8; i++)
{
if (EHIntFrames[i])
{
if (!Memory::Virtual().Check(EHIntFrames[i]))
continue;
EHPrint("\n\e2565CC%p", EHIntFrames[i]);
EHPrint("\e7925CC-");
SafeFunction void DisplayStackFrameScreen(CRData data)
{
EHPrint("\eFAFAFATracing 10 frames...");
TraceFrames(data, 10, KernelSymbolTable, true);
if (data.Process)
{
EHPrint("\n\eFAFAFATracing 10 process frames...");
SymbolResolver::Symbols *pSt = data.Process->ELFSymbolTable;
debug("pSt = %#lx", pSt);
if (!pSt || !pSt->SymTableExists)
EHPrint("\n\eFF0000< No symbol table available. >\n");
else
TraceFrames(data, 10, pSt, false);
}
EHPrint("\n\eFAFAFATracing interrupt frames...");
for (short i = 0; i < 8; i++)
{
if (EHIntFrames[i])
{
if (!Memory::Virtual().Check(EHIntFrames[i]))
continue;
EHPrint("\n\e2565CC%p", EHIntFrames[i]);
EHPrint("\e7925CC-");
#if defined(a64)
if ((uintptr_t)EHIntFrames[i] >= 0xFFFFFFFF80000000 && (uintptr_t)EHIntFrames[i] <= (uintptr_t)&_kernel_end)
if ((uintptr_t)EHIntFrames[i] >= 0xFFFFFFFF80000000 &&
(uintptr_t)EHIntFrames[i] <= (uintptr_t)&_kernel_end)
#elif defined(a32)
if ((uintptr_t)EHIntFrames[i] >= 0xC0000000 && (uintptr_t)EHIntFrames[i] <= (uintptr_t)&_kernel_end)
if ((uintptr_t)EHIntFrames[i] >= 0xC0000000 &&
(uintptr_t)EHIntFrames[i] <= (uintptr_t)&_kernel_end)
#elif defined(aa64)
if ((uintptr_t)EHIntFrames[i] >= 0xFFFFFFFF80000000 && (uintptr_t)EHIntFrames[i] <= (uintptr_t)&_kernel_end)
if ((uintptr_t)EHIntFrames[i] >= 0xFFFFFFFF80000000 &&
(uintptr_t)EHIntFrames[i] <= (uintptr_t)&_kernel_end)
#endif
EHPrint("\e25CCC9%s", KernelSymbolTable->GetSymbolFromAddress((uintptr_t)EHIntFrames[i]));
else
EHPrint("\eFF4CA9Outside Kernel");
}
}
if (data.Process && data.Thread)
{
EHPrint("\n\n\eFAFAFATracing thread instruction pointer history...");
SymbolResolver::Symbols *sh = data.Process->ELFSymbolTable;
if (!sh)
EHPrint("\n\eFFA500Warning: No symbol table available.");
int SameItr = 0;
uintptr_t LastRIP = 0;
for (size_t i = 0; i < sizeof(data.Thread->IPHistory) / sizeof(data.Thread->IPHistory[0]); i++)
{
if (data.Thread->IPHistory[i] == LastRIP)
{
SameItr++;
if (SameItr > 2)
continue;
}
else
SameItr = 0;
LastRIP = data.Thread->IPHistory[i];
if (!sh)
EHPrint("\n\eCCCCCC%d: \e2565CC%p", i, data.Thread->IPHistory[i]);
else
EHPrint("\n\eCCCCCC%d: \e2565CC%p\e7925CC-\e25CCC9%s", i, data.Thread->IPHistory[i], sh->GetSymbolFromAddress(data.Thread->IPHistory[i]));
}
EHPrint("\n\e7925CCNote: \e2565CCSame instruction pointers are not shown more than 3 times.\n");
}
}
EHPrint("\e25CCC9%s",
KernelSymbolTable->GetSymbol((uintptr_t)EHIntFrames[i]));
else
EHPrint("\eFF4CA9Outside Kernel");
}
}
}
}

View File

@ -1,18 +1,18 @@
/*
This file is part of Fennix Kernel.
