Update kernel

This commit is contained in:
Alex
2023-08-06 04:53:14 +03:00
parent 3b65386399
commit 2c51e4432f
181 changed files with 21873 additions and 21475 deletions

View File

@ -18,6 +18,7 @@
#include <types.h>
#include <memory.hpp>
#include <elf.h>
#include <io.h>
#include "multiboot2.h"
@ -50,7 +51,6 @@ EXTERNC void multiboot_main(uintptr_t Magic, uintptr_t Info)
if (tmp != (tmp | 3))
outb(0x61, tmp | 3);
int pos = 0;
auto InfoAddress = Info;
for (auto Tag = (struct multiboot_tag *)((uint8_t *)InfoAddress + 8);
;
@ -220,7 +220,7 @@ EXTERNC void multiboot_main(uintptr_t Magic, uintptr_t Info)
mb2binfo.Kernel.Symbols.Num = elf->num;
mb2binfo.Kernel.Symbols.EntSize = elf->entsize;
mb2binfo.Kernel.Symbols.Shndx = elf->shndx;
mb2binfo.Kernel.Symbols.Sections = (uintptr_t)&elf->sections;
mb2binfo.Kernel.Symbols.Sections = r_cst(uintptr_t, elf->sections);
break;
}
case MULTIBOOT_TAG_TYPE_APM:

View File

@ -82,8 +82,8 @@ namespace ACPI
{
TaskManager->CreateThread(TaskManager->CreateProcess(nullptr,
"Shutdown",
Tasking::TaskTrustLevel::Kernel),
(Tasking::IP)KST_Shutdown);
Tasking::TaskExecutionMode::Kernel),
Tasking::IP(KST_Shutdown));
}
else
KernelShutdownThread(false);