This file is part of Fennix Kernel.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Fennix Kernel is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
You should have received a copy of the GNU General Public License
along with Fennix Kernel. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../../crashhandler.hpp"
@ -34,64 +34,66 @@
namespace CrashHandler
{
SafeFunction void DisplayTasksScreen(CRData data)
{
const char *StatusColor[9] = {
"FF0000", // Unknown
"AAFF00", // Ready
"00AA00", // Running
"FFAA00", // Sleeping
"FFAA00", // Blocked
"FFAA00", // Stopped
"FFAA00", // Waiting
SafeFunction void DisplayTasksScreen(CRData data)
{
const char *StatusColor[] = {
"FF0000", // Unknown
"AAFF00", // Ready
"00AA00", // Running
"FFAA00", // Sleeping
"FFAA00", // Blocked
"FFAA00", // Stopped
"FFAA00", // Waiting
"FF0088", // Zombie
"FF0000", // Terminated
};
"FF00FF", // Core dump
"FF0088", // Zombie
"FF0000", // Terminated
};
const char *StatusString[9] = {
"Unknown", // Unknown
"Ready", // Ready
"Running", // Running
"Sleeping", // Sleeping
"Blocked", // Blocked
"Stopped", // Stopped
"Waiting", // Waiting
const char *StatusString[] = {
"Unknown", // Unknown
"Ready", // Ready
"Running", // Running
"Sleeping", // Sleeping
"Blocked", // Blocked
"Stopped", // Stopped
"Waiting", // Waiting
"Zombie", // Zombie
"Terminated", // Terminated
};
"CoreDump", // Core dump
"Zombie", // Zombie
"Terminated", // Terminated
};
if (TaskManager)
{
std::vector<Tasking::PCB *> Plist = TaskManager->GetProcessList();
if (TaskManager)
{
std::list<Tasking::PCB *> Plist = TaskManager->GetProcessList();
if (data.Thread)
if (data.Thread)
#if defined(a64)
EHPrint("\eFAFAFACrash occurred in thread \eAA0F0F%s\eFAFAFA(%ld) at \e00AAAA%#lx\n",
data.Thread->Name, data.Thread->ID, data.Frame->rip);
EHPrint("\eFAFAFACrash occurred in thread \eAA0F0F%s\eFAFAFA(%ld) at \e00AAAA%#lx\n",
data.Thread->Name, data.Thread->ID, data.Frame->rip);
#elif defined(a32)
EHPrint("\eFAFAFACrash occurred in thread \eAA0F0F%s\eFAFAFA(%ld) at \e00AAAA%#lx\n",
data.Thread->Name, data.Thread->ID, data.Frame->eip);
EHPrint("\eFAFAFACrash occurred in thread \eAA0F0F%s\eFAFAFA(%ld) at \e00AAAA%#lx\n",
data.Thread->Name, data.Thread->ID, data.Frame->eip);
#elif defined(aa64)
#endif
EHPrint("\eFAFAFAProcess list (%ld):\n", Plist.size());
foreach (auto Process in Plist)
{
EHPrint("\e%s-> \eFAFAFA%s\eCCCCCC(%ld) \e00AAAA%s\eFAFAFA PT:\e00AAAA%#lx\n",
StatusColor[Process->State.load()], Process->Name,
Process->ID, StatusString[Process->State.load()],
Process->PageTable);
EHPrint("\eFAFAFAProcess list (%ld):\n", Plist.size());
foreach (auto Process in Plist)
{
EHPrint("\e%s-> \eFAFAFA%s\eCCCCCC(%ld) \e00AAAA%s\eFAFAFA PT:\e00AAAA%#lx\n",
StatusColor[Process->State.load()], Process->Name,
Process->ID, StatusString[Process->State.load()],
Process->PageTable);
foreach (auto Thread in Process->Threads)
EHPrint("\e%s -> \eFAFAFA%s\eCCCCCC(%ld) \e00AAAA%s\eFAFAFA Stack:\e00AAAA%#lx\n",