View File

@ -22,402 +22,408 @@
namespace Memory
{
bool Virtual::Check(void *VirtualAddress, PTFlag Flag, MapType Type)
{
// 0x1000 aligned
uintptr_t Address = (uintptr_t)VirtualAddress;
Address &= 0xFFFFFFFFFFFFF000;
bool Virtual::Check(void *VirtualAddress, PTFlag Flag, MapType Type)
{
// 0x1000 aligned
uintptr_t Address = (uintptr_t)VirtualAddress;
Address &= 0xFFFFFFFFFFFFF000;
PageMapIndexer Index = PageMapIndexer(Address);
PageMapLevel4 *PML4 = &this->Table->Entries[Index.PMLIndex];
PageMapIndexer Index = PageMapIndexer(Address);
PageMapLevel4 *PML4 = &this->Table->Entries[Index.PMLIndex];
PageDirectoryPointerTableEntryPtr *PDPTE = nullptr;
PageDirectoryEntryPtr *PDE = nullptr;
PageTableEntryPtr *PTE = nullptr;
PageDirectoryPointerTableEntryPtr *PDPTE = nullptr;
PageDirectoryEntryPtr *PDE = nullptr;
PageTableEntryPtr *PTE = nullptr;
if ((PML4->raw & Flag) > 0)
{
PDPTE = (PageDirectoryPointerTableEntryPtr *)((uintptr_t)PML4->GetAddress() << 12);
if (PDPTE)
{
if ((PDPTE->Entries[Index.PDPTEIndex].Present))
{
if (Type == MapType::OneGB && PDPTE->Entries[Index.PDPTEIndex].PageSize)
return true;
if ((PML4->raw & Flag) > 0)
{
PDPTE = (PageDirectoryPointerTableEntryPtr *)((uintptr_t)PML4->GetAddress() << 12);
if (PDPTE)
{
if ((PDPTE->Entries[Index.PDPTEIndex].Present))
{
if (Type == MapType::OneGiB && PDPTE->Entries[Index.PDPTEIndex].PageSize)
return true;
PDE = (PageDirectoryEntryPtr *)((uintptr_t)PDPTE->Entries[Index.PDPTEIndex].GetAddress() << 12);
if (PDE)
{
if (Type == MapType::TwoMB && PDE->Entries[Index.PDEIndex].PageSize)
return true;
PDE = (PageDirectoryEntryPtr *)((uintptr_t)PDPTE->Entries[Index.PDPTEIndex].GetAddress() << 12);
if (PDE)
{
if (Type == MapType::TwoMiB && PDE->Entries[Index.PDEIndex].PageSize)
return true;
if ((PDE->Entries[Index.PDEIndex].Present))
{
PTE = (PageTableEntryPtr *)((uintptr_t)PDE->Entries[Index.PDEIndex].GetAddress() << 12);
if (PTE)
{
if ((PTE->Entries[Index.PTEIndex].Present))
return true;
}
}
}
}
}
}
return false;
}
if ((PDE->Entries[Index.PDEIndex].Present))
{
PTE = (PageTableEntryPtr *)((uintptr_t)PDE->Entries[Index.PDEIndex].GetAddress() << 12);
if (PTE)
{
if ((PTE->Entries[Index.PTEIndex].Present))
return true;
}
}
}
}
}
}
return false;
}
void *Virtual::GetPhysical(void *VirtualAddress)
{
// 0x1000 aligned
uintptr_t Address = (uintptr_t)VirtualAddress;
Address &= 0xFFFFFFFFFFFFF000;
void *Virtual::GetPhysical(void *VirtualAddress)
{
// 0x1000 aligned
uintptr_t Address = (uintptr_t)VirtualAddress;
Address &= 0xFFFFFFFFFFFFF000;
PageMapIndexer Index = PageMapIndexer(Address);
PageMapLevel4 *PML4 = &this->Table->Entries[Index.PMLIndex];
PageMapIndexer Index = PageMapIndexer(Address);
PageMapLevel4 *PML4 = &this->Table->Entries[Index.PMLIndex];
PageDirectoryPointerTableEntryPtr *PDPTE = nullptr;
PageDirectoryEntryPtr *PDE = nullptr;
PageTableEntryPtr *PTE = nullptr;
PageDirectoryPointerTableEntryPtr *PDPTE = nullptr;
PageDirectoryEntryPtr *PDE = nullptr;
PageTableEntryPtr *PTE = nullptr;
if (PML4->Present)
{
PDPTE = (PageDirectoryPointerTableEntryPtr *)((uintptr_t)PML4->GetAddress() << 12);
if (PDPTE)
{
if (PDPTE->Entries[Index.PDPTEIndex].Present)
{
if (PDPTE->Entries[Index.PDPTEIndex].PageSize)
return (void *)((uintptr_t)PDPTE->Entries[Index.PDPTEIndex].GetAddress() << 12);
if (PML4->Present)
{
PDPTE = (PageDirectoryPointerTableEntryPtr *)((uintptr_t)PML4->GetAddress() << 12);
if (PDPTE)
{
if (PDPTE->Entries[Index.PDPTEIndex].Present)
{
if (PDPTE->Entries[Index.PDPTEIndex].PageSize)
return (void *)((uintptr_t)PDPTE->Entries[Index.PDPTEIndex].GetAddress() << 12);
PDE = (PageDirectoryEntryPtr *)((uintptr_t)PDPTE->Entries[Index.PDPTEIndex].GetAddress() << 12);
if (PDE)
{
if (PDE->Entries[Index.PDEIndex].Present)
{
if (PDE->Entries[Index.PDEIndex].PageSize)
return (void *)((uintptr_t)PDE->Entries[Index.PDEIndex].GetAddress() << 12);
PDE = (PageDirectoryEntryPtr *)((uintptr_t)PDPTE->Entries[Index.PDPTEIndex].GetAddress() << 12);
if (PDE)
{
if (PDE->Entries[Index.PDEIndex].Present)
{
if (PDE->Entries[Index.PDEIndex].PageSize)
return (void *)((uintptr_t)PDE->Entries[Index.PDEIndex].GetAddress() << 12);
PTE = (PageTableEntryPtr *)((uintptr_t)PDE->Entries[Index.PDEIndex].GetAddress() << 12);
if (PTE)
{
if (PTE->Entries[Index.PTEIndex].Present)
return (void *)((uintptr_t)PTE->Entries[Index.PTEIndex].GetAddress() << 12);
}
}
}
}
}
}
return nullptr;
}
PTE = (PageTableEntryPtr *)((uintptr_t)PDE->Entries[Index.PDEIndex].GetAddress() << 12);
if (PTE)
{
if (PTE->Entries[Index.PTEIndex].Present)
return (void *)((uintptr_t)PTE->Entries[Index.PTEIndex].GetAddress() << 12);
}
}
}
}
}
}
return nullptr;
}
Virtual::MapType Virtual::GetMapType(void *VirtualAddress)
{
// 0x1000 aligned
uintptr_t Address = (uintptr_t)VirtualAddress;
Address &= 0xFFFFFFFFFFFFF000;
Virtual::MapType Virtual::GetMapType(void *VirtualAddress)
{
// 0x1000 aligned
uintptr_t Address = (uintptr_t)VirtualAddress;
Address &= 0xFFFFFFFFFFFFF000;
PageMapIndexer Index = PageMapIndexer(Address);
PageMapLevel4 *PML4 = &this->Table->Entries[Index.PMLIndex];
PageMapIndexer Index = PageMapIndexer(Address);
PageMapLevel4 *PML4 = &this->Table->Entries[Index.PMLIndex];
PageDirectoryPointerTableEntryPtr *PDPTE = nullptr;
PageDirectoryEntryPtr *PDE = nullptr;
PageTableEntryPtr *PTE = nullptr;
PageDirectoryPointerTableEntryPtr *PDPTE = nullptr;
PageDirectoryEntryPtr *PDE = nullptr;
PageTableEntryPtr *PTE = nullptr;
if (PML4->Present)
{
PDPTE = (PageDirectoryPointerTableEntryPtr *)((uintptr_t)PML4->GetAddress() << 12);
if (PDPTE)
{
if (PDPTE->Entries[Index.PDPTEIndex].Present)
{
if (PDPTE->Entries[Index.PDPTEIndex].PageSize)
return MapType::OneGB;
if (PML4->Present)
{
PDPTE = (PageDirectoryPointerTableEntryPtr *)((uintptr_t)PML4->GetAddress() << 12);
if (PDPTE)
{
if (PDPTE->Entries[Index.PDPTEIndex].Present)
{
if (PDPTE->Entries[Index.PDPTEIndex].PageSize)
return MapType::OneGiB;
PDE = (PageDirectoryEntryPtr *)((uintptr_t)PDPTE->Entries[Index.PDPTEIndex].GetAddress() << 12);
if (PDE)
{
if (PDE->Entries[Index.PDEIndex].Present)
{
if (PDE->Entries[Index.PDEIndex].PageSize)
return MapType::TwoMB;
PDE = (PageDirectoryEntryPtr *)((uintptr_t)PDPTE->Entries[Index.PDPTEIndex].GetAddress() << 12);
if (PDE)
{
if (PDE->Entries[Index.PDEIndex].Present)
{
if (PDE->Entries[Index.PDEIndex].PageSize)
return MapType::TwoMiB;
PTE = (PageTableEntryPtr *)((uintptr_t)PDE->Entries[Index.PDEIndex].GetAddress() << 12);
if (PTE)
{
if (PTE->Entries[Index.PTEIndex].Present)
return MapType::FourKB;
}
}
}
}
}
}
return MapType::NoMapType;
}
PTE = (PageTableEntryPtr *)((uintptr_t)PDE->Entries[Index.PDEIndex].GetAddress() << 12);
if (PTE)
{
if (PTE->Entries[Index.PTEIndex].Present)
return MapType::FourKiB;
}
}
}
}
}
}
return MapType::NoMapType;
}
PageMapLevel5 *Virtual::GetPML5(void *VirtualAddress, MapType Type)
{
stub; /* TODO */
return nullptr;
}
PageMapLevel5 *Virtual::GetPML5(void *VirtualAddress, MapType Type)
{
UNUSED(VirtualAddress);
UNUSED(Type);
stub; /* TODO */
return nullptr;
}
PageMapLevel4 *Virtual::GetPML4(void *VirtualAddress, MapType Type)
{
uintptr_t Address = (uintptr_t)VirtualAddress;
Address &= 0xFFFFFFFFFFFFF000;
PageMapLevel4 *Virtual::GetPML4(void *VirtualAddress, MapType Type)
{
UNUSED(Type);
uintptr_t Address = (uintptr_t)VirtualAddress;
Address &= 0xFFFFFFFFFFFFF000;
PageMapIndexer Index = PageMapIndexer(Address);
PageMapLevel4 *PML4 = &this->Table->Entries[Index.PMLIndex];
if (PML4->Present)
return PML4;
return nullptr;
}
PageMapIndexer Index = PageMapIndexer(Address);
PageMapLevel4 *PML4 = &this->Table->Entries[Index.PMLIndex];
if (PML4->Present)
return PML4;
return nullptr;
}
PageDirectoryPointerTableEntry *Virtual::GetPDPTE(void *VirtualAddress, MapType Type)
{
uintptr_t Address = (uintptr_t)VirtualAddress;
Address &= 0xFFFFFFFFFFFFF000;
PageDirectoryPointerTableEntry *Virtual::GetPDPTE(void *VirtualAddress, MapType Type)
{
UNUSED(Type);
uintptr_t Address = (uintptr_t)VirtualAddress;
Address &= 0xFFFFFFFFFFFFF000;
PageMapIndexer Index = PageMapIndexer(Address);
PageMapLevel4 *PML4 = &this->Table->Entries[Index.PMLIndex];
if (!PML4->Present)
return nullptr;
PageMapIndexer Index = PageMapIndexer(Address);
PageMapLevel4 *PML4 = &this->Table->Entries[Index.PMLIndex];
if (!PML4->Present)
return nullptr;
PageDirectoryPointerTableEntryPtr *PDPTEPtr = (PageDirectoryPointerTableEntryPtr *)((uintptr_t)PML4->Address << 12);
PageDirectoryPointerTableEntry *PDPTE = &PDPTEPtr->Entries[Index.PDPTEIndex];
if (PDPTE->Present)
return PDPTE;
return nullptr;
}
PageDirectoryPointerTableEntryPtr *PDPTEPtr = (PageDirectoryPointerTableEntryPtr *)((uintptr_t)PML4->Address << 12);
PageDirectoryPointerTableEntry *PDPTE = &PDPTEPtr->Entries[Index.PDPTEIndex];
if (PDPTE->Present)
return PDPTE;
return nullptr;
}
PageDirectoryEntry *Virtual::GetPDE(void *VirtualAddress, MapType Type)
{
uintptr_t Address = (uintptr_t)VirtualAddress;
Address &= 0xFFFFFFFFFFFFF000;
PageDirectoryEntry *Virtual::GetPDE(void *VirtualAddress, MapType Type)
{
UNUSED(Type);
uintptr_t Address = (uintptr_t)VirtualAddress;
Address &= 0xFFFFFFFFFFFFF000;
PageMapIndexer Index = PageMapIndexer(Address);
PageMapLevel4 *PML4 = &this->Table->Entries[Index.PMLIndex];
if (!PML4->Present)
return nullptr;
PageMapIndexer Index = PageMapIndexer(Address);
PageMapLevel4 *PML4 = &this->Table->Entries[Index.PMLIndex];
if (!PML4->Present)
return nullptr;
PageDirectoryPointerTableEntryPtr *PDPTEPtr = (PageDirectoryPointerTableEntryPtr *)((uintptr_t)PML4->Address << 12);
PageDirectoryPointerTableEntry *PDPTE = &PDPTEPtr->Entries[Index.PDPTEIndex];
if (!PDPTE->Present)
return nullptr;
PageDirectoryPointerTableEntryPtr *PDPTEPtr = (PageDirectoryPointerTableEntryPtr *)((uintptr_t)PML4->Address << 12);
PageDirectoryPointerTableEntry *PDPTE = &PDPTEPtr->Entries[Index.PDPTEIndex];
if (!PDPTE->Present)
return nullptr;
PageDirectoryEntryPtr *PDEPtr = (PageDirectoryEntryPtr *)(PDPTE->GetAddress() << 12);
PageDirectoryEntry *PDE = &PDEPtr->Entries[Index.PDEIndex];
if (PDE->Present)
return PDE;
return nullptr;
}
PageDirectoryEntryPtr *PDEPtr = (PageDirectoryEntryPtr *)(PDPTE->GetAddress() << 12);
PageDirectoryEntry *PDE = &PDEPtr->Entries[Index.PDEIndex];
if (PDE->Present)
return PDE;
return nullptr;
}
PageTableEntry *Virtual::GetPTE(void *VirtualAddress, MapType Type)
{
uintptr_t Address = (uintptr_t)VirtualAddress;
Address &= 0xFFFFFFFFFFFFF000;
PageTableEntry *Virtual::GetPTE(void *VirtualAddress, MapType Type)
{
UNUSED(Type);
uintptr_t Address = (uintptr_t)VirtualAddress;
Address &= 0xFFFFFFFFFFFFF000;
PageMapIndexer Index = PageMapIndexer(Address);
PageMapLevel4 *PML4 = &this->Table->Entries[Index.PMLIndex];
if (!PML4->Present)
return nullptr;
PageMapIndexer Index = PageMapIndexer(Address);
PageMapLevel4 *PML4 = &this->Table->Entries[Index.PMLIndex];
if (!PML4->Present)
return nullptr;
PageDirectoryPointerTableEntryPtr *PDPTEPtr = (PageDirectoryPointerTableEntryPtr *)((uintptr_t)PML4->Address << 12);
PageDirectoryPointerTableEntry *PDPTE = &PDPTEPtr->Entries[Index.PDPTEIndex];
if (!PDPTE->Present)
return nullptr;
PageDirectoryPointerTableEntryPtr *PDPTEPtr = (PageDirectoryPointerTableEntryPtr *)((uintptr_t)PML4->Address << 12);
PageDirectoryPointerTableEntry *PDPTE = &PDPTEPtr->Entries[Index.PDPTEIndex];
if (!PDPTE->Present)
return nullptr;
PageDirectoryEntryPtr *PDEPtr = (PageDirectoryEntryPtr *)(PDPTE->GetAddress() << 12);
PageDirectoryEntry *PDE = &PDEPtr->Entries[Index.PDEIndex];
if (!PDE->Present)
return nullptr;
PageDirectoryEntryPtr *PDEPtr = (PageDirectoryEntryPtr *)(PDPTE->GetAddress() << 12);
PageDirectoryEntry *PDE = &PDEPtr->Entries[Index.PDEIndex];
if (!PDE->Present)
return nullptr;
PageTableEntryPtr *PTEPtr = (PageTableEntryPtr *)(PDE->GetAddress() << 12);
PageTableEntry *PTE = &PTEPtr->Entries[Index.PTEIndex];
if (PTE->Present)
return PTE;
return nullptr;
}
PageTableEntryPtr *PTEPtr = (PageTableEntryPtr *)(PDE->GetAddress() << 12);
PageTableEntry *PTE = &PTEPtr->Entries[Index.PTEIndex];
if (PTE->Present)
return PTE;
return nullptr;
}
void Virtual::Map(void *VirtualAddress, void *PhysicalAddress, uint64_t Flags, MapType Type)
{
SmartLock(this->MemoryLock);
if (unlikely(!this->Table))
{
error("No page table");
return;
}
void Virtual::Map(void *VirtualAddress, void *PhysicalAddress, uint64_t Flags, MapType Type)
{
SmartLock(this->MemoryLock);
if (unlikely(!this->Table))
{
error("No page table");
return;
}
Flags |= PTFlag::P;
Flags |= PTFlag::P;
PageMapIndexer Index = PageMapIndexer((uintptr_t)VirtualAddress);
// Clear any flags that are not 1 << 0 (Present) - 1 << 5 (Accessed) because rest are for page table entries only
uint64_t DirectoryFlags = Flags & 0x3F;
PageMapIndexer Index = PageMapIndexer((uintptr_t)VirtualAddress);
// Clear any flags that are not 1 << 0 (Present) - 1 << 5 (Accessed) because rest are for page table entries only
uint64_t DirectoryFlags = Flags & 0x3F;
PageMapLevel4 *PML4 = &this->Table->Entries[Index.PMLIndex];
PageDirectoryPointerTableEntryPtr *PDPTEPtr = nullptr;
if (!PML4->Present)
{
PDPTEPtr = (PageDirectoryPointerTableEntryPtr *)KernelAllocator.RequestPages(TO_PAGES(sizeof(PageDirectoryPointerTableEntryPtr) + 1));
memset(PDPTEPtr, 0, sizeof(PageDirectoryPointerTableEntryPtr));
PML4->Present = true;
PML4->SetAddress((uintptr_t)PDPTEPtr >> 12);
}
else
PDPTEPtr = (PageDirectoryPointerTableEntryPtr *)(PML4->GetAddress() << 12);
PML4->raw |= DirectoryFlags;
PageMapLevel4 *PML4 = &this->Table->Entries[Index.PMLIndex];
PageDirectoryPointerTableEntryPtr *PDPTEPtr = nullptr;
if (!PML4->Present)
{
PDPTEPtr = (PageDirectoryPointerTableEntryPtr *)KernelAllocator.RequestPages(TO_PAGES(sizeof(PageDirectoryPointerTableEntryPtr) + 1));
memset(PDPTEPtr, 0, sizeof(PageDirectoryPointerTableEntryPtr));
PML4->Present = true;
PML4->SetAddress((uintptr_t)PDPTEPtr >> 12);
}
else
PDPTEPtr = (PageDirectoryPointerTableEntryPtr *)(PML4->GetAddress() << 12);
PML4->raw |= DirectoryFlags;
PageDirectoryPointerTableEntry *PDPTE = &PDPTEPtr->Entries[Index.PDPTEIndex];
if (Type == MapType::OneGB)
{
PDPTE->raw |= Flags;
PDPTE->PageSize = true;
PDPTE->SetAddress((uintptr_t)PhysicalAddress >> 12);
debug("Mapped 1GB page at %p to %p", VirtualAddress, PhysicalAddress);
return;
}
PageDirectoryPointerTableEntry *PDPTE = &PDPTEPtr->Entries[Index.PDPTEIndex];
if (Type == MapType::OneGiB)
{
PDPTE->raw |= Flags;
PDPTE->PageSize = true;
PDPTE->SetAddress((uintptr_t)PhysicalAddress >> 12);
debug("Mapped 1GB page at %p to %p", VirtualAddress, PhysicalAddress);
return;
}
PageDirectoryEntryPtr *PDEPtr = nullptr;
if (!PDPTE->Present)
{
PDEPtr = (PageDirectoryEntryPtr *)KernelAllocator.RequestPages(TO_PAGES(sizeof(PageDirectoryEntryPtr) + 1));
memset(PDEPtr, 0, sizeof(PageDirectoryEntryPtr));
PDPTE->Present = true;
PDPTE->SetAddress((uintptr_t)PDEPtr >> 12);
}
else
PDEPtr = (PageDirectoryEntryPtr *)(PDPTE->GetAddress() << 12);
PDPTE->raw |= DirectoryFlags;
PageDirectoryEntryPtr *PDEPtr = nullptr;
if (!PDPTE->Present)
{
PDEPtr = (PageDirectoryEntryPtr *)KernelAllocator.RequestPages(TO_PAGES(sizeof(PageDirectoryEntryPtr) + 1));
memset(PDEPtr, 0, sizeof(PageDirectoryEntryPtr));
PDPTE->Present = true;
PDPTE->SetAddress((uintptr_t)PDEPtr >> 12);
}
else
PDEPtr = (PageDirectoryEntryPtr *)(PDPTE->GetAddress() << 12);
PDPTE->raw |= DirectoryFlags;
PageDirectoryEntry *PDE = &PDEPtr->Entries[Index.PDEIndex];
if (Type == MapType::TwoMB)
{
PDE->raw |= Flags;
PDE->PageSize = true;
PDE->SetAddress((uintptr_t)PhysicalAddress >> 12);
debug("Mapped 2MB page at %p to %p", VirtualAddress, PhysicalAddress);
return;
}
PageDirectoryEntry *PDE = &PDEPtr->Entries[Index.PDEIndex];
if (Type == MapType::TwoMiB)
{
PDE->raw |= Flags;
PDE->PageSize = true;
PDE->SetAddress((uintptr_t)PhysicalAddress >> 12);
debug("Mapped 2MB page at %p to %p", VirtualAddress, PhysicalAddress);
return;
}
PageTableEntryPtr *PTEPtr = nullptr;
if (!PDE->Present)
{
PTEPtr = (PageTableEntryPtr *)KernelAllocator.RequestPages(TO_PAGES(sizeof(PageTableEntryPtr) + 1));
memset(PTEPtr, 0, sizeof(PageTableEntryPtr));
PDE->Present = true;
PDE->SetAddress((uintptr_t)PTEPtr >> 12);
}
else
PTEPtr = (PageTableEntryPtr *)(PDE->GetAddress() << 12);
PDE->raw |= DirectoryFlags;
PageTableEntryPtr *PTEPtr = nullptr;
if (!PDE->Present)
{
PTEPtr = (PageTableEntryPtr *)KernelAllocator.RequestPages(TO_PAGES(sizeof(PageTableEntryPtr) + 1));
memset(PTEPtr, 0, sizeof(PageTableEntryPtr));
PDE->Present = true;
PDE->SetAddress((uintptr_t)PTEPtr >> 12);
}
else
PTEPtr = (PageTableEntryPtr *)(PDE->GetAddress() << 12);
PDE->raw |= DirectoryFlags;
PageTableEntry *PTE = &PTEPtr->Entries[Index.PTEIndex];
PTE->Present = true;
PTE->raw |= Flags;
PTE->SetAddress((uintptr_t)PhysicalAddress >> 12);
PageTableEntry *PTE = &PTEPtr->Entries[Index.PTEIndex];
PTE->Present = true;
PTE->raw |= Flags;
PTE->SetAddress((uintptr_t)PhysicalAddress >> 12);
#if defined(a64)
CPU::x64::invlpg(VirtualAddress);
CPU::x64::invlpg(VirtualAddress);
#elif defined(a32)
CPU::x32::invlpg(VirtualAddress);
CPU::x32::invlpg(VirtualAddress);
#elif defined(aa64)
asmv("dsb sy");
asmv("tlbi vae1is, %0"
:
: "r"(VirtualAddress)
: "memory");
asmv("dsb sy");
asmv("isb");
asmv("dsb sy");
asmv("tlbi vae1is, %0"
:
: "r"(VirtualAddress)
: "memory");
asmv("dsb sy");
asmv("isb");
#endif
#ifdef DEBUG
/* https://stackoverflow.com/a/3208376/9352057 */
#define BYTE_TO_BINARY_PATTERN "%c%c%c%c%c%c%c%c"
#define BYTE_TO_BINARY(byte) \
(byte & 0x80 ? '1' : '0'), \
(byte & 0x40 ? '1' : '0'), \
(byte & 0x20 ? '1' : '0'), \
(byte & 0x10 ? '1' : '0'), \
(byte & 0x08 ? '1' : '0'), \
(byte & 0x04 ? '1' : '0'), \
(byte & 0x02 ? '1' : '0'), \
(byte & 0x01 ? '1' : '0')
(byte & 0x80 ? '1' : '0'), \
(byte & 0x40 ? '1' : '0'), \
(byte & 0x20 ? '1' : '0'), \
(byte & 0x10 ? '1' : '0'), \
(byte & 0x08 ? '1' : '0'), \
(byte & 0x04 ? '1' : '0'), \
(byte & 0x02 ? '1' : '0'), \
(byte & 0x01 ? '1' : '0')
if (!this->Check(VirtualAddress, (PTFlag)Flags, Type)) // quick workaround just to see where it fails
warn("Failed to map v:%#lx p:%#lx with flags: " BYTE_TO_BINARY_PATTERN, VirtualAddress, PhysicalAddress, BYTE_TO_BINARY(Flags));
if (!this->Check(VirtualAddress, (PTFlag)Flags, Type)) // quick workaround just to see where it fails
warn("Failed to map v:%#lx p:%#lx with flags: " BYTE_TO_BINARY_PATTERN, VirtualAddress, PhysicalAddress, BYTE_TO_BINARY(Flags));
#endif
}
}
void Virtual::Unmap(void *VirtualAddress, MapType Type)
{
SmartLock(this->MemoryLock);
if (!this->Table)
{
error("No page table");
return;
}
void Virtual::Unmap(void *VirtualAddress, MapType Type)
{
SmartLock(this->MemoryLock);
if (!this->Table)
{
error("No page table");
return;
}
PageMapIndexer Index = PageMapIndexer((uintptr_t)VirtualAddress);
PageMapLevel4 *PML4 = &this->Table->Entries[Index.PMLIndex];
if (!PML4->Present)
{
warn("Page %#lx not present", PML4->GetAddress());
return;
}
PageMapIndexer Index = PageMapIndexer((uintptr_t)VirtualAddress);
PageMapLevel4 *PML4 = &this->Table->Entries[Index.PMLIndex];
if (!PML4->Present)
{
warn("Page %#lx not present", PML4->GetAddress());
return;
}
PageDirectoryPointerTableEntryPtr *PDPTEPtr = (PageDirectoryPointerTableEntryPtr *)((uintptr_t)PML4->Address << 12);
PageDirectoryPointerTableEntry *PDPTE = &PDPTEPtr->Entries[Index.PDPTEIndex];
if (!PDPTE->Present)
{
warn("Page %#lx not present", PDPTE->GetAddress());
return;
}
PageDirectoryPointerTableEntryPtr *PDPTEPtr = (PageDirectoryPointerTableEntryPtr *)((uintptr_t)PML4->Address << 12);
PageDirectoryPointerTableEntry *PDPTE = &PDPTEPtr->Entries[Index.PDPTEIndex];
if (!PDPTE->Present)
{
warn("Page %#lx not present", PDPTE->GetAddress());
return;
}
if (Type == MapType::OneGB && PDPTE->PageSize)
{
PDPTE->Present = false;
return;
}
if (Type == MapType::OneGiB && PDPTE->PageSize)
{
PDPTE->Present = false;
return;
}
PageDirectoryEntryPtr *PDEPtr = (PageDirectoryEntryPtr *)((uintptr_t)PDPTE->Address << 12);
PageDirectoryEntry *PDE = &PDEPtr->Entries[Index.PDEIndex];
if (!PDE->Present)
{
warn("Page %#lx not present", PDE->GetAddress());
return;
}
PageDirectoryEntryPtr *PDEPtr = (PageDirectoryEntryPtr *)((uintptr_t)PDPTE->Address << 12);
PageDirectoryEntry *PDE = &PDEPtr->Entries[Index.PDEIndex];
if (!PDE->Present)
{
warn("Page %#lx not present", PDE->GetAddress());
return;
}
if (Type == MapType::TwoMB && PDE->PageSize)
{
PDE->Present = false;
return;
}
if (Type == MapType::TwoMiB && PDE->PageSize)
{
PDE->Present = false;
return;
}
PageTableEntryPtr *PTEPtr = (PageTableEntryPtr *)((uintptr_t)PDE->Address << 12);
PageTableEntry PTE = PTEPtr->Entries[Index.PTEIndex];
if (!PTE.Present)
{
warn("Page %#lx not present", PTE.GetAddress());
return;
}
PageTableEntryPtr *PTEPtr = (PageTableEntryPtr *)((uintptr_t)PDE->Address << 12);
PageTableEntry PTE = PTEPtr->Entries[Index.PTEIndex];
if (!PTE.Present)
{
warn("Page %#lx not present", PTE.GetAddress());
return;
}
PTE.Present = false;
PTEPtr->Entries[Index.PTEIndex] = PTE;
PTE.Present = false;
PTEPtr->Entries[Index.PTEIndex] = PTE;
#if defined(a64)
CPU::x64::invlpg(VirtualAddress);
CPU::x64::invlpg(VirtualAddress);
#elif defined(a32)
CPU::x32::invlpg(VirtualAddress);
CPU::x32::invlpg(VirtualAddress);
#elif defined(aa64)
asmv("dsb sy");
asmv("tlbi vae1is, %0"
:
: "r"(VirtualAddress)
: "memory");
asmv("dsb sy");
asmv("isb");
asmv("dsb sy");
asmv("tlbi vae1is, %0"
:
: "r"(VirtualAddress)
: "memory");
asmv("dsb sy");
asmv("isb");
#endif
}
}
}