StatusColor[Thread->State.load()], Thread->Name,
Thread->ID, StatusString[Thread->State.load()],
Thread->Stack);
}
}
else
EHPrint("\eFAFAFATaskManager is not initialized!\n");
}
foreach (auto Thread in Process->Threads)
EHPrint("\e%s -> \eFAFAFA%s\eCCCCCC(%ld) \e00AAAA%s\eFAFAFA Stack:\e00AAAA%#lx\n",
StatusColor[Thread->State.load()], Thread->Name,
Thread->ID, StatusString[Thread->State.load()],
Thread->Stack);
}
}
else
EHPrint("\eFAFAFATaskManager is not initialized!\n");
}
}

View File

@ -32,117 +32,144 @@
#include "../../kernel.h"
#define AddrToStr(addr) SymHandle->GetSymbol(addr)
namespace CrashHandler
{
struct StackFrame
{
struct StackFrame *rbp;
uintptr_t rip;
};
struct StackFrame
{
struct StackFrame *rbp;
uintptr_t rip;
};
SafeFunction void TraceFrames(CRData data, int Count, SymbolResolver::Symbols *SymHandle, bool Kernel)
{
if (!Memory::Virtual().Check(data.Frame))
{
EHPrint("Invalid frame pointer: %p\n", data.Frame);
return;
}
SafeFunction void TraceFrames(CRData data, int Count,
SymbolResolver::Symbols *SymHandle,
bool Kernel)
{
Memory::Virtual vmm;
if (!Memory::Virtual().Check(SymHandle))
{
EHPrint("Invalid symbol handle: %p\n", SymHandle);
return;
}
if (!vmm.Check(data.Frame))
{
EHPrint("Invalid frame pointer: %p\n", data.Frame);
return;
}
bool TriedRetryBP = false;
struct StackFrame *frames = nullptr;
RetryBP:
#if defined(a64)
if (TriedRetryBP == false)
frames = (struct StackFrame *)data.Frame->rbp;
#elif defined(a32)
if (TriedRetryBP == false)
frames = (struct StackFrame *)data.Frame->ebp;
#elif defined(aa64)
#endif
if (!Memory::Virtual().Check((void *)frames))
{
if (TriedRetryBP == false)
{
frames = (struct StackFrame *)Memory::Virtual(data.Process->PageTable).GetPhysical((void *)frames);
TriedRetryBP = true;
goto RetryBP;
}
#if defined(a64)
EHPrint("Invalid rbp pointer: %p\n", data.Frame->rbp);
#elif defined(a32)
EHPrint("Invalid ebp pointer: %p\n", data.Frame->ebp);
#elif defined(aa64)
#endif
return;
}
if (!vmm.Check(SymHandle))
{
EHPrint("Invalid symbol handle: %p\n", SymHandle);
return;
}
debug("\nStack tracing... %p %d %p %d", data.Frame, Count, frames, Kernel);
EHPrint("\e7981FC\nStack Trace:\n");
if (!frames || !frames->rip || !frames->rbp)
{
bool TriedRetryBP = false;
struct StackFrame *frames = nullptr;
RetryBP:
#if defined(a64)
EHPrint("\e2565CC%p", (void *)data.Frame->rip);
if (TriedRetryBP == false)
frames = (struct StackFrame *)data.Frame->rbp;
#elif defined(a32)
EHPrint("\e2565CC%p", (void *)data.Frame->eip);
if (TriedRetryBP == false)
frames = (struct StackFrame *)data.Frame->ebp;
#elif defined(aa64)
#endif
EHPrint("\e7925CC-");
if (!vmm.Check((void *)frames))
{
if (TriedRetryBP == false)
{
Memory::Virtual vma(data.Process->PageTable);
debug("Invalid frame pointer: %p", frames);
frames = (struct StackFrame *)data.Process->PageTable->Get((void *)frames);
debug("Physical frame pointer: %p", frames);
TriedRetryBP = true;
goto RetryBP;
}
#if defined(a64)