View File

@ -31,11 +31,11 @@ extern "C" void SystemCallHandlerStub();
extern "C" __naked __used __no_stack_protector __aligned(16) void SystemCallHandlerStub()
{
asmv("swapgs\n"); /* Swap GS to get the TCB */
asmv("mov %rsp, %gs:0x8\n"); /* We save the current rsp to TCB->TempStack */
asmv("mov %gs:0x0, %rsp\n"); /* Get TCB->SystemCallStack and set it as rsp */
asmv("swapgs\n"); /* Swap GS to get the gsTCB */
asmv("mov %rsp, %gs:0x8\n"); /* We save the current rsp to gsTCB->TempStack */
asmv("mov %gs:0x0, %rsp\n"); /* Get gsTCB->SystemCallStack and set it as rsp */
asmv("push $0x1b\n"); /* Push user data segment for SyscallsFrame */
asmv("push %gs:0x8\n"); /* Push TCB->TempStack (old rsp) for SyscallsFrame */
asmv("push %gs:0x8\n"); /* Push gsTCB->TempStack (old rsp) for SyscallsFrame */
asmv("push %r11\n"); /* Push the flags for SyscallsFrame */
asmv("push $0x23\n"); /* Push user code segment for SyscallsFrame */
asmv("push %rcx\n"); /* Push the return address for SyscallsFrame + sysretq (https://www.felixcloutier.com/x86/sysret) */
@ -78,7 +78,7 @@ extern "C" __naked __used __no_stack_protector __aligned(16) void SystemCallHand
"pop %rcx\n"
"pop %rbx\n");
/* Restore rsp from TCB->TempStack */
/* Restore rsp from gsTCB->TempStack */
asmv("mov %gs:0x8, %rsp\n");
#ifdef DEBUG
/* Easier to debug stacks */