EHPrint("\eAA25CC%s", SymHandle->GetSymbolFromAddress(data.Frame->rip));
EHPrint("Invalid rbp pointer: %p\n", data.Frame->rbp);
#elif defined(a32)
EHPrint("\eAA25CC%s", SymHandle->GetSymbolFromAddress(data.Frame->eip));
EHPrint("Invalid ebp pointer: %p\n", data.Frame->ebp);
#elif defined(aa64)
#endif
EHPrint("\e7981FC <- Exception");
EHPrint("\eFF0000\n< No stack trace available. >\n");
}
else
{
#if defined(a64)
EHPrint("\e2565CC%p", (void *)data.Frame->rip);
EHPrint("\e7925CC-");
if ((data.Frame->rip >= 0xFFFFFFFF80000000 && data.Frame->rip <= (uintptr_t)&_kernel_end) || !Kernel)
EHPrint("\eAA25CC%s", SymHandle->GetSymbolFromAddress(data.Frame->rip));
else
EHPrint("Outside Kernel");
#elif defined(a32)
EHPrint("\e2565CC%p", (void *)data.Frame->eip);
EHPrint("\e7925CC-");
if ((data.Frame->eip >= 0xC0000000 && data.Frame->eip <= (uintptr_t)&_kernel_end) || !Kernel)
EHPrint("\eAA25CC%s", SymHandle->GetSymbolFromAddress(data.Frame->eip));
else
EHPrint("Outside Kernel");
#elif defined(aa64)
#endif
EHPrint("\e7981FC <- Exception");
for (int frame = 0; frame < Count; ++frame)
{
if (!frames->rip)
break;
EHPrint("\n\e2565CC%p", (void *)frames->rip);
EHPrint("\e7925CC-");
#if defined(a64)
if ((frames->rip >= 0xFFFFFFFF80000000 && frames->rip <= (uintptr_t)&_kernel_end) || !Kernel)
#elif defined(a32)
if ((frames->rip >= 0xC0000000 && frames->rip <= (uintptr_t)&_kernel_end) || !Kernel)
#elif defined(aa64)
if ((frames->rip >= 0xFFFFFFFF80000000 && frames->rip <= (uintptr_t)&_kernel_end) || !Kernel)
#endif
EHPrint("\e25CCC9%s", SymHandle->GetSymbolFromAddress(frames->rip));
else
EHPrint("\eFF4CA9Outside Kernel");
return;
}
if (!Memory::Virtual().Check(frames->rbp))
return;
frames = frames->rbp;
}
}
EHPrint("\n");
}
debug("Stack tracing... %p %d %p %d",
data.Frame, Count, frames, Kernel);
EHPrint("\e7981FC\nStack Trace:\n");
if (!frames || !frames->rip || !frames->rbp)
{
#if defined(a64)
EHPrint("\e2565CC%p", (void *)data.Frame->rip);
#elif defined(a32)
EHPrint("\e2565CC%p", (void *)data.Frame->eip);
#elif defined(aa64)
#endif
EHPrint("\e7925CC-");
#if defined(a64)
EHPrint("\eAA25CC%s", AddrToStr(data.Frame->rip));
#elif defined(a32)
EHPrint("\eAA25CC%s", AddrToStr(data.Frame->eip));
#elif defined(aa64)
#endif
EHPrint("\e7981FC <- Exception");
EHPrint("\eFF0000\n< No stack trace available. >\n");
}
else
{
#if defined(a64)
debug("Exception in function %s(%p)",
AddrToStr(data.Frame->rip),
data.Frame->rip);
EHPrint("\e2565CC%p", (void *)data.Frame->rip);
EHPrint("\e7925CC-");
if ((data.Frame->rip >= 0xFFFFFFFF80000000 &&
data.Frame->rip <= (uintptr_t)&_kernel_end) ||
Kernel == false)
{
EHPrint("\eAA25CC%s", AddrToStr(data.Frame->rip));
}
else
EHPrint("Outside Kernel");
#elif defined(a32)
EHPrint("\e2565CC%p", (void *)data.Frame->eip);
EHPrint("\e7925CC-");
if ((data.Frame->eip >= 0xC0000000 &&
data.Frame->eip <= (uintptr_t)&_kernel_end) ||
Kernel == false)
{
EHPrint("\eAA25CC%s", AddrToStr(data.Frame->eip));
}