View File

@ -24,249 +24,247 @@
namespace GlobalDescriptorTable
{
static GlobalDescriptorTableEntries GDTEntriesTemplate = {
.Null =
{
.Limit0 = 0x0,
.BaseLow = 0x0,
.BaseMiddle = 0x0,
.Access = {.Raw = 0x0},
// .Limit1 = 0x0,
.Flags = {.Raw = 0x0},
.BaseHigh = 0x0,
},
static GlobalDescriptorTableEntries GDTEntriesTemplate = {
.Null = {
.Limit0 = 0x0,
.BaseLow = 0x0,
.BaseMiddle = 0x0,
.Access = {.Raw = 0x0},
// .Limit1 = 0x0,
.Flags = {.Raw = 0x0},
.BaseHigh = 0x0,
},
.Code =
{
.Limit0 = 0xFFFF,
.BaseLow = 0x0,
.BaseMiddle = 0x0,
.Access = {
.A = 0,
.RW = 1,
.DC = 0,
.E = 1,
.S = 1,
.DPL = 0,
.P = 1,
},
// .Limit1 = 0xF,
.Flags = {
.Reserved = 0xF, /* Workaround for Limit1 */
.Code = {
.Limit0 = 0xFFFF,
.BaseLow = 0x0,
.BaseMiddle = 0x0,
.Access = {
.A = 0,
.RW = 1,
.DC = 0,
.E = 1,
.S = 1,
.DPL = 0,
.P = 1,
},
// .Limit1 = 0xF,
.Flags = {
.Reserved = 0xF, /* Workaround for Limit1 */
.AVL = 0,
.L = 1,
.DB = 0,
.G = 1,
},
.BaseHigh = 0x0,
},
.AVL = 0,
.L = 1,
.DB = 0,
.G = 1,
},
.BaseHigh = 0x0,
},
.Data = {
.Limit0 = 0xFFFF,
.BaseLow = 0x0,
.BaseMiddle = 0x0,
.Access = {
.A = 0,
.RW = 1,
.DC = 0,
.E = 0,
.S = 1,
.DPL = 0,
.P = 1,
},
// .Limit1 = 0xF,
.Flags = {
.Reserved = 0xF, /* Workaround for Limit1 */
.Data = {
.Limit0 = 0xFFFF,
.BaseLow = 0x0,
.BaseMiddle = 0x0,
.Access = {
.A = 0,
.RW = 1,
.DC = 0,
.E = 0,
.S = 1,
.DPL = 0,
.P = 1,
},
// .Limit1 = 0xF,
.Flags = {
.Reserved = 0xF, /* Workaround for Limit1 */
.AVL = 0,
.L = 0,
.DB = 1,
.G = 1,
},
.BaseHigh = 0x0,
},
.AVL = 0,
.L = 0,
.DB = 1,
.G = 1,
},
.BaseHigh = 0x0,
},
.UserData = {
.Limit0 = 0xFFFF,
.BaseLow = 0x0,
.BaseMiddle = 0x0,
.Access = {
.A = 0,
.RW = 1,
.DC = 0,
.E = 0,
.S = 1,
.DPL = 3,
.P = 1,
},
// .Limit1 = 0xF,
.Flags = {
.Reserved = 0xF, /* Workaround for Limit1 */
.UserData = {
.Limit0 = 0xFFFF,
.BaseLow = 0x0,
.BaseMiddle = 0x0,
.Access = {
.A = 0,
.RW = 1,
.DC = 0,
.E = 0,
.S = 1,
.DPL = 3,
.P = 1,
},
// .Limit1 = 0xF,
.Flags = {
.Reserved = 0xF, /* Workaround for Limit1 */
.AVL = 0,
.L = 0,
.DB = 1,
.G = 1,
},
.BaseHigh = 0x0,
},
.AVL = 0,
.L = 0,
.DB = 1,
.G = 1,
},
.BaseHigh = 0x0,
},
.UserCode = {
.Limit0 = 0xFFFF,
.BaseLow = 0x0,
.BaseMiddle = 0x0,
.Access = {
.A = 0,
.RW = 1,
.DC = 0,
.E = 1,
.S = 1,
.DPL = 3,
.P = 1,
},
// .Limit1 = 0xF,
.Flags = {
.Reserved = 0xF, /* Workaround for Limit1 */
.UserCode = {
.Limit0 = 0xFFFF,
.BaseLow = 0x0,
.BaseMiddle = 0x0,
.Access = {
.A = 0,
.RW = 1,
.DC = 0,
.E = 1,
.S = 1,
.DPL = 3,
.P = 1,
},
// .Limit1 = 0xF,
.Flags = {
.Reserved = 0xF, /* Workaround for Limit1 */
.AVL = 0,
.L = 1,
.DB = 0,
.G = 1,
},
.BaseHigh = 0x0,
},
.AVL = 0,
.L = 1,
.DB = 0,
.G = 1,
},
.BaseHigh = 0x0,
},
.TaskStateSegment = {},
};
.TaskStateSegment = {},
};
GlobalDescriptorTableEntries GDTEntries[MAX_CPU] __aligned(16);
GlobalDescriptorTableDescriptor gdt[MAX_CPU] __aligned(16);
GlobalDescriptorTableEntries GDTEntries[MAX_CPU] __aligned(16);
GlobalDescriptorTableDescriptor gdt[MAX_CPU] __aligned(16);
TaskStateSegment tss[MAX_CPU] = {
0,
{0, 0, 0},
0,
{0, 0, 0, 0, 0, 0, 0},
0,
0,
0,
};
TaskStateSegment tss[MAX_CPU] = {
0,
{0, 0, 0},
0,
{0, 0, 0, 0, 0, 0, 0},
0,
0,
0,
};
void *CPUStackPointer[MAX_CPU];
void *CPUStackPointer[MAX_CPU];
SafeFunction void Init(int Core)
{
memcpy(&GDTEntries[Core], &GDTEntriesTemplate, sizeof(GlobalDescriptorTableEntries));
gdt[Core] = {.Length = sizeof(GlobalDescriptorTableEntries) - 1, .Entries = &GDTEntries[Core]};
SafeFunction void Init(int Core)
{
memcpy(&GDTEntries[Core], &GDTEntriesTemplate, sizeof(GlobalDescriptorTableEntries));
gdt[Core] = {.Length = sizeof(GlobalDescriptorTableEntries) - 1, .Entries = &GDTEntries[Core]};
debug("GDT: %#lx", &gdt[Core]);
debug("GDT KERNEL: CODE %#lx: Limit0: 0x%X, BaseLow: 0x%X, BaseMiddle: 0x%X, Access: 0x%X, Limit1: 0x%X, Flags: 0x%X, BaseHigh: 0x%X",
GDT_KERNEL_CODE,
GDTEntries[Core].Code.Limit0,
GDTEntries[Core].Code.BaseLow,
GDTEntries[Core].Code.BaseMiddle,
GDTEntries[Core].Code.Access.Raw,
GDTEntries[Core].Code.Flags.Reserved,
GDTEntries[Core].Code.Flags.Raw & ~0xF,
GDTEntries[Core].Code.BaseHigh);
debug("GDT: %#lx", &gdt[Core]);
debug("GDT KERNEL: CODE %#lx: Limit0: 0x%X, BaseLow: 0x%X, BaseMiddle: 0x%X, Access: 0x%X, Limit1: 0x%X, Flags: 0x%X, BaseHigh: 0x%X",
GDT_KERNEL_CODE,
GDTEntries[Core].Code.Limit0,
GDTEntries[Core].Code.BaseLow,
GDTEntries[Core].Code.BaseMiddle,
GDTEntries[Core].Code.Access.Raw,
GDTEntries[Core].Code.Flags.Reserved,
GDTEntries[Core].Code.Flags.Raw & ~0xF,
GDTEntries[Core].Code.BaseHigh);
debug("GDT KERNEL: DATA %#lx: Limit0: 0x%X, BaseLow: 0x%X, BaseMiddle: 0x%X, Access: 0x%X, Limit1: 0x%X, Flags: 0x%X, BaseHigh: 0x%X",
GDT_KERNEL_DATA,
GDTEntries[Core].Data.Limit0,
GDTEntries[Core].Data.BaseLow,
GDTEntries[Core].Data.BaseMiddle,
GDTEntries[Core].Data.Access.Raw,
GDTEntries[Core].Data.Flags.Reserved,
GDTEntries[Core].Data.Flags.Raw & ~0xF,
GDTEntries[Core].Data.BaseHigh);
debug("GDT KERNEL: DATA %#lx: Limit0: 0x%X, BaseLow: 0x%X, BaseMiddle: 0x%X, Access: 0x%X, Limit1: 0x%X, Flags: 0x%X, BaseHigh: 0x%X",
GDT_KERNEL_DATA,
GDTEntries[Core].Data.Limit0,
GDTEntries[Core].Data.BaseLow,
GDTEntries[Core].Data.BaseMiddle,
GDTEntries[Core].Data.Access.Raw,
GDTEntries[Core].Data.Flags.Reserved,
GDTEntries[Core].Data.Flags.Raw & ~0xF,
GDTEntries[Core].Data.BaseHigh);
debug("GDT USER: CODE %#lx: Limit0: 0x%X, BaseLow: 0x%X, BaseMiddle: 0x%X, Access: 0x%X, Limit1: 0x%X, Flags: 0x%X, BaseHigh: 0x%X",
GDT_USER_CODE,
GDTEntries[Core].UserCode.Limit0,
GDTEntries[Core].UserCode.BaseLow,
GDTEntries[Core].UserCode.BaseMiddle,
GDTEntries[Core].UserCode.Access.Raw,
GDTEntries[Core].UserCode.Flags.Reserved,
GDTEntries[Core].UserCode.Flags.Raw & ~0xF,
GDTEntries[Core].UserCode.BaseHigh);
debug("GDT USER: CODE %#lx: Limit0: 0x%X, BaseLow: 0x%X, BaseMiddle: 0x%X, Access: 0x%X, Limit1: 0x%X, Flags: 0x%X, BaseHigh: 0x%X",
GDT_USER_CODE,
GDTEntries[Core].UserCode.Limit0,
GDTEntries[Core].UserCode.BaseLow,
GDTEntries[Core].UserCode.BaseMiddle,
GDTEntries[Core].UserCode.Access.Raw,
GDTEntries[Core].UserCode.Flags.Reserved,
GDTEntries[Core].UserCode.Flags.Raw & ~0xF,
GDTEntries[Core].UserCode.BaseHigh);
debug("GDT USER: DATA %#lx: Limit0: 0x%X, BaseLow: 0x%X, BaseMiddle: 0x%X, Access: 0x%X, Limit1: 0x%X, Flags: 0x%X, BaseHigh: 0x%X",
GDT_USER_DATA,
GDTEntries[Core].UserData.Limit0,
GDTEntries[Core].UserData.BaseLow,
GDTEntries[Core].UserData.BaseMiddle,
GDTEntries[Core].UserData.Access.Raw,
GDTEntries[Core].UserData.Flags.Reserved,
GDTEntries[Core].UserData.Flags.Raw & ~0xF,
GDTEntries[Core].UserData.BaseHigh);
debug("GDT USER: DATA %#lx: Limit0: 0x%X, BaseLow: 0x%X, BaseMiddle: 0x%X, Access: 0x%X, Limit1: 0x%X, Flags: 0x%X, BaseHigh: 0x%X",
GDT_USER_DATA,
GDTEntries[Core].UserData.Limit0,
GDTEntries[Core].UserData.BaseLow,
GDTEntries[Core].UserData.BaseMiddle,
GDTEntries[Core].UserData.Access.Raw,
GDTEntries[Core].UserData.Flags.Reserved,
GDTEntries[Core].UserData.Flags.Raw & ~0xF,
GDTEntries[Core].UserData.BaseHigh);
CPU::x64::lgdt(&gdt[Core]);
CPU::x64::lgdt(&gdt[Core]);
asmv("movq %%rsp, %%rax\n"
"pushq $16\n"
"pushq %%rax\n"
"pushfq\n"
"pushq $8\n"
"pushq $1f\n"
"iretq\n"
"1:\n"
"movw $16, %%ax\n"
"movw %%ax, %%ds\n"
"movw %%ax, %%es\n" ::
: "memory", "rax");
asmv("movq %%rsp, %%rax\n"
"pushq $16\n"
"pushq %%rax\n"
"pushfq\n"
"pushq $8\n"
"pushq $1f\n"
"iretq\n"
"1:\n"
"movw $16, %%ax\n"
"movw %%ax, %%ds\n"
"movw %%ax, %%es\n" ::
: "memory", "rax");
CPUStackPointer[Core] = KernelAllocator.RequestPages(TO_PAGES(STACK_SIZE + 1));
memset(CPUStackPointer[Core], 0, STACK_SIZE);
debug("CPU %d Stack Pointer: %#lx-%#lx (%d pages)", Core,
CPUStackPointer[Core], (uintptr_t)CPUStackPointer[Core] + STACK_SIZE,
TO_PAGES(STACK_SIZE + 1));
CPUStackPointer[Core] = KernelAllocator.RequestPages(TO_PAGES(STACK_SIZE + 1));
memset(CPUStackPointer[Core], 0, STACK_SIZE);
debug("CPU %d Stack Pointer: %#lx-%#lx (%d pages)", Core,
CPUStackPointer[Core], (uintptr_t)CPUStackPointer[Core] + STACK_SIZE,
TO_PAGES(STACK_SIZE + 1));
uintptr_t Base = (uintptr_t)&tss[Core];
size_t Limit = Base + sizeof(TaskStateSegment);
gdt[Core].Entries->TaskStateSegment.Limit = Limit & 0xFFFF;
gdt[Core].Entries->TaskStateSegment.BaseLow = Base & 0xFFFF;
gdt[Core].Entries->TaskStateSegment.BaseMiddle = (Base >> 16) & 0xFF;
gdt[Core].Entries->TaskStateSegment.BaseHigh = (Base >> 24) & 0xFF;
gdt[Core].Entries->TaskStateSegment.BaseUpper = s_cst(uint32_t, (Base >> 32) & 0xFFFFFFFF);
gdt[Core].Entries->TaskStateSegment.Access = {.A = 1, .RW = 0, .DC = 0, .E = 1, .S = 0, .DPL = 0, .P = 1};
gdt[Core].Entries->TaskStateSegment.Granularity = (0 << 4) | ((Limit >> 16) & 0xF);
uintptr_t Base = (uintptr_t)&tss[Core];
size_t Limit = Base + sizeof(TaskStateSegment);
gdt[Core].Entries->TaskStateSegment.Limit = Limit & 0xFFFF;
gdt[Core].Entries->TaskStateSegment.BaseLow = Base & 0xFFFF;
gdt[Core].Entries->TaskStateSegment.BaseMiddle = (Base >> 16) & 0xFF;
gdt[Core].Entries->TaskStateSegment.BaseHigh = (Base >> 24) & 0xFF;
gdt[Core].Entries->TaskStateSegment.BaseUpper = s_cst(uint32_t, (Base >> 32) & 0xFFFFFFFF);
gdt[Core].Entries->TaskStateSegment.Access = {.A = 1, .RW = 0, .DC = 0, .E = 1, .S = 0, .DPL = 0, .P = 1};
gdt[Core].Entries->TaskStateSegment.Granularity = (0 << 4) | ((Limit >> 16) & 0xF);
tss[Core].IOMapBaseAddressOffset = sizeof(TaskStateSegment);
tss[Core].StackPointer[0] = (uint64_t)CPUStackPointer[Core] + STACK_SIZE;
tss[Core].StackPointer[1] = 0x0;
tss[Core].StackPointer[2] = 0x0;
tss[Core].IOMapBaseAddressOffset = sizeof(TaskStateSegment);
tss[Core].StackPointer[0] = (uint64_t)CPUStackPointer[Core] + STACK_SIZE;
tss[Core].StackPointer[1] = 0x0;
tss[Core].StackPointer[2] = 0x0;
for (size_t i = 0; i < sizeof(tss[Core].InterruptStackTable) / sizeof(tss[Core].InterruptStackTable[7]); i++)
{
void *NewStack = KernelAllocator.RequestPages(TO_PAGES(STACK_SIZE + 1));
for (size_t i = 0; i < sizeof(tss[Core].InterruptStackTable) / sizeof(tss[Core].InterruptStackTable[7]); i++)
{
void *NewStack = KernelAllocator.RequestPages(TO_PAGES(STACK_SIZE + 1));
tss[Core].InterruptStackTable[i] = (uint64_t)NewStack + STACK_SIZE;
memset((void *)(tss[Core].InterruptStackTable[i] - STACK_SIZE), 0, STACK_SIZE);
debug("IST-%d: %#lx-%#lx", i, NewStack, (uintptr_t)NewStack + STACK_SIZE);
}
tss[Core].InterruptStackTable[i] = (uint64_t)NewStack + STACK_SIZE;
memset((void *)(tss[Core].InterruptStackTable[i] - STACK_SIZE), 0, STACK_SIZE);
debug("IST-%d: %#lx-%#lx", i, NewStack, (uintptr_t)NewStack + STACK_SIZE);
}
CPU::x64::ltr(GDT_TSS);
debug("Global Descriptor Table initialized");
}
CPU::x64::ltr(GDT_TSS);
debug("Global Descriptor Table initialized");
}
SafeFunction void SetKernelStack(void *Stack)
{
long CPUID = GetCurrentCPU()->ID;
if (Stack != nullptr)
tss[CPUID].StackPointer[0] = (uint64_t)Stack;
else
tss[CPUID].StackPointer[0] = (uint64_t)CPUStackPointer[CPUID] + STACK_SIZE;
SafeFunction void SetKernelStack(void *Stack)
{
long CPUID = GetCurrentCPU()->ID;
if (Stack != nullptr)
tss[CPUID].StackPointer[0] = (uint64_t)Stack;
else
tss[CPUID].StackPointer[0] = (uint64_t)CPUStackPointer[CPUID] + STACK_SIZE;
/*
FIXME: There's a bug in kernel which if
we won't update "tss[CPUID].StackPointer[0]"
with the current stack pointer, the kernel
will crash.
*/
asmv("mov %%rsp, %0"
: "=r"(tss[CPUID].StackPointer[0]));
}
/*
FIXME: There's a bug in kernel which if
we won't update "tss[CPUID].StackPointer[0]"
with the current stack pointer, the kernel
will crash.
*/
asmv("mov %%rsp, %0"
: "=r"(tss[CPUID].StackPointer[0]));
}
void *GetKernelStack() { return (void *)tss[GetCurrentCPU()->ID].StackPointer[0]; }
void *GetKernelStack() { return (void *)tss[GetCurrentCPU()->ID].StackPointer[0]; }
}

View File

@ -22,197 +22,299 @@
namespace GlobalDescriptorTable
{
struct TaskStateSegmentEntry
{
/* LOW */
uint16_t Limit;
uint16_t BaseLow;
uint8_t BaseMiddle;
union GlobalDescriptorTableAccess
{
struct
{
/** @brief Access bit.
* @note The CPU sets this bit to 1 when the segment is accessed.
*/
uint8_t A : 1;
struct TaskStateSegmentEntry
{
/* LOW */
uint16_t Limit;
uint16_t BaseLow;
uint8_t BaseMiddle;
union GlobalDescriptorTableAccess
{
struct
{
/**
* Access bit.
*
* @note The CPU sets this bit to 1 when the segment
* is accessed.
*/
uint8_t A : 1;
/** @brief Readable bit for code segments, writable bit for data segments.
* @details For code segments, this bit must be 1 for the segment to be readable.
* @details For data segments, this bit must be 1 for the segment to be writable.
*/
uint8_t RW : 1;
/**
* Readable bit for code segments, writable bit for data
* segments.
*
* Code Segment:
* This bit must be 1 for the segment to be readable.
*
* Data Segment:
* This bit must be 1 for the segment to be writable.
*/
uint8_t RW : 1;
/** @brief Direction bit for data segments, conforming bit for code segments.
* @details For data segments, this bit must be 1 for the segment to grow up (higher addresses).
* @details For code segments, this bit must be 1 for code in the segment to be able to be executed from an equal or lower privilege level.
*/
uint8_t DC : 1;
/**
* Direction bit for data segments, conforming bit for
* code segments.
*
* Code Segment:
* This bit must be 1 for code in the segment to be
* able to be executed from an equal or lower privilege
* level.
*
* Data Segment:
* This bit must be 1 for the segment to grow up (higher
* addresses).
*/
uint8_t DC : 1;
/** @brief Executable bit.
* @details This bit must be 1 for code-segment descriptors.
* @details This bit must be 0 for data-segment and system descriptors.
*/
uint8_t E : 1;
/**
* Executable bit.
*
* This bit must be 1 for code-segment descriptors.
*
* This bit must be 0 for data-segment and system
* descriptors.
*/
uint8_t E : 1;
/** @brief Descriptor type.
* @details This bit must be 0 for system descriptors.
* @details This bit must be 1 for code or data segment descriptor.
*/
uint8_t S : 1;
/**
* Descriptor type.
*
* This bit must be 0 for system descriptors.
*
* This bit must be 1 for code or data segment
* descriptor.
*/
uint8_t S : 1;
/** @brief Descriptor privilege level.
* @details This field determines the privilege level of the segment.
* @details 0 = kernel mode, 3 = user mode.
*/
uint8_t DPL : 2;
/**
* Descriptor privilege level.
*
* This field determines the privilege level of the
* segment.
*
* 0 = kernel mode
* 3 = user mode
*/
uint8_t DPL : 2;
/** @brief Present bit.
* @details This bit must be 1 for all valid descriptors.
*/
uint8_t P : 1;
} __packed;
uint8_t Raw : 8;
} Access;
uint8_t Granularity;
uint8_t BaseHigh;
/* HIGH */
uint32_t BaseUpper;
uint32_t Reserved;
} __packed;
/**
* Present bit.
*
* This bit must be 1 for all valid descriptors.
*/
uint8_t P : 1;
} __packed;
uint8_t Raw : 8;
} Access;
uint8_t Granularity;
uint8_t BaseHigh;
/* HIGH */
uint32_t BaseUpper;
uint32_t Reserved;
} __packed;
struct TaskStateSegment
{
uint32_t Reserved0 __aligned(16);
uint64_t StackPointer[3];
uint64_t Reserved1;
uint64_t InterruptStackTable[7];
uint64_t Reserved2;
uint16_t Reserved3;
uint16_t IOMapBaseAddressOffset;
} __packed;
struct TaskStateSegment
{
uint32_t Reserved0 __aligned(16);
uint64_t StackPointer[3];
uint64_t Reserved1;
uint64_t InterruptStackTable[7];
uint64_t Reserved2;
uint16_t Reserved3;
uint16_t IOMapBaseAddressOffset;
} __packed;
struct GlobalDescriptorTableEntry
{
/** @brief Limit 0:15 */
uint16_t Limit0 : 16;
struct GlobalDescriptorTableEntry
{
/**
* Limit 0:15
*/
uint16_t Limit0 : 16;
/** @brief Low Base 0:15 */
uint16_t BaseLow : 16;
/**
* Low Base 0:15
*/
uint16_t BaseLow : 16;
/** @brief Middle Base 16:23 */
uint8_t BaseMiddle : 8;
/**
* Middle Base 16:23
*/
uint8_t BaseMiddle : 8;
/** @brief Access */
union GlobalDescriptorTableAccess
{
struct
{
/** @brief Access bit.
* @note The CPU sets this bit to 1 when the segment is accessed.
*/
uint8_t A : 1;
/**
* Access
*/
union GlobalDescriptorTableAccess
{
struct
{
/**
* Access bit.
*
* @note The CPU sets this bit to 1 when the segment
* is accessed.
*/
uint8_t A : 1;
/** @brief Readable bit for code segments, writable bit for data segments.
* @details For code segments, this bit must be 1 for the segment to be readable.
* @details For data segments, this bit must be 1 for the segment to be writable.
*/
uint8_t RW : 1;
/**
* Readable bit for code segments, writable bit for
* data segments.
*
* Code Segment:
* This bit must be 1 for the segment to be readable.
*
* Data Segment:
* This bit must be 1 for the segment to be writable.
*/
uint8_t RW : 1;
/** @brief Direction bit for data segments, conforming bit for code segments.
* @details For data segments, this bit must be 1 for the segment to grow up (higher addresses).
* @details For code segments, this bit must be 1 for code in the segment to be able to be executed from an equal or lower privilege level.
*/
uint8_t DC : 1;
/**
* Direction bit for data segments, conforming bit for
* code segments.
*
* Code Segment:
* This bit must be 1 for code in the segment to be able
* to be executed from an equal or lower privilege level.
*
* Data Segment:
* This bit must be 1 for the segment to grow up (higher
* addresses).
*/
uint8_t DC : 1;
/** @brief Executable bit.
* @details This bit must be 1 for code-segment descriptors.
* @details This bit must be 0 for data-segment and system descriptors.
*/
uint8_t E : 1;
/**
* Executable bit.
*
* This bit must be 1 for code-segment descriptors.
*
* This bit must be 0 for data-segment and
* system descriptors.
*/
uint8_t E : 1;
/** @brief Descriptor type.
* @details This bit must be 0 for system descriptors.
* @details This bit must be 1 for code or data segment descriptor.
*/
uint8_t S : 1;
/**
* Descriptor type.
*
* This bit must be 0 for system descriptors.
*
* This bit must be 1 for code or data segment
* descriptor.
*/
uint8_t S : 1;
/** @brief Descriptor privilege level.
* @details This field determines the privilege level of the segment.
* @details 0 = kernel mode, 3 = user mode.
*/
uint8_t DPL : 2;
/**
* Descriptor privilege level.
*
* This field determines the privilege level of the
* segment.
*
* 0 = kernel mode
* 3 = user mode
*/
uint8_t DPL : 2;
/** @brief Present bit.
* @details This bit must be 1 for all valid descriptors.
*/
uint8_t P : 1;
} __packed;
uint8_t Raw : 8;
} Access;
/**
* Present bit.
*
* This bit must be 1 for all valid descriptors.
*/
uint8_t P : 1;
} __packed;
uint8_t Raw : 8;
} Access;
// /** @brief Limit 16:19 */
// uint16_t Limit1 : 4;
// /** Limit 16:19 */
/** @brief Flags */
union GlobalDescriptorTableFlags
{
struct
{
uint8_t Reserved : 4; /* FIXME: Without this, the kernel crashes. */
/** @brief Available bit.
* @details This bit is available for use by system software.
*/
uint8_t AVL : 1;
// uint16_t Limit1 : 4;
/** @brief Long mode.
* @details If the long mode bit is clear, the segment is in 32-bit protected mode.
* @details If the long mode bit is set, the segment is in 64-bit long mode.
*/
uint8_t L : 1;
/**
* Flags
*/
union GlobalDescriptorTableFlags
{
struct
{
/* FIXME: Without this, the kernel crashes. */
uint8_t Reserved : 4;
/** @brief Size flag.
* @details If the size bit is clear, the segment is in 16-bit protected mode.
* @details If the size bit is set, the segment is in 32-bit protected mode.
*/
uint8_t DB : 1;
/**
* Available bit.
*
* This bit is available for use by system software.
*/
uint8_t AVL : 1;
/** @brief Granularity bit.
* @details If the granularity bit is clear, the segment limit is in 1 B blocks.
* @details If the granularity bit is set, the segment limit is in 4 KiB blocks.
*/
uint8_t G : 1;
} __packed;
uint8_t Raw : 8;
} Flags;
/**
* Long mode.
*
* If the long mode bit is clear, the segment is in
* 32-bit protected mode.
*
* If the long mode bit is set, the segment is in
* 64-bit long mode.
*/
uint8_t L : 1;
/** @brief High Base 24:31 */
uint8_t BaseHigh : 8;
} __packed;
/**
* Size flag.
*
* If the size bit is clear, the segment is in
* 16-bit protected mode.
*
* If the size bit is set, the segment is in
* 32-bit protected mode.
*/
uint8_t DB : 1;
struct GlobalDescriptorTableEntries
{
GlobalDescriptorTableEntry Null;
GlobalDescriptorTableEntry Code;
GlobalDescriptorTableEntry Data;
GlobalDescriptorTableEntry UserData;
GlobalDescriptorTableEntry UserCode;
TaskStateSegmentEntry TaskStateSegment;
} __packed;
/**
* Granularity bit.
*
* If the granularity bit is clear, the segment limit
* is in 1 B blocks.
*
* If the granularity bit is set, the segment limit is
* in 4 KiB blocks.
*/
uint8_t G : 1;
} __packed;
uint8_t Raw : 8;
} Flags;
struct GlobalDescriptorTableDescriptor
{
/** @brief GDT entries length */
uint16_t Length;
/** @brief GDT entries address */
GlobalDescriptorTableEntries *Entries;
} __packed;
/**
* High Base 24:31
*/
uint8_t BaseHigh : 8;
} __packed;
extern void *CPUStackPointer[];
extern TaskStateSegment tss[];
void Init(int Core);
void SetKernelStack(void *Stack);
void *GetKernelStack();
struct GlobalDescriptorTableEntries
{
GlobalDescriptorTableEntry Null;
GlobalDescriptorTableEntry Code;
GlobalDescriptorTableEntry Data;
GlobalDescriptorTableEntry UserData;
GlobalDescriptorTableEntry UserCode;
TaskStateSegmentEntry TaskStateSegment;
} __packed;
struct GlobalDescriptorTableDescriptor
{
/**
* GDT entries length
*/
uint16_t Length;
/**
* GDT entries address
*/
GlobalDescriptorTableEntries *Entries;
} __packed;
extern void *CPUStackPointer[];
extern TaskStateSegment tss[];
void Init(int Core);
void SetKernelStack(void *Stack);
void *GetKernelStack();
}
#define GDT_KERNEL_CODE offsetof(GlobalDescriptorTable::GlobalDescriptorTableEntries, Code)

View File

@ -34,7 +34,7 @@ namespace Memory
if ((PDE->raw & Flag) > 0)
{
if (Type == MapType::FourMB && PDE->PageSize)
if (Type == MapType::FourMiB && PDE->PageSize)
return true;
PTE = (PageTableEntryPtr *)((uintptr_t)PDE->GetAddress() << 12);
@ -86,13 +86,13 @@ namespace Memory
if (PDE->Present)
{
if (PDE->PageSize)
return MapType::FourMB;
return MapType::FourMiB;
PTE = (PageTableEntryPtr *)((uintptr_t)PDE->GetAddress() << 12);
if (PTE)
{
if (PTE->Entries[Index.PTEIndex].Present)
return MapType::FourKB;
return MapType::FourKiB;
}
}
return MapType::NoMapType;
@ -143,7 +143,7 @@ namespace Memory
uint64_t DirectoryFlags = Flags & 0x3F;
PageDirectoryEntry *PDE = &this->Table->Entries[Index.PDEIndex];
if (Type == MapType::FourMB)
if (Type == MapType::FourMiB)
{
PDE->raw |= (uintptr_t)Flags;
PDE->PageSize = true;
@ -218,7 +218,7 @@ namespace Memory
return;
}
if (Type == MapType::FourMB && PDE->PageSize)
if (Type == MapType::FourMiB && PDE->PageSize)
{
PDE->Present = false;
return;

View File

@ -24,249 +24,236 @@
namespace GlobalDescriptorTable
{
static GlobalDescriptorTableEntries GDTEntriesTemplate = {
.Null =
{
.Limit0 = 0x0,
.BaseLow = 0x0,
.BaseMiddle = 0x0,
.Access = {.Raw = 0x0},
// .Limit1 = 0x0,
.Flags = {.Raw = 0x0},
.BaseHigh = 0x0,
},
static GlobalDescriptorTableEntries GDTEntriesTemplate = {
.Null =
{
.Limit0 = 0x0,
.BaseLow = 0x0,
.BaseMiddle = 0x0,
.Access = {.Raw = 0x0},
// .Limit1 = 0x0,
.Flags = {.Raw = 0x0},
.BaseHigh = 0x0,
},
.Code =
{
.Limit0 = 0xFFFF,
.BaseLow = 0x0,
.BaseMiddle = 0x0,
.Access = {
.A = 0,
.RW = 1,
.DC = 0,
.E = 1,
.S = 1,
.DPL = 0,
.P = 1,
},
// .Limit1 = 0xF,
.Flags = {
.Reserved = 0xF, /* Workaround for Limit1 */
.Code =
{
.Limit0 = 0xFFFF,
.BaseLow = 0x0,
.BaseMiddle = 0x0,
.Access = {
.A = 0,
.RW = 1,
.DC = 0,
.E = 1,
.S = 1,
.DPL = 0,
.P = 1,
},
// .Limit1 = 0xF,
.Flags = {
.Reserved = 0xF, /* Workaround for Limit1 */
.AVL = 0,
.L = 0,
.DB = 1,
.G = 1,
},
.BaseHigh = 0x0,
},
.AVL = 0,
.L = 0,
.DB = 1,
.G = 1,
},
.BaseHigh = 0x0,
},
.Data = {
.Limit0 = 0xFFFF,
.BaseLow = 0x0,
.BaseMiddle = 0x0,
.Access = {
.A = 0,
.RW = 1,
.DC = 0,
.E = 0,
.S = 1,
.DPL = 0,
.P = 1,
},
// .Limit1 = 0xF,
.Flags = {
.Reserved = 0xF, /* Workaround for Limit1 */
.Data = {
.Limit0 = 0xFFFF,
.BaseLow = 0x0,
.BaseMiddle = 0x0,
.Access = {
.A = 0,
.RW = 1,
.DC = 0,
.E = 0,
.S = 1,
.DPL = 0,
.P = 1,
},
// .Limit1 = 0xF,
.Flags = {
.Reserved = 0xF, /* Workaround for Limit1 */
.AVL = 0,
.L = 0,
.DB = 1,
.G = 1,
},
.BaseHigh = 0x0,
},
.AVL = 0,
.L = 0,
.DB = 1,
.G = 1,
},
.BaseHigh = 0x0,
},
.UserData = {
.Limit0 = 0xFFFF,
.BaseLow = 0x0,
.BaseMiddle = 0x0,
.Access = {
.A = 0,
.RW = 1,
.DC = 0,
.E = 0,
.S = 1,
.DPL = 3,
.P = 1,
},
// .Limit1 = 0xF,
.Flags = {
.Reserved = 0xF, /* Workaround for Limit1 */
.UserData = {
.Limit0 = 0xFFFF,
.BaseLow = 0x0,
.BaseMiddle = 0x0,
.Access = {
.A = 0,
.RW = 1,
.DC = 0,
.E = 0,
.S = 1,
.DPL = 3,
.P = 1,
},
// .Limit1 = 0xF,
.Flags = {
.Reserved = 0xF, /* Workaround for Limit1 */
.AVL = 0,
.L = 0,
.DB = 1,
.G = 1,
},
.BaseHigh = 0x0,
},
.AVL = 0,
.L = 0,
.DB = 1,
.G = 1,
},
.BaseHigh = 0x0,
},
.UserCode = {
.Limit0 = 0xFFFF,
.BaseLow = 0x0,
.BaseMiddle = 0x0,
.Access = {
.A = 0,
.RW = 1,
.DC = 0,
.E = 1,
.S = 1,
.DPL = 3,
.P = 1,
},
// .Limit1 = 0xF,
.Flags = {
.Reserved = 0xF, /* Workaround for Limit1 */
.UserCode = {
.Limit0 = 0xFFFF,
.BaseLow = 0x0,
.BaseMiddle = 0x0,
.Access = {
.A = 0,
.RW = 1,
.DC = 0,
.E = 1,
.S = 1,
.DPL = 3,
.P = 1,
},
// .Limit1 = 0xF,
.Flags = {
.Reserved = 0xF, /* Workaround for Limit1 */
.AVL = 0,
.L = 0,
.DB = 1,
.G = 1,
},
.BaseHigh = 0x0,
},
.AVL = 0,
.L = 0,
.DB = 1,
.G = 1,
},
.BaseHigh = 0x0,
},
.TaskStateSegment = {},
};
.TaskStateSegment = {},
};
GlobalDescriptorTableEntries GDTEntries[MAX_CPU] __aligned(16);
GlobalDescriptorTableDescriptor gdt[MAX_CPU] __aligned(16);
GlobalDescriptorTableEntries GDTEntries[MAX_CPU] __aligned(16);
GlobalDescriptorTableDescriptor gdt[MAX_CPU] __aligned(16);
TaskStateSegment tss[MAX_CPU] = {
0,
{0, 0, 0},
0,
{0, 0, 0, 0, 0, 0, 0},
0,
0,
0,
};
TaskStateSegment tss[MAX_CPU] = {
0,
{0, 0, 0},
0,
{0, 0, 0, 0, 0, 0, 0},
0,
0,
0,
};
void *CPUStackPointer[MAX_CPU];
void *CPUStackPointer[MAX_CPU];
SafeFunction void Init(int Core)
{
memcpy(&GDTEntries[Core], &GDTEntriesTemplate, sizeof(GlobalDescriptorTableEntries));
gdt[Core] = {.Length = sizeof(GlobalDescriptorTableEntries) - 1, .Entries = &GDTEntries[Core]};
SafeFunction void Init(int Core)
{
memcpy(&GDTEntries[Core], &GDTEntriesTemplate, sizeof(GlobalDescriptorTableEntries));
gdt[Core] = {.Length = sizeof(GlobalDescriptorTableEntries) - 1, .Entries = &GDTEntries[Core]};
debug("GDT: %#lx", &gdt[Core]);
debug("GDT KERNEL: CODE %#lx: Limit0: 0x%X, BaseLow: 0x%X, BaseMiddle: 0x%X, Access: 0x%X, Limit1: 0x%X, Flags: 0x%X, BaseHigh: 0x%X",
GDT_KERNEL_CODE,
GDTEntries[Core].Code.Limit0,
GDTEntries[Core].Code.BaseLow,
GDTEntries[Core].Code.BaseMiddle,
GDTEntries[Core].Code.Access.Raw,
GDTEntries[Core].Code.Flags.Reserved,
GDTEntries[Core].Code.Flags.Raw & ~0xF,
GDTEntries[Core].Code.BaseHigh);
debug("GDT: %#lx", &gdt[Core]);
debug("GDT KERNEL: CODE %#lx: Limit0: 0x%X, BaseLow: 0x%X, BaseMiddle: 0x%X, Access: 0x%X, Limit1: 0x%X, Flags: 0x%X, BaseHigh: 0x%X",
GDT_KERNEL_CODE,
GDTEntries[Core].Code.Limit0,
GDTEntries[Core].Code.BaseLow,
GDTEntries[Core].Code.BaseMiddle,
GDTEntries[Core].Code.Access.Raw,
GDTEntries[Core].Code.Flags.Reserved,
GDTEntries[Core].Code.Flags.Raw & ~0xF,
GDTEntries[Core].Code.BaseHigh);
debug("GDT KERNEL: DATA %#lx: Limit0: 0x%X, BaseLow: 0x%X, BaseMiddle: 0x%X, Access: 0x%X, Limit1: 0x%X, Flags: 0x%X, BaseHigh: 0x%X",
GDT_KERNEL_DATA,
GDTEntries[Core].Data.Limit0,
GDTEntries[Core].Data.BaseLow,
GDTEntries[Core].Data.BaseMiddle,
GDTEntries[Core].Data.Access.Raw,
GDTEntries[Core].Data.Flags.Reserved,
GDTEntries[Core].Data.Flags.Raw & ~0xF,
GDTEntries[Core].Data.BaseHigh);
debug("GDT KERNEL: DATA %#lx: Limit0: 0x%X, BaseLow: 0x%X, BaseMiddle: 0x%X, Access: 0x%X, Limit1: 0x%X, Flags: 0x%X, BaseHigh: 0x%X",
GDT_KERNEL_DATA,
GDTEntries[Core].Data.Limit0,
GDTEntries[Core].Data.BaseLow,
GDTEntries[Core].Data.BaseMiddle,
GDTEntries[Core].Data.Access.Raw,
GDTEntries[Core].Data.Flags.Reserved,
GDTEntries[Core].Data.Flags.Raw & ~0xF,
GDTEntries[Core].Data.BaseHigh);
debug("GDT USER: CODE %#lx: Limit0: 0x%X, BaseLow: 0x%X, BaseMiddle: 0x%X, Access: 0x%X, Limit1: 0x%X, Flags: 0x%X, BaseHigh: 0x%X",
GDT_USER_CODE,
GDTEntries[Core].UserCode.Limit0,
GDTEntries[Core].UserCode.BaseLow,
GDTEntries[Core].UserCode.BaseMiddle,
GDTEntries[Core].UserCode.Access.Raw,
GDTEntries[Core].UserCode.Flags.Reserved,
GDTEntries[Core].UserCode.Flags.Raw & ~0xF,
GDTEntries[Core].UserCode.BaseHigh);
debug("GDT USER: CODE %#lx: Limit0: 0x%X, BaseLow: 0x%X, BaseMiddle: 0x%X, Access: 0x%X, Limit1: 0x%X, Flags: 0x%X, BaseHigh: 0x%X",
GDT_USER_CODE,
GDTEntries[Core].UserCode.Limit0,
GDTEntries[Core].UserCode.BaseLow,
GDTEntries[Core].UserCode.BaseMiddle,
GDTEntries[Core].UserCode.Access.Raw,
GDTEntries[Core].UserCode.Flags.Reserved,
GDTEntries[Core].UserCode.Flags.Raw & ~0xF,
GDTEntries[Core].UserCode.BaseHigh);
debug("GDT USER: DATA %#lx: Limit0: 0x%X, BaseLow: 0x%X, BaseMiddle: 0x%X, Access: 0x%X, Limit1: 0x%X, Flags: 0x%X, BaseHigh: 0x%X",
GDT_USER_DATA,
GDTEntries[Core].UserData.Limit0,
GDTEntries[Core].UserData.BaseLow,
GDTEntries[Core].UserData.BaseMiddle,
GDTEntries[Core].UserData.Access.Raw,
GDTEntries[Core].UserData.Flags.Reserved,
GDTEntries[Core].UserData.Flags.Raw & ~0xF,
GDTEntries[Core].UserData.BaseHigh);
debug("GDT USER: DATA %#lx: Limit0: 0x%X, BaseLow: 0x%X, BaseMiddle: 0x%X, Access: 0x%X, Limit1: 0x%X, Flags: 0x%X, BaseHigh: 0x%X",
GDT_USER_DATA,
GDTEntries[Core].UserData.Limit0,
GDTEntries[Core].UserData.BaseLow,
GDTEntries[Core].UserData.BaseMiddle,
GDTEntries[Core].UserData.Access.Raw,
GDTEntries[Core].UserData.Flags.Reserved,
GDTEntries[Core].UserData.Flags.Raw & ~0xF,
GDTEntries[Core].UserData.BaseHigh);
CPU::x32::lgdt(&gdt[Core]);
CPU::x32::lgdt(&gdt[Core]);
asmv("mov %%esp, %%eax\n"
"push $16\n"
"push %%eax\n"
"pushf\n"
"push $8\n"
"push $1f\n"
"iret\n"
"1:\n"
"movw $16, %%ax\n"
"movw %%ax, %%ds\n"
"movw %%ax, %%es\n" ::
: "memory", "eax");
asmv("mov %%esp, %%eax\n"
"push $16\n"
"push %%eax\n"
"pushf\n"
"push $8\n"
"push $1f\n"
"iret\n"
"1:\n"
"movw $16, %%ax\n"
"movw %%ax, %%ds\n"
"movw %%ax, %%es\n" ::
: "memory", "eax");
CPUStackPointer[Core] = KernelAllocator.RequestPages(TO_PAGES(STACK_SIZE + 1));
memset(CPUStackPointer[Core], 0, STACK_SIZE);
debug("CPU %d Stack Pointer: %#lx-%#lx (%d pages)", Core,
CPUStackPointer[Core], (uintptr_t)CPUStackPointer[Core] + STACK_SIZE,
TO_PAGES(STACK_SIZE + 1));
CPUStackPointer[Core] = KernelAllocator.RequestPages(TO_PAGES(STACK_SIZE + 1));
memset(CPUStackPointer[Core], 0, STACK_SIZE);
debug("CPU %d Stack Pointer: %#lx-%#lx (%d pages)", Core,
CPUStackPointer[Core], (uintptr_t)CPUStackPointer[Core] + STACK_SIZE,
TO_PAGES(STACK_SIZE + 1));
uintptr_t Base = (uintptr_t)&tss[Core];
size_t Limit = Base + sizeof(TaskStateSegment);
gdt[Core].Entries->TaskStateSegment.Limit = Limit & 0xFFFF;
gdt[Core].Entries->TaskStateSegment.BaseLow = Base & 0xFFFF;
gdt[Core].Entries->TaskStateSegment.BaseMiddle = (Base >> 16) & 0xFF;
gdt[Core].Entries->TaskStateSegment.BaseHigh = (Base >> 24) & 0xFF;
gdt[Core].Entries->TaskStateSegment.BaseUpper = s_cst(uint32_t, (Base >> 32) & 0xFFFFFFFF);
gdt[Core].Entries->TaskStateSegment.Access = {.A = 1, .RW = 0, .DC = 0, .E = 1, .S = 0, .DPL = 0, .P = 1};
gdt[Core].Entries->TaskStateSegment.Granularity = (0 << 4) | ((Limit >> 16) & 0xF);
uintptr_t Base = (uintptr_t)&tss[Core];
size_t Limit = Base + sizeof(TaskStateSegment);
gdt[Core].Entries->TaskStateSegment.Limit = Limit & 0xFFFF;
gdt[Core].Entries->TaskStateSegment.BaseLow = Base & 0xFFFF;
gdt[Core].Entries->TaskStateSegment.BaseMiddle = uint8_t((Base >> 16) & 0xFF);
gdt[Core].Entries->TaskStateSegment.BaseHigh = uint8_t((Base >> 24) & 0xFF);
gdt[Core].Entries->TaskStateSegment.BaseUpper = s_cst(uint32_t, (Base >> 32) & 0xFFFFFFFF);
gdt[Core].Entries->TaskStateSegment.Access = {.A = 1, .RW = 0, .DC = 0, .E = 1, .S = 0, .DPL = 0, .P = 1};
gdt[Core].Entries->TaskStateSegment.Granularity = (0 << 4) | ((Limit >> 16) & 0xF);
tss[Core].IOMapBaseAddressOffset = sizeof(TaskStateSegment);
tss[Core].StackPointer[0] = (uint64_t)CPUStackPointer[Core] + STACK_SIZE;
tss[Core].StackPointer[1] = 0x0;
tss[Core].StackPointer[2] = 0x0;
tss[Core].IOMapBaseAddressOffset = sizeof(TaskStateSegment);
tss[Core].StackPointer[0] = (uint32_t)CPUStackPointer[Core] + STACK_SIZE;
tss[Core].StackPointer[1] = 0x0;
tss[Core].StackPointer[2] = 0x0;
for (size_t i = 0; i < sizeof(tss[Core].InterruptStackTable) / sizeof(tss[Core].InterruptStackTable[7]); i++)
{
void *NewStack = KernelAllocator.RequestPages(TO_PAGES(STACK_SIZE + 1));
for (size_t i = 0; i < sizeof(tss[Core].InterruptStackTable) / sizeof(tss[Core].InterruptStackTable[7]); i++)
{
void *NewStack = KernelAllocator.RequestPages(TO_PAGES(STACK_SIZE + 1));
tss[Core].InterruptStackTable[i] = (uint64_t)NewStack + STACK_SIZE;
memset((void *)(tss[Core].InterruptStackTable[i] - STACK_SIZE), 0, STACK_SIZE);
debug("IST-%d: %#lx-%#lx", i, NewStack, (uintptr_t)NewStack + STACK_SIZE);
}
tss[Core].InterruptStackTable[i] = (uint32_t)NewStack + STACK_SIZE;
memset((void *)(tss[Core].InterruptStackTable[i] - STACK_SIZE), 0, STACK_SIZE);
debug("IST-%d: %#lx-%#lx", i, NewStack, (uintptr_t)NewStack + STACK_SIZE);
}
CPU::x32::ltr(GDT_TSS);
debug("Global Descriptor Table initialized");
}
CPU::x32::ltr(GDT_TSS);
debug("Global Descriptor Table initialized");
}
SafeFunction void SetKernelStack(void *Stack)
{
long CPUID = GetCurrentCPU()->ID;
if (Stack != nullptr)
tss[CPUID].StackPointer[0] = (uint64_t)Stack;
else
tss[CPUID].StackPointer[0] = (uint64_t)CPUStackPointer[CPUID] + STACK_SIZE;
SafeFunction void SetKernelStack(void *Stack)
{
long CPUID = GetCurrentCPU()->ID;
}
/*
FIXME: There's a bug in kernel which if
we won't update "tss[CPUID].StackPointer[0]"
with the current stack pointer, the kernel
will crash.
*/
asmv("mov %%esp, %0"
: "=r"(tss[CPUID].StackPointer[0]));
}
void *GetKernelStack() { return (void *)tss[GetCurrentCPU()->ID].StackPointer[0]; }
void *GetKernelStack() { return (void *)nullptr; }
}

View File

@ -22,197 +22,197 @@
namespace GlobalDescriptorTable
{
struct TaskStateSegmentEntry
{
/* LOW */
uint16_t Limit;
uint16_t BaseLow;
uint8_t BaseMiddle;
union GlobalDescriptorTableAccess
{
struct
{
/** @brief Access bit.
* @note The CPU sets this bit to 1 when the segment is accessed.
*/
uint8_t A : 1;
struct TaskStateSegmentEntry
{
/* LOW */
uint16_t Limit;
uint16_t BaseLow;
uint8_t BaseMiddle;
union GlobalDescriptorTableAccess
{
struct
{
/** @brief Access bit.
* @note The CPU sets this bit to 1 when the segment is accessed.
*/
uint8_t A : 1;
/** @brief Readable bit for code segments, writable bit for data segments.
* @details For code segments, this bit must be 1 for the segment to be readable.
* @details For data segments, this bit must be 1 for the segment to be writable.
*/
uint8_t RW : 1;
/** @brief Readable bit for code segments, writable bit for data segments.
* @details For code segments, this bit must be 1 for the segment to be readable.
* @details For data segments, this bit must be 1 for the segment to be writable.
*/
uint8_t RW : 1;
/** @brief Direction bit for data segments, conforming bit for code segments.
* @details For data segments, this bit must be 1 for the segment to grow up (higher addresses).
* @details For code segments, this bit must be 1 for code in the segment to be able to be executed from an equal or lower privilege level.
*/
uint8_t DC : 1;
/** @brief Direction bit for data segments, conforming bit for code segments.
* @details For data segments, this bit must be 1 for the segment to grow up (higher addresses).
* @details For code segments, this bit must be 1 for code in the segment to be able to be executed from an equal or lower privilege level.
*/
uint8_t DC : 1;
/** @brief Executable bit.
* @details This bit must be 1 for code-segment descriptors.
* @details This bit must be 0 for data-segment and system descriptors.
*/
uint8_t E : 1;
/** @brief Executable bit.
* @details This bit must be 1 for code-segment descriptors.
* @details This bit must be 0 for data-segment and system descriptors.
*/
uint8_t E : 1;
/** @brief Descriptor type.
* @details This bit must be 0 for system descriptors.
* @details This bit must be 1 for code or data segment descriptor.
*/
uint8_t S : 1;
/** @brief Descriptor type.
* @details This bit must be 0 for system descriptors.
* @details This bit must be 1 for code or data segment descriptor.
*/
uint8_t S : 1;
/** @brief Descriptor privilege level.
* @details This field determines the privilege level of the segment.
* @details 0 = kernel mode, 3 = user mode.
*/
uint8_t DPL : 2;
/** @brief Descriptor privilege level.
* @details This field determines the privilege level of the segment.
* @details 0 = kernel mode, 3 = user mode.
*/
uint8_t DPL : 2;
/** @brief Present bit.
* @details This bit must be 1 for all valid descriptors.
*/
uint8_t P : 1;
} __packed;
uint8_t Raw : 8;
} Access;
uint8_t Granularity;
uint8_t BaseHigh;
/* HIGH */
uint32_t BaseUpper;
uint32_t Reserved;
} __packed;
/** @brief Present bit.
* @details This bit must be 1 for all valid descriptors.
*/
uint8_t P : 1;
} __packed;
uint8_t Raw : 8;
} Access;
uint8_t Granularity;
uint8_t BaseHigh;
/* HIGH */
uint32_t BaseUpper;
uint32_t Reserved;
} __packed;
struct TaskStateSegment
{
uint32_t Reserved0 __aligned(16);
uint64_t StackPointer[3];
uint64_t Reserved1;
uint64_t InterruptStackTable[7];
uint64_t Reserved2;
uint16_t Reserved3;
uint16_t IOMapBaseAddressOffset;
} __packed;
struct TaskStateSegment
{
uint32_t Reserved0 __aligned(16);
uint64_t StackPointer[3];
uint64_t Reserved1;
uint64_t InterruptStackTable[7];
uint64_t Reserved2;
uint16_t Reserved3;
uint16_t IOMapBaseAddressOffset;
} __packed;
struct GlobalDescriptorTableEntry
{
/** @brief Limit 0:15 */
uint16_t Limit0 : 16;
struct GlobalDescriptorTableEntry
{
/** @brief Limit 0:15 */
uint16_t Limit0 : 16;
/** @brief Low Base 0:15 */
uint16_t BaseLow : 16;
/** @brief Low Base 0:15 */
uint16_t BaseLow : 16;
/** @brief Middle Base 16:23 */
uint8_t BaseMiddle : 8;
/** @brief Middle Base 16:23 */
uint8_t BaseMiddle : 8;
/** @brief Access */
union GlobalDescriptorTableAccess
{
struct
{
/** @brief Access bit.
* @note The CPU sets this bit to 1 when the segment is accessed.
*/
uint8_t A : 1;
/** @brief Access */
union GlobalDescriptorTableAccess
{
struct
{
/** @brief Access bit.
* @note The CPU sets this bit to 1 when the segment is accessed.
*/
uint8_t A : 1;
/** @brief Readable bit for code segments, writable bit for data segments.
* @details For code segments, this bit must be 1 for the segment to be readable.
* @details For data segments, this bit must be 1 for the segment to be writable.
*/
uint8_t RW : 1;
/** @brief Readable bit for code segments, writable bit for data segments.
* @details For code segments, this bit must be 1 for the segment to be readable.
* @details For data segments, this bit must be 1 for the segment to be writable.
*/
uint8_t RW : 1;
/** @brief Direction bit for data segments, conforming bit for code segments.
* @details For data segments, this bit must be 1 for the segment to grow up (higher addresses).
* @details For code segments, this bit must be 1 for code in the segment to be able to be executed from an equal or lower privilege level.
*/
uint8_t DC : 1;
/** @brief Direction bit for data segments, conforming bit for code segments.
* @details For data segments, this bit must be 1 for the segment to grow up (higher addresses).
* @details For code segments, this bit must be 1 for code in the segment to be able to be executed from an equal or lower privilege level.
*/
uint8_t DC : 1;
/** @brief Executable bit.
* @details This bit must be 1 for code-segment descriptors.
* @details This bit must be 0 for data-segment and system descriptors.
*/
uint8_t E : 1;
/** @brief Executable bit.
* @details This bit must be 1 for code-segment descriptors.
* @details This bit must be 0 for data-segment and system descriptors.
*/
uint8_t E : 1;
/** @brief Descriptor type.
* @details This bit must be 0 for system descriptors.
* @details This bit must be 1 for code or data segment descriptor.
*/
uint8_t S : 1;
/** @brief Descriptor type.
* @details This bit must be 0 for system descriptors.
* @details This bit must be 1 for code or data segment descriptor.
*/
uint8_t S : 1;
/** @brief Descriptor privilege level.
* @details This field determines the privilege level of the segment.
* @details 0 = kernel mode, 3 = user mode.
*/
uint8_t DPL : 2;
/** @brief Descriptor privilege level.
* @details This field determines the privilege level of the segment.
* @details 0 = kernel mode, 3 = user mode.
*/
uint8_t DPL : 2;
/** @brief Present bit.
* @details This bit must be 1 for all valid descriptors.
*/
uint8_t P : 1;
} __packed;
uint8_t Raw : 8;
} Access;
/** @brief Present bit.
* @details This bit must be 1 for all valid descriptors.
*/
uint8_t P : 1;
} __packed;
uint8_t Raw : 8;
} Access;
// /** @brief Limit 16:19 */
// uint16_t Limit1 : 4;
// /** @brief Limit 16:19 */
// uint16_t Limit1 : 4;
/** @brief Flags */
union GlobalDescriptorTableFlags
{
struct
{
uint8_t Reserved : 4; /* FIXME: Without this, the kernel crashes. */
/** @brief Available bit.
* @details This bit is available for use by system software.
*/
uint8_t AVL : 1;
/** @brief Flags */
union GlobalDescriptorTableFlags
{
struct
{
uint8_t Reserved : 4; /* FIXME: Without this, the kernel crashes. */
/** @brief Available bit.
* @details This bit is available for use by system software.
*/
uint8_t AVL : 1;
/** @brief Long mode.
* @details If the long mode bit is clear, the segment is in 32-bit protected mode.
* @details If the long mode bit is set, the segment is in 64-bit long mode.
*/
uint8_t L : 1;
/** @brief Long mode.
* @details If the long mode bit is clear, the segment is in 32-bit protected mode.
* @details If the long mode bit is set, the segment is in 64-bit long mode.
*/
uint8_t L : 1;
/** @brief Size flag.
* @details If the size bit is clear, the segment is in 16-bit protected mode.
* @details If the size bit is set, the segment is in 32-bit protected mode.
*/
uint8_t DB : 1;
/** @brief Size flag.
* @details If the size bit is clear, the segment is in 16-bit protected mode.
* @details If the size bit is set, the segment is in 32-bit protected mode.
*/
uint8_t DB : 1;
/** @brief Granularity bit.
* @details If the granularity bit is clear, the segment limit is in 1 B blocks.
* @details If the granularity bit is set, the segment limit is in 4 KiB blocks.
*/
uint8_t G : 1;
} __packed;
uint8_t Raw : 8;
} Flags;
/** @brief Granularity bit.
* @details If the granularity bit is clear, the segment limit is in 1 B blocks.
* @details If the granularity bit is set, the segment limit is in 4 KiB blocks.
*/
uint8_t G : 1;
} __packed;
uint8_t Raw : 8;
} Flags;
/** @brief High Base 24:31 */
uint8_t BaseHigh : 8;
} __packed;
/** @brief High Base 24:31 */
uint8_t BaseHigh : 8;
} __packed;
struct GlobalDescriptorTableEntries
{
GlobalDescriptorTableEntry Null;
GlobalDescriptorTableEntry Code;
GlobalDescriptorTableEntry Data;
GlobalDescriptorTableEntry UserData;
GlobalDescriptorTableEntry UserCode;
TaskStateSegmentEntry TaskStateSegment;
} __packed;
struct GlobalDescriptorTableEntries
{
GlobalDescriptorTableEntry Null;
GlobalDescriptorTableEntry Code;
GlobalDescriptorTableEntry Data;
GlobalDescriptorTableEntry UserData;
GlobalDescriptorTableEntry UserCode;
TaskStateSegmentEntry TaskStateSegment;
} __packed;
struct GlobalDescriptorTableDescriptor
{
/** @brief GDT entries length */
uint16_t Length;
/** @brief GDT entries address */
GlobalDescriptorTableEntries *Entries;
} __packed;
struct GlobalDescriptorTableDescriptor
{
/** @brief GDT entries length */
uint16_t Length;
/** @brief GDT entries address */
GlobalDescriptorTableEntries *Entries;
} __packed;
extern void *CPUStackPointer[];
extern TaskStateSegment tss[];
void Init(int Core);
void SetKernelStack(void *Stack);
void *GetKernelStack();
extern void *CPUStackPointer[];
extern TaskStateSegment tss[];
void Init(int Core);
void SetKernelStack(void *Stack);
void *GetKernelStack();
}
#define GDT_KERNEL_CODE offsetof(GlobalDescriptorTable::GlobalDescriptorTableEntries, Code)