else
EHPrint("Outside Kernel");
#elif defined(aa64)
#endif
EHPrint("\e7981FC <- Exception");
for (int frame = 0; frame < Count; ++frame)
{
if (!frames->rip)
break;
EHPrint("\n\e2565CC%p", (void *)frames->rip);
EHPrint("\e7925CC-");
#if defined(a64)
if ((frames->rip >= 0xFFFFFFFF80000000 &&
frames->rip <= (uintptr_t)&_kernel_end) ||
Kernel == false)
#elif defined(a32)
if ((frames->rip >= 0xC0000000 &&
frames->rip <= (uintptr_t)&_kernel_end) ||
Kernel == false)
#elif defined(aa64)
if ((frames->rip >= 0xFFFFFFFF80000000 &&
frames->rip <= (uintptr_t)&_kernel_end) ||
Kernel == false)
#endif
EHPrint("\e25CCC9%s", AddrToStr(frames->rip));
else
EHPrint("\eFF4CA9Outside Kernel");
if (!vmm.Check(frames->rbp))
return;
frames = frames->rbp;
}
}
EHPrint("\n");
}
}

View File

@ -34,8 +34,12 @@
SafeFunction bool UserModeExceptionHandler(CHArchTrapFrame *Frame)
{
thisThread->State = Tasking::TaskState::Waiting;
CPUData *CurCPU = GetCurrentCPU();
Tasking::PCB *CurProc = CurCPU->CurrentProcess;
Tasking::TCB *CurThread = CurCPU->CurrentThread;
debug("Current process %s(%d) and thread %s(%d)",
CurProc->Name, CurProc->ID, CurThread->Name, CurThread->ID);
CurThread->SetState(Tasking::Waiting);
#ifdef DEBUG
{
@ -153,37 +157,59 @@ SafeFunction bool UserModeExceptionHandler(CHArchTrapFrame *Frame)
{
bool Handled = false;
Handled = CurCPU->CurrentProcess->vma->HandleCoW(CrashHandler::PageFaultAddress);
Handled = CurProc->vma->HandleCoW(CrashHandler::PageFaultAddress);
if (!Handled)
Handled = CurCPU->CurrentThread->Stack->Expand(CrashHandler::PageFaultAddress);
Handled = CurThread->Stack->Expand(CrashHandler::PageFaultAddress);
if (Handled)
{
debug("Page fault handled");
thisThread->State = Tasking::TaskState::Ready;
CurThread->SetState(Tasking::Ready);
return true;
}
CurProc->Signals->SendSignal(SIGSEGV,
{Tasking::KILL_CRASH});
break;
}
case CPU::x86::Debug:
case CPU::x86::Breakpoint:
{
CurProc->Signals->SendSignal(SIGTRAP,
{Tasking::KILL_CRASH});
break;
}
case CPU::x86::DivideByZero:
case CPU::x86::Debug:
case CPU::x86::NonMaskableInterrupt:
case CPU::x86::Breakpoint:
case CPU::x86::Overflow:
case CPU::x86::BoundRange:
case CPU::x86::x87FloatingPoint:
case CPU::x86::SIMDFloatingPoint:
{
CurProc->Signals->SendSignal(SIGFPE,
{Tasking::KILL_CRASH});
break;
}
case CPU::x86::InvalidOpcode:
case CPU::x86::GeneralProtectionFault:
{
CurProc->Signals->SendSignal(SIGILL,
{Tasking::KILL_CRASH});
break;
}
case CPU::x86::DeviceNotAvailable:
{
CurProc->Signals->SendSignal(SIGBUS,
{Tasking::KILL_CRASH});
break;
}
case CPU::x86::NonMaskableInterrupt:
case CPU::x86::DoubleFault:
case CPU::x86::CoprocessorSegmentOverrun:
case CPU::x86::InvalidTSS:
case CPU::x86::SegmentNotPresent:
case CPU::x86::StackSegmentFault:
case CPU::x86::GeneralProtectionFault:
case CPU::x86::x87FloatingPoint:
case CPU::x86::AlignmentCheck:
case CPU::x86::MachineCheck:
case CPU::x86::SIMDFloatingPoint:
case CPU::x86::Virtualization:
case CPU::x86::Security:
default: